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Abstract 

The standard protocol for studying the spiking properties of single neurons is the application 
of current steps while monitoring the voltage response. Although this is informative, the jump in 
applied current is artificial. A more physiological input is where the applied current is ramped up, 
reflecting chemosensory input. Unsurprisingly, neurons can respond differently to the two 
protocols, since ion channel activation and inactivation are affected differently. Understanding the 
effects of current ramps, and changes in their slopes, is facilitated by mathematical models. 
However, techniques for analyzing current ramps are under-developed. In this article, we 
demonstrate how current ramps can be analyzed in single neuron models. The primary issue is the 
presence of gating variables that activate on slow time scales and are therefore far from equilibrium 
throughout the ramp. The use of an appropriate fast-slow analysis technique allows one to fully 
understand the neural response to ramps of different slopes. This study is motivated by data from 
olfactory bulb dopamine neurons, where both fast ramp (tens of milliseconds) and slow ramp (tens 
of seconds) protocols are used to understand the spiking profiles of the cells. The slow ramps 
generate experimental bifurcation diagrams with the applied current as a bifurcation parameter, 
thereby establishing asymptotic spiking activity patterns. The faster ramps elicit purely transient 
behavior that is of relevance to most physiological inputs, which are short in duration. The two 
protocols together provide a broader understanding of the neuron’s spiking profile and the role that 
slowly activating ion channels can play. 
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1. Introduction 
In the brain, information is coded in the spiking patterns of populations of neurons. Input to a 

neuron from other neurons summates to drive the output of the postsynaptic cell. To a first 
approximation, this summed input can be thought of as an input current ramp, with the slope of 
the ramp determined by the degree of synchronicity of firing of the presynaptic neurons. Typically, 
however, the protocol for analyzing the spiking behavior of a neuron in vitro is application of a 
series of depolarizing current steps (Korshunov et al., 2020; Lübke et al., 1998; Ross et al., 2019). 
One then quantifies such things as the rheobase (the size of the smallest current step that elicits an 
action potential), the mean spike frequency, frequency modulation, and amplitude modulation. 
Neurons can behave as single spikers (no more than one action potential produced during current 
steps of any magnitude), phasic spikers (transient spiking is followed by a depolarized rest state), 
or tonic spikers (action potentials continue throughout the current step), among other types. Often, 
these studies make use of pharmacological agents that block specific types of ion channels or 
families of ion channels. In some studies, computer simulations are performed to capture these 
behaviors and provide insight into the contribution that different ion channel types make to the 
response profile (Carroll et al., 2018; Daou et al., 2013; Golomb et al., 2006). 

Although the standard current clamp protocol provides very useful information, the rapid 
change in applied current followed by a sustained level in the current step are inherently artificial. 
An alternate approach is to apply rapid depolarizing current ramps, which are closer to 
physiological input signals; a sniff of duration ~100 ms encodes the information needed to 
discriminate odors (Cury & Uchida, 2010). We used this approach recently in a study of spiking 
properties of dopamine (DA) neurons of the olfactory bulb (OB) (Korshunov et al., 2020). Data 
obtained with this ramp protocol helped to distinguish two types of DA neurons, and provided 
features of the neurons which were not obtainable from the current step protocol. However, the 
ramp protocol raises new questions. How can one understand the response of a neuron to a time-
dependent ramp input? If the peak current is the same but the ramp slope is changed, what 
differences should be expected in the voltage response? Do the results from slow current ramps 
(tens of seconds) tell us anything about what is to be expected from much faster, and more 
physiological, ramps (tens of milliseconds)? As is often the case in neuroscience, the answers to 
these and related questions are hard to come by, but can be facilitated by the use of a mathematical 
model neuron. Computer simulations with such a model can replicate behaviors of the actual 
neurons and, with parameter exploration, can shed light on how the different ion channels affect 
the response. However, a more systematic, and insightful, approach is to use bifurcation analysis 
(Sherman, 2011). Such a study summarizes the behavior of the model neuron over a range of 
parameter values, identifying critical parameter values where there is a qualitative change in 
behavior. The aim of the present study is to demonstrate how bifurcation analysis can be applied 
to a model neuron subjected to depolarizing fast or slow current ramps. This analysis explains the 
spiking pattern produced by the current ramp, and why spiking starts and stops at specific values 
of the applied current during ramps of varying slopes. That is, it explains why the neuron does 
what it does during the ramp. 

The challenge to analyzing the effects of current ramps, even in mathematical models where 
all elements of the system are known, is the multi-timescale nature of the gating variables. When 
slow ramps are applied, all the gating variables are in a quasi-equilibrium state, so the system 
dynamics can be studied by creating a bifurcation diagram with the applied current (Iapp) as the 
bifurcation parameter. This provides summary information on the asymptotic spiking dynamics of 
the neuron. However, with fast ramps of applied current, some gating variables remain far from 
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equilibrium throughout the duration of the ramp. This is in contrast to the faster gating variables, 
such as the Na+ channel activation/inactivation variables and the activation variable for the delayed 
rectifying K+ channel, which adjust to the changing applied current much more rapidly and are 
therefore at quasi-asymptotic states. Because of the presence of the slow gating variables, the 
neural dynamics may be quite different from the asymptotic dynamics, and a standard bifurcation 
analysis is therefore potentially misleading. 

We demonstrate how a decomposition of the system into fast and slow subsystems, and 
separate analyses of each, can be used to analyze the response to fast current ramps. Although the 
model we employ is generic in nature, and not meant to be an accurate representation of any 
particular neuron, we provide data showing that it captures behaviors seen in actual DA neurons. 
We also demonstrate the very different properties exhibited by these DA neurons in response to 
fast vs. slow ramps and how these different behaviors can be understood in terms of the underlying 
system dynamics through an analysis of the generic model. The approach used here can be 
employed in higher-dimensional models, including those with several slow gating variables, 
though the analysis becomes more difficult. Such higher-dimensional fast-slow analyses have 
recently been performed in other applications (Desroches et al., 2012; Harvey et al., 2011), 
including other models of excitable cells (Desroches et al., 2012; Hasan et al., 2018; Kimrey et al., 
2020b; Rubin & Wechselberger, 2007; Vo et al., 2013). 
 
2. Methods 
2.1 Animals 

Transgenic hTH-GFP Sprague Dawley rats (Iacovitti et al., 2014)– ages spanning postnatal 
days 10 to 21 – were used for all experiments (Taconic Biosciences, United States). All neurons 
expressing the enzyme tyrosine hydroxylase (TH) also express green fluorescent protein (GFP), 
and are targeted for electrical recordings. In particular, DA neurons of the OB are used in this 
study. Rats were housed in a controlled, 12-hour light and dark cycle environment, where they 
received ad libitum access to food and water. All experiments were carried out in accordance with 
the National Institutes of Health Guide for the Care and Use of Laboratory Animals (8"# edition), 
and were approved by the Florida State University Institutional Animal Care and Use Committee. 

 
2.2 Olfactory bulb (OB) dissection 

Horizontal OB slices were dissected from rats and used for subsequent electrophysiology 
recordings from DA neurons. Rats were first anesthetized via isoflurane (Henry Schein Animal 
Health, Dublin, OH, United States), then promptly decapitated. Their brains were dissected in ice-
cold, oxygenated (95% O2/5% CO2) sucrose artificial cerebrospinal fluid (sucrose ACSF). The 
makeup of the sucrose ACSF is as follows (in mM): 83 NaCl, 2.5 KCl, 26.2 NaHCO2, 1 NaH2PO4, 
0.5 CaCl2, 3.3 MgCl2, 22 glucose, and 72 sucrose. Once extracted, we used a Vibratome (St. Louis, 
MO, United States) to section 300 µm horizontal OB slices in ice-cold, oxygenated sucrose ACSF. 
Slices were then incubated in 35°C, oxygenated ACSF for at least 30 minutes. The makeup of 
ACSF is as follows (in mM): 125 NaCl, 2.5 KCl, 25 NaHCO2, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 
and 25 glucose. The slices were then stored in room temperature until use. Slices were transferred 
to a recording chamber for all electrophysiology recordings. 

 
2.3 Electrophysiology 

A total of 25 rats were used for these experiments (two rats used per electrophysiology 
recording experiment). Neurons were recorded via whole-cell electrophysiology, exclusively in 
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current-clamp mode. Recordings were acquired and analyzed with the Multiclamp 700B amplifier 
(Molecular Devices, Axon Instrument, San Jose, CA, United States), ITC-18 digitizer (Instrutech, 
Longmount, CO, United States), and the AxographX software (John Clements). OB slices and 
neurons were visualized via the Leica DMLFS fluorescent microscope (Leica Microsystems, 
Wetzlar, Germany) and the Hitachi HV-D30 camera (B&H, NY, United States). 

Recording electrodes were pulled from borosilicate glass (World Precision Instruments, 
Sarasota, FL, United States), with a final tip resistance of 4-6 MΩ. The makeup of the intracellular 
recording solution is as follows (in mM): 125 KMeSO4, 0.025 CaCl2, 2 MgCl2, 1 EGTA, 2 
Na2ATP, 0.5 NaGTP, and 10 HEPES. OB slices were constantly perfused with oxygenated ACSF 
at the rate of ~1 ml/minute. A total of 26 OB neurons were used for this study. 

We used a combination of step and ramp current-clamp protocols of different durations and 
amplitudes to analyze the transient and asymptotic properties of the DA neurons. The step 
protocols used included incremental injections of 10 pA (from -10 to 80 pA), 25 pA (from -25 to 
200 pA), or 50 pA (from -50 to 400 pA) steps, which had the durations of either 300 or 500 ms. In 
ramp protocols, current stimuli gradually increased to their maximum value for a specified amount 
of time. For these experiments on transient activity, we used ramps of 0.167, 0.25, 6, and 12 pA/ms 
(100 pA over 600 ms, 100 pA over 400 ms, 300 pA over 50 ms or 600 pA over 100 ms, and 600 
pA over 50 ms, respectively) slopes to record the transient activity of neurons. To record the 
asymptotic activity of neurons, ramps with much smaller slopes and longer durations were used. 
For these experiments, we used ramps with slopes of 0.00125, 0.0025, and 0.0033 pA/ms (75 pA 
over 60 seconds, 150 pA over 60 seconds, and 100 pA over 30 seconds, respectively). 

 
2.4 The mathematical model 

We employed a simple Hodgkin-Huxley-based single-compartment neuron model, modified 
from (Dovzhenok & Kuznetsov, 2012). There are four voltage-gated ionic currents: a delayed-
rectifying K+ current (IK), a Na+ current (INa), a slowly-activating K+ current (IKS), and a leak 
current (IL). The currents are determined largely by four gating variables: a fast K+ channel 
activation variable (n), a slow K+ channel activation variable (z), a Na+ channel activation variable 
(m), and a Na+ channel inactivation variable (h). Since Na+ channel activation is much faster than 
other gating processes, we employ the quasi-equilibrium approximation in which m is replaced by 
its steady state function, 𝑚%(𝑉). Since the Na+ channel inactivation variable is approximately 
linearly related to the fast K+ channel activation variable, we replace h with this linear function of 
n. The equations for ionic currents are then 

 
𝐼* = 𝑔*𝑛.(𝑉 − 𝑉*) (1) 

𝐼01 = 𝑔01𝑚%
2ℎ(𝑉 − 𝑉01) (2) 

𝐼*4 = 𝑔*4𝑧(𝑉 − 𝑉*) (3) 

𝐼6 = 𝑔6(𝑉 − 𝑉6) (4) 

ℎ = 0.1 − 0.5(𝑛 − 0.8) . (5) 

There are nonlinear differential equations for the three variables V, n, and z, as shown below. 
The applied current, Iapp, is either a depolarizing step function (9) or a linearly increasing ramp 
current (10).  
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𝑑𝑉
𝑑𝑡 = −

1
𝐶
>𝐼* + 𝐼01 + 𝐼*4 + 𝐼6 − 𝐼1@@A (6) 

𝑑𝑛
𝑑𝑡 =

𝑛% − 𝑛
𝜏C

 (7) 

𝑑𝑧
𝑑𝑡 =

𝑧% − 𝑧
𝜏D

 (8) 

𝐼1@@ = 𝑋 (9) 

𝐼1@@ = slope·T (10) 
where 𝑋 > 0 in equation (9) is the size of the current step (in pA) and T in equation (10) is the 
time since the initiation of the ramp (in ms). The equilibrium functions for the gating variables, 
and the V-dependent time constant 𝜏C are: 

𝑚% =
1

1 + e
H(IHJKL)

MK

 (11) 

𝑛% =
1

1 + e
H(IHJNL)

MN

 (12) 

𝑧% =
1

1 + e
H(IHJO)

MO

 (13) 

𝜏C = 𝜏CP + 𝜏CQe
H(IHRN)S

MNT  (14) 

  

The activation variable z changes much more slowly than the variables V and n due to its large 
time constant (50 ms versus < 6 ms for the other activation variable, n). Because of this, during a 
burst of spikes the z variable slowly accumulates, and slowly falls afterwards (shown later).       

Model parameters are listed in Table 1, and the differential equations were solved numerically 
using XPPAUT (available at www.math.pit.edu/~bard/xpp/xpp.html) using the Dormand-Prince 
solver. The XPPAUT code can be downloaded as freeware from 
www.math.fsu.edu/~bertram/software/neuron. 

 
Table 1: Model Parameters 

Parameter Value 
C 1 pF 
𝜏D 50 ms 
𝑔*  40 nS 
𝑔01  120 nS 
𝑔6 0.3 nS 
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𝑔*4 
110 nS  
(single 
spiker) 

5 nS  
(tonic 
spiker) 

𝑉*  −77 mV 
𝑉01  55 mV 
𝑉6  −44.4 mV 
𝑣X# −40 mV 
𝑣C# −53 mV 
𝑣D −45 mV 
𝑠X 9 mV 
𝑠C 15 mV 
𝑠D 10 mV 
𝑠C[ 50 mV\  

𝜏CP 1.1 ms 
𝜏CQ 4.7 ms 
𝜃C −53 mV 

 
3. Results 
3.1 The slowly-activating K+ conductance can determine whether a neuron is a single spiker 
or a tonic spiker  

The experimental voltage traces shown in Fig. 1 illustrate the two characteristic behaviors 
observed in in vitro recordings of DA neurons in response to a step of depolarizing current: the 
cell may respond with a single action potential or spike (referred to as single spikers, Fig. 1A,B) 
or with a train of spikes (referred to as tonic spikers, Fig. 1C,D). With small depolarizing current 
steps, neither type of cell reliably produces an action potential. With sufficiently large steps, single 
spikers typically respond with a single spike, regardless of the size of the step. Tonic spikers 
typically produce a continuous train of spikes, but may enter depolarization block with sufficiently 
large input. These are the defining behaviors of the two types of neurons that were characterized 
previously in the OB DA neurons (Korshunov et al., 2020). Since such current steps are artificial, 
we examined how the two types of neurons responded to current ramps, in which the applied 
current was increased linearly from 0 to some ending value. The ramp protocol was then 
parameterized by the slope of the ramp. The single spiker shown in Fig. 1 responded to a current 
ramp with a single spike when the ramp slope was large (12 pA/ms, Fig. 2A), and with a small 
voltage deflection, but not a full-blown spike, when the ramp slope was small (0.25 pA/ms, Fig. 
2B). In several other cells of this type, single spikes were produced at both ramp slopes. The 
difference in the response of the tonic spikers to current ramps of small or large slopes was 
typically more dramatic, and this is reflected in the example of Fig. 2C, D. When the ramp slope 
was large, the neuron responded with a spike and two small-amplitude spikes as it approached 
depolarization block (Fig. 2C). When the slope was small, more spikes were invariably produced, 
often followed by depolarization block (Fig. 2D). Although only representative examples are 
shown here, their behaviors are characteristic of the population of OB DA neurons studied, as 
described in (Korshunov et al., 2020). These behaviors motivated us to understand the effects of 
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current ramps on single spikers and tonic spikers from a mathematical perspective, using a generic 
neural model for the analysis. Why do single spikers remain single spikers when stimulated with 
a current ramp? Why do tonic spikers produce fewer spikes when the ramp slope is greater? Why 
does the cell stop spiking when it does, and is this different depending on the slope of the current 
ramp? These are the experimental questions we wished to answer. The mathematical focus of the 
study was to determine an effective way to analyze the dynamics underlying application of ramped 
input in a model neuron consisting of both fast and slow gating variables. The model we employed 
has the minimal set of components needed to achieve these goals. 

 

 
Fig. 1: Patch clamp recordings demonstrating the two characteristic behaviors observed in DA 
neurons in response to a step of depolarizing current. (A, B) Single spiking response to steps of 
depolarizing current (60 and 80 pA, respectively). (C, D) Tonic spiking responses to 
depolarizing current steps (25 and 50 pA, respectively). 
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To differentiate between the two different types of neurons, we changed a single parameter in 
the model: the conductance of the slowly-activated K+ current (𝑔*4). We found that single spiker 
behavior was achieved with large values of 𝑔*4, while tonic behavior was produced with small 
values of 𝑔*4. This is illustrated in Figure 3. When depolarizing current steps of 150 pA or 250 
pA were simulated (Fig. 3A), the model cell responded with a single spike when 𝑔*4 = 110 nS 
(Fig. 3B). In contrast, when the same input steps were applied to the model neuron with 𝑔*4 = 5 
nS, tonic spiking was produced (Fig. 3C). Biophysically, when the conductance of the slowly 
activated K+ current is large, the hyperpolarizing K+ current reaches a sufficiently large value after 
the first spike to prevent the membrane potential from reaching spike threshold, so a second spike 
is not produced. 

 

 
Fig. 2: Patch clamp recordings of DA neurons and their typical responses to current ramps. 
Neurons that respond to current steps with a single spike, i.e., the single spikers, respond to 
current ramps with a single spike (A, B). Neurons that respond to current steps with continuous 
spiking, i.e., the tonic spikers, respond quite differently to current ramps. The number of spikes 
produced is less during a ramp with large slope (C) than to a ramp with small slope (D). 
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The model also captures the overall behavior observed in experiments in response to a 
ramped applied current. For a single spiker (i.e., a model cell with 𝑔*4 = 110 nS), when given a 
ramp of applied current with a large slope (Fig. 3D, black), a single spike is produced (Fig. 3E, 
black). When the current ramp has a smaller slope (Fig. 3D, green), the model cell does not spike 
at all (Fig. 3E, green). Model tonic spiking neurons produce a train of spikes followed by 
depolarization block when ramps of applied current are simulated with large slopes and small 
slopes. However, the number of spikes produced during the large-slope ramps is less that the 
number produced during the small-slope ramps (Fig. 3F). Thus, these model neurons capture the 
basic spiking behavior for single and tonic spikers.  
 

 
Fig. 3: Simulations of model neurons in response to current steps and ramps. (A) Current steps 
of two different sizes, offset in time for clarity. (B) Model single spikers (𝑔*4 = 110 nS) 
produce a single spike in response to each current step. (C) Model tonic spikers (𝑔*4 = 5 nS) 
respond to current pulses with a train of action potentials. (D) Current ramps with slope of 26 
pA/ms (black) and 6.5 pA/ms (green). Values of the maximum applied current and ramp 
duration where chosen arbitrarily, but the maximum current value is the same for both ramps. 
(E) A single spiker responds to the ramps with either a single spike or no spike at all. (F) A tonic 
spiking neuron produces fewer spikes during a large-slope ramp than during a small-slope ramp, 
as seen in experiments (Fig. 2). 

 
 
3.2 Bifurcation analysis shows agreement between the asymptotic dynamics of the model and 
the experimental data 

Before examining the basis of the transient response to current ramps, we investigated the 
simpler case of the asymptotic, or long-term, spiking properties of the neurons. The asymptotic 
dynamics of the model neuron can be illustrated through the use of a bifurcation diagram, treating 
the applied current, 𝐼1@@, as a bifurcation parameter. The bifurcation diagram for the model single 
spiker is shown in Fig. 4A. In this case, there is a stable equilibrium for all values of 𝐼1@@ (red 
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curve), indicating lack of a tonic spiking interval so that any spikes produced during short steps or 
ramps reflect transient properties of the cells. In contrast, for the model tonic spiker, there is an 
interval of applied current values where the equilibrium is unstable and there is a branch of stable 
periodic solutions (Fig. 4B). This interval is delimited by a subcritical Hopf bifurcation on the left 
and a supercritical Hopf bifurcation on the right. For each value of 𝐼1@@ between the Hopf 
bifurcations, the model neuron responds with tonic spiking (green curves indicate minimum and 
maximum values of V during oscillations).  
 

 
Fig. 4: Asymptotic dynamics of model and biological neurons. (A) A bifurcation diagram of the 
model single spiker indicates that there is a single stable equilibrium at all current values. The 
neuron becomes more depolarized with greater applied current, but there are no current values 
that elicit tonic spiking. (B) In the model tonic spiker, there is a large range of current values for 
which a stable periodic, or tonic spiking, behavior is produced. (C) An experimental bifurcation 
diagram produced using a slow ramp of depolarizing current. A single spiker exhibits a stable 
resting voltage for the full range of applied current. (D) The experimental bifurcation diagram 
for a tonic spiking neuron exhibits a range of applied current for which tonic spiking occurs.  

A B

C D
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Do DA neurons exhibit similar asymptotic dynamics in vitro? To check, we applied slowly 
ramped current at a rate of 0.0025 pA/ms over a duration of 60 seconds (Fig. 4C), and at a rate of 
0.00333 pA/ms over the duration of 30 seconds (Fig. 4D). These ramps are much slower than the 
ramps of Fig. 2. For a single spiker, the experimental bifurcation diagram shows a curve of resting 
states, becoming more depolarized as the applied current is increased (Fig. 4C). As with the model 
bifurcation diagram for the single spiker, there is no spiking interval. In contrast, for a tonic spiker, 
the bifurcation diagram exhibits a large spiking interval between roughly 𝐼1@@ = 20 pA and 60 pA 
(Fig. 4D). For any of these applied current values, the neuron produces tonic spiking.  

 
  
3.3 Towards an understanding of transient dynamics using bifurcation analysis of the fast 
subsystem 

The bifurcation analysis performed in Fig. 4 is informative, since it tells in a succinct manner 
the values of the input current at which stationary or tonic spiking behavior occurs in the model or 
biological neuron. Unfortunately, it says little to nothing about what to expect during fast current 
ramps. For example, the single spiker bifurcation diagrams predict no spiking, yet in both the 
model and biological cells, single spikes often occurred during fast ramps. The experimental 
bifurcation diagram for the tonic spiker predicts that tonic spiking should occur for 𝐼1@@ up to ~57 
pA. The spiking that occurs for the ramp with the small slope in Fig. 2D terminates at a similar 
value (~70 pA), but these are significantly different from the termination point with the large slope 
ramp in Fig. 2C (~473 pA).The experimental bifurcation diagram for the tonic spiker predicts that 
tonic spiking should occur for 𝐼1@@ up to ~57 pA, but in the fast ramps the spiking stopped at 
significantly lower values (~473 pA for the ramp with large slope, Fig. 2C, and ~70 pA for the 
ramp with small slope, Fig. 2D). Similarly, in the model, the spiking branch of the bifurcation 
diagram terminates at an 𝐼1@@ value (the right Hopf bifurcation is at 743 pA in Fig. 4B) that is 
different from that of the tonic spikers with the fast ramps. Indeed, the value of 𝐼1@@ at which 
spiking stops is different in the fast ramp with large slope (736 pA) than that in the fast ramp with 

 
Fig. 5: The response of the activation variable for the slowly activated K+ channels (𝑧) during 
large-slope (black, 50 ms duration) and small-slope (green, 200 ms duration) current ramps. (A) 
In the model single spiker, z increases slowly during the current ramps. (B) There is a similar 
slow increase in z in the model tonic spiker, but there is now a change in slope when the model 
neuron enters depolarization block.  

A B
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small slope 761 pA, Fig. 3F), and this cannot be explained by the asymptotic bifurcation diagram 
of Fig. 4B.  

Although bifurcation analysis of the asymptotic dynamics clearly fails to describe the transient 
dynamics that occur during fast current ramps, might it be possible to adapt bifurcation analysis to 
capture transient dynamics in the model where the time courses of all variables are known? The 
challenge to doing this is that variables that change on slow time scales don’t reach equilibrium 
over the timescale of the fast ramp, so if one assumes that an equilibrium is reached (as in the 
asymptotic bifurcation analysis) the results will be misleading, as we have seen. To account for 
the dynamics of the slow variables, it is therefore necessary to determine a functional relationship 
between the value of each slow variable and the applied current. In our model, there is only one 
variable that changes on such a slow time scale for this to be a concern, the activation variable for 
the slowly activated K+ channels (𝑧). In what follows, we derive such a relation. Once done, 
bifurcation analysis of the fast subsystem of variables (V and n) can be performed, using 𝐼1@@ as a 
bifurcation parameter with z slaved to 𝐼1@@ through the derived relation. 

 
 

 
Fig. 6: Linear regression analysis was used to establish the linear dependence of z on the applied 
current. This relationship was fit over the duration of the ramp up to 𝐼1@@ = 1000 pA. (A, D) 
Range of fit over large-slope and small-slope current ramps, respectively, is indicated by the red 
dashed lines. (B, E) The activation variable (black) for a model single spiker had an almost-
linear dependence on applied current during the large-slope and small-slope ramps, respectively. 
(C, F) The z activation variable for the model tonic spikers also exhibited an almost-linear 
dependence on applied current during large-slope and small-slope ramps, respectively. For each 
linear regression estimation, 𝛽` from equation (15) was fixed to be the initial 𝑧 value prior to 
the start of the ramp and the estimation of the time course by the linear regression estimate has 
an R2 > 0.95. 
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 The response of 𝑧 to ramps of applied current is shown in Fig. 5, for both the single spiker 
(Fig. 5A) and the tonic spiker (Fig. 5B). The variable increases due to the rise in V induced by the 
current ramp, but in neither case is there evidence of action potentials, since 𝑧 changes slowly and 
the effects of fast fluctuations in voltage are averaged out. In the case of the tonic spiker, there is 
a noticeable change in the positive slope in z when the model cell stops spiking and enters 
depolarization block. 

The time course of z during the fast ramps looks approximately linear, which motivated us to 
apply a linear regression on each of the traces (Fig. 6) and thereby establish an approximate affine 
relationship between 𝑧 and 𝐼1@@. In the regression equation, 

𝑧 = 𝛽a𝐼1@@ + 𝛽`                                                           (15) 

 𝛽` was fixed to be the initial 𝑧 value prior to the start of the ramp. The slope of the linear 
approximation, 𝛽a, was estimated using a subset of values of the 𝐼1@@ ramp (𝐼1@@ ∈ [0, 1000] pA) 
and produced a linear fit with an 𝑅\ > 0.95. Values of 𝛽a for both types of neurons and for both 
ramp slopes are provided in Table 2. 
 

Table 2: Linear Regression Slope (𝜷𝟏) for Ramp Duration 
Total Ramp Duration Single Spiker  𝜷𝟏 Value Tonic Spiker  𝜷𝟏 Value 

25 ms 1.335 × 10H. 1.877 × 10H. 
50 ms 1.96 × 10H. 3.185 × 10H. 
75 ms 2.226 × 10H. 4.196 × 10H. 
100 ms 2.405 × 10H. 4.989 × 10H. 
125 ms 2.535 × 10H. 5.619 × 10H. 
150 ms 2.632 × 10H. 6.125 × 10H. 
175 ms 2.707 × 10H. 6.537 × 10H. 
200 ms 2.766 × 10H. 6.876 × 10H. 
225 ms 2.814 × 10H. 7.157 × 10H. 
250 ms 2.854 × 10H. 7.393 × 10H. 
275 ms 2.887 × 10H. 7.593 × 10H. 

 
The fit to the 𝑧 time course of the single spiker is shown in Fig. 6B for a large-slope ramp and 

Fig. 6E for a small-slope ramp (time course in black, regression line in red) and the fit to the tonic 
spiker is shown in Fig. 6C during a large-slope ramp and in Fig. 6F during a small-slope ramp. All 
fits appear to be quite good, at least over the range of 𝐼1@@ values examined (up to 1000 pA). Since 
the values of 𝐼1@@ where spiking starts and stops are less than 1000 pA, and these are the most 
important features, the regression fits should be satisfactory.  

An increase in the duration (decrease in slope) of the applied current ramp resulted in a larger 
value of 𝛽a for both single spiking and tonic spiking neurons (Table 2). This relationship is plotted 
in Fig. 7 for both types of neurons. Also shown in the figure are Michaelis-Menten fits to the 
points, using (16) where D is duration, A is the maximum value of 𝛽a, k is the duration when the 
half maximum value of 𝛽a is achieved, and both A and k are estimated with an 𝑅\ > 0.95, as 
reported in the figure caption. Now, using this newly determined relationship, z can be expressed 
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in terms of its initial value prior to the current ramp, the duration of the current ramp, and Iapp as it 
changes during the ramp. With this relationship, the differential equation for z (8) can be removed 
and replaced by 

𝑧 = lm∙o
pqo

r 𝐼1@@ + 𝛽`  . (16) 

 

 
Fig. 7: Increasing the duration of the applied current ramp resulted in a larger value of 𝛽a for 
both types of neurons. The value of 𝛽a corresponding to each ramp duration is shown by an open 
circle for both single spikers (SS) and tonic spikers (TS). This was fit with a Michaelis-Menten 
function (solid line through points). The parameter values for this fit are: 𝐴 = 3.2448 × 10H. 
(single spiker), 	1.098 × 10H2 (tonic spiker), and 𝑘 = 34.5019 (single spiker), 120.3198 (tonic 
spiker).  

 
 
3.4 Using fast-subsystem bifurcation analysis to understand spiking behavior in response to fast 
ramps of applied current 

With the functional relationship between 𝑧 and 𝐼1@@ described through (16) for fast ramps with 
arbitrary slopes (with durations up to 300 ms), it is now possible to analyze the dynamics of the 
model neuron using bifurcation analysis of the system (6), (7), and (16). In particular, we can now 
use bifurcation analysis to understand why each type of neuron responds the way that it does to 
ramps with different slopes. Figure 8 shows how the membrane voltage of a model single spiker 
changes in response to the applied current if given a large-slope ramp (50 ms duration, Fig. 8A), 
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or a ramp with small slope (200 ms duration, Fig. 8B). In both cases, there is a branch of stable 
stationary solutions with no periodic branch, indicating a lack of tonic spiking at any point along 
the current ramp. The single spike that occurs for some large ramp slopes (e.g., Fig. 3E) is not 
captured by the bifurcation diagram since it is not an asymptotic behavior of the fast V-n 
subsystem, which is what the bifurcation diagram of Fig. 8 reflects. That is, it is a product of a 
very fast change in V during a spike upstroke and a slower change in n that is responsible for the 
downstroke. In the bifurcation diagram, both V and n are at equilibrium states. As a comparison 
with the bifurcation diagram of the full 3-dimensional system during a slow ramp of applied 
current we superimpose the bifurcation diagram from Fig. 4A as dashed curves. Notice that the 
curve for the slow ramp is below that of the fast ramp, since in this case the z variable is at an 
equilibrium value that is larger than its value during the fast ramp. Since this is the activation 
variable for a hyperpolarizing current, it brings the voltage to a lower value.  
 

 
Fig. 8: Bifurcation analyses of the model single spiker neuron (𝑔*4 = 110	𝑛𝑆) to fast ramps of 
applied current are shown with a solid red curve in (A) and (B). Equations (6), (7), and (16) 
were used. Dashed curves are from the bifurcation analysis of Fig. 4A, corresponding to a slow 
ramp of 𝐼1@@. (A) Response to a large-slope (50 ms duration) ramp shows no spiking interval. 
(B) Response to a small-slope (200 ms duration) ramp is similar.  

 
The bifurcation diagram for the model tonic spiker is more interesting. For both a large-slope 

ramp (Fig. 9A) and a small-slope ramp (Fig. 9B), there is a branch of periodic solutions, reflecting 
tonic spiking. The periodic branch is born at a subcritical Hopf bifurcation and terminates at a 
supercritical Hopf bifurcation. The value of 𝐼1@@ at which the supercritical Hopf bifurcation occurs 
(𝐼1@@ = 666	pA) is approximately the same for both ramps. Therefore, differences in the size of 
the spiking interval does not explain why large-slope current ramps elicit fewer spikes than do the 
small-slope ramps. Neither is it explained by differences in frequency response over the range of 
applied currents, which is similar for the two ramps (Fig. 9C, D). In both cases, the spike frequency 
increases with increasing 𝐼1@@, peaking at ~1.2 mHz for both ramps. Instead, the difference in 
spiking behavior between large-slope and small-slope ramps comes from the amount of time spent 
within the spiking interval. For a large-slope ramp, 𝐼1@@ changes rapidly, so the system is swept 
through the spiking interval quickly, eliciting only a few spikes. This is illustrated by the long 
arrows in Fig. 9A. For the small-slope ramp, 𝐼1@@ changes more slowly, so progression through 
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the spiking interval takes longer, eliciting more spikes (illustrated with short arrows in Fig. 9B). 
Thus, the fast-slow analysis explains one of the key findings of both the model and the biological 
neuron.  

 

 
Fig. 9: Bifurcation analysis of the model tonic spiker neuron (𝑔*4 = 5	𝑛𝑆) to fast ramps of 
applied current. Equations (6), (7), and (16) were used. (A) Response to a large-slope (50 ms 
duration) ramp shows a branch of stable periodic spiking solutions, delimited on the left by a 
subcritical Hopf bifurcation and on the right by a supercritical Hopf bifurcation.  The applied 
current changes rapidly during the ramp, illustrated by the long arrows. (B) Response to a small-
slope (300 ms duration) ramp is very similar, but now the change in applied current during the 
ramp is much slower. Illustrated with small arrows, whose length is scaled to reflect the speed 
of the phase point. The asymptotic spike frequency over the range of the periodic branch is 
shown in (C) and (D). As the applied current is increased, the frequency of spiking increases for 
both ramps, peaking at ~1.2 mHz for both a large-slope ramp and a small-slope ramp. 

 
Because both the ramp duration and the applied current appear in the equation (16) for the slow 

variable z, it is possible to determine how the tonic spiking interval varies with the duration of the 
ramp (or its inverse, the ramp slope). This is done through the construction of a two-parameter 
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C D



 18 

bifurcation diagram, in which the two Hopf bifurcations initiating and terminating the periodic 
tonic spiking branch are continued in ramp duration D (Fig. 10A). The leftmost blue curve in Fig. 
10A is nearly vertical, which indicates that the subcritical Hopf bifurcation that initiates the spiking 
interval is almost independent of the ramp duration (or slope). This is an intuitive result, since the 
spiking starts shortly after the beginning of a current ramp, regardless of the ramp slope. The 
termination point does vary with ramp duration, taking on larger values at longer durations (and 
smaller ramp slopes). This indicates that the neuron goes to a state of depolarization block at larger 
applied current values when the current ramp is slower. This is true because at slower ramp speeds 
the z activation variable achieves larger values at each value of the applied current (closer to its 
equilibrium level), and the resulting hyperpolarizing current works to prevent depolarization block.   
Overall, the region of tonic spiking for this type of neuron is large, ensuring that ramps of a wide 
range of slopes will elicit spikes in these model neurons. The ramp durations used in previous 
figures are shown as dashed horizontal lines; the bottom line was referred to as a “large-slope 
ramp”, while the top line was referred to as a “small-slope ramp”.  

Although the analysis of Fig. 8 for single spikers did not show a spiking interval, such an 
interval does exist for shorter ramp durations. As shown in Fig. 10A (red curve), there is a small 
region of the two-parameter plane in which spiking would occur in single spikers. In contrast, for 
the tonic spiker the Hopf bifurcations never coalesce; as the ramp slope is made arbitrarily small 
the fast-subsystem bifurcation diagram approaches the asymptotic one (Fig. 4B), which has two 
Hopf bifurcations. 
 
3.5 A hypothetical third type of neural response to fast current ramps 

We have seen in both model and biological neurons two response types to fast current ramps. 
In one type, either a single spike or no spike is produced. In the other type, the number of spikes 
elicited is smaller during a large-slope ramp than during a small-slope ramp. Our analysis shows, 
however, that a third type of response is possible. Here, the number of spikes produced is larger 
during a large-slope ramp than during a small-slope ramp. Although we found no instances of this 
response in our electrophysiological recordings, it is at least theoretically possible if the two-
parameter bifurcation structure is similar to the black curve in Fig. 10B, which was generated using 
an intermediate value of the slowly activated K+ conductance (𝑔*4 = 50 nS).  For this 
“intermediate neuron,” the spiking region is larger than that of a single spiker but still drastically 
smaller than that of a tonic spiker. With this larger region, a ramp of duration 50 ms would cross 
through the spiking interval of applied current, so this short-duration, large-slope ramp would 
generate multiple spikes (Fig. 11A). Similar behavior is exhibited by single spiking neurons when 
exposed to a very short current ramp, as shown in Figure 12. For intermediate neurons, a ramp 
with a longer duration and smaller slope of, for example, 200 ms, would not pass through the 
spiking region. We would expect to see no spikes (Fig. 11B) or at most one spike with such a 
small-slope ramp (Fig. 11B). The one-parameter bifurcation structure for these two cases is shown 
in Fig. 11C for the large-slope ramp and Fig. 11D for the small-slope ramp. There is a large spiking 
interval for the large-slope ramp, but none for the small-slope ramp, explaining the time courses 
shown in Fig. 11A, B. These diagrams differ qualitatively from those of the single spiker (Fig. 8) 
and tonic spiker (Fig. 9), where tonic spiking intervals either did (tonic spiker) or did not (single 
spiker) exist for either ramp slope. Although we did not see intermediate neuron spiking patterns 
in our experimental studies of DA neurons, it would in principle be possible to see this from a 
spiking neuron with the titration of a channel blocker for the slowly-activated K+ current in the 
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cell, once the identity of that channel was determined, so that the whole-cell channel conductance 
is reduced but not entirely blocked.  
 
4. Discussion 

The goal of this study was to develop an analysis approach for understanding the response of 
a model neuron to fast applied current ramps. This topic arose from recent experimental work in 
which such ramps were employed in the characterization of the spiking properties of DA neurons 
of the rat OB (Korshunov et al., 2020). While bifurcation analysis using the applied current as the 
bifurcation parameter is desirable for such analysis, the existence of one or more variables that 
change on a relatively slow time scale make this problematic. We demonstrated how a 
decomposition of the model neuron into its fast and slow components could pave the way for 
employing bifurcation analysis on the fast subsystem, while constructing a functional relationship 
between the slow variable and the applied current to account for the slow subsystem. This provided 
the means of understanding the spiking behavior of the model neuron in response to fast ramps of 
different slopes, which parallel responses in actual DA neurons. This approach can be extended in 
a straight-forward manner to models with multiple slow variables. 

 

 
Fig. 10: Two-parameter bifurcation diagram illustrating how the tonic spiking window varies 
with ramp duration. In each case, the Hopf bifurcations in the one-parameter bifurcation diagram 
(Fig. 9) are traced out in a second parameter, the ramp duration. The model used includes 
equations (6), (7), and (16). (A) For the tonic spiker (𝑔*4 = 5	nS), the subcritical Hopf 
bifurcation branch (left blue curve) is nearly vertical, indicating that the initiation point of the 
tonic spiking behavior is relatively independent of the ramp duration (or slope). The termination 
point (right blue curve) increases with the ramp duration. The tonic spiking region is large, 
ensuring that ramps with a wide range of slopes will elicit tonic spiking behavior in these 
neurons. The dashed horizontal lines indicate the durations of the current ramps shown in earlier 
figures. The spiking region for the single spiker (𝑔*4 = 110	nS) (delimited by the red curve) is 
present only for short ramp durations. (B) The spiking region for a model neuron generated 
using 𝑔*4 = 50 nS has a spiking region that is intermediate between those that of the single 
spiker and that of the tonic spiker. 
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As shown in Fig. 10, the ramp speed can have a large impact on the fast-subsystem bifurcation 
diagram. Why does this happen? The answer lies in the fact that different ramp speeds change the 
cell’s membrane potential at different rates; ramps with large slope increase V at a faster rate than 
small-slope ramps. This influences the activation variable z so that it increases at different rates 
for the different ramps. The result is a different fast-subsystem bifurcation diagram for different 
ramp slopes. As the ramp speed is reduced to low values the bifurcation diagram converges to that 
of the full system of equations.   
 

 
Fig. 11: Response of a model intermediate neuron (𝑔*4 = 50 nS) to current ramps. (A) When 
the neuron is given an applied current ramp with a large slope (duration = 50 ms), it exhibits 
tonic spiking. (B) No spikes are produced during a small-slope current ramp (duration = 200 
ms). (C) The bifurcation structure for the large-slope ramp has a large spiking interval. (D) There 
is no spiking interval for the small-slope ramp, as shown by the solid red line. This response is 
similar to that of an intermediate neuron when exposed to a slow ramp, which is shown with the 
dashed red line.  

 
 

A B

C D



 21 

In addition to the mathematical analysis of fast ramps, we demonstrated how slow applied 
current ramps can be performed on biological neurons to provide information on the asymptotic 
spiking properties of the neuron (Fig. 4). We believe that such experimental bifurcation diagrams 
are useful for at least two reasons. First, they help in the partitioning of neurons into different 
“types” according to their asymptotic spiking properties. In the case studied here, a single-spiking 
neuron and a tonic spiker have very different asymptotic behavior, and this is readily revealed by 
the experimental bifurcation diagram produced with a slow current ramp. The second reason such 
diagrams are useful is that they help to constrain any mathematical model developed for the 
neuron; the model neuron should have the same qualitative asymptotic behavior as the neuron that 
is being modeled. Although only representative examples are shown in Fig. 4, we regularly found 
that single spiking neurons had a bifurcation structure similar to Fig. 4C (of the 11 recorded single 
spiking neurons, 9 did not show periodic branching in bifurcation diagrams), and tonic spikers had 
structure similar to Fig. 4D (of the 11 recorded tonic spiking neurons, 9 had periodic branching in 
bifurcation diagrams).  

The model neuron that was used in this study was not calibrated to describe DA neurons. In 
fact, while our previous publication (Korshunov et al., 2020) did reveal differences in the activity 
of voltage-gated Na+ channels and the hyperpolarization-activated cyclic nucleotide (HCN) 
channel that produces the h-current, there was no attempt to fully elucidate the full mix of channels 
(e.g., K+ channels) present or to develop a biophysically accurate mathematical model of these 
neurons. It was not our aim, therefore, to make precise statements about these types of neurons. 
Instead, the aim was first to demonstrate that even a simple neuron model that captures the spiking 
behavior of a biological neuron subject to short current steps can convey useful information about 
the neuron’s asymptotic behavior and its behavior in response to fast current ramps, and then to 
show how fast-slow analysis of the model neuron can bring insights about the spiking behavior of 
the neuron in response to fast current ramps. The analysis approach can be used with any single-
compartment neural model, from simple (like ours) to much more complex models containing 
activation and inactivation variables for many ionic currents. Though implementation of the 
analysis would be more difficult with more complex models, the same basic approach should work.  

Ionic current from a slowly activated K+ channel with a relatively large 50 ms time constant 
was a key element of our model. There are a number of ion channel types with slow gating 
properties. These include, but are not limited to, the activation of M-type K+ channels (Yue & 
Yaari, 2004), inactivation of A-type K+ channels (Connor & Stevens, 1971), activation of small 
(SK)-type and intermediate (IK)-type Ca2+-activated K+ channels (Kshatri et al., 2018), activation 
of ATP-sensitive K+ channels (Tinker et al., 2014), activation of the HCN-type channels (Wahl-
Schott & Biel, 2009), and inactivation of L-type Ca2+ channels (Kubalova, 2003) and T-type Ca2+ 
channels (Perez-Reyes, 2003). All of these introduce slow components to the system, and 
depending upon the speed of the current ramp, some gating variables would be best grouped into 
the fast subsystem and some into the slow subsystem. 

One big advantage that model neurons have over biological neurons is that the state of each 
gating variable is known at each point in time. Indeed, this knowledge is what allowed us to obtain 
the linear relationship between the slow gating variable and the applied current during a fast ramp. 
Although this can’t be done for most gating variables in biological neurons, it is possible to do it 
for some. For example, activation of Ca2+-activated K+ channels is dependent on the intracellular 
free Ca2+ concentration, which can be measured using fluorescent dyes such as Fura-2 (Takahashi 
et al., 1999). Similarly, for ATP-sensitive K+ channels, the degree of activation is based on the 
ratio of ATP to ADP in the cell, and this can be determined with the fluorescent probe Perceval-
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HR (Berg et al., 2009). Thus, in these instances, it would be possible to relate the activation factor 
to the applied current during a fast ramp, as we have done with the model neuron in this report. In 
so doing, a model neuron could be better calibrated to the physiology underlying the behavior of 
the biological neuron. 
 

 
Fig. 12: Response of a single spiker neuron when exposed to a ramp with a short duration. (A) 
The two-parameter bifurcation diagram for a single spiking neuron. The dashed line for a ramp 
duration of 25 ms passes through two Hopf bifurcations, resulting in the spiking behavior shown 
in (B). This spiking behavior is similar to that of an intermediate neuron when exposed to a 
large-slope ramp, as shown in Fig. 11A.  

 
 

Fast-slow analysis of models of excitable cells has been used to understand a range of 
behaviors, including bursting oscillations (Bertram & Rubin, 2017; Izhikevich, 2000), pathological 
fluctuations in the membrane potential of cardiac myocytes (Kimrey et al., 2020a; Kügler, 2016), 
and oscillations in the intracellular Ca2+ concentration (Harvey et al., 2011). In each instance, the 
objective was to go beyond computer simulations as a means for characterizing the behavior of 
the model cell. That is, to not just demonstrate what can happen, but to understand why it happens. 
We see the application of fast-slow analysis to neural spiking during current ramps in the same 
light.  
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