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Abstract 26 

Body size covaries with population dynamics across life’s domains. Metabolism may impose 27 

fundamental constraints on the coevolution of size and demography, but experimental tests of 28 

the causal links remain elusive. We leverage a 60,000-generation experiment in which 29 

Escherichia coli populations evolved larger cells to examine intraspecific metabolic scaling and 30 

correlations with demographic parameters. Over the course of their evolution, the cells have 31 

roughly doubled in size relative to their ancestors. These larger cells have metabolic rates that 32 

are absolutely higher, but relative to their size, they are lower. Metabolic theory successfully 33 

predicted the relations between size, metabolism, and maximum population density, including 34 

support for Damuth’s law of energy equivalence, such that populations of larger cells achieved 35 

lower maximum densities but higher maximum biomasses than populations of smaller cells. The 36 

scaling of metabolism with cell size thus predicted the scaling of size with maximum population 37 

density.  In stark contrast to standard theory, however, populations of larger cells grew faster 38 

than those of smaller cells, contradicting the fundamental and intuitive assumption that the costs 39 

of building new individuals should scale directly with their size. The finding that the costs of 40 

production can be decoupled from size necessitates a reevaluation of the evolutionary drivers 41 

and ecological consequences of biological size more generally. 42 

Significance statement 43 

Populations of larger organisms should be more efficient in their resource use, but grow more 44 

slowly, than populations of smaller organisms. The relations between size, metabolism, and 45 

demography form the bedrock of metabolic theory, but most empirical tests have been 46 

correlative and indirect. Experimental lineages of E. coli that evolved to make larger cells 47 

provide a unique opportunity to test how size, metabolism, and demography covary. Despite the 48 

larger cells having a relatively slower metabolism, they grow faster than smaller cells. They 49 

achieve this growth-rate advantage by reducing the relative costs of producing their larger cells. 50 

That evolution can decouple the costs of production from size challenges a fundamental 51 

assumption about the connections between physiology and ecology. 52 

53 
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Main Text 54 

Introduction 55 

Differences in the sizes of individual organisms drive widespread and repeated patterns across 56 

the tree of life (1-4). For example, Damuth’s Rule holds that larger organisms have lower 57 

population densities than smaller organisms (5). Similarly, populations of larger organisms grow 58 

more slowly than populations of smaller organisms (6). Meanwhile, global warming and 59 

harvesting are causing declines in body size in many species, from phytoplankton to fish (7-10). 60 

If body size and demography covary within species as they do across species, then human-61 

induced changes in body size may have important consequences for ecosystem function, 62 

particularly with regards to food security and the global carbon pump (11). However, our ability 63 

to anticipate such changes is limited by the dearth of studies examining the within-species 64 

covariance of size, energy, and demography.  65 

Metabolism has long been argued to provide the mechanistic link between size and 66 

demography because it governs the rate at which organisms transform energy into biological 67 

work and growth (4-6). Larger-sized species have higher absolute metabolic rates than smaller 68 

species, but lower metabolic rates relative to their size. In formal terms, absolute metabolism 69 

scales hypoallometrically with body size with an exponent of B, whereas mass-specific 70 

metabolism scales at B – 1. The hypoallometric scaling of size and metabolism generates 71 

several predictions for how size should affect demography (12).  72 

First, because the ability to perform biological work per unit mass should scale with mass-73 

specific metabolic rates, maximum rates of population growth (r) should scale at B – 1 (refs. 6, 74 

12). For metazoans, B is typically ~0.75; thus, r should scale around –0.25, which is strongly 75 

supported by interspecific comparisons (4). This prediction has intuitive appeal: mouse 76 

populations can grow much faster than elephant populations.  77 

Second, smaller species should attain higher maximum population densities (K) than larger 78 

species, because their absolute per capita demands are lower. The resource requirements of 79 

organisms depend on their metabolism, so populations of larger species should cease growing 80 

at lower densities than those of smaller species (5). However, larger organisms have lower 81 

mass-specific metabolic rates (in metazoans, at least), and so they require fewer resources per 82 

unit mass than smaller organisms. Accordingly, populations of larger organisms should have 83 

greater total mass at carrying capacity than populations of smaller organisms, with the expected 84 

scaling at 1 – B (ref. 1). This relation is known as the theory of energy equivalence (3). 85 
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Finally, the maximum rate of population productivity (effectively the product of r and K) should 86 

scale with size at –1 when expressed as the rate of production of individuals, and so it should 87 

be size-independent (i.e., scaling exponent of 0) in terms of the rate of biomass production (2, 88 

12). Together these three predictions represent the canonical elements of how size, 89 

metabolism, and energy equivalence determine population growth and dynamics. Put simply, 90 

populations of larger organisms, with lower mass-specific metabolic rates, should grow more 91 

slowly, but eventually achieve higher total biomass, than populations of smaller organisms (4). 92 

Nonetheless, there remains a fundamental disconnect between theory and evidence: most tests 93 

are based on among-species comparisons, making it difficult to attribute metabolism as the 94 

underlying driver of such patterns. 95 

Although metabolic theory successfully predicts variation in demography across the domains of 96 

life, these predictions often falter when applied to narrower taxonomic groups (2, 12-14). 97 

Various explanations have been offered for these discrepancies, but a key difficulty lies in 98 

inferring causality with respect to size differences across species. Mice differ from elephants in 99 

ways other than size, but metabolic theories about the relation between size and demography 100 

ignore these differences, treating them as an error term that is uncorrelated with size. We know, 101 

however, that many other traits covary with size (e.g., lifespan generally increases with size), 102 

and these traits also affect population dynamics (4, 6). Interspecific comparisons of individual 103 

size and population dynamics therefore confound other species-specific traits that influence 104 

demographic variables. Consequently, it remains unclear whether size, energy, and population 105 

dynamics are invariably related as supposed by the canonical scaling theory. Meanwhile, our 106 

capacity to predict the consequences of human-mediated impacts on the size of organisms 107 

depends on understanding the causal links between these factors within species.  108 

Intraspecific tests of the relation between body size and demography are challenging. 109 

Comparisons among individuals of the same species suffer from limited power because they 110 

compare a narrower range of sizes than comparisons across species. Intraspecific comparisons 111 

of individuals at different ontogenetic stages can span a greater size range, but this approach 112 

also introduces confounding factors and cannot be extended to demographic parameters that 113 

must integrate across all ontogenetic stages. Ideally, a species that varies significantly in size 114 

across populations, and that allows the direct parameterization of population dynamical models, 115 

would provide valuable evidence of how intraspecific variation in size and metabolic rates 116 

affects demography. However, such tests are rare (2, 11), and they have typically relied on 117 
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either temperature manipulation or strong artificial selection for individual size to generate 118 

differences.  119 

Here we analyze the relations among organismal size, metabolism, and demography in 12 120 

populations of Escherichia coli that have evolved and diverged from a common ancestor in the 121 

Long-Term Evolution Experiment (LTEE) for more than 60,000 generations (15). The 122 

populations are diluted 100-fold in fresh culture medium each day. They undergo ~6.7 123 

generations (cell doublings) before they exhaust the limiting resource, which is glucose. The 124 

bacteria thus experience alternating periods of growth and stationary phase, while the 125 

composition of the medium and other aspects of their environment are kept constant. The LTEE 126 

populations have been extensively characterized, including by competitive fitness assays as 127 

well as whole-genome and whole-population sequencing (16-18). Over the duration of the 128 

LTEE, each population has steadily increased in fitness, while accumulating many mutations. 129 

The average size of individual cells also increased during the LTEE (19-21). The LTEE imposes 130 

no direct, artificial selection on cell size or any other individual phenotypic trait. Instead, the 131 

changes in size evolve incidentally, as correlated responses to selection favoring faster growth 132 

(22). In this study, we measure the population dynamics, metabolism, and cell size of the 133 

ancestral and evolved bacteria to determine how these factors covary, thereby allowing us to 134 

test whether they conform to predictions based on standard metabolic theory. In particular, we 135 

examine population growth rates and yields and find that the evolution of larger cell sizes has 136 

led to ‘Pareto improvements’ whereby growth rate has increased but not at the expense of yield 137 

(23, 24). 138 

Results 139 

We examined two clones from each of the 12 LTEE populations at the 10,000 and 60,000 140 

generation time points. We excluded the 60,000-generation clones from one population (Ara–3) 141 

that evolved the ability to consume citrate (25), which is present in the medium as a chelating 142 

agent, because it gives cells access to an additional resource that confounds the relation 143 

between metabolism and demography that we seek to understand. The fundamental unit of 144 

independent replication in the LTEE, and in evolution experiments generally, is the evolving 145 

population, and not the individual (15-19). Therefore, in all analyses, we treat the average value 146 

of the two clones from the same population and generation as a single sample. We also include 147 

the two ancestral strains, REL606 and REL607, each of which was used to found six 148 

populations, and which differ by a genetic marker used in competition assays (15, 16, 19). Thus, 149 
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our analyses include a total of 25 samples (2 ancestors, 12 populations at 10,000 generations, 150 

and 11 populations at 60,000 generations). 151 

Previous studies reported large increases in cell volume in the first 50,000 generations of the 152 

LTEE (19-21). Our measurements confirm the large increases in cell size and show that they 153 

have continued to increase, from an average of 0.239 fL (i.e., µm3) for the ancestors to an 154 

average of 0.670 fL for the 60,000-generation samples (Fig. 1). The evolving populations 155 

followed different size trajectories, but they all show the same trend of increasing size.  156 

We quantified metabolism by measuring oxygen consumption at three initial cell densities, 157 

achieved by differentially diluting samples. The concentration of the limiting resource, glucose, 158 

was the same for all three initial densities, and it was insufficient to support one population 159 

doubling even at the lowest initial density. As a result, the glucose was depleted over the course 160 

of our measurements of oxygen consumption, leading to a transition into stationary phase and 161 

concomitant decline in the per capita respiration rates at the higher initial densities. At all three 162 

initial cell densities, metabolism scaled with average cell size (volume) sub-linearly (Fig. 2), and 163 

the scaling relation was consistent across the densities (Density x log[Cell size]: F2,69 = 0.082, P 164 

= 0.921; Density: F2,71 = 97.06, P < 0.0001; log[Cell size]: F1,71 45.99, P < 0.0001). The 165 

estimated scaling exponent for the metabolic rate, B, is 0.38, which differs significantly from 166 

interspecies comparisons (26) that have estimated the scaling exponent to be >1, and from 167 

theoretical expectations based on surface-area-to-volume ratios of ~0.67 – 1 (depending on cell 168 

shape). With our empirical estimate of the intraspecific metabolic scaling exponent, we can then 169 

use standard metabolic theory to predict how population growth rates and maximum population 170 

size should scale with cell size (Table 1). 171 

We measured population growth over 24 h for all the samples, each at three different resource 172 

levels achieved by varying the concentration of glucose in the medium, and with replication of 173 

the growth curves at each concentration. Populations grew slightly faster at the higher glucose 174 

concentrations (Fig. 3a). However, the scaling of the maximum growth rate, r, was consistent 175 

across glucose levels (Glucose x log[Cell size]: F2,69 = 0.113, P = 0.893). The scaling exponent 176 

of the growth rate was 0.27, which differs significantly from both zero and the exponent (–0.63) 177 

predicted by the canonical theory (Table 1). Instead, the scaling of the growth rate is much 178 

closer to that of the metabolic scaling (0.38 versus 0.27). 179 

The maximum yield in terms of cell density (Maxcells) showed a negative scaling relation with cell 180 

volume, with an exponent of –0.45 (Fig. 3b), and the confidence interval overlaps the prediction 181 
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of –0.38 from theory (Table 1). The correlation between cell size and maximum cell density was 182 

strong; a model including glucose level and cell size explained 96% of the variation in maximum 183 

cell density. The maximum biovolume yield (Maxbiovolume) scaled positively with cell size with an 184 

exponent of 0.55 (Fig. 3c), again in reasonable agreement with the theoretical expectation of 185 

0.64 (Table 1). As expected, populations achieved higher biovolumes at higher glucose levels 186 

(Fig. 3c), but the scaling relation was again consistent across the three glucose levels (glucose: 187 

F2,71 = 437.32, P <0.0001; glucose x log[cell size]: F2,69 = 0.257, P = 0.774).  188 

Maximum productivity, expressed as the maximum rate of biovolume increase, increased with 189 

average cell size (Fig. 3d), with an estimated exponent of 0.81 (Table 1). This estimate differs 190 

greatly, and significantly, from the canonical expectation of zero (Productivitybiovolume: F1,71 = 191 

301.5, P < 0.0001). Productivity increased at higher glucose levels (glucose: F2,71 = 410.5, P 192 

<0.0001), with no significant interaction between cell size and glucose levels (F2,69 = 0.447, P = 193 

0.641).   194 

Table 1 summarizes our empirical results relative to theoretical expectations. The scaling of 195 

maximum population size with individual size was similar to the predictions made by metabolic 196 

theory, regardless of whether it was measured in terms of cell number (Fig. 3b) or total 197 

biovolume (Fig. 3c). In contrast, productivity did not conform to the predictions made by the 198 

canonical metabolic theory, whether measured as the rate of population increase (Fig. 3a) or 199 

the maximum biovolume productivity (Fig. 3d). Instead, both productivity exponents were much 200 

higher than the canonical theory would predict, by values of 0.89 and 0.81, respectively.  201 

Discussion 202 

The LTEE provides a unique opportunity to study the covariance between size, metabolism, and 203 

demography within a species. Damuth’s law of energy equivalence successfully predicted the 204 

coevolution of individual cell size with maximum population density (5). However, we also 205 

discovered that a fundamental assumption about how the growth and productivity of populations 206 

should scale with metabolism and size lacks generality and therefore requires modification. Our 207 

study shows the value of, and need for more, within-species tests of metabolic theory. Of 208 

particular interest, our results indicate that evolution sometimes produces Pareto improvements 209 

in key size-related parameters—leading to trade-ups, rather than trade-offs—that are not 210 

anticipated from interspecific comparisons among both multicellular (6) and unicellular 211 

organisms (27, 28). 212 
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Larger Cells Have Relatively Lower Metabolic Rates than Smaller Cells. The scaling of 213 

metabolic rate with size in these experimental E. coli populations is remarkably low, with an 214 

exponent of only ~0.38. Among-species comparisons of metabolic rate in bacteria have usually 215 

reported hyperallometric scaling (B > 1), whereby larger cells have disproportionately higher 216 

metabolic rates (26, 29). By contrast, we find that the larger cells from later generations of the 217 

LTEE have much lower mass-specific metabolic rates than their smaller ancestors, such that a 218 

doubling in size leads to only a 30% increase in metabolism.   219 

There are several potential explanations for the low scaling exponent that we observe in this 220 

experiment relative to interspecific comparisons. First, it could be that within-species metabolic 221 

scaling is generally shallower than interspecific scaling in bacteria; to date, there are too few 222 

studies that have measured within-species scaling to compare them. In other taxa, metabolic 223 

scaling sometimes differs depending on whether it is estimated within or among species (30, 224 

31). Theory predicts that, all else equal, the physics of resource limitation in slow-moving fluids 225 

should result in metabolic scaling exponents of about 0.33 (ref. 32), which is close to our 226 

estimate. The cytoplasm of bacterial cells is viscous and densely packed with DNA and other 227 

macromolecules (20, 21). It could also be that physical constraints on scaling are more 228 

restrictive within than among species. For example, cell shape may change with cell size more 229 

substantially among species than within species (32). It should be noted, however, that the 230 

aspect ratio (length/width) also varies significantly among the E. coli lineages in this study (21). 231 

Second, the fine-tuning of gene regulation and physiological process may have produced the 232 

low metabolic scaling exponents seen in the LTEE. DeLong et al. (26) suggested that 233 

hyperallometric metabolic scaling in bacteria emerges from the effect of genome size on 234 

metabolic rate. Larger cells typically have larger genomes; more genes and gene products 235 

might drive higher metabolic rates (33). Although the average haploid genome length has 236 

declined slightly during the LTEE owing to some gene deletions (17), rapidly growing bacterial 237 

cells typically have multiple copies of their chromosome. Therefore, the faster-growing and 238 

larger evolved bacteria have more total DNA per cell, even if their genome length is slightly 239 

smaller. Among prokaryotes, genome length scales with cell size with an exponent of 0.35 (ref. 240 

26), which is close to the 0.38 metabolic exponent we observed (Fig. 2, Table 1). The bacteria 241 

in the LTEE have evolved substantial changes in gene expression and regulation (34-36). 242 

These changes have reduced the expression of functions that are no longer useful in the 243 

LTEE’s simple conditions, while optimizing the expression of the functions that are still needed 244 

(37). Such changes may be especially important in an environment that varies cyclically 245 
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between resource abundance and depletion in a predictable manner over time, as it does in the 246 

LTEE (15, 34).  247 

Metabolic Theory Predicts Maximum Population Size. We found strong support for the 248 

energy equivalence rule across a range of resource levels (5). Because the mass-specific 249 

metabolic rates of the larger evolved cells were so low, the maximum biovolume yields were 250 

much higher in those samples than in the ancestors (Fig. 3c). However, the total metabolic 251 

demands of these two groups were similar (~4.5 x 10-3 J). Thus, the larger cells are 252 

metabolically more efficient and attain higher population biomass than smaller cells from a given 253 

amount of resource. This result conforms with other LTEE studies that found that the evolved 254 

cells are larger, more efficient, and attain higher maximum biomass yields than the ancestors 255 

(20, 23). It seems that metabolic rate can be an excellent predictor of the limits to population 256 

biomass, both among (4) and within species (11). In contrast, longstanding metabolic theories, 257 

based on standard assumptions, failed to predict how individual size and metabolism would 258 

impact population growth rates and maximum productivity.  259 

Metabolic Theory Does Not Predict Population Growth Rates. The E. coli samples in this 260 

study defy theoretical predictions based on standard assumptions about how individual size 261 

should affect rates of population growth and production. Despite having lower mass-specific 262 

metabolic rates, the larger evolved cells have higher intrinsic rates of increase (r) than the 263 

smaller ancestral cells. One might expect that larger cells would require more materials and 264 

energy to produce, but relative to their volume, they would also have less capacity to power this 265 

work than smaller cells. Nonetheless, our study, other studies of the LTEE populations, and 266 

indeed studies on E. coli more generally find that faster growing cells are larger than cells 267 

growing more slowly (20, 23, 38, 39). This positive correlation between size and growth rate 268 

contradicts the expectation based on standard theory. 269 

Standard theory predicts that population growth rate should scale with the mass-specific 270 

metabolic rate (i.e., MB–1) (refs. 6, 12, 40). This theory works well for among-species 271 

comparisons: in multicellular eukaryotes, both mass-specific metabolic rate and population 272 

growth rate scale at ~M–0.25 (refs. 1, 4); and in prokaryotes, both rates appear to scale at ~1 273 

(refs. 26, 41). However, in the E. coli from the LTEE, population growth rate scales at 0.27, an 274 

exponent that is 0.89 higher than expected given the mass-specific scaling of –0.62. In fact, the 275 

population growth rate exponent is much closer to the per capita metabolic exponent of 0.38 276 

than to the mass-specific exponent of –0.62. Why do these bacteria show positive scaling of 277 



 10 

both per capita metabolism and population growth rate with individual size, contradicting 278 

expectations based on the standard theory? 279 

Metabolic Theory and the Costs of Biological Production. A crucial, but often overlooked, 280 

assumption of standard metabolic theory is that the energy required to produce a new individual 281 

is directly proportional to its mass (6). This assumption seems reasonable at first glance, but in 282 

fact there is little empirical evidence to support it and, in the case of the LTEE, some evidence 283 

against it. The total cost of producing a cell is the sum of the energy consumed between cell 284 

divisions (sometimes called maintenance costs) and the energy used to build the new cell itself 285 

(41). Neither component is likely to scale directly with cell volume, for several reasons.  286 

First, it has been estimated that about half of the energy required by E. coli is used to maintain 287 

ion gradients across the cell membranes (42). Larger cells have smaller surface area relative to 288 

mass, and so they should have relatively lower maintenance costs than smaller cells. 289 

Consistent with this reasoning, total metabolism scales hypoallometrically with cell volume in the 290 

LTEE. Second, large cells often have different stoichiometry from small cells. Both among and 291 

within taxa, large cells tend to have relatively lower carbon content than small ones (43). In the 292 

LTEE specifically, size and carbon density do not scale proportionately, and the stoichiometry of 293 

cells has evolved over time (20, 44). In this light, the assumption of equal costs per unit volume 294 

of building smaller and larger cells is violated. Finally, large cells are relatively cheaper to 295 

produce than small cells in terms of genome replication. In the LTEE, the larger evolved cells 296 

have slightly smaller genomes than the smaller ancestral cells (17), so that the relative, and 297 

even absolute, costs of genome replication are lower for the larger cells. Of likely greater 298 

importance, the evolved cells have undergone substantial fine-tuning of their gene-regulatory 299 

networks to the LTEE environment, thus reducing the costly expression of unneeded transcripts 300 

and proteins (34-37). 301 

Relaxing the Strict Proportionality of Production Costs and Size. Taken together, our 302 

results imply that larger cells are cheaper to maintain and build per unit volume, such that the 303 

scaling of the total cost of production is far less than proportional to cell size. If the assumption 304 

of proportional cost is relaxed, then the paradox of larger cells having higher growth rates may 305 

be resolved. Instead of assuming that the costs of production scale with individual cell size with 306 

an exponent of 1, we can explore a range of possible scaling exponents and compare the 307 

resulting predictions with our observations. To that end, here is the generalized formula relating 308 

cell size to population growth rate: 309 
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r = MB/MC  (Eq. 1) 

where B is the exponent linking cell mass to metabolic rate, and C is the exponent linking total 310 

production costs (both maintenance and building) to mass. When the costs are assumed to be 311 

directly proportional to size (i.e., C = 1), we recover the prediction of classic metabolic theory 312 

(6):  313 

r = MB/M1 = MB–1 (Eq. 2) 

At the other extreme, the costs of production are size invariant (i.e., C = 0). That is, the total 314 

costs of producing smaller and larger cells are the same, and theory would instead predict:  315 

r = MB/M0 = MB (Eq. 3) 

Of course, any value of C is possible in this more general framework. In the case of the LTEE 316 

strains, we find that r scales at 0.27, which implies that C = 0.11 (i.e., 0.38 – 0.27 = 0.11). In 317 

other words, the costs increase only weakly with cell size. Specifically, the cells from generation 318 

60,000 are, on average, roughly twice the volume of their ancestors (Fig. 1), but each one costs 319 

only ~10% more to produce than a small ancestral cell. If we now set the exponent that links 320 

production cost (C) to size at 0.11, then we can predict much more accurately the scaling 321 

exponent for the maximum rate of biovolume production seen in our experiments (Table 1). In 322 

other words, if we assume the per capita cost of producing the larger evolved cells is only 323 

slightly more than the cost of the smaller ancestral cells, then we can reconcile our other 324 

observations with the classic theoretical predictions.  325 

A recent study of the single-celled eukaryote Dunaliella tertiolecta also found improvements in 326 

both population growth rate and yield as cells evolved to be larger (2). These improvements 327 

were associated with the evolution of significant genomic streamlining (45), which likely 328 

decoupled some production costs from cell size. Thus, it seems that the trade-offs between size 329 

and rates of production that seem almost invariant in comparisons among species can, at least 330 

sometimes, be circumvented within species when other traits that affect metabolic costs also 331 

coevolve. Whether the same decoupling of size and production costs can occur in metazoans, 332 

with their complex development and life cycles, is unclear and, in our view, deserves attention.  333 

In conclusion, our results demonstrate the importance of examining the scaling of size, 334 

metabolism, and population dynamics within species, as well as across species, because these 335 

comparisons may differ quantitatively and even qualitatively. Such differences can occur even 336 

though the explanations for these patterns at both scales involve the same underlying metabolic 337 

processes. Given the importance of the scaling of production costs to organismal size in driving 338 
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our expectations of how size affects population growth and productivity (4), this issue has 339 

received far too little empirical attention. We recommend, therefore, that future studies examine 340 

production costs as a function of size, both within and among species.  341 

Materials and Methods 342 

Experimental Overview. We measured average cell volumes for 48 E. coli clones: 2 ancestral 343 

strains, 2 clones sampled from each of the 12 LTEE populations at 10,000 generations, and 2 344 

clones from 11 of those populations at 60,000 generations (Table S1). We excluded from our 345 

analyses one population at 60,000 generations because it evolved the ability to use citrate as an 346 

additional source of carbon and energy in the LTEE environment. We measured metabolic rates 347 

of the same 48 clones at 3 initial cell densities. We monitored the population growth of the 48 348 

clones at each of 3 resource levels, to which we fit growth curves. The key unit of independent 349 

replication in the LTEE, and in evolution experiments generally, is the evolving population, not 350 

the individual organism (15-19). Thus, we averaged the estimates of cell size, metabolic rate, 351 

and population growth parameters for the two evolved clones from the same population and 352 

generation, and we treat that average value as a single sample. We also include the two 353 

ancestral strains, each of which founded six of the LTEE populations. Thus, our statistical 354 

analyses reflect a total of 25 samples (2 ancestors, 12 populations at 10,000 generations, and 355 

11 populations at 60,000 generations) for each assay and, when relevant, for each treatment. 356 

Evolution Experiment, Strains, and Media. The LTEE started in 1988 (15), and it has 357 

continued since. Twelve 50-mL flasks containing 10 mL of DM25 medium (see recipe below) 358 

were seeded with either the arabinose-negative ancestral strain REL606 (populations Ara–1 to 359 

Ara–6) or the arabinose-positive ancestor REL607 (populations Ara+1 to Ara+6). The Ara 360 

marker causes cells to produce either red (Ara–) or white (Ara+) colonies on tetrazolium-361 

arabinose indicator plates, and it serves to differentiate competitors during relative fitness 362 

assays. The Ara marker is selectively neutral in the LTEE conditions (15, 46, 47). The 12 363 

populations are propagated daily with 100-fold dilutions at 37C while shaking at 120 rpm for 364 

mixing and aeration. The dilutions and regrowth allow log2 100  6.6 cell generations per day. 365 

The stationary-phase (i.e., end of day) population density is ~5  107 cells/mL for the ancestral 366 

strains (15). In 11 populations, the stationary-phase population density declined as the 367 

individual cells became larger; in the case of population Ara–3, however, the cell density 368 

increased several-fold after cells evolved the new capacity to use the citrate in DM25 as an 369 

additional source of carbon and energy (25). Samples (including whole populations and isolated 370 
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clones) are periodically stored with glycerol (as cryoprotectant) at –80C, where the cells remain 371 

viable and available for further analyses.  372 

As noted above, our analyses used the two ancestors, plus two clones sampled from each 373 

population at 10,000 and 60,000 generations (except for Ara–3 at 60,000 generations, which we 374 

excluded owing to its access to citrate as an additional substrate for growth). The 10,000-375 

generation clones were isolated and described previously (17). For this study, we plated each 376 

60,000-generation whole-population sample on Lysogeny Broth (LB) agar and picked two 377 

clones at random, which we then stored as glycerol stocks.  378 

The culture medium used in the LTEE and in this study is Davis Mingioli (DM) minimal medium 379 

[7 g/L potassium phosphate (dibasic trihydrate), 2 g/L potassium phosphate (monobasic 380 

anhydrous), 1 g/L ammonium sulfate, 0.5 g/L disodium citrate, 1 mL/L 10% magnesium sulfate, 381 

and 1 mL/L 0.2% thiamine (vitamin B1)] supplemented with a specified amount of glucose (15, 382 

46). The concentration of glucose added to the medium is indicated by a suffix (e.g., DM25 has 383 

25 mg/L glucose). MG agar plates were used for counting colonies; in addition to the ingredients 384 

of DM media, MG agar contains 4g/L of glucose and 16g/L agar. LB broth [NaCl (10 g/L), 385 

tryptone (10 g/L), and yeast extract (5 g/L)] was used for the initial recovery of bacteria from 386 

thawed glycerol stocks prior to performing the hemocytometer counts.  LB plates were made by 387 

adding 20 g/L agar.  388 

Population Growth Measurements. Each clone was revived from a frozen stock and then 389 

grown in 3 mL of DM25 at 37C with orbital shaking for 24 h to acclimate the bacteria to that 390 

medium. The next day, we measured the optical density (OD) of each culture, and the density 391 

was normalized to match the culture with the lowest OD. The resulting cultures were diluted 392 

100-fold into 96-well microplates containing DM25, DM50, or DM100 media. Each clone was 393 

replicated 4 times in each medium, for a total of 600 growth curves (50 clones x 3 media x 4 394 

replicates, including the two clones from population Ara–3 at generation 60,000 that were 395 

subsequently excluded). The clones were randomly assigned to wells for each medium over 20 396 

microplates to minimize position effects. We measured OD at 600 nm wavelength every 10 min 397 

for 24 h using an ELx808 Incubating Absorbance Microplate Reader (BioTek Instruments, USA) 398 

set to its maximum shaking speed and 37C. 399 

A complete description of the methods that we used to estimate demographic parameters is 400 

provided in Malerba et al. (48). Briefly, OD serves as a proxy for population biomass, and we 401 

loge-transformed OD values to reduce heteroscedasticity. We then fit the following four-402 

parameter logistic-type sinusoidal growth model to the data: 403 
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log𝑒 𝑂𝐷600 ~ 𝑂𝐷𝑚𝑖𝑛 + (𝑂𝐷𝑚𝑎𝑥 − 𝑂𝐷𝑚𝑖𝑛)1 + 𝑒µ (𝑥𝑚𝑖𝑑−𝑡𝑖𝑚𝑒)  
(Eq. 4) 

where 𝑂𝐷𝑚𝑖𝑛 is the minimum population biomass, 𝑂𝐷𝑚𝑎𝑥 is the maximum population biomass, 404 𝑥𝑚𝑖𝑑 is the time to the inflection point, and µ quantifies the curve’s steepness. The following 405 

demographic parameters were extracted for each trajectory: the maximum predicted value for 406 

OD600 (𝐾; unit: OD600); the maximum rate of biomass increase (𝑟; unit: min-1); and the maximum 407 

rate of biomass production (unit: OD600 min-1).  408 

Metabolic Assays. We measured metabolic rates based on oxygen consumption. The clones 409 

were revived from the frozen stocks by plating on LB agar. Single colonies were used to 410 

inoculate 2 mL of DM800 medium, and the cultures were incubated at 37C with orbital shaking 411 

for 24 h. The next day, the cells were pelleted by centrifugation, washed with DM0 medium (i.e., 412 

DM without added glucose) to remove any residual glucose and extracellular by-products. The 413 

pellets were resuspended in 2 mL of DM0, and the cultures were then adjusted to OD600 values 414 

of 0.15, 0.3, and 0.6 and a final volume of 5 mL each using DM0.  415 

Oxygen consumption was measured in a temperature-controlled room at 37C using 4 x 24-416 

channel PreSens Sensor Dish Reader (SDR; AS-1 Scientific Wellington, New Zealand), using 417 

methods adopted from Malerba et al. (31). Before the experiment, the equipment was kept 418 

overnight in the 37C room, and each SDR plate was calibrated using air-saturated DM800 419 

medium (100% air saturation) and DM800 medium containing 2% sodium sulphite (0% air 420 

saturation).  We monitored a total of 192 cultures that included the 2 ancestral and 48 evolved 421 

clones (including the two 60,000-generation clones from population Ara–3 that were later 422 

excluded) at each of the three initial cell densities, plus an additional 21 replicates of ancestral 423 

strain REL606 and 21 blanks without any cells. The additional ancestral replicates meant that 424 

each 24-well plate included this reference strain at all three cell densities, allowing us to detect 425 

possible plate-level anomalies; however, we encountered no such problems. The cultures were 426 

otherwise randomly distributed over two consecutive days of data collection. Each culture was 427 

carefully placed in a 5-mL vial to avoid creating any air pockets. At least two vials per plate were 428 

filled with sterile medium that served as blanks. Before starting the trials, all cultures were 429 

acclimated to 37C for an hour. We added 0.4 µL of 10% glucose solution to each 5-mL sample 430 

prior to the start of the assays, which brought the glucose concentration to 8 mg/L (about one-431 

third of the concentration in the standard LTEE medium, DM25). Moreover, even the lowest 432 

initial density (OD600 = 0.15) is higher than the final density the bacteria reach when they have 433 
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depleted the glucose in DM25. Thus, the glucose supply was quickly exhausted during these 434 

metabolic assays, with the depletion occurring faster at the higher cell densities. This effect led 435 

to different estimates of metabolic rates across the three cell density treatments; however, the 436 

scaling exponent between cell volume and metabolic rate was unaffected by the treatment (Fig. 437 

2). The assays began after the SDR channels were fully loaded and the samples were well 438 

mixed. The non-consumptive O2 sensors then monitored the oxygen in each vial every minute 439 

until it was consumed by the bacteria. 440 

After the assays ended, the rate of change in oxygen saturation (VO2) was quantified from the 441 

linear part of each time-series (Fig. S1). Energy rates were calculated with the following model: 442 

𝑉𝑂2 = 𝑚𝑎 − 𝑚𝑏100 𝑉𝛽𝑂2 (Eq. 5) 

where 𝑚𝑎 is the rate of change in each sample (% min-1), 𝑚𝑏 is the mean rate of change for the 443 

blanks in each plate (% min-1), 𝑉 is the water volume (0.005 L), and 𝛽𝑂2 is the oxygen capacity 444 

of air-saturated water at 37C and zero salinity (210 µmol O2 L-1). The rates were then 445 

converted to energy units, assuming a caloric energy of 0.512 J (µmol O2)
-1 from Malerba et al. 446 

(31). 447 

Calibration Curves for OD and Cell Density. In order to express metabolism and productivity 448 

on a per capita basis, we performed calibrations to convert oxygen consumption (VO2) and 449 

carrying capacity (K) from units of OD600 to units of cells per mL. To this end, we measured cell 450 

densities using two approaches. The first used a Neubauer Improved hemocytometer (Bright-451 

line double ruled, Pacific Lab) to estimate cell densities for calculating per capita respiration 452 

rates. The bacteria were growing, at least briefly, during the respiration measurements, and 453 

therefore these calibrations used growing cultures. Clones were revived from glycerol stocks by 454 

inoculation into 1 mL LB medium and grown overnight. Cells were washed 3 times in 1 X PBS 455 

and then diluted 1000-fold in 3 mL of DM100 medium, where they grew at 37C with orbital 456 

shaking for 24 h. The next day, the cultures were diluted 20-fold into 200 L of DM400 medium 457 

in a 96-well microplate. We used DM400 (instead of DM25, DM50, or DM100) so that cell 458 

densities were comparable to those used in the metabolic assays. We immediately measured 459 

an initial OD600 value for each well using the same ELx808 Incubating Absorbance Microplate 460 

Reader as for the population growth measurements. We then placed the plate in a Thermo 461 

Scientific plate shaker at 37C and 750 rpm for 2 h. We recorded another set of OD600 readings, 462 

and then took a 20-L sample from each well and diluted it to a final concentration of 5% 463 
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formaldehyde to fix the cells. We returned the plate to the shaker at 37C. Every hour, we 464 

recorded OD600 readings and took and fixed 20-L samples for hemocytometer cell counts until 465 

5 h had elapsed. Three to four replicate cultures were analyzed for each clone, with a blinded 466 

set of clones used for measurements, which were conducted over 20 days. We rarely measured 467 

replicates from the same clone on a given day. Fixed cells were mixed by pipetting up and 468 

down, and we transferred 10 L into the Neubauer chamber. We used a light microscope to 469 

count the cells. We ran a linear regression to convert OD values to cell densities for each 470 

sample, which we then used to convert oxygen consumption to per capita metabolic rates.  471 

Maximum OD values typically occurred in our population-growth assays when the cells depleted 472 

the glucose and began to enter stationary phase. Bacterial cells are smaller, on average, in 473 

stationary phase than while growing, including in the LTEE populations (21). Therefore, the 474 

calibrations described above could not be used to estimate maximum cell density (Maxcells). 475 

Instead, we performed additional calibrations using cultures grown to stationary phase at the 476 

same glucose concentrations as in the growth assays (DM25, DM50, and DM100). We 477 

estimated stationary-phase densities at 24 h by plating cells on MG agar. Clones were revived 478 

from frozen stocks and grown in DM25. Aliquots of these cultures were distributed at random 479 

over multiple 96-well microplates to minimize position effects. After 24 h at 37C on a plate 480 

shaker, each culture was diluted 100-fold in DM25, DM50, and DM100 (2 L of culture in 200 L 481 

of fresh medium) and incubated again for 24 h on the shaker. These cultures were diluted 482 

10,000-fold and spread on MG agar plates, and colonies were counted after incubating the 483 

plates for 24 h. We used these counts to calibrate stationary-phase cell densities based on 484 

colony-forming units at 24 h (NCFU) and cell densities inferred from OD values and 485 

hemocytometer counts of growing cells (NOD), which yielded the following equation (Fig. S2):  486 

log10[NCFU] = 0.92 x log10[NOD] + 1.35. We then used this equation to estimate Maxcells as the cell 487 

density corresponding to the maximum OD reading (ODmax) from each growth curve. The 488 

60,000-generation sample from population Ara+3 appeared to be an outlier when calibrating the 489 

relation between cell numbers based on OD and CFU values (Fig. S2). (Note: This outlier is not 490 

the Ara–3 sample that was excluded from all of our analyses because the cells can grow on 491 

citrate). We therefore recalculated all the scaling exponents in this work while excluding this 492 

outlier, but none of the values changed substantively (Table S2). 493 

Cell Size Measurements. We measured the mean cell volume for each clone in stationary 494 

phase using the side-scatter of a flow cytometer (Flow-Core, BD LSRII, BD Biosciences, San 495 

Jose, CA); beads of four diameters (0.2, 0.5, 1, and 2 m, Invitrogen by Thermo Fisher 496 
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Scientific) served as standards. The clones were revived from frozen stocks and grown in DM25 497 

at 37C with orbital shaking for 24 h. The next day, these acclimated cells were diluted 100-fold 498 

in fresh DM25 medium in 96-well microplates. We had four replicates per clone, and the clones 499 

were randomly placed across four plates. The plates were incubated at 37C and 750 rpm for 500 

another 24 h, at which time samples were taken and used for flow cytometry. The cell volumes 501 

we obtained using this approach are very similar to those previously obtained using microscopy 502 

and electronic size-based particle counts (21). 503 

Statistical Analyses. Metabolic rates and growth models were calculated using R (49) and the 504 

packages nlme (50), lme4 (51), and plyr (52) for model fitting. ANCOVA and multiple regression 505 

models were performed using Systat to examine the scaling relations between average log-506 

transformed cell volume and the various log-transformed metabolic and population dynamics 507 

metrics, respectively; initial cell density (in the case of metabolism) and glucose level (in the 508 

case of population dynamics) were additional covariates or fixed factors. In all cases, we 509 

calculated mean values across technical replicates for a given clone, and we then averaged the 510 

values for the two clones sampled from each LTEE population at either 10,000 or 60,000 511 

generations. 512 

Data Availability. The data used in this study are deposited at the Dryad Digital Repository 513 

(doi: pending).  514 
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Figures and Tables 640 

 641 

 642 

Fig. 1. Trajectories of cell size in E. coli populations across 60,000 generations of evolution. The 643 

black line shows the mean trajectory of all populations; grey lines show the 12 independent 644 

populations. The 60,000-generation sample from one population is excluded, because it evolved 645 

the ability to use an additional resource not available to the other bacteria (see Materials and 646 

Methods). 647 

  648 
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 649 

Fig. 2. Scaling relation between average cell volume and per capita metabolic rate. The relation 650 

was examined across three different total biomasses, achieved by varying the initial cell density 651 

(shown by different colors). The limiting glucose concentration was the same for all three 652 

treatments; the glucose was thus depleted faster at the higher cell densities, leading to lower 653 

per capita metabolic rates. Each point shows the mean value for a sample at the generation 654 

indicated by the different symbols. The resulting estimate of the metabolic scaling exponent, B, 655 

is 0.38 and statistically indistinguishable across densities. 656 
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 658 

Fig. 3. Scaling relations between average cell volume and a) intrinsic rate of population growth; 659 

b) maximum population density in terms of cell number; c) maximum population density in terms 660 

of total biovolume; and d) maximum rate of biovolume productivity. Different colors represent 661 

different glucose levels (low: DM25; medium: DM50; high: DM100). The low level, DM25, is the 662 

same medium used in the LTEE. Each point shows the mean value for a sample from the 663 

generation indicated by the different symbols.  664 

 665 
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Table 1. Summary of predicted and observed scaling of population parameters based on metabolic scaling theory. We estimated the 667 

metabolic scaling exponent, B, as 0.38 (Fig. 2). We show predictions (including confidence intervals in parentheses) based on the standard 668 

theory, whereby production costs are assumed to scale perfectly with size (C = 1); when production costs are assumed to be size invariant (C = 669 

0); and when production costs scale weakly with size (C = 0.11). The C value of 0.11 was calculated based on the scaling observed for the 670 

intrinsic rate of increase, r.  671 

Parameter Definition General 
theory 

Prediction 
if C = 1 

Prediction 
if C = 0 

Prediction 
if C = 0.11 

Observed 
scaling 

r Intrinsic rate 
of increase 

M
B–C

 –0.62 (–0.73:–0.51) 0.38 (0.27:0.49) 0.27 (0.16:0.38) 0.27 (0.20:0.34) 

Max
cells

 Maximum 
cell density 

M
–B

 –0.38 (–0.49:–0.27) –0.38 (–0.49:-

0.27) 

–0.38 (–0.49:–0.27) –0.45 (–0.54:–
0.37) 

Max
biovolume

 Maximum 
population 
biovolume 

M
1–B

 0.62 (0.51:0.73) 0.62 (0.51:0.73) 0.62 (0.51:0.73) 0.55 (0.46:0.63) 

Biovolume 
productivity 

Maximum 
productivity 

M
(1–B)

x M
(B–C)

 = M
1–C

 0 1 0.89 0.81 (0.72:0.91)  

 672 

 673 

 674 


