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Abstract

The standard protocol for studying the spiking properties of single neurons is the application
of current steps while monitoring the voltage response. Although this is informative, the jump in
applied current is artificial. A more physiological input is where the applied current is ramped up,
reflecting chemosensory input. Unsurprisingly, neurons can respond differently to the two
protocols, since ion channel activation and inactivation are affected differently. Understanding the
effects of current ramps, and changes in their slopes, is facilitated by mathematical models.
However, techniques for analyzing current ramps are under-developed. In this article, we
demonstrate how current ramps can be analyzed in single neuron models. The primary issue is the
presence of gating variables that activate on slow time scales and are therefore far from equilibrium
throughout the ramp. The use of an appropriate fast-slow analysis technique allows one to fully
understand the neural response to ramps of different slopes. This study is motivated by data from
olfactory bulb dopamine neurons, where both fast ramp (tens of milliseconds) and slow ramp (tens
of seconds) protocols are used to understand the spiking profiles of the cells. The slow ramps
generate experimental bifurcation diagrams with the applied current as a bifurcation parameter,
thereby establishing asymptotic spiking activity patterns. The faster ramps elicit purely transient
behavior that is of relevance to most physiological inputs, which are short in duration. The two
protocols together provide a broader understanding of the neuron’s spiking profile and the role that
slowly activating ion channels can play.
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1. Introduction

In the brain, information is coded in the spiking patterns of populations of neurons. Input to a
neuron from other neurons summates to drive the output of the postsynaptic cell. To a first
approximation, this summed input can be thought of as an input current ramp, with the slope of
the ramp determined by the degree of synchronicity of firing of the presynaptic neurons. Typically,
however, the protocol for analyzing the spiking behavior of a neuron in vitro is application of a
series of depolarizing current steps (Korshunov et al., 2020; Liibke et al., 1998; Ross et al., 2019).
One then quantifies such things as the rheobase (the size of the smallest current step that elicits an
action potential), the mean spike frequency, frequency modulation, and amplitude modulation.
Neurons can behave as single spikers (no more than one action potential produced during current
steps of any magnitude), phasic spikers (transient spiking is followed by a depolarized rest state),
or tonic spikers (action potentials continue throughout the current step), among other types. Often,
these studies make use of pharmacological agents that block specific types of ion channels or
families of ion channels. In some studies, computer simulations are performed to capture these
behaviors and provide insight into the contribution that different ion channel types make to the
response profile (Carroll et al., 2018; Daou et al., 2013; Golomb et al., 2006).

Although the standard current clamp protocol provides very useful information, the rapid
change in applied current followed by a sustained level in the current step are inherently artificial.
An alternate approach is to apply rapid depolarizing current ramps, which are closer to
physiological input signals; a sniff of duration ~100 ms encodes the information needed to
discriminate odors (Cury & Uchida, 2010). We used this approach recently in a study of spiking
properties of dopamine (DA) neurons of the olfactory bulb (OB) (Korshunov et al., 2020). Data
obtained with this ramp protocol helped to distinguish two types of DA neurons, and provided
features of the neurons which were not obtainable from the current step protocol. However, the
ramp protocol raises new questions. How can one understand the response of a neuron to a time-
dependent ramp input? If the peak current is the same but the ramp slope is changed, what
differences should be expected in the voltage response? Do the results from slow current ramps
(tens of seconds) tell us anything about what is to be expected from much faster, and more
physiological, ramps (tens of milliseconds)? As is often the case in neuroscience, the answers to
these and related questions are hard to come by, but can be facilitated by the use of a mathematical
model neuron. Computer simulations with such a model can replicate behaviors of the actual
neurons and, with parameter exploration, can shed light on how the different ion channels affect
the response. However, a more systematic, and insightful, approach is to use bifurcation analysis
(Sherman, 2011). Such a study summarizes the behavior of the model neuron over a range of
parameter values, identifying critical parameter values where there is a qualitative change in
behavior. The aim of the present study is to demonstrate how bifurcation analysis can be applied
to a model neuron subjected to depolarizing fast or slow current ramps. This analysis explains the
spiking pattern produced by the current ramp, and why spiking starts and stops at specific values
of the applied current during ramps of varying slopes. That is, it explains why the neuron does
what it does during the ramp.

The challenge to analyzing the effects of current ramps, even in mathematical models where
all elements of the system are known, is the multi-timescale nature of the gating variables. When
slow ramps are applied, all the gating variables are in a quasi-equilibrium state, so the system
dynamics can be studied by creating a bifurcation diagram with the applied current (/) as the
bifurcation parameter. This provides summary information on the asymptotic spiking dynamics of
the neuron. However, with fast ramps of applied current, some gating variables remain far from



equilibrium throughout the duration of the ramp. This is in contrast to the faster gating variables,
such as the Na* channel activation/inactivation variables and the activation variable for the delayed
rectifying K* channel, which adjust to the changing applied current much more rapidly and are
therefore at quasi-asymptotic states. Because of the presence of the slow gating variables, the
neural dynamics may be quite different from the asymptotic dynamics, and a standard bifurcation
analysis is therefore potentially misleading.

We demonstrate how a decomposition of the system into fast and slow subsystems, and
separate analyses of each, can be used to analyze the response to fast current ramps. Although the
model we employ is generic in nature, and not meant to be an accurate representation of any
particular neuron, we provide data showing that it captures behaviors seen in actual DA neurons.
We also demonstrate the very different properties exhibited by these DA neurons in response to
fast vs. slow ramps and how these different behaviors can be understood in terms of the underlying
system dynamics through an analysis of the generic model. The approach used here can be
employed in higher-dimensional models, including those with several slow gating variables,
though the analysis becomes more difficult. Such higher-dimensional fast-slow analyses have
recently been performed in other applications (Desroches et al., 2012; Harvey et al., 2011),
including other models of excitable cells (Desroches et al., 2012; Hasan et al., 2018; Kimrey et al.,
2020b; Rubin & Wechselberger, 2007; Vo et al., 2013).

2. Methods
2.1 Animals

Transgenic hTH-GFP Sprague Dawley rats (Iacovitti et al., 2014)— ages spanning postnatal
days 10 to 21 — were used for all experiments (Taconic Biosciences, United States). All neurons
expressing the enzyme tyrosine hydroxylase (TH) also express green fluorescent protein (GFP),
and are targeted for electrical recordings. In particular, DA neurons of the OB are used in this
study. Rats were housed in a controlled, 12-hour light and dark cycle environment, where they
received ad libitum access to food and water. All experiments were carried out in accordance with
the National Institutes of Health Guide for the Care and Use of Laboratory Animals (8" edition),
and were approved by the Florida State University Institutional Animal Care and Use Committee.

2.2 Olfactory bulb (OB) dissection

Horizontal OB slices were dissected from rats and used for subsequent electrophysiology
recordings from DA neurons. Rats were first anesthetized via isoflurane (Henry Schein Animal
Health, Dublin, OH, United States), then promptly decapitated. Their brains were dissected in ice-
cold, oxygenated (95% 02/5% CO2) sucrose artificial cerebrospinal fluid (sucrose ACSF). The
makeup of the sucrose ACSF is as follows (in mM): 83 NaCl, 2.5 KCl, 26.2 NaHCO,, 1 NaH,PO,,
0.5 CaCl,, 3.3 MgCl,, 22 glucose, and 72 sucrose. Once extracted, we used a Vibratome (St. Louis,
MO, United States) to section 300 um horizontal OB slices in ice-cold, oxygenated sucrose ACSF.
Slices were then incubated in 35°C, oxygenated ACSF for at least 30 minutes. The makeup of
ACSF is as follows (in mM): 125 NaCl, 2.5 KCI, 25 NaHCO,, 1.25 NaH,PO,, 2 CaCl,, 1 MgCl,,
and 25 glucose. The slices were then stored in room temperature until use. Slices were transferred
to a recording chamber for all electrophysiology recordings.

2.3 Electrophysiology
A total of 25 rats were used for these experiments (two rats used per electrophysiology
recording experiment). Neurons were recorded via whole-cell electrophysiology, exclusively in



current-clamp mode. Recordings were acquired and analyzed with the Multiclamp 700B amplifier
(Molecular Devices, Axon Instrument, San Jose, CA, United States), ITC-18 digitizer (Instrutech,
Longmount, CO, United States), and the AxographX software (John Clements). OB slices and
neurons were visualized via the Leica DMLFS fluorescent microscope (Leica Microsystems,
Wetzlar, Germany) and the Hitachi HV-D30 camera (B&H, NY, United States).

Recording electrodes were pulled from borosilicate glass (World Precision Instruments,
Sarasota, FL, United States), with a final tip resistance of 4-6 MQ. The makeup of the intracellular
recording solution is as follows (in mM): 125 KMeSQO,, 0.025 CaCl,, 2 MgCl,, 1 EGTA, 2
Na,ATP, 0.5 NaGTP, and 10 HEPES. OB slices were constantly perfused with oxygenated ACSF
at the rate of ~1 ml/minute. A total of 26 OB neurons were used for this study.

We used a combination of step and ramp current-clamp protocols of different durations and
amplitudes to analyze the transient and asymptotic properties of the DA neurons. The step
protocols used included incremental injections of 10 pA (from -10 to 80 pA), 25 pA (from -25 to
200 pA), or 50 pA (from -50 to 400 pA) steps, which had the durations of either 300 or 500 ms. In
ramp protocols, current stimuli gradually increased to their maximum value for a specified amount
of time. For these experiments on transient activity, we used ramps 0f 0.167, 0.25, 6, and 12 pA/ms
(100 pA over 600 ms, 100 pA over 400 ms, 300 pA over 50 ms or 600 pA over 100 ms, and 600
pA over 50 ms, respectively) slopes to record the transient activity of neurons. To record the
asymptotic activity of neurons, ramps with much smaller slopes and longer durations were used.
For these experiments, we used ramps with slopes of 0.00125, 0.0025, and 0.0033 pA/ms (75 pA
over 60 seconds, 150 pA over 60 seconds, and 100 pA over 30 seconds, respectively).

2.4 The mathematical model

We employed a simple Hodgkin-Huxley-based single-compartment neuron model, modified
from (Dovzhenok & Kuznetsov, 2012). There are four voltage-gated ionic currents: a delayed-
rectifying K* current (Ix), a Na* current (/ns), a slowly-activating K* current (Iks), and a leak
current (/7). The currents are determined largely by four gating variables: a fast K" channel
activation variable (n), a slow K* channel activation variable (z), a Na* channel activation variable
(m), and a Na* channel inactivation variable (/). Since Na* channel activation is much faster than
other gating processes, we employ the quasi-equilibrium approximation in which m is replaced by
its steady state function, my (V). Since the Na* channel inactivation variable is approximately
linearly related to the fast K™ channel activation variable, we replace 4 with this linear function of
n. The equations for ionic currents are then

Iy = ggn*(V — V) (1)
Ina = GnaMoo>h(V = Vyq) (2)
Ixs = gksz(V — Vi) 3)
I,=g,(V-V) 4
h=01-05(n-0.8). %)

There are nonlinear differential equations for the three variables V, n, and z, as shown below.
The applied current, /), is either a depolarizing step function (9) or a linearly increasing ramp
current (10).
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where X > 0 in equation (9) is the size of the current step (in pA) and 7 in equation (10) is the
time since the initiation of the ramp (in ms). The equilibrium functions for the gating variables,
and the V-dependent time constant 7,, are:
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The activation variable z changes much more slowly than the variables ¥ and n due to its large
time constant (50 ms versus < 6 ms for the other activation variable, 7). Because of this, during a
burst of spikes the z variable slowly accumulates, and slowly falls afterwards (shown later).

Model parameters are listed in Table 1, and the differential equations were solved numerically
using XPPAUT (available at www.math.pit.edu/~bard/xpp/xpp.html) using the Dormand-Prince
solver. The  XPPAUT code can be  downloaded as  freeware  from
www.math.fsu.edu/~bertram/software/neuron.

Table 1: Model Parameters
Parameter Value
C 1 pF
T, 50 ms
Ik 40 nS
Ina 120 nS
gL 0.3 nS




110 nS 5nS
Iks (single (tonic
spiker) spiker)
Vi —77 mV
Vna 55 mV
3 —44.4 mV
Vmh —40 mV
Vnh —53 mV
v, —45 mV
Sm 9mV
Sn I5mV
Sy 10 mV
Sne 50 mV?
Tn, 1.1 ms
Tn, 4.7 ms
0, —53 mV

3. Results
3.1 The slowly-activating K* conductance can determine whether a neuron is a single spiker
or a tonic spiker

The experimental voltage traces shown in Fig. 1 illustrate the two characteristic behaviors
observed in in vitro recordings of DA neurons in response to a step of depolarizing current: the
cell may respond with a single action potential or spike (referred to as single spikers, Fig. 1A,B)
or with a train of spikes (referred to as tonic spikers, Fig. 1C,D). With small depolarizing current
steps, neither type of cell reliably produces an action potential. With sufficiently large steps, single
spikers typically respond with a single spike, regardless of the size of the step. Tonic spikers
typically produce a continuous train of spikes, but may enter depolarization block with sufficiently
large input. These are the defining behaviors of the two types of neurons that were characterized
previously in the OB DA neurons (Korshunov et al., 2020). Since such current steps are artificial,
we examined how the two types of neurons responded to current ramps, in which the applied
current was increased linearly from 0 to some ending value. The ramp protocol was then
parameterized by the slope of the ramp. The single spiker shown in Fig. 1 responded to a current
ramp with a single spike when the ramp slope was large (12 pA/ms, Fig. 2A), and with a small
voltage deflection, but not a full-blown spike, when the ramp slope was small (0.25 pA/ms, Fig.
2B). In several other cells of this type, single spikes were produced at both ramp slopes. The
difference in the response of the tonic spikers to current ramps of small or large slopes was
typically more dramatic, and this is reflected in the example of Fig. 2C, D. When the ramp slope
was large, the neuron responded with a spike and two small-amplitude spikes as it approached
depolarization block (Fig. 2C). When the slope was small, more spikes were invariably produced,
often followed by depolarization block (Fig. 2D). Although only representative examples are
shown here, their behaviors are characteristic of the population of OB DA neurons studied, as
described in (Korshunov et al., 2020). These behaviors motivated us to understand the effects of



current ramps on single spikers and tonic spikers from a mathematical perspective, using a generic
neural model for the analysis. Why do single spikers remain single spikers when stimulated with
a current ramp? Why do tonic spikers produce fewer spikes when the ramp slope is greater? Why
does the cell stop spiking when it does, and is this different depending on the slope of the current
ramp? These are the experimental questions we wished to answer. The mathematical focus of the
study was to determine an effective way to analyze the dynamics underlying application of ramped
input in a model neuron consisting of both fast and slow gating variables. The model we employed
has the minimal set of components needed to achieve these goals.
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Fig. 1: Patch clamp recordings demonstrating the two characteristic behaviors observed in DA
neurons in response to a step of depolarizing current. (A, B) Single spiking response to steps of
depolarizing current (60 and 80 pA, respectively). (C, D) Tonic spiking responses to
depolarizing current steps (25 and 50 pA, respectively).



To differentiate between the two different types of neurons, we changed a single parameter in
the model: the conductance of the slowly-activated K" current (ggs). We found that single spiker
behavior was achieved with large values of gk, while tonic behavior was produced with small
values of ggs. This is illustrated in Figure 3. When depolarizing current steps of 150 pA or 250
pA were simulated (Fig. 3A), the model cell responded with a single spike when ggs = 110 nS
(Fig. 3B). In contrast, when the same input steps were applied to the model neuron with ggxs = 5
nS, tonic spiking was produced (Fig. 3C). Biophysically, when the conductance of the slowly
activated K" current is large, the hyperpolarizing K" current reaches a sufficiently large value after
the first spike to prevent the membrane potential from reaching spike threshold, so a second spike
is not produced.
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Fig. 2: Patch clamp recordings of DA neurons and their typical responses to current ramps.
Neurons that respond to current steps with a single spike, i.e., the single spikers, respond to
current ramps with a single spike (A, B). Neurons that respond to current steps with continuous
spiking, i.e., the tonic spikers, respond quite differently to current ramps. The number of spikes
produced is less during a ramp with large slope (C) than to a ramp with small slope (D).



The model also captures the overall behavior observed in experiments in response to a
ramped applied current. For a single spiker (i.e., a model cell with ggs = 110 nS), when given a
ramp of applied current with a large slope (Fig. 3D, black), a single spike is produced (Fig. 3E,
black). When the current ramp has a smaller slope (Fig. 3D, green), the model cell does not spike
at all (Fig. 3E, green). Model tonic spiking neurons produce a train of spikes followed by
depolarization block when ramps of applied current are simulated with large slopes and small
slopes. However, the number of spikes produced during the large-slope ramps is less that the

number produced during the small-slope ramps (Fig. 3F). Thus, these model neurons capture the
basic spiking behavior for single and tonic spikers.
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Fig. 3: Simulations of model neurons in response to current steps and ramps. (A) Current steps
of two different sizes, offset in time for clarity. (B) Model single spikers (gxs = 110 nS)
produce a single spike in response to each current step. (C) Model tonic spikers (gxs = 5 nS)
respond to current pulses with a train of action potentials. (D) Current ramps with slope of 26
pA/ms (black) and 6.5 pA/ms (green). Values of the maximum applied current and ramp
duration where chosen arbitrarily, but the maximum current value is the same for both ramps.
(E) A single spiker responds to the ramps with either a single spike or no spike at all. (F) A tonic

spiking neuron produces fewer spikes during a large-slope ramp than during a small-slope ramp,
as seen in experiments (Fig. 2).

3.2 Bifurcation analysis shows agreement between the asymptotic dynamics of the model and
the experimental data

Before examining the basis of the transient response to current ramps, we investigated the
simpler case of the asymptotic, or long-term, spiking properties of the neurons. The asymptotic
dynamics of the model neuron can be illustrated through the use of a bifurcation diagram, treating
the applied current, I, as a bifurcation parameter. The bifurcation diagram for the model single
spiker is shown in Fig. 4A. In this case, there is a stable equilibrium for all values of I, (red
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curve), indicating lack of a tonic spiking interval so that any spikes produced during short steps or
ramps reflect transient properties of the cells. In contrast, for the model tonic spiker, there is an
interval of applied current values where the equilibrium is unstable and there is a branch of stable
periodic solutions (Fig. 4B). This interval is delimited by a subcritical Hopf bifurcation on the left
and a supercritical Hopf bifurcation on the right. For each value of I,,, between the Hopf
bifurcations, the model neuron responds with tonic spiking (green curves indicate minimum and
maximum values of V" during oscillations).
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Fig. 4: Asymptotic dynamics of model and biological neurons. (A) A bifurcation diagram of the
model single spiker indicates that there is a single stable equilibrium at all current values. The
neuron becomes more depolarized with greater applied current, but there are no current values
that elicit tonic spiking. (B) In the model tonic spiker, there is a large range of current values for
which a stable periodic, or tonic spiking, behavior is produced. (C) An experimental bifurcation
diagram produced using a slow ramp of depolarizing current. A single spiker exhibits a stable
resting voltage for the full range of applied current. (D) The experimental bifurcation diagram
for a tonic spiking neuron exhibits a range of applied current for which tonic spiking occurs.
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Do DA neurons exhibit similar asymptotic dynamics in vitro? To check, we applied slowly
ramped current at a rate of 0.0025 pA/ms over a duration of 60 seconds (Fig. 4C), and at a rate of
0.00333 pA/ms over the duration of 30 seconds (Fig. 4D). These ramps are much slower than the
ramps of Fig. 2. For a single spiker, the experimental bifurcation diagram shows a curve of resting
states, becoming more depolarized as the applied current is increased (Fig. 4C). As with the model
bifurcation diagram for the single spiker, there is no spiking interval. In contrast, for a tonic spiker,
the bifurcation diagram exhibits a large spiking interval between roughly /,,,,, = 20 pA and 60 pA
(Fig. 4D). For any of these applied current values, the neuron produces tonic spiking.

—Large Slope
—— Small Slope

08} . 08F
06} E 0.6F
N N
04} . 04F
02} E 02F
0 . L L . L 0 . L L . L
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (ms) Time (ms)

Fig. 5: The response of the activation variable for the slowly activated K* channels (z) during
large-slope (black, 50 ms duration) and small-slope (green, 200 ms duration) current ramps. (A)
In the model single spiker, z increases slowly during the current ramps. (B) There is a similar
slow increase in z in the model tonic spiker, but there is now a change in slope when the model
neuron enters depolarization block.

3.3 Towards an understanding of transient dynamics using bifurcation analysis of the fast
subsystem

The bifurcation analysis performed in Fig. 4 is informative, since it tells in a succinct manner
the values of the input current at which stationary or tonic spiking behavior occurs in the model or
biological neuron. Unfortunately, it says little to nothing about what to expect during fast current
ramps. For example, the single spiker bifurcation diagrams predict no spiking, yet in both the
model and biological cells, single spikes often occurred during fast ramps. The experimental
bifurcation diagram for the tonic spiker predicts that tonic spiking should occur for I, up to ~57
pA. The spiking that occurs for the ramp with the small slope in Fig. 2D terminates at a similar
value (~70 pA), but these are significantly different from the termination point with the large slope
ramp in Fig. 2C (~473 pA).The experimental bifurcation diagram for the tonic spiker predicts that
tonic spiking should occur for Iy, up to ~57 pA, but in the fast ramps the spiking stopped at
significantly lower values (~473 pA for the ramp with large slope, Fig. 2C, and ~70 pA for the
ramp with small slope, Fig. 2D). Similarly, in the model, the spiking branch of the bifurcation
diagram terminates at an I,,,, value (the right Hopf bifurcation is at 743 pA in Fig. 4B) that is
different from that of the tonic spikers with the fast ramps. Indeed, the value of I,,, at which
spiking stops is different in the fast ramp with large slope (736 pA) than that in the fast ramp with
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small slope 761 pA, Fig. 3F), and this cannot be explained by the asymptotic bifurcation diagram
of Fig. 4B.

Although bifurcation analysis of the asymptotic dynamics clearly fails to describe the transient
dynamics that occur during fast current ramps, might it be possible to adapt bifurcation analysis to
capture transient dynamics in the model where the time courses of all variables are known? The
challenge to doing this is that variables that change on slow time scales don’t reach equilibrium
over the timescale of the fast ramp, so if one assumes that an equilibrium is reached (as in the
asymptotic bifurcation analysis) the results will be misleading, as we have seen. To account for
the dynamics of the slow variables, it is therefore necessary to determine a functional relationship
between the value of each slow variable and the applied current. In our model, there is only one
variable that changes on such a slow time scale for this to be a concern, the activation variable for
the slowly activated K* channels (z). In what follows, we derive such a relation. Once done,
bifurcation analysis of the fast subsystem of variables (V" and ) can be performed, using I, as a
bifurcation parameter with z slaved to I, through the derived relation.
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Fig. 6: Linear regression analysis was used to establish the linear dependence of z on the applied
current. This relationship was fit over the duration of the ramp up to I, = 1000 pA. (A, D)
Range of fit over large-slope and small-slope current ramps, respectively, is indicated by the red
dashed lines. (B, E) The activation variable (black) for a model single spiker had an almost-
linear dependence on applied current during the large-slope and small-slope ramps, respectively.
(C, F) The z activation variable for the model tonic spikers also exhibited an almost-linear
dependence on applied current during large-slope and small-slope ramps, respectively. For each
linear regression estimation, 5, from equation (15) was fixed to be the initial z value prior to
the start of the ramp and the estimation of the time course by the linear regression estimate has
an R? > 0.95.
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The response of z to ramps of applied current is shown in Fig. 5, for both the single spiker
(Fig. 5A) and the tonic spiker (Fig. 5B). The variable increases due to the rise in ¥ induced by the
current ramp, but in neither case is there evidence of action potentials, since z changes slowly and
the effects of fast fluctuations in voltage are averaged out. In the case of the tonic spiker, there is
a noticeable change in the positive slope in z when the model cell stops spiking and enters
depolarization block.

The time course of z during the fast ramps looks approximately linear, which motivated us to
apply a linear regression on each of the traces (Fig. 6) and thereby establish an approximate affine
relationship between z and ,y,,. In the regression equation,

Z= .Bllapp + Bo (15)

Bo was fixed to be the initial z value prior to the start of the ramp. The slope of the linear
approximation, 5;, was estimated using a subset of values of the I, ramp (I, € [0,1000] pA)
and produced a linear fit with an R? > 0.95. Values of f; for both types of neurons and for both
ramp slopes are provided in Table 2.

Table 2: Linear Regression Slope (1) for Ramp Duration
Total Ramp Duration Single Spiker B, Value Tonic Spiker B, Value
25 ms 1.335x 107 1.877 x 107
50 ms 1.96 x 107 3.185x 107*
75 ms 2.226 x 107* 4,196 x 107*
100 ms 2.405x 107* 4989 x 107*
125 ms 2.535x107* 5.619 x 10~*
150 ms 2.632x107* 6.125 x 107*
175 ms 2.707 x 10~* 6.537 x 107*
200 ms 2.766 x 10~* 6.876 x 10~*
225 ms 2.814x107* 7.157 x 10~*
250 ms 2.854 x 107* 7.393 x 107*
275 ms 2.887 x 107* 7.593 x 107*

The fit to the z time course of the single spiker is shown in Fig. 6B for a large-slope ramp and
Fig. 6E for a small-slope ramp (time course in black, regression line in red) and the fit to the tonic
spiker is shown in Fig. 6C during a large-slope ramp and in Fig. 6F during a small-slope ramp. All
fits appear to be quite good, at least over the range of I,,,,, values examined (up to 1000 pA). Since
the values of 1,5, where spiking starts and stops are less than 1000 pA, and these are the most
important features, the regression fits should be satisfactory.

An increase in the duration (decrease in slope) of the applied current ramp resulted in a larger
value of 3, for both single spiking and tonic spiking neurons (Table 2). This relationship is plotted
in Fig. 7 for both types of neurons. Also shown in the figure are Michaelis-Menten fits to the
points, using (16) where D is duration, 4 is the maximum value of 3;, k is the duration when the
half maximum value of B; is achieved, and both 4 and k are estimated with an R? > 0.95, as
reported in the figure caption. Now, using this newly determined relationship, z can be expressed
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in terms of its initial value prior to the current ramp, the duration of the current ramp, and /., as it
changes during the ramp. With this relationship, the differential equation for z (8) can be removed
and replaced by

2= (22 Ly + Bo - (16)
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Fig. 7: Increasing the duration of the applied current ramp resulted in a larger value of ; for
both types of neurons. The value of 5; corresponding to each ramp duration is shown by an open
circle for both single spikers (SS) and tonic spikers (TS). This was fit with a Michaelis-Menten
function (solid line through points). The parameter values for this fit are: A = 3.2448 x 10™*
(single spiker), 1.098 x 1073 (tonic spiker), and k = 34.5019 (single spiker), 120.3198 (tonic
spiker).

3.4 Using fast-subsystem bifurcation analysis to understand spiking behavior in response to fast
ramps of applied current

With the functional relationship between z and I, described through (16) for fast ramps with
arbitrary slopes (with durations up to 300 ms), it is now possible to analyze the dynamics of the
model neuron using bifurcation analysis of the system (6), (7), and (16). In particular, we can now
use bifurcation analysis to understand why each type of neuron responds the way that it does to
ramps with different slopes. Figure 8 shows how the membrane voltage of a model single spiker
changes in response to the applied current if given a large-slope ramp (50 ms duration, Fig. 8A),
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or a ramp with small slope (200 ms duration, Fig. 8B). In both cases, there is a branch of stable
stationary solutions with no periodic branch, indicating a lack of tonic spiking at any point along
the current ramp. The single spike that occurs for some large ramp slopes (e.g., Fig. 3E) is not
captured by the bifurcation diagram since it is not an asymptotic behavior of the fast V-n
subsystem, which is what the bifurcation diagram of Fig. 8 reflects. That is, it is a product of a
very fast change in V' during a spike upstroke and a slower change in n that is responsible for the
downstroke. In the bifurcation diagram, both V" and » are at equilibrium states. As a comparison
with the bifurcation diagram of the full 3-dimensional system during a slow ramp of applied
current we superimpose the bifurcation diagram from Fig. 4A as dashed curves. Notice that the
curve for the slow ramp is below that of the fast ramp, since in this case the z variable is at an
equilibrium value that is larger than its value during the fast ramp. Since this is the activation
variable for a hyperpolarizing current, it brings the voltage to a lower value.
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Fig. 8: Bifurcation analyses of the model single spiker neuron (ggs = 110 nS) to fast ramps of

applied current are shown with a solid red curve in (A) and (B). Equations (6), (7), and (16)

were used. Dashed curves are from the bifurcation analysis of Fig. 4A, corresponding to a slow

ramp of I4,,. (A) Response to a large-slope (50 ms duration) ramp shows no spiking interval.

(B) Response to a small-slope (200 ms duration) ramp is similar.

The bifurcation diagram for the model tonic spiker is more interesting. For both a large-slope
ramp (Fig. 9A) and a small-slope ramp (Fig. 9B), there is a branch of periodic solutions, reflecting
tonic spiking. The periodic branch is born at a subcritical Hopf bifurcation and terminates at a
supercritical Hopf bifurcation. The value of I,,,,, at which the supercritical Hopf bifurcation occurs
(Iapp = 666 pA) is approximately the same for both ramps. Therefore, differences in the size of
the spiking interval does not explain why large-slope current ramps elicit fewer spikes than do the
small-slope ramps. Neither is it explained by differences in frequency response over the range of
applied currents, which is similar for the two ramps (Fig. 9C, D). In both cases, the spike frequency
increases with increasing I,,,,, peaking at ~1.2 mHz for both ramps. Instead, the difference in
spiking behavior between large-slope and small-slope ramps comes from the amount of time spent
within the spiking interval. For a large-slope ramp, I,,,, changes rapidly, so the system is swept
through the spiking interval quickly, eliciting only a few spikes. This is illustrated by the long
arrows in Fig. 9A. For the small-slope ramp, I, changes more slowly, so progression through
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the spiking interval takes longer, eliciting more spikes (illustrated with short arrows in Fig. 9B).

Thus, the fast-slow analysis explains one of the key findings of both the model and the biological
neuron.
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Fig. 9: Bifurcation analysis of the model tonic spiker neuron (ggxs = 5 nS) to fast ramps of
applied current. Equations (6), (7), and (16) were used. (A) Response to a large-slope (50 ms
duration) ramp shows a branch of stable periodic spiking solutions, delimited on the left by a
subcritical Hopf bifurcation and on the right by a supercritical Hopf bifurcation. The applied
current changes rapidly during the ramp, illustrated by the long arrows. (B) Response to a small-
slope (300 ms duration) ramp is very similar, but now the change in applied current during the
ramp is much slower. Illustrated with small arrows, whose length is scaled to reflect the speed
of the phase point. The asymptotic spike frequency over the range of the periodic branch is
shown in (C) and (D). As the applied current is increased, the frequency of spiking increases for
both ramps, peaking at ~1.2 mHz for both a large-slope ramp and a small-slope ramp.

Because both the ramp duration and the applied current appear in the equation (16) for the slow

variable z, it is possible to determine how the tonic spiking interval varies with the duration of the
ramp (or its inverse, the ramp slope). This is done through the construction of a two-parameter
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bifurcation diagram, in which the two Hopf bifurcations initiating and terminating the periodic
tonic spiking branch are continued in ramp duration D (Fig. 10A). The leftmost blue curve in Fig.
10A is nearly vertical, which indicates that the subcritical Hopf bifurcation that initiates the spiking
interval is almost independent of the ramp duration (or slope). This is an intuitive result, since the
spiking starts shortly after the beginning of a current ramp, regardless of the ramp slope. The
termination point does vary with ramp duration, taking on larger values at longer durations (and
smaller ramp slopes). This indicates that the neuron goes to a state of depolarization block at larger
applied current values when the current ramp is slower. This is true because at slower ramp speeds
the z activation variable achieves larger values at each value of the applied current (closer to its
equilibrium level), and the resulting hyperpolarizing current works to prevent depolarization block.
Overall, the region of tonic spiking for this type of neuron is large, ensuring that ramps of a wide
range of slopes will elicit spikes in these model neurons. The ramp durations used in previous
figures are shown as dashed horizontal lines; the bottom line was referred to as a “large-slope
ramp”, while the top line was referred to as a “small-slope ramp”.

Although the analysis of Fig. 8 for single spikers did not show a spiking interval, such an
interval does exist for shorter ramp durations. As shown in Fig. 10A (red curve), there is a small
region of the two-parameter plane in which spiking would occur in single spikers. In contrast, for
the tonic spiker the Hopf bifurcations never coalesce; as the ramp slope is made arbitrarily small
the fast-subsystem bifurcation diagram approaches the asymptotic one (Fig. 4B), which has two
Hopf bifurcations.

3.5 A hypothetical third type of neural response to fast current ramps

We have seen in both model and biological neurons two response types to fast current ramps.
In one type, either a single spike or no spike is produced. In the other type, the number of spikes
elicited is smaller during a large-slope ramp than during a small-slope ramp. Our analysis shows,
however, that a third type of response is possible. Here, the number of spikes produced is larger
during a large-slope ramp than during a small-slope ramp. Although we found no instances of this
response in our electrophysiological recordings, it is at least theoretically possible if the two-
parameter bifurcation structure is similar to the black curve in Fig. 10B, which was generated using
an intermediate value of the slowly activated K* conductance (ggxs = 50 nS). For this
“intermediate neuron,” the spiking region is larger than that of a single spiker but still drastically
smaller than that of a tonic spiker. With this larger region, a ramp of duration 50 ms would cross
through the spiking interval of applied current, so this short-duration, large-slope ramp would
generate multiple spikes (Fig. 11A). Similar behavior is exhibited by single spiking neurons when
exposed to a very short current ramp, as shown in Figure 12. For intermediate neurons, a ramp
with a longer duration and smaller slope of, for example, 200 ms, would not pass through the
spiking region. We would expect to see no spikes (Fig. 11B) or at most one spike with such a
small-slope ramp (Fig. 11B). The one-parameter bifurcation structure for these two cases is shown
in Fig. 11C for the large-slope ramp and Fig. 11D for the small-slope ramp. There is a large spiking
interval for the large-slope ramp, but none for the small-slope ramp, explaining the time courses
shown in Fig. 11A, B. These diagrams differ qualitatively from those of the single spiker (Fig. 8)
and tonic spiker (Fig. 9), where tonic spiking intervals either did (tonic spiker) or did not (single
spiker) exist for either ramp slope. Although we did not see intermediate neuron spiking patterns
in our experimental studies of DA neurons, it would in principle be possible to see this from a
spiking neuron with the titration of a channel blocker for the slowly-activated K* current in the
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cell, once the identity of that channel was determined, so that the whole-cell channel conductance
is reduced but not entirely blocked.

4. Discussion

The goal of this study was to develop an analysis approach for understanding the response of
a model neuron to fast applied current ramps. This topic arose from recent experimental work in
which such ramps were employed in the characterization of the spiking properties of DA neurons
of the rat OB (Korshunov et al., 2020). While bifurcation analysis using the applied current as the
bifurcation parameter is desirable for such analysis, the existence of one or more variables that
change on a relatively slow time scale make this problematic. We demonstrated how a
decomposition of the model neuron into its fast and slow components could pave the way for
employing bifurcation analysis on the fast subsystem, while constructing a functional relationship
between the slow variable and the applied current to account for the slow subsystem. This provided
the means of understanding the spiking behavior of the model neuron in response to fast ramps of
different slopes, which parallel responses in actual DA neurons. This approach can be extended in
a straight-forward manner to models with multiple slow variables.
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Fig. 10: Two-parameter bifurcation diagram illustrating how the tonic spiking window varies
with ramp duration. In each case, the Hopf bifurcations in the one-parameter bifurcation diagram
(Fig. 9) are traced out in a second parameter, the ramp duration. The model used includes
equations (6), (7), and (16). (A) For the tonic spiker (gxs = 5 nS), the subcritical Hopf
bifurcation branch (left blue curve) is nearly vertical, indicating that the initiation point of the
tonic spiking behavior is relatively independent of the ramp duration (or slope). The termination
point (right blue curve) increases with the ramp duration. The tonic spiking region is large,
ensuring that ramps with a wide range of slopes will elicit tonic spiking behavior in these
neurons. The dashed horizontal lines indicate the durations of the current ramps shown in earlier
figures. The spiking region for the single spiker (gxs = 110 nS) (delimited by the red curve) is
present only for short ramp durations. (B) The spiking region for a model neuron generated

using ggs = 50 nS has a spiking region that is intermediate between those that of the single
spiker and that of the tonic spiker.
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As shown in Fig. 10, the ramp speed can have a large impact on the fast-subsystem bifurcation
diagram. Why does this happen? The answer lies in the fact that different ramp speeds change the
cell’s membrane potential at different rates; ramps with large slope increase J at a faster rate than
small-slope ramps. This influences the activation variable z so that it increases at different rates
for the different ramps. The result is a different fast-subsystem bifurcation diagram for different
ramp slopes. As the ramp speed is reduced to low values the bifurcation diagram converges to that
of the full system of equations.
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Fig. 11: Response of a model intermediate neuron (ggxs = 50 nS) to current ramps. (A) When
the neuron is given an applied current ramp with a large slope (duration = 50 ms), it exhibits
tonic spiking. (B) No spikes are produced during a small-slope current ramp (duration = 200
ms). (C) The bifurcation structure for the large-slope ramp has a large spiking interval. (D) There
is no spiking interval for the small-slope ramp, as shown by the solid red line. This response is

similar to that of an intermediate neuron when exposed to a slow ramp, which is shown with the
dashed red line.
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In addition to the mathematical analysis of fast ramps, we demonstrated how slow applied
current ramps can be performed on biological neurons to provide information on the asymptotic
spiking properties of the neuron (Fig. 4). We believe that such experimental bifurcation diagrams
are useful for at least two reasons. First, they help in the partitioning of neurons into different
“types” according to their asymptotic spiking properties. In the case studied here, a single-spiking
neuron and a tonic spiker have very different asymptotic behavior, and this is readily revealed by
the experimental bifurcation diagram produced with a slow current ramp. The second reason such
diagrams are useful is that they help to constrain any mathematical model developed for the
neuron; the model neuron should have the same qualitative asymptotic behavior as the neuron that
is being modeled. Although only representative examples are shown in Fig. 4, we regularly found
that single spiking neurons had a bifurcation structure similar to Fig. 4C (of the 11 recorded single
spiking neurons, 9 did not show periodic branching in bifurcation diagrams), and tonic spikers had
structure similar to Fig. 4D (of the 11 recorded tonic spiking neurons, 9 had periodic branching in
bifurcation diagrams).

The model neuron that was used in this study was not calibrated to describe DA neurons. In
fact, while our previous publication (Korshunov et al., 2020) did reveal differences in the activity
of voltage-gated Na“ channels and the hyperpolarization-activated cyclic nucleotide (HCN)
channel that produces the h-current, there was no attempt to fully elucidate the full mix of channels
(e.g., K* channels) present or to develop a biophysically accurate mathematical model of these
neurons. It was not our aim, therefore, to make precise statements about these types of neurons.
Instead, the aim was first to demonstrate that even a simple neuron model that captures the spiking
behavior of a biological neuron subject to short current steps can convey useful information about
the neuron’s asymptotic behavior and its behavior in response to fast current ramps, and then to
show how fast-slow analysis of the model neuron can bring insights about the spiking behavior of
the neuron in response to fast current ramps. The analysis approach can be used with any single-
compartment neural model, from simple (like ours) to much more complex models containing
activation and inactivation variables for many ionic currents. Though implementation of the
analysis would be more difficult with more complex models, the same basic approach should work.

Ionic current from a slowly activated K™ channel with a relatively large 50 ms time constant
was a key element of our model. There are a number of ion channel types with slow gating
properties. These include, but are not limited to, the activation of M-type K* channels (Yue &
Yaari, 2004), inactivation of A-type K" channels (Connor & Stevens, 1971), activation of small
(SK)-type and intermediate (IK)-type Ca*"-activated K* channels (Kshatri et al., 2018), activation
of ATP-sensitive K* channels (Tinker et al., 2014), activation of the HCN-type channels (Wahl-
Schott & Biel, 2009), and inactivation of L-type Ca?" channels (Kubalova, 2003) and T-type Ca?*
channels (Perez-Reyes, 2003). All of these introduce slow components to the system, and
depending upon the speed of the current ramp, some gating variables would be best grouped into
the fast subsystem and some into the slow subsystem.

One big advantage that model neurons have over biological neurons is that the state of each
gating variable is known at each point in time. Indeed, this knowledge is what allowed us to obtain
the linear relationship between the slow gating variable and the applied current during a fast ramp.
Although this can’t be done for most gating variables in biological neurons, it is possible to do it
for some. For example, activation of Ca?*-activated K* channels is dependent on the intracellular
free Ca?" concentration, which can be measured using fluorescent dyes such as Fura-2 (Takahashi
et al., 1999). Similarly, for ATP-sensitive K™ channels, the degree of activation is based on the
ratio of ATP to ADP in the cell, and this can be determined with the fluorescent probe Perceval-
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HR (Berg et al., 2009). Thus, in these instances, it would be possible to relate the activation factor
to the applied current during a fast ramp, as we have done with the model neuron in this report. In
so doing, a model neuron could be better calibrated to the physiology underlying the behavior of
the biological neuron.
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Fig. 12: Response of a single spiker neuron when exposed to a ramp with a short duration. (A)
The two-parameter bifurcation diagram for a single spiking neuron. The dashed line for a ramp
duration of 25 ms passes through two Hopf bifurcations, resulting in the spiking behavior shown
in (B). This spiking behavior is similar to that of an intermediate neuron when exposed to a
large-slope ramp, as shown in Fig. 11A.

Fast-slow analysis of models of excitable cells has been used to understand a range of
behaviors, including bursting oscillations (Bertram & Rubin, 2017; Izhikevich, 2000), pathological
fluctuations in the membrane potential of cardiac myocytes (Kimrey et al., 2020a; Kiigler, 2016),
and oscillations in the intracellular Ca?>* concentration (Harvey et al., 2011). In each instance, the
objective was to go beyond computer simulations as a means for characterizing the behavior of
the model cell. That is, to not just demonstrate what can happen, but to understand why it happens.
We see the application of fast-slow analysis to neural spiking during current ramps in the same
light.
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