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Abstract

Implementing an efficient k-Nearest Neighbors (kNN) algorithm on FPGA is becoming challenging due to the fact that both the
size and dimensionality of datasets that kNN is working on have been rapidly growing, which makes external memory-access
a performance bottleneck. To reduce the impact of the bottleneck, in this paper we implement two kNN kernels through high-
level synthesis (HLS) on FPGA by employing two data access reduction methods: low-precision data representation (LPDR) and
principal component analysis based filtering (PCAF). One kernel is called MBFS-kNN (Memory-efficient Brute-Force Searching
kNN) and the other is called MPCAF-kNN (Memory-efficient PCAF kNN). The two kernels are adaptive to all key parameters. By
comparing them with two state-of-the-art KNN implementations on a high-end CPU server, an existing BFS-kNN kernel on FPGA,
and an existing BFS-kNN kernel on GPU, our experimental results show that the two kernels substantially improve the performance

by greatly reducing external memory-accesses.
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1. Introduction

The k-Nearest Neighbors (kNN) search algorithm is one of
the most popular machine learning algorithms due to its sim-
plicity and accuracy [1][2][3][4][5][6]. It has been applied to a
wide range of high-performance computing (HPC) applications
such as image/video retrieval [7][8], big data analysis [1][3],
machine learning [9], and computer vision [10]. In an image
retrieval system, given a query image g, KNN searches an image
database and then returns k images with features most similar
to that of ¢ [7].

kNN can be implemented on various computing platforms
such as a conventional multi-core CPU server or a heteroge-
neous computing system using accelerators like GPU or FPGA.
Among these platforms, an FPGA-based heterogeneous system
is becoming increasingly attractive for a spectrum of applica-
tions thanks to FPGA’s inherent parallelism, deeply-pipelined
architecture, high energy-efficiency, and reconfigurability [11]
[12][13]. Microsoft employed FPGAs to accelerate its Bing
page ranking functions [11]. Baidu developed a software-defined
accelerator for large-scale deep neural network (DNN) systems,
which heavily rely on FPGA devices [12].

Existing work on FPGA-based kNN acceleration has demon-
strated promising results [14][15][16][17]. However, a new
challenge is emerging due to the fact that both the size and
dimensionality of datasets that KNN is working on have been
rapidly growing these days. Tineye, the first image search en-
gine on the Web to use image identification technology, was
launched in 2008. Since then, the number of images in Tin-
eye’s indexed image database has increased from 0.7 billion to
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35 billion in 2019 [18]. At the same time, to obtain a more
accurate representation of an image, the number of dimensions
of each feature vector extracted by some neural network tech-
nology could be as large as 4,096 [19][20]. As a result, a KNN
search in such a large database with a high dimensionality be-
comes both compute-intensive and memory-intensive [21]. On
the other hand, a modern FPGA board normally can only pro-
vide a moderate bandwidth between an FPGA chip and its on-
board external DRAM [22], which makes memory-access a per-
formance bottleneck of a kNN kernel. For example, the max-
imal bandwidth between the FPGA chip and a single external
on-board memory bank is only 512 bits per clock cycle in a
VCU 1525 board [23] (see Section 4.1). Before the potential
of the FPGA chip (i.e., its internal high level of parallelism and
deep pipeline architecture) can be fully exploited, the impact
of the external memory-access bottleneck on its performance
needs to be effectively alleviated.

To reduce the impact of the external memory-access bot-
tleneck, in this paper we implement two kNN kernels through
HLS [24] on FPGA by employing two data access reduction
methods: low-precision data representation (LPDR) [25] and
principal component analysis based filtering (PCAF) [8]. The
former has been successfully applied in various domains as it
can improve hardware bandwidth utilization by lowering data
precision, and thus, reducing the volume of data being read-
/written [25][26]. The latter uses a data filtering mechanism to
exclude those reference features that are not likely to be kNN
features according to the PCA estimation [8]. One kernel is
called MBFS-kNN (Memory-efficient Brute-Force Searching
kNN) and the other is called MPCAF-KNN (Memory-efficient
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PCAF kNN). While the former employs only the method of
LPDR to reduce the number of memory accesses, the latter uti-
lizes both methods to achieve the same goal. MBFS-kNN can
be used to carry out an accurate KNN search, whereas MPCAF-
kNN can perform an approximate kNN search. The motiva-
tion of developing MBFS-KNN is three-fold. First, it provides
us with an understanding of the behavior of an accurate kNN
search on FPGA in terms of performance and energy-efficiency.
Second, it allows us to gain sufficient kNN design and imple-
mentation experience on FPGA, which lays a good foundation
for us to develop a more advanced MPCAF-kNN kernel. Third,
it enables one to easily apprehend the development of MPCAF-
kNN. MPCAF-kNN is inspired by the PCAF algorithm, which
was proposed in a recent study [8]. However, the original PCAF
algorithm is not FPGA friendly. To solve this issue, we de-
velop two new strategies (see Section 4.5) so that our opti-
mized PCAF algorithm can fully exploit the characteristics of
FPGA. Both kernels are adaptive to the number of dimensions
(D), number of data points in a database (N), number of nearest
neighbors (k), number of bits per feature (B), and number of
principal components (d).

We evaluate the two kNN kernels in terms of performance
and energy-efficiency by comparing them with two state-of-the-
art KNN implementations on a high-end CPU server, an existing
BFS-kNN kernel on FPGA, and an existing BFS-KNN kernel on
GPU. The experimental results demonstrate that MBFS-KNN
can achieve a performance equivalent to that of a 76-thread
CPU server in the best case. It also outperforms the two existing
BFS-kNN kernels in execution time and energy-efficiency by
5.5x and 1.97x, 7.44x and 22.29x, respectively. The MPCAF-
kNN kernel achieves up to a performance equivalent to that of a
56-thread of CPU server. It also gains 21.75x energy-efficiency
compared with the CPU server. Compared with the BFS-kNN,
MPCAF-kNN reduces external memory accesses by 28~231x.
This paper makes three contributions. First, the PCAF algo-
rithm was originally proposed for a multi-core CPU server [8].
Directly transplanting it to FPGA, however, could not yield a
high-performance kNN kernel (see Section 2). Two empiri-
cal optimization strategies (see Section 4.5) are developed so
that the MPCAF-kNN kernel can effectively utilize the poten-
tial of FPGA. In addition, three optimization approaches (see
Section 4.2) are proposed to enhance the performance of BFS-
kNN. Second, to alleviate the external memory-access bottle-
neck problem, the low-precision data representation scheme is
employed by the two proposed FPGA kernels. To the best
of our knowledge, this work is the first research that utilizes
a PCA-based data filtering mechanism to reduce memory ac-
cesses of a kNN kernel running on FPGA. Third, a comprehen-
sive evaluation of the two kernels in performance and energy-
efficiency is provided.

The rest of paper is organized as follows. Section 2 briefly
summarizes the related work followed by the motivation of this
research. Section 3 presents the background of this research
including the algorithms of BFS-kNN and PCAF-kNN. Section
4 provides implementation and optimization details of the two
kernels. Section 5 evaluates the two kernels. Finally, Section 6
concludes the paper.

2. Related Work and Motivation

Accelerating HPC applications by employing FPGA has been
a hot research topic in the last decade. Modern HPC systems
using FPGA have been developed to accomplish various tasks
from deep learning models for image search to enhancing cloud
services [11][27][28][12]. Traditional kNN implementations
like [14][15] were all developed using an hardware descrip-
tion language (HDL). Hussain et al. proposed two adaptive
FPGA architectures of the kNN classifier [14]. Along the same
line, Manolakos et al. developed two hardware architectures
described as soft parameterized IP cores in very high-speed in-
tegrated circuit hardware description language (VHDL) [15].
All hardware architectures proposed by [14][15] were imple-
mented in an HDL, which cannot be directly used in an high-
level synthesis (HLS) implementation. After the HLS technique
became available, some developers switched their KNN imple-
mentations from HDL to HLS. For examle, Pu ez al. employed a
specific bubble sort algorithm to speed up the sorting phase of a
BFS-kNN algorithm using OpenCL. Their kNN kernel outper-
forms a 4-thread CPU by 148 and 803 times in execution time
and energy-efficiency, respectively [17]. Muslim et al. also ac-
celerated a BFS-kNN search using FPGA under the OpenCL
framework [16]. They found that an optimized FPGA-based
kNN kernel could offer performance and energy-efficiency bet-
ter than a GPU-based kNN implementation [16]. Unfortunately,
[16][17] are not suitable for kNN search in a large dataset be-
cause they store temporary distances in on-chip memory whose
size is usually very limited (e.g., only 345.9 Mb available on
the FPGA chip XCVU9P-L2FSGD2104E, see Section 4.1).

To alleviate the problem of increasingly large data size and
high dimensionality, several approximate kNN (AkNN) algo-
rithms [29][30][311[32][33][8][34][35] have been proposed. In-
stead of returning the k actual nearest neighbors, they return
k results that are highly likely to be the k nearest neighbors.
Based on the strategy of finding approximate nearest neighbors,
they can be generally divided into two camps: data-selection
based (e.g., [29][32][35]) and data-filtering based (e.g., [31][8]).
Algorithms in the first camp normally incur a large memory
footprint. Besides, they usually exhibit a poor scalability due
to the need of performing a large number of random memory
accesses [31]. For example, the algorithm proposed in [32] uti-
lized multiple randomized KD-trees (RKD-trees) to build its in-
dex structure. In the search stage, it traverses these trees so that
promising candidate nodes can be stored in a queue for the sub-
sequent distance calculation stage. Unfortunately, traversing
multiple RKD-trees cannot be efficiently parallelized on FPGA.
Based on our analysis, algorithms in the first camp are not good
candidates for an FPGA implementation. This is mainly be-
cause they cannot exploit the abundant parallelism provided by
FPGA.

Although AKNN algorithms in the second camp avoid the
drawbacks mentioned above, we discover that not all of them
are suitable for an FPGA implementation. Subspace clustering
for filtering (SCF) [31], for example, is a state-of-the-art AKNN
algorithm in the second camp. Its search precision depends on
the nature of the reference features [31]. After a preliminary



investigation on algorithms in the second camp, we find that
PCAF [8] is promising because it could be efficiently imple-
mented on FPGA. It uses principal components analysis (PCA)
to estimate the rank of distance between the query feature and
the reference feature. Next, reference features that are not likely
to be k-NN features according to the PCA estimation are ex-
cluded [8]. Compared with other data-filtering based AKNN
algorithms, PCAF has a good scalability with a stable and high
search precision on high dimensional datasets [8]. Thus, in this
research we decide to implement a kNN kernel on FPGA based
on the PCAF algorithm.

Implementing PCAF on FPGA, however, is not trivial. First,
in the original PCAF algorithm the distance comparisons in the
PCA space are executed sequentially, which cannot exploit the
potential parallelism and deep pipelining of FPGA. As a result,
the performance of PCAF on FPGA could be degraded. Sec-
ond, even after the original data are mapped from a high dimen-
sional space to a low dimensional space, the external memory-
access bottleneck problem still exists as the memory bandwidth
of FPGA is substantially less than that of CPU or GPU. To
solve the first challenge, we propose two empirical optimiza-
tion strategies (see Section 4.5) so that distance comparisons
in the PCA space can be performed in a pipelined and paral-
lel fashion. To address the second challenge, we optimize the
proposed MPCAF-kNN kernel by employing the low-precision
data representation (see Section 4.3). To the best of our knowl-
edge, this work is the first attempt to accelerate AKNN search
in a high dimensional dataset on FPGA.

3. Background

In this section, we first present the algorithms of existing
BFS-kNN (Section 3.1) and PCAF-kNN (Section 3.2). Next,
the implementation environment (i.e., the OpenCL framework
and HLS tool chain) of our two kNN kernels is introduced (Sec-
tion 3.3).

3.1. Algorithm of BFS-kNN

In general, a data point p can be defined as a D dimensional
vector: p = [dy,ds,...,dp]. The database DB is defined as a
set of N data points: DB = {py, p», ..., py}. Given a query data
point g, kNN searches for k data points in a database that are
most similar or related to g, where the similarity is often mea-
sured by Euclidean distance, Hamming distance, or learned dis-
tance metrics [36] [37]. In this paper, we use the Euclidean dis-
tance. The core of kNN consists of distance calculation (e.g.,
Euclidean distance) and top-k sorting [7].

3.2. Algorithm of PCAF-kNN

Principal component analysis (PCA) [38] is a popular algo-
rithm for dimensionality reduction, and thus, is able to alleviate
the curse of dimensionality in some contexts. When the size
and dimension of a database DB become large, PCA can be
used to map a DB to a low dimensional space [38]. It utilizes
an orthogonal transformation to convert a set of data values of
possibly correlated variables into a set of data values of linearly

Algorithm 1: PCAF-kNN
Input :gq, DB, q, DB ,and k
Output: k nearest neighbors

1 Create and initialize a heap of size k with +co;

2 Create and initialize a heap’ of size k * m with +oo;

3 data_read(q’ and q);

4 fori < 0toN-1do

5 data_read(p;);

6

7

8

9

& — (¢ - pp*
if 8’ < heap’.max then

data_read(p;);

6« (q-p)*
10 if 6 < heap.max then
11 heap'.insert(¢’);
12 heap.insert(9);
13 end
14 end

15 end
16 return final k nearest neighbors from heap;

uncorrelated variables called principal components [38]. Algo-
rithm 1 illustrates the algorithm of PACF-kNN, which performs
an approximate kNN search.

PCAF first uses singular value decomposition (SVD) [39]
to find the principal components of database DB with a dimen-
sionality of D [8]. Next, DB and the query ¢ are projected into a
PCA space where their mappings are called DB’ and g, respec-
tively. We use d to represent the dimensionality of DB’. Note
that d is much smaller than D, which is the dimensionality of
DB. The main idea of PCAF is to use the distance rank in a sur-
rogate PCA space to filter out the data points that are unlikely
to be in the kNN set [8]. Algorithm 1 shows the algorithm of
PCAF-KNN. For each data point p; in DB, PCAF-KNN first cal-
culates the distance between the corresponding projected point
(i.e., p; in DB’) and the projected query g’ (see lines 5-6). If the
distance ¢’ is smaller than the maximal distance in heap’, then
the distance between p; and ¢ (i.e., ¢) is calculated (see lines
7-9). Otherwise, PCAF-KNN processes next data point in DB’.
If 6 is smaller than the maximal distance in heap, then ¢ is in-
serted into heap and ¢’ is inserted into heap’ (see lines 10-13).
Note that the index of this data point is also stored in the two
heaps. The final kNN data points will be in heap after all the
data points in DB have been processed.

The most expensive operations of BFS-kNN are data read-
ing from external memory and distance calculation when D is
large. The goal of PCAF is to reduce the number of executions
of these two operations in the original space. Note that the m
shown in line 2 of Algorithm 1 is used as a tunning parameter
to improve the searching accuracy. Basically, it is an amplifier
that enlarges the size of the temporary filter heap heap’ by m
times so that k*m possible nearest neighbors will stay in heap’
(see Fig. 3), which increases the threshold used to filter out a
data point. More details about a PCAF-kNN implementation
on a multi-core CPU can be found from [8]



3.3. OpenCL framework and high-level synthesis

In the view of the OpenCL framework, a computing system
consists of an array of compute devices, which might be central
processing units (CPUs) or accelerators such as GPUs, FPGAs,
DSPs (digital signal processors), or other processors attached to
a host CPU [40]. The OpenCL framework defines a C-like lan-
guage for writing programs. Functions executed on an OpenCL
device are called kernels. A single compute device typically
consists of several compute units, which in turn comprise mul-
tiple processing elements (PEs) [40]. A single kernel execution
can run on all or many of the PEs in parallel [40].

In this paper, we employed a Xilinx VCU1525 FPGA board
[23] as the accelerator. The OpenCL host code (i.e., a code that
manages kernels’ input/output data and coordinates their execu-
tion) and kernel program were developed using Xilinx SDAccel
tool chain [41]. OpenCL C, C/C++, and HDLs (e.g., Verilog or
VHDL) are all supported for a kernel development. In this pa-
per, we design and implement the two kNN kernels in C++ and
then convert them to a low level design through Xilinx HLS,
which are then executed under the OpenCL framework. The
two kernels have been highly optimized in C++ level, which
will be elaborated in the next section.

4. Implementation and Optimization of the Two Kernels

In this section, we first introduce the FPGA hardware re-
sources of VCU1525 [23]. Next, we elaborate the details of
implementation and optimization of MBFS-kNN and MPCAF-
kNN. Although the implementation and optimization of the two
kernels are performed on Xilinx VCU1525 [23] acceleration
board, they also can be applied to other FPGA devices by using
the Xilinx HLS tool chain.

4.1. FPGA resources of VCU1525

On-board memory external to FPGA chip: The VCU 1525
board is populated with four DDR4-2400 SDRAM banks with
a total capacity of 64 GB (i.e., each SDRAM bank is 16 GB).
The four banks together serve as the global memory for data ex-
change between a host CPU and a kernel on the FPGA board.
From the perspective of the FPGA chip, the global memory is
its external memory where it can retrieve input data from and
store output data to. This is the reason why the bottleneck to be
addressed in this paper is called an external memory-access bot-
tleneck. At any given time, a kernel is able to read data from or
write data to one of the four banks. The maximal bandwidth to
access an individual SDRAM bank is 512 bits per clock cycle,
which means that a kernel can only read or write no more than
512 bits of data from or to a memory bank per clock cycle [23].
This limited bandwidth largely constrains the performance of a
memory-intensive application.

On-chip resources: The resources on the FPGA chip (i.e.,
XCVU9P-L2FSGD2104E) include on-chip memory, digital sig-
nal processing (DSP) slices, registers, programmable logic such
as flip-flops (i.e., FFs), and lookup tables (i.e., LUTs). On-
chip memory consists of distributed RAM, block RAM (i.e.,
BRAM), and UltraRAM. Together, they can be used to build

a customized high-speed storage to buffer data between tasks.
The total capacity of on-chip memory is rather small (i.e., 345.9
Mb), which demands a careful design of a kernel that can effec-
tively utilize these resources [42].

Other resources: The configurable logic block (CLB) is the
main resource for implementing a general-purpose combinato-
rial and sequential circuit. CLBs usually are used as LUTs and
FFs. They can be easily connected to each other to create a
larger function. A DSP slice can be configured to a complex
arithmetic function such as a multiplier or an accumulator. De-
tailed information of resources on the VCU 1525 board can be
found at [23].

4.2. Optimization of BFS-kNN

Implementing a BFS-kNN on FPGA has two challenges
[16][17]. First, after distance calculation N distance values have
been generated for a DB with N data points. When N becomes
large there will not be enough on-chip memory to store these
values. While most efficient kNN algorithms employ an index-
ing data structure to prune the search, BFS-kNN has to calculate
all N distance values, which is time-consuming. Second, per-
forming distance calculation and sorting separately increases
the latency because sorting can only start after all distance val-
ues are available. To solve these challenges, we propose the
following three optimization approaches:

1. Using a k_max heap to store k distance values rather than
a huge buffer to store all distance values (see Fig. 1).

2. Pipelining data_reading, distance calculation, and k_max
comparison functions.

3. Aligning the throughput of distance calculation and k_max
comparison to external memory-access bandwidth (i.e.,
512 bits per cycle).

Now we use the KDD-CUP 2004 quantum physics dataset
[43] as an example to show step-by-step how our optimized
BFS-kNN works. This dataset (i.e., DB) consists of 50,000 data
points (i.e., N = 50,000) with each data point having 64 fea-
tures (i.e., D = 64). Each feature is a 32-bit data (i.e., B = 32).
To simplify our demonstration, we will only conduct a kNN
search with the first two data points shown in Fig. 1.

Since the maximal external memory bandwidth for a kernel
is 512 bits per clock cycle and each data point in DB totally has
64 x 32 = 2,048 bits, 4 clock cycles (i.e., 2,048/512 = 4) are
needed to move one data point into the kernel on FPGA. Also,
each data point is split into 4 data blocks tagged as pyo, pi1, P2, Pi3
where i indicates the i-th data point in DB. To fully exploit
the maximal external memory bandwidth, two designs of BFS-
kNN are explored (see Fig. la and Fig. 1b). In the design
shown in Fig.1a (hereafter, BFSa-kNN), a data buffer is created
on the FPGA chip to store one data point (see buffer in Fig.
la). Note that reading ¢ into a kernel is a one-time task. We
assume that g has been read into the kernel before time 70 (see
query data in Fig. 1a). At time instance 70, the first 512-bit data
block (i.e., pgo) is read into the buffer, after which py;, po2, po3
are fetched into buffer at t1, 12, t3, respectively. After the entire
first data point py is available in the kernel, the 64 features in
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Figure 2: (a) BFSa-kNN 32-bit; (b) BESb-kNN 32-bit; (c) BESb-kNN 16-bit.

buffer and the query data will be used for a Euclidean distance
calculation in parallel at #4 and ¢5. Next, at t6 the new distance
value obtained at 75 will be compared with the current maximal
value in k_max heap. If it is smaller than the maximal value, the
latter will be first kicked out, after which the new distance value
will be inserted into k_max heap. Otherwise, the new distance
value is simply discarded. Thanks to FPGA’s deeply-pipelined
architecture, pjg can be fetched into buffer immediately after
the distance calculation of data point p starts at 4. Similarly,
the SM array is ready for a distance calculation on the next data
point p; at 5 instead of after 7. The timeline of BFSa-kNN is
shown in Fig. 2a.

BFSa-kNN works well when the dimensionality (D) of DB
is low. For a high dimensional DB, however, it will have some
issues. First, the size of the on-chip buffer is determined by
the value of D X B. More on-chip memory will be consumed
when D becomes larger. Unfortunately, on-chip memory of an
FPGA board is usually very limited. Second, a large value of
D requires a huge fanout from the DDR read logic to buffer,
which reduces the routing quality. This in turn may cause a
timing issue and scale down system clock frequency. Third,
the parallel multiplication in the SM array will consume a large

number of DSP slices (see Other resources in Section 4.1). A
very high FPGA resource utilization will also cause the tim-
ing issue and scale down the system clock frequency. To solve
these issues, we carefully examined the design of BFSa-kNN
(see Fig. 1a) and its timeline (see Fig. 2a). We discovered that
memory access on an external on-board SDRAM bank is a per-
formance bottleneck, which makes a high degree of parallelism
for a distance calculation unnecessary. This is because anyway
there is always a stall (i.e., #7 in Fig. 2a) between processing
two consecutive data points. The implication is that one SM
is sufficient. As a result, FPGA resources can be saved. Also,
the performance of distance calculation and k_max comparison
(i.e., k_max comp in Fig.2a) should be aligned to the external
on-board memory-access bandwidth, which is a performance
bottleneck of a BFSa-kNN kernel. A refined design of BFSa-
kNN is called BFSb-kNN and it is illustrated in Fig. 1b.

The main difference between BFSa-kNN and BFSb-kNN is
that the latter only employs one SM in its distance calculation
phase. It perfectly pipelines data reading and distance calcu-
lation, which leads to a higher hardware utilization compared
with BFSa-kNN shown in Fig. 1a. Although BFSb-kNN (see
Fig. 1b) just uses 25% DSP slices of that of BFSa-kNN (see
Fig. 1a), they have the same latency (see Fig. 2a and Fig. 2b).
BFSb-kNN also uses less routing resources, which leads to a
higher placement and routing quality as well as a higher clock
frequency. Therefore, our proposed MBFS-kNN will be built
on top of BESb-kINN. One serious concern on BFS-kNN is that
it needs to literally go through all the data points in a dataset
in order to accomplish a kNN search. When the size and di-
mensionality of the dataset greatly increase BFS-kKNN becomes
notoriously memory-intensive. To alleviate this problem, we
employ two data access reduction methods, which will be ex-
plained in the next two subsections.

4.3. Low-precision data representation

The first method is called low-precision data representation,
which utilizes less bits to represent each feature. Consequently,
in each 512-bit reading from the external DRAM, a kernel can
obtain more data points. Let us still use the aforementioned
dataset as an example. If each feature only uses 16 bits in-
stead of 32 bits (i.e., B = 16), then after each reading the kernel
will receive 32 features (i.e., 512/16 =32) with each being 16
bits. Now, moving 64 features of one data point into the kernel
only needs 2 instead of 4 clock cycles. The timeline of BFSb-
kNN with each feature being 16 bits is shown in Fig. 2c, which
demonstrates that performance is improved by around 2 times
compared with BFSb-kNN with each feature being 32 bits. We
call a BFSb-kNN algorithm that employs low-precision data
representation MBFS-KNN. In our experiments, we cast each
32-bit floating data to a 16-bit floating data.

Another advantage of using low-precision data representa-
tion is that it makes hardware operators smaller and faster. For
example, a basic multiplication unit in an FPGA is a DSP48E
macro, which provides a multiplier of 27-bit X 18-bit. Using a
32-bit data type would require four DSP48E macros, whereas
using a 16-bit data type only demands one such resource. As
a result, more data can be processed using the same resources
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in the FPGA chip. However, both the query ¢ and database
(DB) need to be carefully pre-processed or generated when the
method of low-precision data representation is applied. For an
existing dataset, a statistical analysis should be used to obtain
maximal effective bits for all features. In case that generating
new database (DB) is needed, quantization can be employed
in the data generator to reduce the number of bits that repre-
sent each feature. Take the CBIR (Content-Based Image Re-
trial) system as an example. When one builds a feature vector
database for CBIR a quantized neural network can be used to
generate a low-precision dataset [44]. It is worth noting that
employing an improper or a too low data precision usually re-
sults in a poor accuracy, which makes a kNN search meaning-
less. Care must be taken when choosing the number of bits used
for each feature. Another method to break the memory wall is
called PCAF, which will be elaborated next.

4.4. PCA-based data filtering

The implementation of PCAF-kNN on FPGA is illustrated
in Fig. 3. We still use the dataset in the last section to describe
how PCAF-kNN performs a search. The dimensionality (d) of
the PCA space are set to 16. How we choose the dimensionality
of the PCA space will be explained in Section5.

A PCAF-KNN kernel can finish reading a p’, (i.e., a data
point in the PCA space) in one cycle. Major components in a
PCAF-KNN kernel include a rd_dist_calc_pca functional block,
a similarity_comparison_or functional block, and three identi-
cal k_max functional blocks. Each k_max block maintains a
temporary heap called heap’ whose size is m X k and a k-sized
heap called heap. The rd_dist_calc_pca block is in charge of
reading each data point in the PCA space and then calculat-
ing its distance from ¢’. The similarity_comparison_or block
performs a similarity comparison between a data point in the
original DB space and q.

Since reading ¢ and ¢’ (i.e., the projection of ¢ in the PCA
space) into the kernel is a one-time task, we assume that both
have been fetched into the kernel before time 0. At time 10,
py (i.e., a PCA space projection of data point py,) is read into
buffer. At time tI, SM starts the subtraction and multiplication
for the 16 data pairs from p; and ¢’. After time ¢2, the calcula-
tion of a distance value will be finished, and then, it will be com-
pared with the maximal value of heap’ at time 3 (see Fig. 3).

If the new distance value is larger, this data point is not a poten-
tial nearest neighbor. Therefore, PCAF-kNN simply discards it
and then immediately starts to process the second data point in
the PCA space. Otherwise, the similarity_comarision_or block
will be invoked to read the first data point py of the original
space DB between time #4 and 7. Next, PCAF-kNN calculates
the distance between py and query g by accumulating interme-
diate distance values in dist_reg. The final distance value will
become available at time #/0 and it will be compared with the
maximal value of heap at time ¢/1 (see Fig. 3).

If the new distance value is larger, then the rd_dist_calc_pca
block continues to compare the second distance value with the
maximal value of heap’. Otherwise, PCAF-KNN confirms that
the data point py is a potential nearest neighbor for query g.
Thus, the two distance values obtained from the two functional
blocks and the index of py will be inserted to heap’ and heap,
respectively. After all data points in the PCA space have been
processed, the final k nearest neighbors are output from heap on
FPGA chip to a buffer called Final kNN on the external DRAM
(see Fig. 3). Note that the size of the temporary filter heap’ is
deliberately augmented from & to k X m where m is an integer.
The number of k_max functional blocks (i.e., s) can also be in-
creased from 1 to n. These two parameters (i.e., m and s) ensure
that more data points in the PCA space can be kept for a further
verification, which increases the probability of finding the k-
nearest-neighbors in the original space. Obviously, the benefit
of using these two parameters is at the cost of sacrificing the
filtering rate [8].

4.5. Two empirical optimization strategies of PCAF-kNN

Simply transplanting a PCAF-KNN algorithm designed for
a CPU platform into an FPGA-based heterogeneous system with-
out any adaption and optimization could lead to a poor perfor-
mance. In this section, we propose two new empirical opti-
mization strategies to optimize the performance of PCAF-kNN
on FPGA.

Optimization Strategy One (Packaging Tasks with Feed-
back into One Function): In BFS-KNN, the three stages (i.e.,
data reading, distance calculation, and k_max comparison) of
one data point are independent of that of its neighbor data points.
Hence, they can be perfectly pipelined as shown in Fig. 2.
However, this property does not exist in PCAF-kNN. The rea-
son is that the similarity comparison of the current data point
might depend on the outcome of its prior data point’s similarity
comparison. If an execution on a stage is viewed as a task, a
task dependency (i.e., also called feedback in Xilinx HLS tool
chain) can be observed in line 7 of Algorithm 1. In other words,
the task of the current data point’s similarity comparison has to
wait till the processing of its prior data point is finished, which
leads to pipeline stalls.

Without the pipelining strategy, however, the performance
of PCAF-kNN will be greatly degraded. To solve this dilemma,
we package the task of data reading in the PCA space (see line
5 of Algorithm 1) as a function called data_read_pca(). Sim-
ilarly, the task of distance calculation in the PCA space (see
line 6 of Algorithm 1) is packaged as dist_calc_pca(). Finally,
tasks from line 7 to line 14 in Algorithm 1 are packaged as a
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Figure 4: PCAF-kNN timelines: (a) 32-bit; (b) 16-bit; (c) 16-bit optimized.

function named similarity_com_or(). While the first two func-
tions are carried out by the functional block rd_dist_calc_pca
shown in Fig. 3, the last function is executed by the similar-
ity_comparison_or functional block shown in Fig. 3. Now,
the three functions can be successfully pipelined as they do not
have any feedback among each other.

Optimization Strategy Two (Comparing Distance Values
in PCA Space in Parallel): A timeline example of PCAF-kKNN
(see Fig. 3) on the dataset (d = 16, D = 64, B = 32, totally
20 data points) used in Section 4.4 is shown in Fig. 4a. In
the rd_dist_calc_pca block shown in Fig. 3, the data point p(’)
in the PCA space can be read from the external SDRAM into
a kernel in one cycle at time 0 and then it goes to SM_pca
at time ¢/ as shown in Fig. 4a, where 16 subtractions with
the features of ¢’ and square operations are executed in par-
allel. Next, Sum_pca accumulates the 16 values from SM_pca
to generate a distance value in the PCA space. SC_or stands
for similarity_comparison_or shown in Fig. 3. In the timeline
example shown in Fig. 4a, we assume that the distance value of
data point pj is larger than the maximal value of heap’. Thus,
SC_or (i.e., similarity_comparison_or shown in Fig. 3) is not
invoked as a further examination in the original space for this
data point becomes unwanted. The distance value is simply dis-
carded. At the same time, the distance value of the data point
read in time ¢/ (i.e., data point p}) is ready, which is assumed
to be smaller than the maximal value of heap’. As a result, it
will be further processed in similarity_comparison_or shown
in Fig. 3. Since similarity_comparison_or conducts a simi-
larity comparison in the original space, it needs 4 cycles (i.e.,
(DXB)/512 = (64x32)/512 = 4) to read a data point from the
external memory. Thus, the data processing path of SC_or be-
comes longer. The goal of PCAF is to keep more data process-
ing in the rd_dist_calc_pca block (see Fig. 3) while avoiding
to invoke the similarity_comparison_or block. Based on the re-
sults from [8], in most cases the filtering rate F (i.e., the ratio
between the number of data points processed only in the PCA
space and the total number of data points in the original space)
is larger than 95%. This the reason why PCAF can greatly ac-
celerate a KNN search.

Now, we integrate low-precision data representation (see
Section 4.3) into PCAF-kNN to further reduce the impact of
memory access constraint. Fig. 4b shows the timeline when 16
bits instead of 32 bits are used to represent each feature in a data
point. Since using 16 bits for each feature saves 50% cycles for

reading a data point from the external on-board memory, each
cycle a kernel can read 32 (i.e., 512 bits /16 bits = 32) features,
which covers two data points in the PCA space. In Fig. 4a, each
grey square represents one data point in the PCA space as each
feature is 32-bit. However, when each feature is only 16-bit a
grey square shown in Fig. 4b consists of two triangles with each
representing a data point in the PCA space. To fully exploit the
increased data reading speed (i.e., the number of data points can
be read per cycle), SM_pca needs to double its resources to pro-
cessing more incoming data points. Two distance values from
the PCA space will be generated concurrently. Although mul-
tiple distance values can be generated at a given time, SC_or
can only process them one-by-one due to the feedback between
the processing of two adjacent data points (see lines 7-14 in Al-
gorithm 1). This is the reason why we see two grey triangles
are scheduled in #3 and #4, respectively. The throughput mis-
match between a producer (i.e., Data_read_pca + SM_pca +
Sum_pca) and a consumer (i.e., SC_or) blocks burst data read-
ing in the PCA space, which explains why a stall occurs repeat-
edly between two adjacent data readings after ¢/ (see Fig. 4b).
This issue will become even worse when using less bits (e.g.,
8-bit or 4-bit) for data representation. To eliminate these stalls,
we propose our second empirical optimization approach (i.e.,
Optimization Two) as below.

MPCAF-KNN: We found that the performance bottleneck
occurs in the comparison stage of SC_or (see Fig. 4b). Since
in more than 95% [8] cases the stages of rd+dc+kmc in SC_or
will not be executed, which implies that most of the distance
values obtained in the PCA space are larger than the current
maximal value of heap’ (i.e., heap’_max). This observation
suggests that multiple comparisons between distance values in
the PCA space and the same heap’_max can be performed con-
currently. Thus, Algorithm 1 can be revised to Algorithm 2.
The main difference between them lies in lines 7-14 of Algo-
rithm 1 and lines 10-23 of Algorithm 2, which show how these
comparisons are carried out in parallel. Note that the #pragma
HLS UNROLL directive informs the HLS compiler to flat the
specified for-loop. By doing so, multiple distance values from
the PCA space can be compared with heap’_max in one cy-
cle. If all of them are smaller than heap’_max, which is true in
more than 95% cases, the subsequent sequential comparisons
(line 14-23 of Algorithm 2) can be skipped. A timeline ex-
ample of Algorithm 2 is shown in Fig. 4c, where all stalls in
Fig. 4b disappear. This is because in vast majority cases the
comparisons between two data points in the PCA space and
heap’_max can now be performed in one cycle. That is why
the two grey triangles are now reunited into one grey square in
Fig. 4c. Without these stalls, the performance of a PCAF-kKNN
kernel becomes scalable when different low-precision data rep-
resentations are employed. We name the revised algorithm of
PCAF-kNN shown in Algorithm 2 MPCAF-kNN in this paper.
Note that Optimization Two can also be applied to a kNN des-
gin on a CPU or GPU based platform. The reason is that it
improves the original PCAF algorithm itself.



Algorithm 2: MPCAF-kKNN
Input : ¢, DB, ¢, DB, and k
Output: k nearest neighbors

1 Create and initialize a heap of size k with +oo;
2 Create and initialize a heap’ of size k * m with +oo;
3 data_read(q’ and q);

4 fori —0OtoN—-1do

5 data_read(p;, pi, s> Py 1)

/* h: # of data points per read =/

6 for j—Otoh—1do

7 #pragma HLS UNROLL

8 & (g = pi. )%

9 end
10 for j<—Otoh—1do
11 #pragma HLS UNROLL
12 (flag & = (6;. > heap’.max))

13 end

14 if flag==0 then

15 for j—Otoh—1do

16 data_read(p;, );

17 §; —(q—pis))%s

18 if 0; < heap.max then

19 heap’.insert(é});
20 heap.insert(;);
21 end
22 end
23 end
24 i=i+h;
25 end

26 return final k nearest neighbors from heap;

5. Evaluation

In this section, we evaluate two optimized kNN kernels:
MBFS-KNN (see the first paragraph of Section 4.3) and MPCAF-
kNN (see the last paragraph of Section 4.5) in terms of exe-
cution time, FPGA resource utilization, and energy-efficiency.
A high-end PowerEdge R730xd Rack server [45] is chosen as
a baseline platform where BFS-kNN and PCAF-kNN are run-
ning. Also, we compare MBFS-kNN with two existing BFS-
kNN implementations (on FPGA and GPU) provided by [17].
Note that some of the CPU/GPUs support 16 bit, 8-bit, and
even 4-bit computing (Turing). Exhausting all low-precision
data representations on CPUs and GPUs requires different plat-
forms and optimizations, which is beyond the scope of this pa-
per. Therefore, we only use a general case (i.e., 32-bit data
representation) for kNN running on CPU and GPU.

5.1. Experimental setup

Two datasets, KDD-CUP quantum physics [43] and GISTIM
images [46], are selected to evaluate all KNN implementations.
The KDD-CUP dataset consists of 50,000 data points with each
point having 64 features [43]. Its size is around 63 MB [43].
This dataset stores physical features and a class label of each

Table 1: Place and Route Synthesis Results for MBFS-kNN

(N=1,000,000, D=960, k=5, B=32/16/8/4)

B 32-bit 16-bit 8-bit 4-bit
Freq* (MHz) | 303.1 303.2 252.3 210.3
KGU* 100% 100% 100% 100%
KGB* (MB/s) | 17,916.6 | 17,916.5 | 18,233.9 | 18,435.7
18,312 18,277 109,869 | 99,818
FF/2,364,480 | (0.8%) (0.8%) (0.5%) (0.4%)
17,758 24,054 198,796 | 234,218
LUT/1,182,240 | (1.5%) (2.0%) (16.8%) | (19.8%)
128 64 196 512
DSP/6,840 (1.9%) (0.9%) (2.9%) (7.5%)
88 172 532 1172
BRAM/2,160 | (4.1%) (8.0%) (24.6%) | (54.3%)
on-chip
Power (watt) | 17.52 19.02 21.08 20.58

Freq* : Clock frequency;
KGU*: Kernel Gmem Utilization;
KGB*: Kernel Gmem BW;

particle. GISTIM contains one million 960-dimensional data
points extracted from a variety of images by using global color
GIST descriptors [47]. Its size is 3.8 GB.

The CPU server used in our experiments is a PowerEdge
R730xd Rack Server, which has two Intel(R) Xeon(R) CPU ES5-
2699 @ 2.20GHz. Each CPU has 22 physical cores with each
core supporting 2 threads. Thus, totally 88 threads can run in
parallel in the server. The server has 128 GB DDR4. The FPGA
platform that we used is a VCU1525 board [23] whose resource
information can be found in Section 4.1. We only used one
memory bank in our experiments and its maximal bandwidth
is 18 GB/s based on our measurement. The FPGA platform
used in [17] is a Terasic DE4 board with a Stratix IV 4SGX530
FPGA and two DDR2 memory banks. The maximal bandwidth
of each of the two DDR2 memory banks is 12.75 GB/s. The
GPU platform used in [17] is an AMD Radeon HD7950 with
28 compute units and a maximal working frequency of 900
MHz. The board consists of a 3 GB GDDRS5 memory with a
bandwidth of 240 GB/s. Note that all experimental results of
the GPU and Terasic FPGA board presented in this section are
provided by [17].

5.2. Evaluation of MBFS-kNN

In this section, we first evaluate MBFS-kNN using a large
dataset GISTIM [46]. Next, an evaluation of MBFS-KNN on
a small dataset KDD-CUP [43] will be provided. We employ
the FLANN library [48] for the implementation of BFS-kKNN
on CPU in order to improve the baseline performance of BFS-
kNN on CPU. FLANN [48] is a library for performing near-
est neighbor searches in a high dimensional space. It has been
highly optimized by supporting multi-threading. We imple-
mented both single-threaded and multi-threaded BFS-KNN on
CPU. The number of threads varies from 1 to 88.

Fig. 5 shows performance comparisons between BFS-kNN
running on the PowerEdge CPU server (i.e., "BFS-kNN (CPU)")
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Figure 5: Performance comparisons under GIST1M: BFS-kNN vs MBFS-kNN;
note that the scales on the X-axis only apply to BFS-kNN (CPU).

and MBFS-kNN running on the VCU1525 [23] FPGA board
(i.e., "MBFS-KNN (FPGA)") under the GIST1M dataset. From
Fig. 5, we can see that when both implementations use 32-
bit (i.e., B=32) for data representation MBFS-kNN can achieve
a performance similar to that of a 4-threaded CPU. In partic-
ular, the execution time of a 32-bit MBFS-kNN (FPGA) ker-
nel is 214.1 ms, whereas the execution time of a 4-threaded
32-bit BFS-kNN (CPU) is 230.3 ms. When using a smaller
number of bits to represent each feature the MBFS-kNN ker-
nel can save more clock cycles to fetch each data point from
the external DRAM for a similarity comparison. The number
of threads on the CPU server needed for an equivalent perfor-
mance of MBFS-kNN with B being 16, 8, and 4 are 10, 24,
and 76, respectively. The main purpose of Fig. 5 is to demon-
strate the impact of using a low-precision data representation
on the performance of MBFS-kNN. In terms of search accu-
racy, we observed that when using a 16-bit data representation
MBFS-kNN (FPGA) did not lose any search accuracy under the
GIST1M dataset. The same observation held when MBFS-kNN
(FPGA) used a 16-bit data representation under the KDD-CUP
dataset. However, we found that some fake nearest neighbors
would be returned if the number of bits for each data point was
further reduced to 8 or 4. Thus, as we mentioned in Section 4.3,
a proper low-precision data representation should be carefully
chosen to guarantee an acceptable search accuracy. From Fig.
5 we can see that an 8-threaded BFS-kNN (CPU) outperforms
a 32-bit MBFS-kNN (FPGA) kernel. We also observe that af-
ter the number of threads exceeds the number of physical cores
in the CPU server (i.e., 44) BFS-kNN (CPU) only slightly im-
proves its performance (see the vertical line at 44 threads in Fig.
5) due to hyperthreading (i.e., more than one thread are running
on a physical core).

Table 1 presents a summary of place and route synthesis re-
sults targeting the VCU1525 FPGA board [23]. Since a kernel
can read more data points at a given time when a smaller value
of B is used, to process them in time a higher degree of paral-
lelism is needed on FPGA. As a result, more on-chip resources
(e.g., BRAM and DSPs) are needed. This is the reason why we
see that the utilizations of LUT, DSP, and BRAM increase when
B decreases (see Table 1). From Table 1, we can see that com-
piling the kernel targeting the FPGA with different configura-
tions of B, the DDR bandwidth (Kernel Gmem Utilization) can
always achieve a 100% utilization. The implication is that the
maximal data processing bandwidth of the MBFS-kNN kernel
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—&— MPCAF-kNN (FPGA)

Execution time (log(ms))

F“-‘*ﬁ-ﬂ*‘\‘-ﬂi

44 64 80
# of threads on CPU

Figure 6: Performance comparisons under GISTIM: PCAF-kNN vs MPCAF-
kNN; note that the scales on the X-axis only apply to PCAF-kNN (CPU).

Table 2: Comparisons with the Results from [17]

(N=20,480, D=64, k=20, B=32)

MBFS-KNN | FPGA[17] | GPU[17]
Execution time (ms) | 0.63 3.46 1.24
Frequency (MHz) | 300 131.42 900
Objects/second 1,587.30 289.34 804.96
Power (watt) 17.70 24 200
Feature size (nm) 16 40 28
Objects/joule 89.69 12.056 4.024

is constrained by the DDR bandwidth. Thus, one can speculate
that if the data arrival rate of a data stream clustering workload
(i.e., a non-stop incoming data stream) is higher than the DDR
bandwidth the MBFS-kNN kernel will be overwhelmed. Since
the kernel with the configuration of B equal to 4 costs the most
hardware resources (see Table 1), the placement and routing on
this kernel will be more complex than the other three kernels
(i.e., 32-bit, 16-bit, and 8-bit). As long as the SDAccel tool
chain [41] cannot meet the timing requirement, it will scale the
clock frequency down to the maximum one that it can. In gen-
eral, a higher resource utilization makes it harder to meet the
timing requirement. That is why our results in Table 1 show
that the kernel with 32-bit obtains the highest clock frequency
(i.e., 300 Mhz). The kernels with 8 and 4 bits just achieve 252.3
and 210.3 Mhz, respectively.

We also compare the implementation of our MBFS-kNN
kernel with two implementations of BFS-kNN on a FPGA and
GPU from [17]. Note that the two implementations of BFS-
kNN on FPGA and GPU provided by [17] have been optimized
by fully exploiting the parallelism of FPGA and GPU, respec-
tively. Since the authors of [17] only used a subset of the KDD-
CUP [43] dataset (see Section 5.1) (i.e., 20,480 64-dimensional
data points) to conduct their experiments, our MBFS-kNN ker-
nel used the same subset in order to make the comparison fair.
Similar to [17], we chose to compute 20 query objects in the ex-
periments of MBFS-kNN and then present the average case for
one query in Table 2. An object could be the information of a
person (e.g., an image of a person) or a particle (e.g., phys-
ical features of a particle). Each object is represented by a
data point, which is normally multi-dimensional. Results of
the other two implementations shown in this table come from
[17]. From the results shown in Table 2, we can see that in



terms of execution time MBFS-kNN outperforms BFS-kNN on
FPGA and BFS-kNN on GPU by 5.5x and 1.97x, respectively.
Note that the execution time (i.e., called runtime in [17]) of the
two implementations provided by [17] was divided by 20 and
then presented in Table 2 because that runtime was measured
for 20 queries. Energy-efficiency is defined as the number of
objects that an kNN kernel can process per joule of energy. Ta-
ble 2 shows that the energy-efficiency of MBFS-kNN is 7.44x
and 22.29x of that of the two existing BFS-kNN implemen-
tations from [17]. Although the experiments of the three KNN
implementations used the same dataset, the comparisons among
them are not completely fair because MBFS-kINN employed an
FPGA board different from the one used in [17]. In particular,
the clock frequency of the VCU 1525 board used in this paper is
300 MHz, which is 2.28x of that of the Terasic DE4 board used
in [17]. However, we can see that the performance of MBFS-
kNN kernel is 5.5x of that of the BFS-kNN kernel on FPGA
in [17]. The obvious discrepancy between the FPGA hardware
performance gap of the two boards (i.e., 2.28x) and the perfor-
mance gap of the two kNN kernels (i.e., 5.5x) suggests that at
least part of performance improvement of MBFS-kNN stems
from its optimized algorithm.

5.3. Evaluation of MPCAF-kNN

In the last section, we see how low-precision data represen-
tation saves memory bandwidth and improves the performance
of an MBFS-kNN kernel (see Fig. 5). Another way to reduce
the impact of memory-access bottleneck on the performance
of a kNN search is to reduce the number of dimensions of a
dataset. PCAF, which is explained in Section 3.2, provides a
good solution to do that. The basic idea of PCAF-kNN is to
conduct distance calculations in a low dimensional PCA space
first. Next, data points that are unlikely to be kNN are filtered
out. The first step of PCAF is to select the dimensionality of the
PCA space (i.e., d). Theoretically, d can be chosen in the range
of [1, D]. A higher value of d implies that more information
of the original dataset can be reserved in the PCA space. The
value of d has a huge impact on filtering rate and search accu-
racy. Two other parameters mentioned in Section 4.4, which are
also crucial to filtering rate and search accuracy, are heap scal-
ing factor (i.e., m) and the number of k_max functional blocks
(i.e., s) (see Fig. 3 where s is equal to 3). The main purpose
of these two parameters is to provide more k_max functional
blocks (i.e., s X m X k) with each having a deeper heap’ (i.e., m
X k). Consequently, more data points in the PCA space can be
kept for a further verification, which increases the probability
of finding the k nearest neighbors in the original space. Obvi-
ously, the benefit of using these two parameters is at the cost of
sacrificing the filtering rate. More details about m and s can be
found in [8].

Fig. 7 manifests the relationship between search accuracy
and filtering rate with different settings of d-m-s under GIST1M.
Each value of a search accuracy is an average of 1,000-query
testings to the GIST1M dataset. While the round dot in the leg-
end of Fig. 7 represents the scenarios where d is equal to 16,
the triangle and square stand for d=32 and d=64, respectively.
Apparently, one can see from this figure that a larger value of
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Figure 7: Accuracy vs filtering rate in PCAF under GISTIM.
Table 3: Place and Route Synthesis Results for MPCAF-kNN

(N=1,000,000, D=960, d=16, k=5, m=4, s=4, B=32/16/8/4)

B 32-bit 16-bit 8-bit 4-bit
Freq* (MHz) | 300 300 297.7 263.7
KGU* 80.93% | 79.45% | 76.76% | 71.39%
KGB* (MB/s) | 9322.95 | 9152.18 | 8842.39 | 8224.57
FF 38446 38759 43033 49958
2,364,480 (1.6%) | (1.6%) | (1.8%) | (2.1%)
LUT 59273 66892 58496 95127
1,182,240 5.0%) | 5.7%) | (4.9%) | (8.0%)
DSP 192 96 192 384
6,840 2.8%) | (1.4%) | (2.8%) | (5.6%)
BRAM 208 178 182 190
2,160 9.6%) | (82%) | (8.4%) | (8.7%)
Power (watt) | 22.42 22.07 2243 22.83

Freq* : Clock frequencys;
KGU*: Kernel Gmem Utilization;
KGB*: Kernel Gmem BW;

d leads to a higher search accuracy. When d is a fixed number
(i.e., 16) a larger value of m or s also improves search accuracy
and reduces filtering rate, which can be observed by comparing
16-4-4 vs 16-4-1 and 16-1-1 vs 16-1-16.

Choosing an appropriate setting of d-m-s is important to the
performance of PCAF-kKNN on FPGA. A larger d will result
in a higher search accuracy but reading each data point from
DARM will need more clock cycles. So, a smaller d is pre-
ferred. We noticed that all filtering rates shown in Fig. 7 are
higher than 98%, which means for vast majority of data points
their distance calculations only occur in the PCA space. The
16-4-4 setting is chosen for our MPCAF-kNN on the GISTIM
dataset as it achieves a high search accuracy (i.e., 98.18%) and
a high filtering rate (i.e., 98.98%).

Fig. 6 compares the performance of a PCAF-kNN imple-
mentation on the CPU server and MPCAF-kNN on FPGA un-
der the GIST1M dataset. We run the code of PCAF-KNN pro-
vided by [8] on the PowerEdge CPU server to obtain the results
represented by the PCAF-kNN(CPU) curve shown in Fig. 6.
MPCAF-kKNN(FPGA) shows the results obtained by our pro-
posed MPCAF-kNN on the VCU1525 FPGA board with d-m-s
being /6-4-4 and B varying from 4 to 32. Note that the value of
B is fixed to 32 for PCAF-KNN(CPU) [8]. Also, the number of
threads varies from 1 to 88 for PCAF-kNN(CPU). From Fig. 6
we can see that when both implementations use 32-bit for data
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Figure 8: (a) Energy efficiency; (b) memory access.

representation the MPCAF-kNN kernel can achieve a perfor-
mance similar to that of a 4-thread CPU server. In particular, the
execution time of a 32-bit MPCAF-kNN (FPGA) kernel is 6.8
ms, whereas the execution time of a 4-threaded 32-bit PCAF-
kNN (CPU) is 6.2 ms. When a lower data-precision is employed
the performance of MPCAF-kNN quickly improves. MPCAF-
kNN with a 16-bit, 8-bit, and 4-bit data-precision achieves a
performance equivalent to that of a 8-thread, 16-thread, and 56-
thread CPU server, respectively. The improvements come from
a higher degree of parallelism and pipelining in the FPGA ker-
nel. Also, using a low-precision data representation reduces the
impact of memory-access bottleneck. Similar to Fig. 5, we
observe that after the number of threads exceeds the number
of physical cores in the CPU server PCAF-kNN (CPU) only
marginally improves its performance (see the vertical line at 44
threads) due to hyperthreading.

Table 3 summaries system clock frequency, memory ac-
cess bandwidth, resource utilization, and system power after the
placement and routing for MPCAF-kNN. We can see that clock
frequency of 32-bit and 16-bit can both achieve 300 MHz. Sim-
ilar to MBFS-kNN, using a lower precision for data represen-
tation will improve the data point reading speed. To match this
improvement, more on-chip resources (e.g., DSP) are needed.
As we explained before, a higher resource utilization may re-
duce the quality of the placement and routing, which scales
down the final system clock frequency. Thus, clock frequen-
cies of kernels using 8-bit and 4-bit cannot achieve 300 MHz.

Now we evaluate the energy-efficiency of the four kNN im-
plementations. We first removed all unrelated components (e.g.
Ethernet card, unused storage, etc.) from the server. Likewise,
we stripped the FPGA platform down to its essentials. The goal
is to obtain a minimal system that can support the platform
to run a kNN implementation. Next, we used a power meter
to measure the power consumption of the CPU server and the
FPGA platform. We found that the power consumption of the
CPU server is 534.9 watts when a single-threaded BFS-kNN
(CPU) or a single-threaded PCAF-kNN (CPU) is running on
the CPU server. It is a reasonable speculation that a 4-threaded
BFS-kNN (CPU) or a 4-threaded PCAF-kNN (CPU) would de-
mand a power consumption more than 534.9 watts as four CPU
cores are working in parallel. Still, let us use 534.9 watts as the
power consumption for a 4-threaded kNN (CPU) implementa-
tion, which gives it some advantages. To make the compar-
isons fair, we compare the energy-efficiency of a 32-bit kNN
FPGA kernel with a 4-threaded kNN CPU implementation be-
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cause they deliver a similar level of performance (see Fig. 5
and Fig. 6). We argue that an energy-efficiency comparison be-
tween two kNN implementations is meaningful only when they
offer a similar performance level. Energy-efficiency is defined
in the last paragraph of Section 5.2. The energy-efficiency of a
4-threaded 32-bit BES-kNN (CPU) is 8,117.7 object/joule (i.e.,
1,000,000 objects / (230.3 ms x 534.9 watt) = 8,117.7 objec-
t/joule). Note that the GISTIM dataset contains one million
data points (see the first paragraph of Section 5.1) and the exe-
cution time of a 4-threaded 32-bit BFS-KNN (CPU) is 230.3 ms
(see Fig. 5). Similarly, the energy-efficiency of a 4-threaded 32-
bit PCAF-kNN (CPU) is 301,533.6 object/joule (i.e., 1,000,000
/(6.2 ms x 534.9 watt) = 301,533.6 object/joule). The power
consumption of MBFS-kNN and MPCAF-kNN using 32-bit on
FPGA can be found in Table 1 (i.e., 17.52 watts) and Table 3
(i.e., 22.42 watts). The energy-efficiency of a 32-bit MBFS-
kNN (FPGA) kernel is equal to 271,553.2 object/joule (i.e.,
1,000,000 / (214.1 ms x 17.52 watt) = 266,593.3 object/joule).
The energy-efficiency of a 32-bit MPCAF-kNN (FPGA) ker-
nel is 6,559,269.6 object/joule (i.e., 1,000,000 / (6.8 ms x 22.42
watt) = 6,559,269.6 object/joule). Thus, the energy-efficiency
of a 32-bit BFS-kNN (FPGA) kernel is 32.84x (i.e., 266,593.3 /
8,117.7 =32.84) of that of a 4-threaded 32-bit BFS-kNN (CPU).
The energy-efficiency of a 32-bit PCAF-kNN (FPGA) kernel
is 21.75x (i.e., 6,559,269.6 / 301,533.6 = 21.75) of that of a
4-threaded 32-bit PCAF-kNN (CPU). Fig. 8a summaries the
energy-efficiency of the four kNN implementations. All results
shown in Fig. 8 are obtained under GISTIM. In Fig. 8, while
all bars are plotted on a base-10 logarithmic scale, all numbers
are real measurements from our experiments without using any
logarithmic function.

5.4. Evaluation of Memory Access

In this section, we present a quantitative analysis of mem-
ory access for both MBFS-kNN and MPCAF-kNN in differ-
ent data-precision representations under the GISTIM dataset.
For MBFS-kNN, it needs to literally read each data point and
then conduct a similarity comparison with the query g. Thus,
the total number of bits to access is N X D X B. For exam-
ple, when MBFS-kNN uses a 32-bit data representation it needs
to access 1,000,000 x 960 x 32 = 30,720 million bits of data
from the external on-board memory. For the MPCAF-kNN
kernel, the total amount of data accessed can be calculated by
NX(Fxd+(1-F)xD)xB, where F is the filtering rate. For ex-
ample, a MPCAF-kNN kernel using a 32-bit data representa-
tion with a /6-4-4 setting and achieving a 98.18% filtering rate
needs to access 1,000,000x(0.9818x16+(1-0.9818)x960)x32
= 1,061.8 million bits of data from the external on-board mem-
ory.

Fig.8b summarizes the number of memory accesses of MBFS-
kNN and MPCAF-kNN with different precisions of data rep-
resentation. We can see that the amount of data accessed by
MPCAF-KNN (32-bit) is reduced by 28.93x (i.e., 30,720 mil-
lions/1,061.8 million = 28.93) compared to BFS-kNN (32-bit)
although the latter can perform an accurate kNN search. Using
a low-precision data (e.g., 4-bit) can reduce that number fur-
ther to 231.45x (i.e., 30,720 million/132.73 million = 231.45).



Fig.8b demonstrates that reducing the number of memory ac-
cesses becomes crucial to the performance of a kernel on FPGA.

6. Conclusions

In this paper, we design and implement two kNN kernels on
FPGA through HLS. Two data access reduction methods (i.e.,
LPDR and PCAF) are employed to reduce the number of exter-
nal memory accesses. The experimental results show that our
optimized kNN kernels outperform existing ones in both ex-
ecution time and energy-efficiency. The main contribution of
this work lies in developing an array of empirical optimization
techniques (e.g., three optimization approaches shown in Sec-
tion 4.2 and two optimization strategies presented in Section
4.5). These optimization techniques provide insights into how
an HPC algorithm originally designed for a CPU platform can
be efficiently implemented on FPGA.

Although the two proposed kNN kernels are scalable to all
key parameters, they are still "single-threaded" in the sense that
each of them has to sequentially process a large dataset. As
a result, their turnaround times could be long. To solve this
issue, in future work we plan to use a divide-and-conquer ap-
proach to splitting a large dataset into multiple data partitions,
and then, create multiple kNN kernels. This way multiple KNN
kernels can work on distinct data partitions in parallel, similar
to a "multi-threaded" execution mode. In this scenario, we need
to design a "master" kernel that is able to schedule the work-
load and merge the outputs from all "salve" kernels in order to
obtain the final output. The number of kernels should be con-
figurable. We speculate that the scalability of the two proposed
kNN kernels could be substantially improved when they work
in the conjectured "multi-threaded" mode.
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