2012.14001v4 [hep-th] 21 Dec 2021

.
.

arxiv

PREPARED FOR SUBMISSION TO JHEP

Real-space RG, error correction and Petz map

Keiichiro Furuya,® Nima Lashkari®*! and Shoy Ouseph®

@ Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
bSchool of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA

E-mail: kfuruya@purdue.edu, nima@purdue.edu, souseph@purdue.edu

ABSTRACT: There are two parts to this work:

First, we study the error correction properties of the real-space renormalization group
(RG). The long-distance operators are the (approximately) correctable operators encoded
in the physical algebra of short-distance operators. This is closely related to modeling
the holographic map as a quantum error correction code. As opposed to holography, the
real-space RG of a many-body quantum system does not have the complementary recovery
property. We discuss the role of large N and a large gap in the spectrum of operators in
the emergence of complementary recovery.

Second, we study the operator algebra exact quantum error correction for any von
Neumann algebra. We show that similar to the finite dimensional case, for any error map
in between von Neumann algebras the Petz dual of the error map is a recovery map if the
inclusion of the correctable subalgebra of operators has finite index.

LCorresponding author.



Contents

1 Introduction 1
2 Real-space RG as an error correction code 6
2.1 Conventional theory of QEC 6
2.2 Entanglement renormalization 9
2.3 Real-space RG in QFT 11
3 Error correction in arbitrary von Neumann algebra 13
4 Recovery map in von Neumann algebras 15
5 Discussion 18
A Completely positive maps and their duals 20
A.1 Dual maps 22
A.2 Completely positive maps 23
A.3 Conditional expectations in matrix algebras 29
B GNS Hilbert space and Petz map 32
B.1 Superoperators versus operators 33
B.2 Natural cone 35
B.3 Fixed points 36
B.4 Petz dual map 37
B.5 CP maps in infinite dimensions 40
B.6 Kraus representation in infinite dimensions 42
C Operator algebra error correction 43
C.1 Passive error correction 46
C.2 Active error correction 48
C.3 Condition for exact error correction 54
1 Introduction

In quantum computing, we use the Hilbert space of a quantum system to encode and

process information. The interactions with the environment lead to errors and an important

challenge is to protect our information from the errors. One of the main goals of the theory

of quantum error correction (QEC) is to identify the subalgebra of correctable operators

associated to an error model, and construct the recovery map that undoes the errors.

'For completeness, we have included a review of the theory of operator algebra error correction in

appendix C. See also [1-3].



Figure 1. The local algebra of region C'is a subalgebra of the algebra of a larger region. Any error
V,. that acts on the relative commutant Ar does not disturb the encoded information in Ac¢.

In local many-body quantum systems, to every subregion of space A we associate an
algebra of observables A4 that includes the identity operator.? A manifestation of the
principle of locality is that if the region C' is inside A we have the inclusion of algebras
Ac C Ay. If we have a lattice the algebra Ay factors as A4 = Ao ® Ag for some
Ap that is called the relative commutant of A¢ in A4.2 The relative commutant is the
algebra associated to the region A N C’. Any such inclusion is trivially an exact quantum
error correction code in the following sense: the physical operators are A4 and the logical
operators are encoded in the subalgebra Ag. The errors act on the relative commutant
Ap, and by locality, the errors do not disturb the encoded information because [a, V,] = 0
for all a € Ac and any error V, € Ap; see figure 1.

Let us apply a unitary rotation in A4. We obtain a new algebra inclusion UAcUT
UAUT and a new error correction code; however, the unitary can obscure locality. In fact,
every algebra inclusion is an exact quantum error correction code and, if finite dimensional,
can be trivialized by a choice of unitary on A. Intuitively, this means that there is a hidden
notion of locality in the inclusion of any subalgebra A¢ C A.* Consider a finite dimensional
matrix algebra with a trivial center (the observable algebra of a qudit). If the subalgebra
A also has a trivial center there exists a unitary U in A such that UAUT = UAUT @ AR
where AP is the relative commutant of UACUT in UAUT. If A® is a subalgebra with a
non-trivial center Z(.A¢) then up to the choice of a unitary the algebra A factors as the
direct sum @quI) ® Ag) and A¢ = @QA(C?) ® Hgg). To visualize this structure we use the
diagrams in figure 2. In this work, we argue that the inclusion of algebras that share the
identity operator appear naturally in renormalization group (RG) and holography, however,
in these cases the inclusions are not due to any obvious locality principle.

There are two parts to this work. In the first part, in section 2, we argue that the
real-space RG can be modeled as an approximate error correction code that encodes the
long-distance operators in the algebra of the short-distance operators. In this picture,
the short distance local perturbations are the errors and the long-distance operators (or

2In interacting relativistic theories, we associate an algebra to the causal development of every ball.

3The relative commutant algebra Ac in A4 is the set of all operators in A4 that commute with every
operator in Ac. The commutant of an algebra A that we denote by A’ is the set of all operators in the
Hilbert space that commute with all operators in A.

4With an abuse of notation, we have denoted a general subalgebra that includes the identity operator
as AC because, in this work, the upper index C in A will stand for “correctable subalgebra”.
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Figure 2. (a) If A® with trivial center is a subalgebra of a finite dimension algebra A, then we
have the tensor product factorization A = A% @ AR. (b) If AY has a non-trivial center Z(A), we
modify the diagram to represent the center as a blue stripe. (c) The center is part of both A and
the relative commutant.

a subset of them) are the correctable operators. This is closely related to modeling the
holographic map as a quantum error correction code [4-6].

The connection between the RG and error correction can be seen even in classical
systems [7]. The intuition is that exciting a long-range degree of freedom requires acting
on a macroscopically large number of short-distance degrees of freedom. The disturbance
caused by a local short-distance error cannot alter long-distance modes. Under the RG,
local ultra-violet (UV) operators become exponentially weak in the infra-red (IR). Deep in
the IR, the UV errors are negligible, and in fact, there is no need to actively correct for
them. Low energy states of a gapped system, do not have excitations at distances much
larger than the correlation length. To make our connection concrete, we focus on real-space
RG in systems near critical points where the long range modes of arbitrary wave-length
are excited.

As a concrete model of real-space RG that applies to the quantum system near a
critical point, in section 2, we consider the multi-scale renormalization ansatz (MERA)
tensor network for lattice models. MERA has found many applications in the study of
quantum field theory (QFT) and gravitational theories in AdS/CFT correspondence [8, 9].
To our knowledge, the connection between MERA and error correction codes was first
discussed in [10]. This connection was extended to continuous MERA (cMERA) in [7].
The error correction property of MERA is similar to the holographic map modeled as
an error correction code with the difference that in a general RG flow we do not have
complementary recovery property.” Holography suggests that complementary recovery has
to emerge in a special class of theories with a large number of local degrees of freedom
(large N) and are strongly interacting (large gap). We discuss the role of large N and large
gap in complementary recovery.

Motivated by the connection between the RG and error correction, in the second part

5See figure 4 for complementary recovery in holography. Note that, even in holography, the complemen-
tary recovery is an approximate notion. It is known to fail in situations where the code subspace is large
[11, 12].
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Figure 3. We encode the algebra B in the physical algebra A. If the correctable subalgebra B¢ C B
is strictly smaller than B we use a conditional expectation £p to project B down to BC. Absorbing
Ep in the error map ¢ we are back to the case where the whole algebra is correctable.

of this work in section 3, we study the operator algebra error correction for an arbitrary von
Neumann algebra as a mathematical framework for error correction in continuum quantum
field theory (QFT). The error map is modeled by a normal unital completely positive (CP)
map ¢ : A — B; see figure 3. When the whole algebra B is correctable and the error
map has no kernel the recovery map is unique and given by the Petz dual of the error
map. It isometrically embeds B in 4. More generally, we consider the setup where only a
subalgebra B of the logical operators B is correctable.’ Then, the recovery map restricted
to the correctable operators is still the Petz dual of the error map. Any unital CP map
that projects B down to BY (i.e. any conditional expectation £g : B — B¢) can be used
to redefine the error such that its full image is correctable. Such conditional expectations
exist if the inclusion BY C B has finite index [13].

For completeness, in the appendices, we have included a self-contained review of the
mathematical and information-theoretic background needed for the second part of this
work. In appendix A, we review some information theory concepts such as the completely
positive (CP) maps and their duals. Appendix B discusses the GNS Hilbert space which has
the following two advantages: 1) linear maps on the algebra (superoperators) correspond
to linear operators in the GNS Hilbert space. This simplifies the study of error correction.
2) The GNS Hilbert space can be constructed for all quantum systems (von Neumann
algebra), including the local algebra of quantum field theory (QFT) that we are ultimately
interested in. We show that insisting on the dual of a CP map to remain CP leads to two
natural notions of dual maps: 1) the dual map of Accardi and Cecchini that we call the
p-dual map and 2) Petz dual map. Both of these maps play an important role in error
correction. The Petz dual map can understood as the dual with respect to an alternate
inner product that has already found several applications in QFT in the discussion of
Rindler positivity [14, 15]. While our discussion applies to any quantum system, to help
the readers less familiar with von Neumann algebras we mostly use the more familiar
notation of finite quantum systems.

SFor instance, in holography, this situation arises when the reconstructable wedge is smaller than the
entanglement wedge.



Figure 4. The subsystem error correction code in holography satisfies complementary recovery.

In appendix C, we review the Heisenberg picture of quantum error correction. We
say a subalgebra BC is correctable if there exists a recovery map R : B — A such that
®(R(c)) = c for all ¢ € BY. We call the constraint ®oR = id the error correction equation.
The recovery map is non-unique because any R + X satisfies the error correction equation
as long as ®(X(c)) = 0. In other words, the recovery is non-unique when the kernel of the
error map is non-trivial. Another source of non-uniqueness comes from the fact that the
error correction equation defines the recovery map from B¢ to A. Any extension of the
domain of R from B¢ to B can be also called a recovery map. We denote the range of the
recovery map by A¢ = R(B®). It is a subalgebra of the physical operators. The recovery
map is an isometric embedding of the correctable algebra in A.

Conditional expectations are unital CP maps that project an algebra to a subalgebra
that includes the identity. In finite dimension, there is a one-to-one correspondence be-
tween conditional expectations &, and unnormalized states ¢ = @41 ® o4 on the relative
commutant of A in A.7 All the density matrices that are preserved under a conditional
expectation &, take the separable form p = ®gpyp{ ® o4. In exact error correction, R o ®
is a conditional expectation and its invariant states are the correctable states. The von
Neumann entropy of a correctable state splits into two terms

S(@qpepi @ 0y) ‘|'qu (p) +8(03)) = S(p1 +qu (03) - (1.1)

Note that the second term is a property of the correctable subalgebra and not the cor-
rectable state.

In holography, the boundary algebra is our physical algebra, and the bulk is the code
algebra. An isometry W encodes the bulk Hilbert space on the boundary. In the Heisenberg
picture, the map a(a) = WTaWW maps the boundary operators to the bulk respecting the
complementary recovery property: the boundary operators supported on region A go to
those in the bulk localized in B and the operator supported on the complementary region
A’ go to those in B’; see figure 4. The bulk operators localized in region B of the bulk are
protected against the erasure of A’. The error map is ® = a o try and its Petz dual is the
recovery map R : B — A. The complementary recovery implies that the composite map

"For examples and a more detailed discussion of conditional expectations see appendix A.3.



R o ® is a conditional expectation.® In holography, the second term on the right-hand-side
of (1.1) is argued to be similar to the contribution of the area operator to the holographic
entanglement [5].

2 Real-space RG as an error correction code

2.1 Conventional theory of QEC

We start this section with a quick review of the conventional approach to quantum error
correction.? In the Schrodinger picture of error correction, consider an encoding isometry
W . Kp — Ha from the code Hilbert space g to the physical Hilbert space H 4 and a
decoding co-isometry WT. The projection operator Po = WWT projects to a subspace of
H 4 called the code subspace because it is isomorphic to Kp. Throughout this work, we use
the following notation: we denote an irreducible representations of an algebra B by Kp,
and a reducible representation (such as the GNS representation) of B with Hp. In finite
dimensional matrix algebras, we have Hp = Kp ® Kp/.

A collection of error operators V. corrupt the physical states and a collection of recovery
operators R, correct the errors; see figure 5. In the simple case where the errors V, are
unitary operators we can undo the error using the correction operators R, = VTT. Even
when the error is not unitary the correction operator is still made out of the conjugate of
the error; see appendix C. For general errors V,., the necessary and sufficient condition for
the recovery to be possible is the Knill-Laflamme condition 1° [16]

PoVIV,Po o Pe . (2.2)

When this condition is satisfied the recovery map is R, o PCVTT.

For example, consider the 3-qutrit code where the code Hilbert space Kp is a single
qutrit spanned by |i) with ¢ = 0,1,2 that is mapped by an isometry W to the subspace
i) = W |i):

|0) = 7(|000> + [111) + |222))
1) = 7(|012> + [120) + |201))
2) = (1021> +1102) + [210)) . (2.3)

S\

8A similar observation was made in [6].

9For completeness, in section C, we have included a formal derivation of these results using the operator
algebra quantum error correction that we generalize to arbitrary von Neumann algebras in section 3

10The physical intuition behind the Knill-Laflamme condition can be seen by defining a set of basis states
{|Cs)} in the code subspace PcHa. Then,

PeVIViPo =Y |C)(CHVIVAICi)(Cy] = D (CilVIVA| C5)[Ci) (Cy. (2.1)
ij ij
We satisfy Knill-Laflamme condition if (C;|V,IV;|C;) = As0;;. This condition implies that the two orthog-

onal code vectors |C;) and |C;) remain orthogonal after the action of the error operators. This ensures that
the distinguishable states remain distinguishable despite the errors.
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Figure 5. (a) Error correction in the Schrodinger picture. The isometry W is the encoding and
WT is the decoding. The errors are V. and the correction operators are R,.. (b) We can absorb the
W and W in the definition of the errors and the correction operators. (c) Error correction in the
Heisenberg picture. The order of operations is reversed. Both the error map ® and the recovery
map R are unital completely positive maps. (d) The encoding ¢ and decoding « can be absorbed
in the definition of the error and the recovery maps.

An error that occurs on the third qutrit V3 can be corrected using the R3 o PCV3T because
WIRsVaW |i) o |d) (2.4)

where we have used (2.2). It is convenient to absorb the encoding isometry W in the
definition of the errors and the decoding co-isometry W7 in the definition of the recovery

operators
V,=V,W, R,=WI'R,. (2.5)

See figure 5 (a) and (b). There exists a unitary U and a factorization of the Hilbert space
Ha=Ka® K4 such that

Uli) = li) 4 [X) ar (2.6)

for some state |x),,. The unitary trivializes the encoding such that the information is
encoded in A and the errors act on A’. The error correction is guaranteed by the locality
property [a, V] = 0 for all a acting on A and error V,. acting on A’.

In the Heisenberg picture of error correction, we have the algebra of code operators B
and that of the physical operators A. An error correction code is a collection of four CP
maps (¢, R, ®,«), where ¢ : B — A is an isometric embedding of B in A and o : A — B
undoes it. The recovery map is R : A — A and the error map ® : A — A is unital. These
maps have the Kraus representation

afa) = WiaW, 1(b) = Wow't
O(a) =Y ViaV,,  R(a)=) RlaR,. (2.7)

We have an error correction if for all the code operators b € B we have
aodPoRoub)=0b. (2.8)

See figure 5 (c¢). The error correction condition above implies the Knill-Laflamme condition
in (2.2) as a special case, but it is more general. To simplify the notation, it is often



convenient to absorb ¢ in the definition of the recovery map and « in the definition of the
error map. In this way, an error correction code is a doublet (R, ®) where ® : 4 — B is
the error and R : B — A is the recovery map; see figure 5 (d):

B() = " Vo,

R(b) = RIbR,. (2.9)
T
The map Ro® : A — A projects the physical operators to the subalgebra of correctable
operators A¢. These operators are invariant under the action of ® o R.
A special error channel relevant to the RG flow and holography is erasure. In finite

dimensional matrix algebras, the erasure is the error map that acts as'!!?

Es(la®ad) = (a@T)tr(c'd) . (2.10)
Any operator a’ € A’ is an error and the necessary and sufficient condition for recovery
similar to (2.2) is

Va' € A" Pca/PC x Po . (2.11)

This is equivalent to the statement that for any operator b there exists an operator R(b)

acting in subsystem A such that '

ROW iy =Wbli),  ROHW i) = Wb |i) . (2.12)
Since Po[R(b),a'|Pc = 0 any error V! supported on A’ satisfies
ROL)VIW = VWb . (2.13)
Defining the errors V! = VW we have
O(R()) =Y (V)IROV) =b (2.14)

which is the error correction condition in the Heisenberg picture.

To see how the Heisenberg picture error correction goes beyond the equation (2.2) we
consider the subsystem error correction. This is the setup where both the physical Hilbert
space and the code Hilbert space admit tensor product forms, respectively Ha = K4 QK 4/
and Hp = Kp®Kpr. The goal is to encode the operators b supported on B in the physical
Hilbert space such that they are protected against the erasure of A’. In this case, the
necessary and sufficient condition generalizes the Knill-Laflamme conditions in (2.2) to

Widw e B’ . (2.15)

"Tn the Schrodinger picture, the erasure channel acts on the density matrices according to £/ (paas) =
pa® o’

12This is the simplest example of a conditional expectation that preserves the states p ® o”.

13We prove this for an error correction code in a general von Neumann algebra in section 3. For a proof
in finite dimensional matrix algebras see, for instance, theorem 3.1 of [5]



Figure 6. The subsystem error correction in (a) the Schrédinger picture (b) the Heisenberg picture.
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Figure 7. A layer of MERA is an isometry Wy : Hs41 — Hs that is comprised of two layers: the
coarse-graining isometries V' and the local disentangling unitaries U.

This is to be compared with the condition in (2.11) that can be written as
Wia'Ww = I . (2.16)

It is a standard result in quantum error correction that (2.15) is equivalent to the existence
of a map R : B — A such that

R(L)W = Wb . (2.17)

We provide a proof of this for any von Neumann algebra in section 3. Since Po[R(b), a'|Po =
0 for any error V/ = VW we have

R(L)V! = Vb (2.18)
or equivalently ®(R(b)) = b; see figure 6.

2.2 Entanglement renormalization

As an explicit example of the connection between the real-space renormalization and the
quantum error correction codes we consider a MERA tensor network. A MERA is a
sequence of increasingly coarse-grained lattices {Lo, L1, -+ ,L,} and their corresponding
Hilbert spaces {Ho, H1, - , Hn}. The Hilbert space Hs describes the states of the theory
at length scale I and lp < I1 < --- < l,. The states of Hy are deep in the UV, and the
states of H,, are in the IR. At each site of every lattice L we have a local Hilbert space that
we take to be a qudit for simplicity. A sequence of isometries Wy : Hsi1 — Hs embed Hgyg
into the Hilbert space of less coarse-grained states Hs. In the standard MERA, each such
isometry is comprised of a layer of local coarse-graining isometries V' followed by a layer of
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Figure 8. (a) One step of RG for a 9-local operator as turns it into a 6-local operator acting
on Hsr1. (b) The support of operators supported on a few sites fluctuates but remains almost
constant. (c¢) The support of k-local operators with k >> 1 shrinks under the RG. For instance, the
support of a k-local operator shrinks to at most |k/2] + 2. In general, the expectation is that the
support of operators shrinks by the coarse-graining factor except for some boundary effects that
become important when the operator has support on O(1) number of sites.

disentangling unitaries U; see figure 7. The hierarchical structure of correlations in MERA
allows for states with long-range correlations. The isometries W, can be understood as
maps that prepare the states WiWs--- W, |¥,,) with long-range correlations. Below, we
summarize the argument presented in [10] for the error correction properties of MERA.

In the Heisenberg picture, MERA is a renormalization map for the operators: A; —
As+1 where A; is the algebra of observables of the Hilbert space Hs; see figure 8:

alas) = Wias W, . (2.19)

The most important property of MERA for us is that it shrinks the support of local
operators in the following sense: if ay is supported on k adjacent sites with & > 1 on L,
and the isometries cut down the number of sites by a factor v > 1 then the operator a(as)
is supported on approximately &/~ sites of Lsy1 [9]; see figure 8. This is not exactly true
because of the boundary effects. For instance, for the MERA in figure 8, for any k-local
operator a the support of a(a) is at most |k/2] + 2. For k = O(1) the support of the
operator almost remains the same.'® In higher dimensions, the number of sites in a region
scales like the volume of the region and the number of the sites at the boundary scales like
the area of the region therefore it is natural to expect that the volume term in the support
a shrinks by v up to potential area corrections.

A UV operator ag supported on region Ay under the RG flow is mapped to the operator
as whose support we define to be As. After s layers of RG the linear size of Ay is order
v~ 5| Ag|. When s becomes comparable to log|Ap| the support of the operator reaches a
few sites. At this scale, the second stage of the RG flow starts. As we flow further into
the IR, the operator remains local on a few sites, however its norm falls exponentially fast.
This is because, in the Heseinberg picture, the RG flow map is a quantum channel and

141t can fluctuate up and down but it can never grow much.

~10 -
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Figure 9. (a) Any UV errors af, (red star) supported on Aj do not disturb the IR operators that
are originally supported on Ay before the RG flow. The black dot denoted as the encoded data
represents as. (b) In the figure, there are s layers between UV and IR where the encoded data is
sitting. The size of the support of UV operators shrinks as log|Ag|, though the size drawn in the
figure is schematic.

hence a contraction: its eigenvalues have norm smaller than one; see appendix B.3. The
operators that are invariant under the RG flow survive deep in the IR forming a subalgebra
of exactly correctable operators. These are the eigenoperators with eigenvalue one. All the
other operators decay exponentially fast with the exponent set by hn, = — log |A| where
\ is the largest eigenvalue of the RG channel with norm less than one [10].1

We split the ultra-violet lattice £y into a simply connected region Ay and the comple-
ment Afj. The RG flow respects locality in the sense that operators supported on Ag are
mapped to operators supported on Ay. Therefore, the UV errors af, localized on Af; does
not disturb the IR operators as in As: [a®(af),as] = 0. This is a trivial subsystem error
correction code. As we flow further into the IR the support Ag shrinks until it reaches a
few sites. At this point, the support of the operator no longer shrinks, instead under the
RG flow the norm of the operator drops exponentially fast. If there are s layers of coarse-
graining between the IR and the UV states a UV operator supported on a region of size

(s—log|Aol). for a precise

Ap becomes a local operator with a norm that is suppressed by e~
statement see lemma 3 in [10]. Deep in the IR (s —log|Ag| > 1) the UV perturbations are

vanishingly small. They do not disturb the IR physics; see figure 9.

2.3 Real-space RG in QFT

In this section, we generalize the connection between MERA and error correction to the
RG flow of continuous Poincare invariant QFT. It was shown in [7], that in continuous
MERA (cMERA) [17], the RG flow of massive free fields is an approximate quantum
error correction code. We comment on the emergence of the complementary recovery in
holographic code.

The canonical quantization of a QFT that is a perturbation of massive free fields uses
the constant time field operator ¢(x) and its momentum conjugate 7(x). For simplicity,
we set the mass scale to one. As instructed by cMERA [18], to model the RG flow, we

15T principle, there can be eigenoperators whose eigenvalues are a phase €. If such operators exist,
under the RG flow they will show recurrences. We expect a generic RG flow to not have such recurrences.

- 11 -



deform the Hamiltonian by adding the irrelevant operator e?¢9;m(x)d;7(x) where the index
7 runs over spatial directions only and the summation over ¢ is implicit. This term acts as
an effective cut-off at the length scale e®. For f¥(x) real test function on the space, we
define the annihilation operators a(f) = [d* 'z (f~(z)+if*(z))a(z). Under the RG flow
this operator renormalizes to as(fs) where as is the annihilation operator at scale e® and
the test function fs is [7]

fo@) = (1= V)R () (2.20)

Deep in the UV (s — —o0) the functions f* are supported on region A. For smooth
enough f* as long as s < log |A| the term V2 f* in (2.20) is smaller than f* and the
renormalization of the field is negligible. This is analogous to the stage one of the RG
flow of the operators in MERA. Here, the support does not change but the cut-off length
is growing exponentially fast. The cut-off length is analogous to a single site in MERA
(the lattice spacing), therefore the support of f in units of the cut-off length is shrinking
exponentially fast.

The support of the operator, in units of the cut-off, shrinks until e® ~ |A| at which
point the operator is supported on a region of cut-off length, and the second stage starts.
In the second stage, the second term on the right-hand-side of (2.20) is no longer negligible.
It was shown in [7] that for large s the projection of the UV coherent operators to the code
subspace becomes approximately proportional to the projection to the code subspace:

Poets)=as(f) py ~ Py, (2.21)

which is the Knill-Laflamme condition for approximate error correction. More generally,
we can directly analyze the spectrum of the RG quantum channel. Deep in the IR, the
eigen-operators of the RG quantum channel with the largest eigenvalues are the conformal
primaries of the IR fixed point [19, 20]

e Play) = e *hay, (2.22)

where we have defined the superoperator D that generates the RG flow from the unit length
scale to e®. Here, h > 0 is the scaling dimension of the eigen-operator. The norm of a
non-identity operator decays fast with scale. This implies that any local perturbation in
the UV becomes exponentially weak in the IR. The only UV operators that survive the
RG flow to the low energies are supported on macroscopically large number of degrees of
freedom.'® The parameter R, (s — log|A|) where Ry, is the dimension of the lightest
primary controls how well this error correction code works.

Quantum error correction makes a surprising appearance in quantum gravity and the
AdS/CFT duality [4]. The discovery of the Ryu-Takayanagi (RT) formula in holography
led to an understanding of the duality at the level of subregion density matrices [21, 22]. It
revealed that the map that encodes the bulk operators in the Hilbert space of the boundary

18T principle, it is plausible that the RG map has invariant local eigen-operators. Such operators would
have vanishing conformal dimensions.

- 12 —



theory defines an error correction code. These error correction properties have been used
to develop toy models of holography using finite dimensional quantum systems [23]. It was
recently shown that the Petz map gives a reconstruction of the bulk operators in terms
of the boundary observables [24]. See [25] for a recent discussion of the Petz map in the
reconstruction of operators behind the horizon of a black hole.

At first look, it appears that the approximate error correction in RG is not related
to the exact error correction realized in holography because making the error correction
above exact requires the conformal dimension of the lightest primary to go to infinity. The
holographic QEC code has the complementary recovery property which means that the
operators supported on Ay are mapped to those in Ay and the operators on the comple-
mentary region A’ are encoded in those in the complementary region Aj.'" In general,
the approximate QEC in RG does not have complementary recovery. This property has to
emerge in holographic theories.

The connection with holography becomes clearer when we consider an RG with two
groups of primaries: light primaries with conformal dimensions h;, < A and heavy pri-
maries with hg > A for some large parameter A. If we choose our code subspace to be
the theory at length scale e®l with s = log|A| + € and [ some fixed length scale then any
noise Op(A) caused by an integrals of heavy operators supported on A can be corrected
as long as €eA > 1. As the gap A goes to infinity, the error correction becomes exact and
we obtain complementary recovery. Note that there is no need for a recovery map as the
errors simply do not perturb the code subspace. The commutator between the heavy UV
operators on A and any local IR operators arr(x) vanishes simply because their correlation
function vanishes (O (A, )arp(e’l)) o~ e~As—loelAD,

In holography, we can correct for the erasure of region A. The error operators include
the light operators supported on A in addition to the heavy operators. As opposed to
the heavy operators, the light operators on A have non-vanishing correlations with the IR
operators. To argue that their effect is correctable in the IR we need a new mechanism
in specific to holographic theories. Such a mechanism is provided in theories with N x N
matrix degrees of freedom at large V. The light primaries are k trace operators of the form
tr(X7) - - - tr(X}) with dimension O(N?). The heavy operators have large dimension O(N?)
that is the size of the gap A in holography. It follows from the large N factorization that
the commutator of light operators are 1/N suppressed.'® A small commutator is sufficient
for the effect of light operators in A to be correctable in the IR.

3 Error correction in arbitrary von Neumann algebra

The local algebra of quantum field theory is different from the matrix algebras in two
important ways: 1) It has no irreducible representations. 2) It does not admit a trace. We

17We will use the Latin letters A and A’ to refer a region and its complement and A4 and A4/ to refer to
their corresponding algebra of operators. Note that in the presence of conserved charges A,/ # A’y. This
happens because the local algebras have non-trivial centers. We assume periodic boundary conditions so
that both A" and its complement A can be chosen to be simply connected.

18We thank Venkatesa Chandrasekaran for insightful conversations about the role of large N in error
correction.
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need to generalize our discussion of error correction to the GNS Hilbert space to include the
local algebra of QFT.' In part two of this work, we generalize the formalism of operator
algebra error correction to arbitrary von Neumann algebras. To help the reader, we have
included a self-contained review of the mathematical background needed for this section in
the appendices A and B that we refer to frequently in the text. Appendix C reviews the
theory of operator algebra error correction.

To define the code and the physical GNS Hilbert spaces we need a state pg of B 2.
After the action of the error map this state becomes ps = ®*(pg).2! We will choose pg to
be full rank (a faithful state). If the error map has a kernel the state p4 is no longer faithful.
This means that the errors have erased some information permanently and there will not
exist any state that is fully correctable. One way to deal with this is to define a projection
to the kernel of the error map and use it explicitly in the recovery map. The recovery map
will no longer be unital. Another approach is to enlarge the algebra B by including the
degrees of freedom until the extended error map has trivial kernel. Physically, an error
occurs because of the interaction with some environment degrees of freedom. If there is a
kernel for the error map ® : A — B it is because the information has left B and entered
the environment. If we add to B the degrees of freedom of the environment that contain
the information that has left B the extended error map will have a trivial kernel.?? In the
real-space RG in QFT, and in holography, the kernel of the error map is empty. This is
because the state p4 (the vacuum state of short-distance theory in QFT or the boundary
state in holography restricted to a region A) is faithful. In this section, in generalizing our
discussion of error correction to an arbitrary von Neumann algebra, we will focus on the
case where the kernel of the error map is empty.

To get oriented, let us start with matrix algebras. In finite dimensional systems,
the GNS Hilbert space of a full rank density matrix p4 is a double copy Hilbert spaces
Hp, = Ka® K with a distinguished vector | p114/ % e H,, whose density matrix on both A
and A’ is equal to p4; see appendix B. Such a vector is called cyclic and separating. Given
a state pp an arbitrary error map ® : A — B is represented in the GNS Hilbert space as a
contraction F : H,, — H,,*>. We assume that the state py4 is also full rank therefore the
purification of p4 is cyclic and separating. There is a one-to-one correspondence between
the linear operators in the GNS Hilbert space and the linear superoperators on the algerbra;
see appendix B.1. The operator F'T corresponds to the super-operator <I>/p : B/ — A’ that we
call the p-dual map and the operator J4 FT.Jp corresponds to the Petz dual map @5 :B— A
(see section B.4). Here, J4 and Jp are the modular conjugation operators corresponding
to | Pix/ 2) and | pgﬂ}, respectively.

In the special case F' is a co-isometry we call the problem of solving for the recovery

19See appendix B for a review of the GNS Hilbert space.

20A state is a normal positive functional of the algebra. When the algebra has a trace it is a density
matrix. See appendix B for more information.

2In the Schrodinger picture, the error map corresponds to a quantum channel ®* that sends the states
of B to those of A.

22In the extreme case where we include the whole environment in B the error map is a simple unitary
rotation, and completely correctable.

23\ contraction is an operator with ||F|e < 1.
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map a reconstruction problem. Both real-space RG and holography are reconstruction
problems. In theorem 2, we show that any error correction problem where the whole image
of the error map is correctable is a reconstruction problem. In reconstruction, the operator
F' is a co-isometry. In von Neumann algebras, the analog of the Knill-Laflamme condition
for exact error correction is the condition FfJg = J4F' that we refer to as the Takesaki
condition.’* Appendix C.3 explains intuitively why the Takesaki condition is necessary
and sufficient for exact quantum error correction.

4 Recovery map in von Neumann algebras

Consider a unital normal CP error map ® : A — B between two von Neumann algebras.
The Kraus representation ®(a) = >, VilaV, of a CP map generalizes to infinite dimen-

25

sions A recovery map is the isometric embedding of the correctable von Neumann

subalgebra®6. The CP map ® corresponds to a contraction F : H4 — Hp:2"
1/2 1/2
®(a) lpy?) = Falp}®) (4.1)

and if the whole algebra B is correctable a recovery map corresponds to an isometry W :
Hp — Ha. Below, we collect all the theorems we need to generalize our discussion of error
correction to arbitrary von Neumann algebra.

We start with the definition of the p-dual of ® and its properties.

Theorem 1 (p-dual map: proposition 3.1 [26]) Let & : A — B be a positive map
between von Neumann algebras. Let pg and pa = pp o ® be faithful states of B and A.
Denote by |p114/2> and |pg2> the cyclic and separating vectors that represent ps and pp
in their corresponding Hilbert spaces Ha and Hp. There exists a unique normal positive
linear map between the commutants @), : B' — A" defined by

/2, 1/2 1/2 1/2
(@10 *lap{®) = W |B(a)py?),  Vae AV eB . (4.2)
If ® is CP so is @), and if ® is unital @, is unital and faithful.

First, consider the case where the whole algebra B is correctable. This means that
there exists a recovery map R : B — A that isometrically embeds B in A

R(0) %) = Wblpg?) (4.3)

241n the remainder of this work, we often denote isometries like FT with letter W.

%In matrix algebras, the Kraus operators were maps from K4 — Kp where K4 and Kp were the
irreducible representations of the algebras A and B. A general von Neumann algebra does not admit an
irreducible representation. As we discuss in appendix B.6 the generalization of the Kraus representation to
an arbitrary von Neumann algebra is in terms of the Kraus operators V;. : H,, — H,,-

26 A recovery map satisfies R(c)V, = Vic,Ve € BY. Therefore, R(ci)R(c2)Vi |pz/2> = R(cic2) |pi‘/2>.
Since we assumed that the kernel of ® is empty so the union of the range of all V. cover the whole Hilbert
space and we find that a recovery map is multiplicative: R(cic2) = R(c1)R(cz2). Since it is CP it becomes
an isometric embedding.

2"We simplify our notation from Hpa to Ha.
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Figure 10. The figure shows p-dual map of ® determined by the cyclic and separating vectors
|p114/2> and |p119/2> as in theorem 1. The sequences of Jp, J4, and @], appears to be a Petz dual map

constructed in theorem 2.

with W : Hp — H an isometry. The map ®oR =id and Ro®: A — R(BY) = A° Cc A
is a conditional expectation that preserves the faithful state p4.

Theorem 5 tells us that the necessary and sufficient condition for the existence of such
a conditional expectation is J4W = W Jp that we call the Takesaki condition. We use this
property in the next theorem to establishes that the recovery map is the Petz dual of the
error map, see figure 10:

Theorem 2 (Petz dual) Let ® : A — B be a unital completely positive map between von
Neumann algebras. Let pg and ps = pg o ® be faithful states. Denote by ]pz/2> and ]pjl9/2>
the cyclic and separating vectors that represent pa and pp in their corresponding Hilbert
spaces Ha and Hp. If there exists a normal faithful representation R : B — A that satisfies

® o R = id, it is the Petz dual of the error map
R(b) = L (b) = Ja o ®,0Tp . (4.4)

where Ja : A" — A and Jg : B — B’ are the modular conjugation maps corresponding to
]p}f} and |p113/2>, respectively.

Proof: The superoperator @ is unital and CP, therefore it corresponds to a contraction
F : Hq — Hp. First, we prove that if the whole algebra B is correctable F' is a co-
isometry. The image of the recovery map A¢ = R(B) is a subalgebra of A. The composite
map £ = Ro® : A — A® is unital, CP and preserves every operator in A®, hence it is
a conditional expectation. The operator corresponding to this conditional expectation is a
projection to the range of W: WWT1. Therefore,

Ro®(a) [p}*) = WFa|py*) = wwha|p{®) . (4.5)

Since | P,14/ 2> is cyclic and separating we have WF = WWT or equivalently F = W is a co-
isometry. Since this conditional expectation preserves ps we have the Takesaki condition
JAW =W Jp.
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Now, consider the Petz dual map <I>5 (b). We check that it satisfies the recovery equation
2 2 1/2
o dL(b)[py”) = WHITAW Tgb o) = bloy?) (4.6)

where we have used the Takesaki condition for p4. Since | pgz> is cyclic and separating
this implies that ® o @5 (b) =0 for all b € B. In the absence of a kernel for the error map
this is the unique recovery map from B — A¢. O

Next, consider the reconstruction problem where only a proper subalgebra B¢ C B is
correctable. The Hilbert space Hp is a representation of B¢ but the vector | p119/2> is no
longer a cyclic and separating vector for B¢. We can use the theorem below to show that
the recovery map is dual to ®(a/) = Wiad'W € (B¢)"

Theorem 3 (Reconstruction maps: theorem 1 of [6]) Let W : Hp — Ha be an
isometry in between Hilbert spaces that represent von Neumann algebras B and A, re-
spectively. The following two statements are equivalent:

1. For all a € A we have a(a) = WiaW € B.

2. There exists a normal isometric embedding (injective x-homomorphism) o/ : B' — A’
such that o/ (VYW = WUV for allb' € B'.

When there exists a vector W |p}3/2> that is cyclic and separating for A, a is faithful and
the map o is the unique p-dual and is unital.

The recovery map satisfies the statement (2) therefore it is dual to the map Wta/W ¢
(B€Y that we call ® with an abuse of notation. The map ® acts as ® : A — B and
d: A — (BY). Since B is smaller than B we do not have complementary recovery.
We cannot combine ® : A — B and R : B® — A to get a conditional expectation. A
simple solution is to look for conditional expectations that project from B to B. As we
review in appendix C, in finite dimensions, there is a one-to-one correspondence between
the conditional expectations from B to B¢ and the states on the relative commutant of B¢
in B. With any conditional expectation g : B — B¢ we can redefine the error map to
® — Epod. We are back to the case where the whole image of the error map is correctable,
and the recovery map is the Petz dual of the new error map.

If the inclusion of B¢ C B has finite index there always exists a conditional expectation
from B — BY. Any von Neumann subalgebra B is a direct integral of factors: B¢ =
fq@ C4.28 Roughly speaking, the index of a subfactor [C? : B] is a measure of how many
times the algebra C? fits inside B, and when there exists no conditional expectations from
B to C? this index is defined to be infinite. When the index is finite there are conditional
expectations €9 : B — C? [27]. If all the inclusion of all C? in B have finite indices the
direct integral of £7 is a conditional expectation £ : B — BC.

The correctable subalgebra is the subalgebra of operators that commute with WTVS.Qg
We would like to generalize this to arbitrary von Neumann algebras. If there exists no

Z8 A factor is a von Neumann algebra with trivial center.
298ee appendix C.
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Figure 11. (a) Given a correctable state py we can construct the conditional expectation that
projects B to the invariant subalgebra B! of ® o @5. (b) The Petz map @5 plays the role of the
recovery map sending the operators in B! to the subalgebra A’ that commutes with all errors. This
is the von Neumann algebra generalization of the condition [c, VIV;] = 0 for the operators in the
correctable subalgebra.

correctable states the correctable subalgebra is empty. Therefore, we consider the case
where we have an error map ® : A — B and a state pa that is correctable. We follow a
strategy similar to the passive error correction in appendix C.1. The map ® o (I’f :B— B
is unital and CP. We consider the conditional expectation that projects to its invariant
subalgebra that we denote by B':

N
. 1 P\n
5B:N1gnooN;(q>oq>p) . (4.7)

This is an error correction code for the correctable algebra B! with the recovery map
@5 because for all ¢ € B! we have ® o @5 (¢) = c¢. The range of the recovery map is
a subalgebra in A that we denote by Al = @5(81). The map €4 = <I>5 ofpodisa
conditional expectation from A down to A’; see figure 11. We can redefine the error map
to Ego® : A — B!. We are back to the standard case above, and the recovery map is once
again the Petz dual of the error map.

5 Discussion

In summary, we argued that the renormalization group is an approximate error correction
code. This is similar to modeling the holographic map as a subsystem error correction
code, with the difference that we do not have complementary recovery. We discussed how
the complementary recovery emerges in a theory with large N and a large gap.

We studied the operator algebra quantum error correction for an arbitrary von Neu-
mann algebra. If the error map has a kernel some information is irreversibly lost. In
real-space RG, the vacuum vector of a QFT is cyclic and separating which implies that
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Figure 12. A time slice of anti-de Sitter space with A the algebra of a region A on the boundary
and B the algebra of the bulk region that is in between A and the Ryu-Takayanagi surface of A.
The CP map ¢ maps the boundary local algebra to the bulk, whereas R reconstructs the bulk
operators on the boundary.

the kernel of the RG map is trivial. In von Neumann algebras, the analog of the Knill-
Laflamme condition for exact error correction is the Takesaki condition. When recovery is
possible, the recovery map is the Petz dual of the error map.

If the kernel of the error map is not empty (we do not have a cyclic and separating
vector) the composition of the recovery map and the error Ro ® : A — AC is still a CP
map that preserves every operator in A®, but it is no longer unital. In the language of von
Neumann algebras, such a map is an operator valued weight: an unbounded unnormalized
positive map with dense domain in A, (the positive operators of .4) that satisfies the bi-
module property 3°. There exists a bijection in between the set of operator value weights
from A — AY and those from (A®) to A’ [28]. The study of operator valued weights could
shed light on the problem of reconstruction in the absence of a faithful state.

Consider the AdS;11/CFTy correspondence in d > 1 and a simply connected region
A. In time-reversal symmetric geometries, the Rangamani-Takayanagi (RT) surface is the
co-dimension two surface in the bulk that is anchored on the boundary of A, is homologous
to A and has minimal area; see figure 12. Denote by B the region in the bulk that is in
between the RT surface and A. Consider the map R that encodes the algebra B of the bulk
on the boundary (bulk reconstruction map). We choose the error map to be ® = a o tra
where a-) = W)W and W : Hyup — Hboundary is the encoding isometry. All the bulk
operators b € B satisfy the error correction condition ®(R(b)) = b and the recovery map
R is an isometric embedding. The holographic map from the boundary algebra to the
bulk algebra has no kernel because both of the bulk and boundary vectors are cyclic and
separating with respect to their corresponding algebras. We have complementary recovery
and the whole bulk algebra B is reconstructable. The reconstruction map R is the Petz
dual of the holographic map ®. A similar observation was discussed in a recent paper [6].
Given a p-preserving conditional expectation we can define a measure of the information
lost under the conditional expectation [29]. This leads to entropic uncertainty relations that
play an important role in the derivation of the Ryu-Takayanagi formula in holography [5, 6].

30Gee appendix A for a discussion of the bi-module property.
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It has been argued that complementary recovery fails in some situations in holography [12].
That brings the holography reconstruction problem closer to the real-space RG.

Finally, we make the following observation: In AdS;/CFT; the bulk reconstruction
map cannot be a conditional expectation, because there exists no conditional expectations
from a type I algebra (the boundary theory is 041 dimensional) to a type III von Neumann
algebra (the bulk theory is 1+ 1 dimensional QFT). We believe that the resolution of this
seeming paradox is that the bulk and boundary relative entropies match only up to 1/N
corrections. The error correction properties of the holographic map are only approximate.
A related observation is that we can define CP maps in between x-closed subspaces of
observables (operator systems). This generalization can be helpful in moving away from
the exact error correction in holography.
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A Completely positive maps and their duals

Consider the algebra of d x d complex matrices acting irreducibly on the Hilbert space K of
a d-level system and denote it by A = B(K).3! Instead of this irreducible representation,
we choose to use a reducible representation called the standard representation that realizes
operators as vectors in a Hilbert space H. = K ® K'. The main advantage of this represen-
tation is that linear maps from the algebra to itself (superoperators) correspond to linear
operators in B(H,.). Moreover, we are ultimately interested in the local algebra of quantum
field theory which has standard representations but no irreducible representations.?? The
Hilbert space H, is the simplest example of a GNS Hilbert space.

Given a choice of basis {|i)} in K we construct the standard representation of operators
a € A as a vector |a) € H, using the map

a—|a) = Z(a ® 1) i) |i) . (A.1)

7

The identity operator is represented by the unnormalized vector
le) =D li)]i) - (A.2)
i

The inner product of vectors |a) in H, is the Hilbert-Schmidt inner product for matrices

(ay|ag) = tr(alay) = (e|(alag) @ TJe) . (A.3)

3n our notation, B(K) is the algebra of all bounded operators on K.
32To simplify the notation, we denote a Hilbert space by K only if our algebra of interest A acts irreducibly
on it.
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We define A’, the commutant of A, to be the algebra of all operators in B(K) that commute
with A. Here, A" = B(K'). The map between operators and vectors is one-to-one because
every operator is mapped to a unique vector (a ® I) |e) and every vector uniquely fixes an
operator in the algebra.?® The operators a € B(K) and a’ € B(K') create the same vector

(a@D)|e) = (I®al)le) (A.4)

where a”' is transpose in the {|i)} basis. An operator a/, € A’ that creates the same vector
as a is called the mirror operator of a.
The vector representative (a®1) |e) is a purification of the unnormalized density matrix

aal:

(a|bla) = tr(aa’d) . (A.5)
Consider the left polar decomposition of an operator a = a4 U where a4 is a non-negative
positive operator and U is a unitary. The unnormalized density matrix aa! = ai is

independent of U. There is a one-to-one correspondence between positive operators a; € A,
the vectors |ay) € H, and unnormalized density matrices of A. The expectation value of
an operator in a density matrix p is the inner product

tr(pa) = (pla) - (A.6)

Alternatively, since p > 0 we can use the cyclicity of trace to write it as
tr(pa) = (p%/(a @ D]p"/2) | (A7)

In this work, we are primarily interested in linear maps from the algebra to itself
T : A — A (superoperators). A superoperator 7T is called wunital if T(I) = I and it is
called trace-preserving if tr(7 (a)) = tr(a) for all a € A. In general, a map that satisfies
tr(pT (a)) = tr(pa) for all a € A is called p-preserving.3* There is a one-to-one correspon-
dence between superoperators a — 7T (a) € A and linear operators T acting on H..?> The
operator T' that corresponds to the superoperator 7 is called its natural representation.
For instance, the map 7 (a) = xay with arbitrary z and y matrices corresponds to the
operator T'= z ® y' acting on H., where y’ is transpose in the {|i)} basis:

(T(a)@D)|e)=T(a®1I)le) . (A.8)

In this work, we frequently represent superoperators by their corresponding operators in
the GNS Hilbert space. Table 1 summarizes some of the important superoperators we
use in this work and their corresponding operators. An entry in the table that plays an
important role in this work is a conditional expectation that corresponds to a projection
operator in H.. We explain this in detail in section B. For now, we give a simple example
of a conditional expectation and its corresponding projection in He.

331f a vector corresponds to two distinct operators a; and az in A we have (a1 — a2) ® I|e) = 0 which is
not possible for our choice of |e).

34Not to be confused with the map that satisfies T (p) = p.

351f (Ti(a) — T2(a)) |e) = 0 for all @ we have T1 = Tz and if (Ti — 1) |a) = 0 for all @ we have T = Tb.

- 21 —



Consider a linear map from & : A — A%, where A® C A is a subalgebra and we have
E(c) = c for all ¢ € A®. The operator in H. that corresponds to this superoperator is
a projection to the subspace H¢ spanned by vectors cle) for all ¢ € AC. If £(a) = pap
for some projection p € A then E = (p ® p’). In this example, the subalgebra A® does
not include the identity operator. A projections F that satisfies E |e) = |e) corresponds
to a unital superoperators: £(I) = I. For instance, take the projection E =), |ii) (ii|. It
preserves |e) and corresponds to the unital map ), |i) (i|alé) (| that dephases in the basis
of |e).3¢ This is the simplest example of a conditional expectation.

The range of a superoperator might be a different algebra: 7 : A — B. In this case,
we represent A in Hilbert space H4 and B in Hp defined using the vectors |e) 4 and |e) 5,
respectively. We remind the reader that H4 and Hp are standard representations and
reducible. The superoperator 7 corresponds to an operator T': H4 — Hp:

Tax)|e)y, = (T(a)@10)le) 5 - (A.9)
If the map is unital 7 (I4) = Ip, we have T'|e) , = |e) 5.

A.1 Dual maps

Complex conjugation in the Hilbert space H 4 defines for us a notion of a dual (transpose)
map T

(1| (a2)) = (@1|Taz) = (T"asaz) = (T*(ar)laz) . (A.10)

The dual of a unital map is trace-preserving and vice-versa. For instance, the unitary
evolution of a density matrix 7 (p) = UpUT is dual to the unitary evolution of observables:

({UpUT|a) = {p|Ual) (A.11)

This is known to physicists as the equivalence of the Schrédinger and the Heisenberg
pictures. In this work, we frequently look at dual maps and it is helpful to have the
Heisenberg-Schrodinger duality in mind. An important property of the unitary maps is
that they can be undone with no loss of information. The dual map 7* reverses the unitary
evolution making sure that 7*(7 (a)) = a for all a € A. Of course, if the linear map has
a kernel then the information content of operators in its kernel is erased and cannot be
recovered. The range of the dual map 7* does not include the kernel of 7. The dual
map 1™ reverses the effect of T', for that reason they are often used in the construction of
recovery maps in error correction.

In physics, the linear map 7 models the evolution of observables. The evolution of
a closed quantum system is a unitary map. For 7 : A — B the simplest example is an
isometry. Consider a d4-dimensional Hilbert space K4 and a smaller Hilbert space Kp
with dimension dp spanned by an orthonormal basis {|a)}. Any isometry V : Kp — K4
(VIV =1p and VVT = P where P is a projection in K 4) can be written as

dp
V=3[ o (A.12)
a=1

36Clearly, no projection operator E = p ® p’ is going to leave le) invariant.
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where |1,) are orthonormal vectors in K4. The unital map 7 (a) = ViaV is called a
compression. The dual map T*(b) = VbV is an isometric embedding of B(Kp) in B(K4).
It has the intertwining property

TV =Vb. (A.13)
The dual map can no longer reverse the evolution:
T*T(a) = PaP . (A.14)

If aP = 0 then 7*7 (a) = 0 and some information is lost (erased).?” The dual map recovers
the information of operators that have both their domain and range in PK 4.

Consider a general linear map 7 that sends operators in B(K 4) to operators in B(Kpg).
To ask about the information loss we need to compare the inner product before the evolution
(a1|az) 4 and after the evolution (7 (a1)|7T (a2)) 5. Alternatively, we can use the dual map
to pull back T (a) to B(K4) and compare a with 7*7T (a):

(T(a1)[T(a2)) p = (T"(T(a1))laz) 4 - (A.15)
We can recover the information of operator a if 7*7 (a) = a.

A.2 Completely positive maps

An important class of linear maps for physics are completely positive (CP) maps. A positive
map sends positive operators to positive operators. We introduce an auxiliary algebra of
n X n complex matrices M,. A linear map ® : A — B is completely positive (CP) if
dRid, : AR M, — B® M, is positive for all n. In physics, A and B are the algebra of
observables of our quantum system of interest before and after the evolution. We enlarge
our algebra by modeling the environment degrees of freedom as an n-level quantum system
with the algebra M,,. In the Schrodinger picture, the evolution is a trace-preserving CP
map ®* : B — A that acts on density matrices. We need the map to be trace-preserving
so that the total probability is conserved tr(®*(pp)) = tr(pp). We will show below that
the dual of a CP map is also CP. Therefore, in the Heisenberg picture, the algebra of
observables evolves with a unital CP map. In this work, we mostly use the Heisenberg
picture.

An important map that is positive but not CP is the Tomita superoperator, S(|i) (j|) =
|7) (i|. It is an anti-linear map that depends on the basis {|i) } with respect to which complex
conjugation is defined. It is trivially positive. To see that it is not CP consider the positive
operator |e) (e|. After applying the map we obtain (S ® I)(|e) (e[) = >_,; [ij) (ji| which is
the swap operator and non-positive.3

Motivated by the example above, we consider the CP map ® : B(K4) — B(Kp) for
some Hilbert space Kp with an orthonormal basis |«) and define the Choi operator in the
Hilbert space Kg ® K 4 to be

op = (2 ®id)(le) (e]) = D (I4) (i) @ 18) (4] - (A.16)
ij

3"The map T*T (a) does not preserve p unless p = PpP.
38The swap operator squares to identity and its eigenvalues are +1.
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The Choi operator carries all the information content of the CP map because
o([2) (j]) = A @ (i[)oa(l®]5)) - (A.17)

The Choi operator og is positive if ® is CP. Below, we show the converse statement
establishing a one-to-one correspondence between CP maps ® : B(K4) — B(Kp) and
positive operators in B(Kg) ® B(K).%

If the Choi operator is positive it has a spectral decomposition in an orthonormal basis

dadp

0o = Z Ar |¢r> <¢r|
r=1
o) = it Jad) (A.18)

with non-negative A\, and |¢,) € Kp ® K4. Define the Kraus map V, : Kp — K4 to be

V=3l o) (il (A.19)

so that |¢,) = (VTT ®1) |e) 4. From the orthogonality of the basis it follows that
<¢r|¢s> = <€H/7"/;T ® H)’€> = tI‘(VT‘/j) = Ops - (A'QO)
The Choi operator becomes

oo =Y M(VI@Dle) (e (V; @ 1), (A.21)

and from (A.17) it follows that

o([) (G1) = D_ AV 1a) (5| Vs - (A.22)

The map above is manifestly CP because for any X € B(K4) ® M, the operator

(@ @L)(XTX)=> AV @L)XTX(V, @1,) (A.23)

is manifestly positive. See figure 13 for a tensor diagram of the Choi and Kraus operators
of a CP map ®. In summary, a map ® : B(K4) — B(Kp) is CP if and only if it has the
Kraus decomposition

dadp
O(a) = Y Viay, (A.24)
r=1

where we have redefined V,, — v/A,.V.. to absorb the positive eigenvalues of the Choi operator
in the Kraus operators.

39From the definition of CP maps it appears that need to check the positivity ® ®id,, for any n. However,
this one-to-one correspondence implies that it is sufficient to check the positivity of the Choi operator. This
one-to-one correspondence is sometimes called the Choi-Jamiolkowski isomorphism.
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Op : = ZF_VT)CV_

r r

Figure 13. Choi-Jamiolkowski isomorphism: The tensor diagram for the Choi operator that is
used to define the Kraus operators V..

The dual of a CP map also has a Kraus representation, and therefore it is CP. As we
said above, the physical relevance of this statement is that the dual to a CP map sends
density matrices to density matrices, up to a normalization. Requiring the dual map ®*
to preserve the normalization of density matrices (trace-preserving) restricts to the set
of unital CP maps ®. Unital CP maps are sometimes called coarse-grainings [30]. The
connection with the renormalization justifies the name.*® As opposed to the unitary map,
a general unital CP map leads to information loss. That is to say there exists no CP map
T that can perfectly reverse the evolution: 7:7’((1) = a for all operators in A. As we will
see in section C, for an evolution described by a unital CP map ® : A — B we say an
operator b € B is correctable if there exist an CP map R (recovery map) that reverses the
evolution: ®(R(b)) = b. Finding recovery map for a given evolution @ is one of the main
goals of the theory of operator algebra error correction.

The Kraus representation of a CP map is non-unique. To understand this non-
uniqueness we introduce an auxiliary Hilbert space Kgr of dimension dadp with an or-
thonormal basis {|r)}. We rewrite this CP map as

P(a) = ZVjaVr =Wia®Ig)W
W=> V,alr) . (A.25)

Sending W — (I ® Ug)W for unitary Ur € B(Kp) leaves the CP map invariant. Taking
the inner product (I® (r|)W, we see that any two Kraus representations {Vr(l)} and {VT(Q)}
of a CP map are related by the linear transformation

V=3 ", v® . (A.26)

where u,s are complex numbers and the matrix (Ug),s = u,s is unitary [31]. However, as
we saw above, there is a canonical choice for Kraus operators that comes from diagonalizing
the Choi operator and satisfies

tI‘(V,,Vj) = Ops - (A'27)

The Kraus representation makes it manifest that the composition of two CP maps is
also CP. This brings up the question of whether there is a set of simple and physically
relevant CP maps that generate all CP maps. The equation (A.25) suggests that it is

49The dual of a coarse-graining is a trace-preserving CP map called a quantum channel.
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always possible to write a CP map as a composition of a unital representation a ® Ig
followed by a compression.

The discussion above motivates the Stinespring dilation theorem that says every CP
map ¢ : A — B admits the following decomposition

®(a) = Win(a)W, (A.28)

where m: A — B (7:[) is a unital representation?! of A in some large Hilbert space H and
W : Kg — H. To prove the dilation theorem, we consider representations of A ® B.42
Choose two vectors |¢) and |¢) in Kp. The standard inner product leads to the Hilbert
space Ha ® Kp:

(a1, $laz, ) = tr(ajaz) (91) = (arfaz) (S]4)) - (A.29)
Given a CP map we can define a new inner product:
(a1, laz, )y = (B(ajar)$e) = (6|(ajaz) ) - (A.30)

The standard inner product is the special case when the CP map is ®(a) = tr(a). If there
are a € A such that ®(a’a) = 0 then the resulting vector |a, ) has zero norm. We quotient
by such zero norm vectors to obtain the Hilbert space .

When ® is faithful # = H4®Kp and the representation m(a) = a®lq . The isometry
W :Kp — Ha®Kp acts as

W¢) = le, d)
m(a1) |az, ¢) = |araz, B) (A.31)

From the inner product in (A.30) it follows that W1 acts as
Wa,¢) = ®(a)|¢) - (A.32)
As a result, the CP map factors as
®(a) = Win(a)W . (A.33)
Note that the projection P = WWT satisfies

Pla,¢) = (I® ®(a)) [1,¢)
Pla®@I)P = le) (e| ® ®(a) . (A.34)

41 A representation of algebra A in Hilbert space Hisa map 7 from the algebra to the bounded operators
on A that is multiplicative m(a1az2) = 7(a1)7(az2). The observable algebra of a quantum system comes with
a natural #-operation that 7 represents as the Hermitian conjugation in the Hilbert space: w(a*) = 7(a)t.
An injective multiplicative map is sometimes called an embedding. If it is invertible it is called an isometric
embedding. A representation is a positive map because m(a*a) = m(a){7(a). In fact, it is completely
positive. It follows from the definition of a representation that the identity operator of A is represented
by a projection operator m(I) in FL. If this projection is the identity of 7 the representation is unital. A
faithful representation 7 : A — B is a x-isomorphism from A to the image of 7w in B, otherwise known as
an isometric embedding of A in B.

42For now we consider irreducible representation, however, the generalization to the standard represen-
tation is discussed in section 3.
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The CP map WbWT = |e) (e| ® b is an isometric embedding of B in B(#).

The take-home message from the Stinespring dilation theorem is that any unital CP
map can be understood as a representation A inside the bounded operators in # followed
by an isometry W3, When B = A the Stinespring representation is a familiar statement
in physics. The representation 7(a) = a ® I introduces environment degrees of freedom
modeled by a d% dimensional Hilbert space Hr. We let the system and environment
interact via a unitary and finally we discard the environment degrees of freedom. The
interaction and the restriction are described by the isometry W : K4 — Ha ® K 4.

The dilation theorem tells us that for any a € A and unital CP map ® we have

®(a"®(a) = Win(a")Pr(a)W < Wir(ah)m(a)W = ®(a'a) . (A.36)

This is known as the Schwarz inequality.** The map ® preserves a state p if its correspond-
ing Hilbert space operator F' satisfies FT [p!/2) = |p'/2). When ® preserves a state p its
corresponding operator F' in H 4 satisfies

1Ealp'?) |2 = (p'2|@ (") (a) p"?) < (p'/%|(ala)|p!?)
= (p"lalalp'/?) = lla|o"*)|I? . (A.37)

When & has a non-trivial kernel it cannot preserve any faithful states. If it preserves a
state p the vector representative of it |p1/ 2) in the Hilbert space is cyclic but not separating.
Therefore, in general, F' is a map from the Hilbert space H 4 to the subspace of ‘H 4 spanned
by a|p'/?). Such an operator F is called a contraction. On the contrary when ® has trivial
kernel it can preserve faithful states (full rank density matrix in matrix algebras). Then
F : H — H with ||F|| < 1. Note that in (A.37) we have simplified our notation by replacing
a ® I with a. From here onward, we only write a ® I when there is a chance of confusion.

The set of operators that are invariant under a unital CP map ® that preserves an
faithful (full rank) state p form a subalgebra A’ because if ®(c) = ¢ then

(P21l elp1/2) = (P21 0(cl ) pH/2) > (V2D ()D(c) o) = (p/2|clclh/?) (A.38)
which implies ®(cfc) = cfe. An operator ¢ is in the invariant subalgebra if

vr, e, V] =[e,VI]=0 (A.39)

430ne can always choose a representation for A that is larger than the GNS Hilbert space H.a by intro-
ducing new degrees of freedom. Then, the dilation theorem gives (w, W, 7:[) that are unnecessarily large. In
particular, in this case the space of |a,¢) = m(a)|e,d) is not dense in H. Given any such representation
the restriction of it to the space of w(a) |e, @) is also a representation that is called the minimal Stinespring
representation. The GNS Hilbert space H 4 gives a minimal Stinespring representation because a |pi,/ 2) is
dense in H 4. Consider two Stinespring representations (w1, Wh, 7:L1) and (w2, Wa, 7:[2) for the same CP map
®. Then, the operator v : H1 — Ho is a partial isometry that intertwines the two representations:

vmi(a) = m2(a)v . (A.35)

If both Stinespring representations are minimal then v is a unitary.
“4This proof applies to the more general case where the CP map is not unital but satisfies ®(I) = P for
some projection P. Then, W is a partial isometry and I— WW 1 is another projection and the proof follows.
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using the Kraus representation of ® in (A.25). The converse also holds, and the invariant
subalgebra is the commutant of all V, and VTT.45 In section C we will see that invariant
subalgebra is the central object of interest in passive operator algebra error correction.

The set of operators m € A that saturate the Schwarz inequality form a subalgebra
AM that is called the multiplicative domain of ® [33]. The Schwarz inequality in (A.36)
says that for operators m € AM we have

Wiz(m) (I - P)r(m)W =0 (A.40)
which implies
(I—-P)r(m)W =0. (A.41)
It follows that the self-adjoint operators m € AM satisfy:
m(m)P = Pm(m)P = Pm(m) (A.42)

The converse is obviously true. An operator m € AM if and only if [7(m), P] = 0. From
the representation in (A.25) it follows that a self-adjoint operator m is in the multiplicative
domain of ¢ if and only if

vr,s  [m, V. VI]=0. (A.43)

As a result, the operators in AM form a subalgebra spanned by the commutant of VTVST.
This subalgebra plays an important role in active operator algebra error correction. In
section C, we show that the multiplicative domain of a unital map ® is equivalent to the
correctable subalgebra of the dual map ®*. The invariant subalgebra is a subalgebra of
the multiplicative domain of ®, i.e. AT C AM C A.

The multiplicative domain of ® satisfies the bi-module property: for all m € AM and
all a € A we have:

®d(a'm) = d(a")d(m) . (A.44)

45The invariant subalgebra is a von Neumann algebra spanned by its projections. We only need to prove
the converse for projection operators. An invariant projection p satisfies

pL®(p)pL =0="> piVipVip. =0
where p; =1 — p. Since the expression above is the sum of positive operators that add up to zero each of
them should individually be zero:

pLVipVipr = 0= (pVipL) (pVipy) .

As a result, we find pV,p, = 0. For a unital map we have ®(p.) =1 — ®(p), too. Therefore, we also have
pLV,p = 0. Putting the two together we find that if p is in the invariant subalgebra of ® it commutes with
all its Kraus operators [32].
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To prove this, we use the fact that @ = ® ® ids is also a CP map that satisfies the
Schwarz inequality. Consider the operator X € A® My (M, is the algebra of complex 2 x 2

X = (; ”;T> (A.45)

for some a € A and ¢ € AM. The Schwarz inequality gives

matrices)

(Cb(me) d(mta)

®(atm) ®(mm' +aTa)> =2 (xTX) >e®(XxN)e®(X) (A.46)

_ (@(mwm) ®(m")P(a) )

This implies that

0 d(mfa) — ®(m")®(a)
(@(a*m) —®(ah)@(m) @(a'a) —B(ah)P(a) ) =0 (A.47)

which is possible if and only if its off-diagonal terms are exactly zero which proves (A.44).
A unital CP map & from A to its invariant subalgebra A’ is called a conditional expectation.
It satisfies the bi-module property that for all ¢1, o € Al and a € A we have

E(crace) = c1€(a)es . (A.48)

A.3 Conditional expectations in matrix algebras

To make the discussion less abstract, in this subsection, we go over some important ex-
amples of conditional expectations in matrix algebras. Our first example of a CP map is
te : A1 = A1 ® Ay given by

lp(a) =a®o, (A.49)

where o is a positive operator with eigenvectors {|k)} and eigenvalues \7. The Stinespring
dilation of this map factorizes as a representation on K; ® K3 and the isometry W :
Ki®Ke — K1 ®Ks:

to(a) = Wi(a® I5)W
W => Xe(l1 ® |k)s (Kly)

k
Is = > |k)g (k|5 - (A.50)
k

The Kraus operators are Vj, = A (I1 ® (k|,). The dual map ¢ : A1 ® Ay — Ay is

to(a1 ® ag) = Z V(a1 ® ag)VkJr = aytr(oag), (A.51)
k
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with the Stinespring dilation

Lj;((h X ag) = WT(CL1 X a2 ® Hg)W

W => Xel(ly ® |kk)ys) (A.52)
k

The map ¢, is unital when o = I5. In this case, it is an embedding of A; in A; ® As:
Ll(alag) =1 (al)bl (az) . (A.53)

The dual ¢ is a quantum channel (trace-preserving CP map) A; ® A2 — A; that is partial
trace over As:

tr(p12 t1(a)) = tr(e1(p12)a)
t(p12) = (I ® (efyz)pr2(lh @ |e)gs) = p1 - (A.54)

The map ¢, is a quantum channel when o is a density matrix: tr(c) = 1. This channel
prepares a density matrix ¢ on Ky. The composition of two CP maps is also a CP map.
For instance, the composite map ¢’ o ty(a1) = ajtr(c) multiplies operators by a positive
constant, whereas ¢y 0 1} (a1 ® ag) = (a1 ® o)tr(caz). An important composite map for us
is

Es=n0t, AR A = A1
Er(a1 ® az) = (a1 @ Ip)tr(oas) . (A.55)
It has the property that when o is a density matrix it leaves the subalgebra A; ® I invariant

(c/‘o'(azl X HQ) =1 I, . (A.56)

It is the simplest example of a o-preserving conditional expectation [29].

The conditional expectations in (A.55) are labelled by density matrices o on Ay. In
fact, these are the only conditional expectations from A; ® As to A1 ® I5. To see this, we
use the bimodule property:

Elar®@az) = (a1 @DE(I®az) =E(I®az)(a; @) =E(I®az)(a; @I) . (A.57)
Therefore, £(I ® az) commutes with all a; ® I and has to take the form
Ee(a1 ® az) = (a1 ®1) e(ag), (A.58)

where €(ag) is a unital CP map from Ay — C which is in one-to-one correspondence with
density matrices on Ay:0

Er(a1 ®ag) = (a1 @ 1) tr(oas) . (A.59)

466((12) is a continuous linear functional on As which by Riesz representation theorem can be associated

with a unique vector |e€) € K2 such that e(az) = (e|az).
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The conditional expectation &, preserves all states of the form p ® o. Moreover, given
a product state p ® o the conditional expectation &, that preserves it is unique. However,
for a generic 015 there does not exist a conditional expectation that preserves it.

To gain more intuition about conditional expectations £ : A — A’ in finite dimensional
matrix algebras consider their Kraus representation £(a) =), V,'aV,. The Hilbert space
K decomposes as K = @,K{ ® K such that

c=@ct @Iy Vee A
V, =0l Ve vr . (A.60)
A conditional expectation £ projects every operator in A to its invariant subalgebra A’.

Denote the projection to the subspace K ® K by P9. Since P? € A€ from the bi-module
property (A.48) we have [34]

E)=& > PTaP?| = PIE(a)P! = &)
Ela) =& (PlaP?), (A.61)

where we have used P?cP?9 = dgrqc? for all ¢ € AL As a result, every conditional expec-
tation £ : A — A decomposes as a sum of conditional expectations £9 : B(K{ ® K%) —

B(K{) @ I1. However, we already showed that the conditional expectations £7 are labelled

by density matrices o4:

El(a? ® al) = try (I ®@ 0d)(ad ® al)) . (A.62)

As a result, the conditional expectations from A — A’ are in one-to-one correspondence
with unnormalized states o = @ I ® 0§ on the commutant (A”)":

Ex(a) = tra(oa) @ Iy = Gytra ((If ® o) PlaP?) @11 . (A.63)
This conditional expectation preserves every state of the form p = @®,p,p] @ od:

(o€ (a)) = D tr(pEd(@) = Y putr (] © 0)a) = tx(pa) . (A.64)

q q

If a state does not have the form we postulated for p there exists no conditional expectation
that preserves it. The restriction of the state p to the subalgebra A’ is

po = Bqpep] ® I . (A.65)

The discussion above was restricted to finite dimensional matrix algebras. In section C,
we show that the necessary and sufficient condition for the existence of a p-preserving
conditional expectation is

1/2

_ 1/2  —1/2
P 2ep V2 = pPepg 2 (A.66)

This condition holds trivially for ¢ and og in the example above.
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B GNS Hilbert space and Petz map

The class of completely positive (CP) linear maps are of particular importance for error
correction because they describe the dynamics of an open quantum system. Here, we review
the representation of CP maps as contractions in the GNS Hilbert space. In particular,
we discuss the Petz dual map that plays a central role in operator algebra quantum error
correction.

In appendix A, we used the trace to define an inner product and represent the algebra
of finite dimensional complex matrices as a Hilbert space. In some infinite dimensional
systems the trace of the identity operator is infinite. As a result, the vector representative
of the identity operator cannot be normalizable. Even worse, in some quantum systems
such as the algebra of local observables in quantum field theory (QFT) there exists no
trace.*” The Stinespring theorem gives us a hint as how to define a Hilbert space without
using a trace. While this construction is fully general, here, we use the notation of matrix
algebras that might be more accessible to physicists. We comment on a few subtleties in
infinite dimensions.

Given a density matrix p = Y, A? |i) (i| consider the CP map ¢, : A — C given by
¢p(a) = tr(pa). If p is full rank this map is faithful. The Hilbert space H we obtain in the
Stinespring theorem is called the GNS Hilbert space and we denote it by H,. It defines a
map from A — #H, that replaces the unnormalized vector |e) in (A.2) with a normalized
vector [p!/2):

a—la),=(a®I) 1p/2) Zx\ (a®1)|i)|i)

1p/?) Z Ai |i) (B.1)

The Hilbert space H, is simply the set of vectors (a ® I) |p'/2) endowed with the inner
product

(a1]az), = tr(palas) = (p'/?|(alas ® )| p"/?) . (B.2)

As we saw in the Stinespring dilation, if p is not full rank we first need to quotient by null
vectors. When p is full rank the GNS Hilbert space is isomorphic to K4 ® K';. The vector
|p*/2) is a purification of the density matrix p in K4 ® Ky

(p"?(a®1)|p"/?) = tx(pa) (B.3)

In the GNS Hilbert space of matrix algebras every operator a € A has a mirror operator
am € A’

(a®1) !Pl/g> = 1&am)|p"?)
am 1/2 Tp71/2 (B4)

4"Formally, trace is defined to be a CP map tr : A — C such that tr(aiaz) = tr(azaq) for all a; and as.
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T is the transpose of a in the eigenbasis of p. If V! € A’ is an isometry its mirror

where a
operator (V')™ € A acting on |p'/?) gives another purification of p in H,. It is desirable
to find a subset of vectors that is in one-to-one correspondence with density matrices. We

define the anti-linear modular conjugation operator in the GNS Hilbert space as
To(a®T) [p"?) = (T@ (a))T) |p"/?) (B.5)

where the transpose is in the eigenbasis of p. There is a unique purification of p that
is invariant under Jp.48 The modular conjugation J, acts as an anti-linear swap in the
eigenbasis of p:

Top"%) = 1p"7%)
Jpci li) |7) = ci [7) 19) (B.6)

where ¢; is a complex number.

In the GNS Hilbert space of matrix algebras M,, we have a one-to-one correspondence
between vectors |a) o and operators a € A.* In infinite dimensions, to every operator
corresponds a vector in the GNS Hilbert space but not every vector corresponds to an
operator. This has to do with the fact that the GNS Hilbert space H, is not the set
a|p*/?) but its closure.

B.1 Superoperators versus operators

In matrix algebras, there is also a one-to-one correspondence between the linear operators
in H, and linear maps from A to A5 In a general von Neumann algebra, including the
local algebra of QFT, every normal superoperator has a corresponding operator in the
GNS Hilbert space, however the converse does not hold; see section 3. To prove statements
about superoperator it is often easier to use their corresponding operators in the GNS
Hilbert space.

Consider a general superoperator 7. If it is unital its corresponding T, leaves ]pl/ 2
invariant: T}, [p'/2) = |p!/2). If it is p-preserving the conjugate T,;r leaves |p'/2) invariant:

tr(pT () = (0T (a)p"?) = (p"?|Tpap'/?) = (T} p"?|ap'’?) . (B.7)

We show in (A.37) that a unital CP map that preserves p corresponds to a contraction in
H,; see appendix A for the definitions. A p-preserving superoperator &, : A — AC that
leaves every operator in ¢ € A® invariant corresponds to an operator E,:H, — Hc that
satisfies Eg = E,. Here, Hc is the subspace spanned by c ]pl/ 2). If this superoperator
is CP it is a conditional expectation. Then, from the bimodule property of conditional

48 The set of all vectors that are invariant under .J, is called the natural cone and are of the form a.J,a [p'/?).
Given a vector in the natural cone there exists no isometry V' € A’ that leaves the state invariant. See B.2
for a discussion of the natural cone.

“The reason is that if [¥) = a1 [p'/?) = a2 |p'/?) then (a1 — a2)|p'/?) = 0 which is impossible for an
invertible p.

50This follows from a straightforward generalization of the argument in section A.
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expectations in (A.44) we have
<a1’Epa2>p - <p1/2\a15p(a2)p1/2> = <P1/2|5p(a15’p(a2))1)1/2>
= (p'1€p(a})Ep(az)p'?) = (1| E}Epaz) (B.8)

where we have used the notation from (B.2) for the inner product in the GNS Hilbert space.
This implies E, = E;r,Ep which combined with E, = E% implies that E, is an orthogonal
projection. As a result, the GNS operators corresponding to a conditional expectation &,
is simply the projection from F, : H, — Hc. It follows that the p-preserving conditional
expectation is unique, because we have

(Egl) - E§2)> ), =0 (B.9)

which implies that Ef()l) = E,(,Q) and 5’,9) = 5[(72).51

An important anti-linear superoperator to consider in the algebra is the Tomita map
S(a) = al (see section A.2) [36]. Its corresponding operator in the Hilbert space is the
Tomita operator S, : H, — H, that acts as

Spla®@1) |p'?) = (aT @ 1) [p'7?) . (B.10)

We can also introduce an anti-linear superoperator J, : A — A’ which establishes a one-
to-one correspondence between operators in A and A’

Tp(li) (G1) = 1d) (j| € A" (B.11)
For a general a € A we have J,(a) = (a")T
modular conjugation operator we defined in (B.5).

€ A'. Its corresponding operator in H, is the

Another important superoperator is the relative modular operator defined as D, ,(a) =
oap~! for two invertible density matrices o and p. Its corresponding operator in the Hilbert

space is A, |, =0 ® p L

(Dopp(a@) @ 1) [p"%) = Ay (a@ 1) |p'/?) (B.12)

If both density matrices are the same this operator is called modular operator A, = p® p~!

and corresponds to a symmetry of |p'/?):

o 1/2 1/2
A% (') = [p'/?) (B.13)

1is multiplicative but

does not respect the Hermitian conjugation: D,(a’) = (Dgl(a))T. The modular flow of an
operator is a unital isometric CP map from the algebra to itself:

where « is any complex number. The modular map D,(a) = pap™

ap(t) = Allla @A™ = (p"ap™ 1) (B.14)
It is straightforward to check that S, = JpA,lj/Q and J, = A,l/QSp:
JAY2(a), = J,(L@aT) ) = (al 9 1)[p"2) = S, la), (B.15)
A28, la), = AP (T @ 1) [p!?) = (L@ (1)) p?) = Ty a),, -

5!In infinite dimensions, since the map between operators and superoperators is not one-to-one one needs

a more careful analysis, however the result remains the same [35].
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Superoperator GNS Operator
(anti-)linear T (anti-)linear T
unital ® F:(F-1)p?) =0
p-preserving ® F: (FT—1)|p/?) =0
unital p-preserving ® contraction ||F|| <1
. conditional expectation £ projection E? = F
linear CP - . ; -
isometric embedding ¢ isometry W
(faithful representation) wWiw =1
p-dual @, co-isometry F'T
Petz dual ) JpF'Ja
linear non-CP | relative modular operator D, A, ,=0® p!
anti-linear Tomita map S Tomita operator S,
non-CP modular conjugation 7, modular conjugation J,

Table 1. Linear maps of the operator algebra (superoperators) correspond to operators in the GNS
Hilbert space. Above is a list of some important superoperators and their corresponding operators.
In matrix algebras, this correspondence is one to one.

B.2 Natural cone

In this subsection, we characterize the vectors in H, that are invariant under .J,. The cone
of such vectors is called the natural cone. Vectors in the natural cone are in one-to-one
correspondence with the reduced states on A.

In matrix algebras, the modular conjugation operator J, is the anti-linear swap oper-
ator in the eigenbasis of p:

J, |k, K"y = |k k)
%) = ok |k, k) (B.16)
k
It corresponds to a superoperator that isometrically sends operators in A to A’:
J(a@D)J,=(I® (a"7). (B.17)

The vector |ex) = (p~/2®1) |p'/?) is the vector representative of the maximally mixed state
in the natural cone. From the action in (B.17) it follows that every vector (¢'/2 @ I) |es)
is also in the natural cone because

T2 @T) [ex) = M@ (V)T) [ex) = (0> @T) |ex) (B.18)
where we have used the fact that a and o’ are mirror operators of each other in He,:
(@ @) Jeg) = (12 aT)|ex) - (B.19)
A given state 1 can be purified in any vector of the form

W) = (0! Pup™ 2 @ 1) /%) = (D} 2 (u) @ 1) [p"/?) (B.20)
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where u is a co-isometry, i.e. uul = I, and pr(a) = tap~ ! is the relative modular
superoperator. As we saw above, the case u = I is special in that the resulting vector is
invariant under J,:

%) = (@22 @T) [p'?) (B.21)
Written in the Hilbert space the unique representative of the state 1 in the natural cone is

[B1/2) = A2 |2y (B.22)

1
Ylp
In infinite dimensions, all the purifications of ¢ correspond to u’ | pY/ 2) where u' € A’ is an
isometry and ]1/11/ 2) is the natural cone representative of :

Tpl2) = [12) = A2 p1?) (B.23)

An alternative way to characterize the vectors in the natural cone is to note that the
vector aJ,a |p'/?) is in the natural cone for any a € A. We define a = Dp_l/4(a) to write

this vector as:
aJyalp'’?) = aS,A M a|pt?) = Al aat [p'/?) (B.24)

where we have assumed a is an analytic operator, meaning that Dg‘(a) € A. The natural

cone is identical the cone of vectors Az/ Yaal |p1/?).
In section B.4 we introduced the alternate inner product

(a1, a2), = {a1p" /2| AL 2azp"/?) (B.25)
With the rewriting above, the alternate inner product is simply the norm of these natural
cone vectors (a4lat), = \|A,1)/4a+ |p'/2)||. Note that every operator in matrix algebra is

analytic. In infinite dimensions, the set of analytic operators is dense in A [37]. Table 1 is
a list of some important superoperators in this work, and their corresponding operators in
the GNS Hilbert space.

B.3 Fixed points

Given a linear superoperator 7 : A — A we can define its spectrum to be the values of A
for which 7 — Aid is not invertible. It is convenient to think in terms of the spectrum of
the GNS representation of 7 in a Hilbert space T': H, — H,, that is the set of all A for
which T'— Al is not invertible. Since the unital CP maps correspond to contractions, their
spectra satisfy [\ < 1.

In finite dimensions, the spectrum corresponds to the set of A for which there exists
an operator X such that 7(X) = AX. The operator T" has a Jordan block representation

A1 ...0
0 X 1

T = X(®rJp(M) X1, Te(N) = | . . € My, (C) . (B.26)
0 0 A
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We can split each Jordan block into a projection P, and a nilpotent part IN;°?
Je\) = AP, + Ny,  N¥* =0, PP =0uPy, tr(P)=d.. (B27)

If a Jordan block Jj is just a projection with no nilpotent part we call it trivial. For a unital
CP map ® the Jordan blocks corresponding to |A| = 1 are always trivial [38]. Therefore,
we can define the projection E to the set of invariant operators:

E=Y P. (B.28)

Ap=1
As we will show in section C, this projection E corresponds to a conditional expectation
that one can canonically associate to a unital CP map ® : A — A. It is given by £ =

By o0 Y0 ®
subalgebra plays an important role in error correction. The Jordan block form of a matrix

"™ and projects to the subalgebra of operators invariant under ®. This

has a generalization for compact operators in general Hilbert spaces.

B.4 Petz dual map

Consider a linear superoperator 7 : A — B and the GNS Hilbert spaces H,, and H,,. To
simplify the notation, we denote the Hilbert spaces with H 4 and Hp, respectively. The
operator corresponding to 7 is defined by

T(a) |pg?) = Talp}?) . (B.29)
It is tempting to define the dual map in the GNS Hilbert space by the equation
1/2 1/2 X 1/2, 172
(b [T (@)pg”) = (T, )} lan){?) (B.30)

or equivalently

(0T (a)),, = (T, ()l (B.31)
for operators a € A and b € B. In the case of matrix algebras, we have
tr(ppb!T(a)) = tr(paT; (b')a) . (B.32)

However, there is a problem with this definition that can be seen by solving explicitly for

7, in terms of 7™ defined in (A.10):
T, (b) = p3 T (p5b) - (B.33)

Defined this way the dual of a CP map is not CP!

If we think in terms of the GNS Hilbert space then the superoperator 7T is represented
by the operator 7' whose conjugate is T'1. The problem is that the superoperator T, we
get by solving the equation

T | = T () [p{?) (B.34)

2For a review of the spectral theory of quantum channels see [38].
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is not CP. However, since every vector in Hp can also be written as 0’| /%/2) we could
consider T as corresponding to a superoperator 7;’ from B — A’. If we consider the
superoperator on the commutant that corresponds to T we get a dual map 7;/ B = A

T pf?) = T, ) o) (B.35)

that is positive if 7 is positive.® For a positive operator b, € B’ we have
Ty )a) = (o 1o T, 0 )aloly?) = (|7, )atalply?) = (oI, T(ala)pif?)
= (py "1V T (afa) (1) %) = () VAT (@) (B) /), > 0 (B.36)

where we have used the fact that [7,(),a] = 0. We call the map 7, the p-dual of T

We saw that the modular conjugation map for cyclic and separating vectors is a unitary
superoperator J : A — A’. We can use the modular conjugation and p-dual to associate
to each linear CP map 7 : A — B a unique linear CP map 7;P : B — A that we call the
Petz dual map:>*

TV (b) = TaoT) o Tp(b) = JaT)(JebJp)Ja - (B.37)

Another way to understand the Petz dual map is to realize that it is the dual map defined
with respect to an alternate inner product

(arlaz), = (Tp(al)p"2lazp™’?) = tr(p"/2al o ?as) . (B.38)

Note that this is the Heisenberg picture of the Petz recovery map in equation 5 of [40]. In
the GNS Hilbert space, this inner product can be expressed using the modular operator®

(arlaz), = (p"/*|al Ay 2azlp'?) (B.39)
The Petz dual is the dual of a CP map defined with the alternate inner product
1/2, 1/2 1/2 1/2
te(py “bpyf “T(a)) = tr(p{ *T,7 (0)p} ") (B.40)
which can be solved explicitly in terms of the standard trace-dual as
—1/2%, 1/2, 1/2\ —1/2
TE0) = 03 2T (0 2o )ps ' (BA1)

This map is manifestly CP. Note that the Petz dual of a unital map is also unital.
Consider the example of an isometric embedding ¢1(a1) = a1 ® Iz with the GNS Hilbert
space Hy,, ~ K12 ® Ky where K12 = K1 @ g, the dual map ¢} is partial trace. If the state

®3This is the dual map of Accardi and Cecchini [26]; see theorem 1 in section 3. More formally, the
existence of this map is guaranteed by the commutant Radon-Nikodym theorem (for instance see theorem
2.1 of [39)).

54 Accardi and Cecchini call this map the bi-dual [26].

%The alternate inner product can be understood as the GNS inner product in the natural cone where
we choose the vector representative of a state to be invariant under modular conjugation J,. See appendix
B.2.
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on Ajs is a full rank density matrix pi2, the reduced state on A; is p; and its corresponding
GNS Hilbert space is H,, ~ K; ® K}. This embedding is isometric with respect to the
GNS inner product

(ai]az),, = {(a1 ® I2)[(a2 ® I2)),,, - (B.42)
Consider the isometry V, : H, — H,,, defined by
Voar [p)?) = (a1 ©12) o) (B.43)
In this case, the Petz dual map is
Plar ® az) = py P tra(p1y (ar @ az)pyy oy V7 (B.44)

P
p

conditional expectation if and only if p1o = p1 ® p2.

The composite map Ef =11 0, in general does not leave a; ® Is invariant. It becomes a
Consider an isometric embedding ¢ : A¢ — A. We call the p-preserving CP map
é’f = 1o a generalized conditional expectation [26]. In the GNS Hilbert space the

P
operator that corresponds to ¢ is an isometry W':

W) 0% = Welpd?) . (B.45)

From (B.35) and (B.37) we find that the Petz dual corresponds to JoWTJ4:

L(a) 1pd?) = JeW ' daalpf?) . (B.46)

As a result, in the GNS Hilbert space the composite maps L;’f o1: A% - A® and 1o Lf :
A — AC are represented by operators JeWH AW and WJ-WTJ A, respectively. Consider

the Takesaki condition
JAaW =W o . (B.47)

This is an operator constraint in the GNS Hilbert space, hence it is a constraint on the
state p. Assuming the Takesaki condition, we find that L§ o ¢ is the identity map and
Lo Lf is a p-preserving conditional because it is represented by the projection WWT on
H,. In section C, we will see that the Takesaki condition is necessary for the existence of
a p-preserving conditional expectation.

To highlight the difference between the Petz dual map and the dual map defined with
respect to the Hilbert-Schmidt inner product we work out an example from commuting
algebras [41]. Consider a trace-preserving CP map A with Kraus operators Vi, : K — Ka

where {|k)} and {|a)} are orthonormal bases of K4 and Kp, respectively:
N(a) = Z ijaVak
ak

Vi = Voplalk)|a) (k| (B.48)
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and p(«|k) is the conditional probability that the vector |k) evolves to |a). Such map are
called classical-to-classical channels because they preserve the orthogonality of the basis
{|k)}. This map evolves p = >, pr |k) (k| to N(p) = >, Pa ) (o] with

Pa =Y plalk)ps - (B.49)
k

The Kraus operators of the dual map are the complex conjugate
N () =Y VbV, (B.50)
ak

whereas the Petz dual map is
NE®) =" VarbV,

ak
Vit = Vp(kla) [k) (a] - (B.51)

The Petz dual map undoes the evolution by sending vector |a) to |k) with conditional
probability p(k|a) which is obtained using the Bayes rule

p(kla)pa = p(alk)py, - (B.52)
B.5 CP maps in infinite dimensions

A CP map from the algebra to complex numbers p : A — C is an un-normalized state. It
is normalized if the map is unital. In infinite dimensions, it is convenient to restrict to the
set of continuous states: p(lim, a,) = limy, p(a,). Such states are called normal. Given a
normalized continuous state p : A — C the GNS Hilbert space is formed by the vectors
a), =a |p'/?) with the inner product

(a1]az), = plajas) . (B.53)

If p is not faithful one needs to quotient by the set of null vectors |a),, i.e. p(ata) = 0
and then take the completion. In the example of matrix algebras, states are in one-to-
one correspondence to density matrices p(a) = tr(pa). A faithful state corresponds to a
full rank density matrix. However, in QFT, not every vector in H, has a corresponding
operator in A. Since the set a | pl/ 2) is dense in the Hilbert space, some vectors correspond
to the limit of operators in A. Similarly, not every operator in A has a mirror in A’. To
every vector |¥) € H, one can associate an operator ¥ that satisfies:

Vo' e A': Wd [pl/?) =d D) . (B.54)
Clearly, for |a) 0 this operator is a € A. From the property above it follows that
(@, ajlas [p'/?) =0 . (B.55)

Therefore, such a ¥ commutes with all af, therefore it is affiliated with A (need not be
bounded).
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The Tomita map S(a) = al is represented in H, with the Tomita operator:
Spalpt/?) = al |p/2) . (B.56)

Since A |p'/?) is dense in H, this defines the action of S, on a dense set of vectors. The
closure of the modular operator has a polar decomposition S, = JpAz/ ? where J, is the
analog of the modular conjugation in equation (B.6) and A, = S};Sp is the analog of the
modular operator in (B.13).%6

The same superoperator S(a) = a' can be represented as an operator from Hy — Hy:

Sypalo”?) = at [17?) . (B.57)

If |1)'/2) belongs to H, then the equation above makes sense only if 11/2) is invariant
under J, (belongs to the natural cone).”” Otherwise, as we will show below in equation
(B.59), the relative Tomita operator depends on the vector representative of .

We can generalize the definition above to a relative Tomita operator that depends on
two arbitrary vectors

Syjaa|Q) =’ |T) . (B.58)

If ' € A is an isometry the vector u/|1)!/2) has the same reduced state 1) on A. If we
choose the vector |¥,) =« [¢'/?) and |Q,) = v’ |w!'/2) we find

quumv = UISIMU_, ('U,)Jr . (B.59)

To avoid potential confusions about whether our vectors are in the natural cone or not, in
the remainder of this subsection, we formulate our expressions in terms of general vectors.
Hence, we rename |w'/?), S,,, J,, and A, to the vector |Q), Sq, Jo and Agq, correspondingly.
Then the unbounded operator ¥ = 5’(114(9561/ satisfies the equation (B.54). Since 5(1,4(9 =
(S(I‘}lﬂ)T and J\;'Q = Jojy we have

U= A}I,%JQN,JQA;/ 2 (B.60)

See section 2.2.2 of [42] for a review of these relations. In appendix B.2, we argue that
the operator A}II/‘?)A;/ 2 acting on |Q2) creates the vector representative of ¢ in the natural
cone. Comparing this to the equation (B.60) we find that for vectors in the natural cone
Jaw = Ja = Jyjo-

In matrix algebras, an arbitrary vector is constructed by the action of the operator
W12 T =172,

@2 2l pt?) = (Towu) [v'?) (B.61)

where [1)1/2) is the vector representative of the 1 in the natural cone [43]. Here, the

—-1/2

transpose u” is defined in the eigenbasis of p. The operator ¥/2up is the analog of

(B.60) in matrix algebras.

56 All the equations in the appendices that we write in the GNS Hilbert space that do not involve the
vector |e) continue to hold in QFT.
57See appendix B.2 for a review of the natural cone.
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In infinite dimensions, it is desirable to restrict to normal CP maps defined by their
continuity properties. For an increasing bounded sequence of positive operators a,, a CP
map ® is normal if ®(lim, a,,) = lim, ®(a,).”® In this work, we assume that all of our
states and CP maps are normal. A unital CP map corresponds to a contraction F' that
extends to a closed operator in the GNS Hilbert space

Flimay, [p*/?) = ®(limay,) [p'/?) = lim ®(a,) [p'/?) = lim Fa, [p/?) . (B.62)
n n n n

However, not every closed operator in the GNS Hilbert space corresponds to a normal
superoperator.
The simplest normal CP maps are normal states w : A — C. Consider the state

wa(alaz) = (a'p"2|alazla’p/?) = (a1p?|(a) a'azp/2) . (B.63)

This is a generalization of the correspondence between un-normalized density matrices
(states) and positive operators (a')fa’ € A’ mentioned in appendix A. Since b’ |p'/?) is
dense in the Hilbert space, any state v corresponding to a vector |¥) € H, corresponds to
a positive operator that is affiliated with A’ (commutes with all a):

b(alaz) = limlim (a1p"/%|(a}) alazp?) = (12| (a)) aylang %) (B.64)

B.6 Kraus representation in infinite dimensions

To characterize the CP maps between infinite dimensional algebras it is convenient to start
with the Stinespring dilation theorem. Consider a linear map ® : A — B with each algebra
represented on GNS Hilbert spaces H 4 and Hpg. Consider the space H=H A®Hp defined
with the inner product

1/2 12, 1/2 1/2 1/2 1/2
(a1p} %, b1py lasp {2 bapd ) = (br1py 7| ®(alas) bapy”) - (B.65)
As before, if ® is not faithful the vectors |a, ¢) with ®(a’a) have zero norm and we quotient
by them. After closure 7L becomes a Hilbert space. Similar to the discussion of section A.2
we define a representation 7(a) of A in the Hilbert space H and the isometry W : Hp — H:

m(ar) laspl{?, bpif?) = larasp{, bpi®)
W by = 12 bpg ™)
Wilap{?,boyf?) = ®(a) [bpyy?) . (B.66)
As a result, the CP map factors as
®(a) = Win(a)W . (B.67)

If ® is faithful H = Hy ® Hp and 7(a) = a ® Igp. Since we are using a reducible
representation on Hp for B the constraint that ®(a) € B C B(Hp) is non-trivial. We need
to have [®(a),b’] = 0 for all ¥’ € B’ which implies

(WH'WT, Pr(a)P] =0 (B.68)

58The limit is understood in the ultra-weak operator topology.
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where P = WWT and we have used Wir(a)W = WTPn(a)PW. When ® is unital the

/2, 1/2 1/2 1/2
o) =lpa”, (a)bpy”).

The algebra of all operators in the Hilbert space Hp is an infinite dlmensmnal matrix

projection P leaves the states |,01/2 bpy 1/2 ) invariant as P |ap 4

algebra,” therefore we have a resolution of the identity operator in terms of orthogonal
projections Igpp = ), |r) (r| where |r) are vectors in Hp. When the CP map & is faithful
the representation has the form 7(a) = a ® Ipp and we can define V; = (1 ® (r|)W to
obtain a generalized Kraus representation of the CP map

ZWT ® |r) { ZvTav (B.69)

where V. : Hg — H 4. Note that this is different from the standard Kraus representation
where the Kraus operators are maps V,. : Kp — K 4. If the algebra B is type I we can take
H = Hao®Kp and we obtain the above representation with V,. : g — Ha. It is only when
both algebras are type I that we can take H = K4 ® Kp to obtain the standard Kraus
representation.

The Stinespring dilation of unital CP maps discussed above involves the compression
of an isometric embedding 7 of A in the Hilbert space H4 ® Hp. This Hilbert space seems
too large. The algebras A and A’ act on H4 and B and B’ act on Hp. In analogy with
finite quantum systems, it is desirable to have a Hilbert space where only A and B act with
B playing the role of the commutant. In fact, given a unital CP map ® one can construct
a bi-module Hilbert space Hg where the algebra A acts on the left and B acts on the right.
In finite dimensions, the left action I(a) = a ® Ip and the right action is r(b) =14 ®b. We
have a cyclic and separating vector |Q¢) for AV B and

(Qa[l(a)|Q) = ppo®(a),  (Qa|r(b)|Q) = pp(d) - (B.70)

Here, pp is the state before the quantum channel and pp o ® is the state after the channel
[44]. Modular theory can be generalized to the bi-module Hilbert space Hg [45]. The Stine-
spring dilatation of a unital CP map ® says that there exists a normal *-homomorphism
p: A— B and an isometry V € B such that

®(a) = Vip(a)V . (B.71)

C Operator algebra error correction

Suppose we want to simulate a quantum system B using the algebra of physical operators
A. We encode B as a subalgebra of A using the isometric embedding map ¢ : B — A. We
also have a decoding map a : A — B such that awot : B — B is the identity map. The
composite map toa : A — 1(A) is a CP map that preserves every operator in ¢(8). The set
of states pa that are invariant under this map are the physical states that are decodable.
Assume that p4 is a decodable faithful state (full-rank density matrix) and pp = pa ot
is its restriction to B. They can be represented as cyclic and separating vectors |Qp) and
|24) in the GNS Hilbert spaces H,, and H,,. We denote these Hilbert spaces by Hp

Tt is a type I von Neumann factor. For a classification of von Neumann factors see [36].
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and H 4, respectively. The encoding map as a superoperator is represented by an isometry
W :Hp — Ha:

L(0) [©24) = Wb|Qp) . (C.1)

Since we assumed that p4 is decodable, this state is preserved under the conditional ex-
pectation toa : A — «(B). We will see in theorem 4 that this is equivalent to the Takesaki
condition: J4W = W.Jpg, where J4 and Jp are the modular conjugation operators cor-
responding to p4 and pp. This implies that our decoding map corresponds to the GNS
operator

1/2 1/2 1/2
a(a) lpy*) = JpW'aa|of?) = Wha|plf?) . (C:2)
In other words, a state is decodable if it satisfies the Takesaki condition, in which case ¢ is
the Petz dual of a.
During the simulation, errors V,. can occur that corrupt the physical states:

alpi?) = Vealp}{®) . (C:3)

In particular, this corrupts our encoded states ¢(b) | pi‘/ 2>

. In the Heisenberg picture, the
states do not change but the errors corrupt the physical operators. If there is only one
error V' that occurs deterministically it has to be an isometry to preserve the norm of states
and the error map in the Heisenberg picture is a — VTaV. If there is a collection of errors
V- the error map a — ®(a) =, Vi'aV, is a unital CP map. As in (A.2), we absorb the
probability p, of error V. occurring in the definition of the Kraus operators. The goal of
the theory of quantum error correction is to find an encoding (faithful representation) of
the algebra ¢ such that we can detect the errors V,. and correct for them using correction

operators R,:
WIR VWb o) o [pif?) (C.4)

It is convenient to absorb the encoding isometry in the definition of the error operator and
the decoding co-isometry in the definition of the correction operators so that we have

RVb|Qp) x b|Qp),
Re:Ha— Mg, ViiHp—Ha. (C.5)

The new error map and recovery maps are
®a) =) ViV, €B,  R(b)=> RIbR. cA. (C.6)

In the Heisenberg picture, instead of correcting states, we correct for operators. An
operator ¢ € B is called correctable if there exists a recovery map R that satisfies ®(R(c)) =
¢.%0 In addition to ¢, this recovery map corrects the whole algebra of operators invariant

50Note that in the Heisenberg picture, the order of actions is reversed.
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Figure 14. General setup for error correction: the error map is ® : A — B and the recovery map
R : B¢ — AY recovers the operators in the correctable subalgebra BC.

under ® o R. We say a subalgebra B is correctable if there exists a recovery map R such
that ® o R(c) = c for all ¢ € B, see figure 14. We will show below that a subalgebra is
correctable if and only if for all ¢ € BY and all errors V;. and Vi we have |c, VTTVS] = 0. This
is the same condition in (A.43) for an operator that belongs to the multiplicative domain
of ®*.

With a recovery map in hand, we apply R(c1) € A to the corrupted state that has the
effect of ¢ in the presence of error:

R(c))Vrle2),, = Vecr|ea),, - (C.7)

Since the equation above should hold for all ¢y it implies an operator equation that we call
the recovery equation:

vr, R(e)V, = Vye. (C.8)

The recovery map R : BY — A is a CP map which is unital if the kernel of the error
map is empty. Any operator X that satisfies XV, = 0 for all errors V,. can be added to
R. If the span of the range of all V,. is not the whole Hilbert space the error map ® is
not faithful. The information content of the operators in the kernel of ® is forever lost
and we cannot hope to recover them. It is convenient to truncate the physical algebra so
that the error map ® becomes faithful. Define P to be the projection to the span of V,./IC
and replace A by PAP. The projection P projects down to the code subspace. With this
truncation the recovery equation uniquely fixes the recovery map. If Ry and Ro are two
recovery maps we have (R1(c) — Ra(c))V, = 0 and since the span of the range of all V;. is
the whole Hilbert space we find R1(c) = Ra(c) for all ¢ € BY. This unique recovery map
R : BY — PAP is a representation because it satisfies

R(c1)R(c2)Vy = R(cic2) Vs (C.9)

It is a faithful representation because none of the errors can kill code states. A faithful
representation establishes a x-isomorphism between the algebras B¢ and the subalgebra,
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AC = R(AC) C A. The superoperator R corresponds to an isometry W : Hp — H4 in
the Hilbert space, and hence it is an isometric embedding of B® in A; see figure 16.

The errors acting on B are correctable if there exists a solution to the recovery
equation (C.8). Consider a self-adjoint operator ¢ € B. If the equation holds (C.8) we
find that

VIRV, = VIiVie=cVIV, . (C.10)

The self-adjoint operators in the code algebra satisfy the commutation relation [c, V,JLVS] =0
for all 7, s. We will see below the converse also holds and the correctable subalgebra can be
defined as the commutant of the set of operators VTTV; for all r, s. Note that the correctable
algebra always includes the identity operator. If we pick our operators to be inside the
correctable algebra we are guaranteed that there exist recovery maps that correct the errors.

In the case of a single error, it is straightforward to see that the dual map ®* is a
recovery map because V is an isometry. When there are several errors the dual map is
P*(c) =3, V,cV;l satisfies

(Ve =Y VacViV = ViV Vee = 2* (Ve . (C.11)

If ® is faithful the dual map ®* is invertible and R(c) = ®*(I)~!®*(c) solves the recovery

61 Otherwise, we define ®*(I) on the orthogonal complement of the

equation in (C.8).
kernel of ®. While not manifest from its form, this map is CP. It follows from the recovery

equation that
R(c)®*(I) = ®*(c) . (C.12)

Therefore, R(c) = ®*(I)~1®*(c) = ®*(c)(®*(I))~!, and as a result [®*(c), (®*(I))~!] = 0.
To make the recovery map manifestly positive we write it in the form [3]62

R(c) = (&*(I)) "2 (e)(@*(1)) "/ . (C.13)
The map above is the unique recovery map R : B¢ — PAP.

C.1 Passive error correction

Perhaps the easiest way to protect against errors is to find an encoding of the algebra B in
the physical Hilbert space that is immune to errors so that we do not need to correct at all.
We achieve this if we choose our code operators from the subalgebra A’ that is invariant
under the action of the error t o ® : A — A; see figure 15. For simplicity, in this case, we
can absorb ¢ in ® so that we get rid of B all together. We have A = ((B) a subalgebra
of A and an error map that with a slight abuse of notation we write as ®(a) =), Viev,.
As we showed in section A an operator ¢ € A’ if and only if [c, V] = [¢, ViI] = 0 for all 7;
see figure 15. The commutant algebra (A’) is sometimes called the interaction algebra.5?

519 is faithful, therefore there exists no projection p € A such that ®(p) = 0. Since ®(p) is a positive
operator we have tr(®(p)) # 0. This implies that tr(p®*(I)) # 0 for all projections p. In other words, ®*(I)
is full rank.

621f A and B are commuting positive matrices then A and B*/? commute.

53The interaction algebra is the double commutant of the set of errors {Vs, VJ}.
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Figure 15. Passive error correction: The physical algebra A. The subalgebra A’ C A of physical
operators is used to simulate system B because it is left invariant by the error map ®.

Encoding operators in the invariant subalgebra A’ to protect them from an error map
® has the advantage that we are simultaneously protected against any other error map
whose Kraus operators are in the interaction algebra. For instance, in matrix algebras, we

are also protected against any error map

() = 0(p)"2D(p'2ap'?) B (p) 1/ (C.14)

where p satisfies the condition:%*

p2ep 1% = ®(p) 2cd(p) V2 e AL (C.15)
Note that the constraint above implies

O(p'2cp'?) =N Vi Pep! PV = @(p)p Pep! P (C.16)

r

Plugging this in the new error map gives
() = B(p)?p Pep'PD(p) P = ¢ (C.17)

where we have used (C.15) again.

In passive error correction the invariant subalgebra is the code subalgebra. Next,
using the intuition from section B.3, for any error map we construct an explicit conditional
expectation that projects down to the invariant subalgebra.

Given a unital CP map @ that preserves some faithful state p, the p-preserving map

£,(a) = lim ~(a+ D(a) + D*(a) +--- " (a)) (C.18)

n—oo n

is a conditional expectation that projects to the invariant subalgebra of ®. To see this,
consider the Stinespring representation ®(a) = Wir(a)W. Since ® is unital, W is an

54In theorem 4 we show that this is equivalent to the Takesaki condition.
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Figure 16. (a) Active error correction where the whole algebra B is correctable: The action of the
error map ® : A — B on the correctable subalgebra A® can be undone using the recovery map R.
(b) The Petz dual map as the recovery map.

isometry. Both the representation map a — 7(a) and the compression 7(a) — Wir(a)W
are norm non-increasing, hence [|®(a)|| < ||a||, and

(@) ~ Ey(@)] = | lim —(@"(a) ~a)] < Tim ~ (" (a)]| + [al)

2

< lim —|a||=0. (C.19)
n—oo N

We find that the range of £, is A, This map is evidently CP and leaves every operator in

A” invariant; therefore it is a p-preserving conditional expectation.

C.2 Active error correction

Passive error correction is convenient when there are a few types of errors. If we have a
large set of errors we might not have the luxury of finding a large invariant subalgebra
to encode all our operators. Then, we have to apply recovery map to correct errors. The
recovery equation in (C.8) only fixes the action of R on B¢. For simplicity, in the remainder
of this section, we focus on the case where the whole algebra B is correctable. We will also
assume that the kernel of the error map is trivial so that the recovery map is unital. In
this case, the composite map Ro ® : A — A® is a conditional expectation. A state pa
is correctable if it is invariant under this conditional expectation. The theorem 4 below
characterizes all states that are preserved under a conditional expectation from A to A°.
Given such a correctable state, the recovery map is the Petz dual of the error map which
corrects the errors on a set of states; see figure 16. Such states are called sufficient with
respect to this error map. We will see that the relative entropy of any pair of sufficient
states remains unchanged under the error map.

In matrix algebras, there always exists a trace-preserving conditional expectation & :
A — AC if A contains the identity operator. To show this, we start with the orthogonal
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projection P, in the Hilbert space H. that projects down to Hc that is the span of A |e).
We show that the superoperator that is associated with it is a trace-preserving conditional
expectation. Since P.cle) = c|e) the superoperator & satisfies &(c) = ¢ for all ¢ € A°.
Furthermore, we have

(e[€c(a)le) = (e[ Peale) = (Peelale) = (elale) , (C.20)

therefore &, is trace-preserving. We only need to prove it is CP.
To show that & (a4 ) is positive we need to show the matrix element

(a2|€c(a4)|az) = (az|Pearaz) = (Peaz|ayaz) (C.21)

is positive. It is clear that if |a) € (P.), this matrix element is zero, therefore we only
need to consider (c|E(ay)|c) for ¢ € A®. The inner product in the Hilbert space . has
the special property that

(a1|agay) = tr(a];agal) = tr(alaiag) = (a1a1|a2> (C.22)

where we have used the cyclicity of trace. Therefore,
(cl€c(ay)le) = (cfe|Pay) = (Pclelay) = (cIelay) = (clasle) >0 . (C.23)

Therefore, & is a positive map. Similarly, the map &, ® id,, corresponds to P, ® I, in the
Hilbert space H. ® KC,, which is also positive by the same argument, therefore &, is CP. The
superoperator &, is the unique trace-preserving conditional expectation from A — AC 65
If a density matrix p satisfies the Takesaki condition the conditional expectation in (C.18)
that corresponds to ®, in (C.14) preserves p. In fact, we can explicitly write down the
p-preserving conditional expectation in terms of the trace-preserving one:

Ep(a) = pc?Ec(pap"?)p g (C.24)

where p¢ is the restriction of p to the subalgebra A®. These maps are the same as the
p-preserving conditional expectations constructed in section A.3.

We now prove that the Takesaki condition in (C.15) is the necessary and sufficient
condition for a state for the existence of a p-preserving conditional expectation. The
argument trivially generalizes to infinite dimensions [35].

Theorem 4 (Takesaki’s condition: matrix algebras) The following statements are equiv-
alent:

1. There exists a p-preserving conditional expectation &, : A — AC.

2. For all ¢ € A® we have p*/?cp=1/? € AC.

55The bi-module property follows from

tr(c1€e(c2a)) = (| Pecaa) = (P.cl|caa) = (ch Pocl]a) = (Poclcl|a) = tr(cico€e(a)) .
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3. For all ¢ € A€ we have p1/200_1/2 = Plc/QCPEI/Z-

Here, pc is the restriction of p to AC.

Proof:

(2 — 1): Repeating the argument above for the projection P, in the GNS Hilbert space
to the subspace H¢ spanned by A | pl/ 2) reveals why there might not exist a p-preserving
conditional expectation for an arbitrary p. By the same argument, the projection P,
corresponds to a superoperator &, : A — AC that preserves p and satisfies Ey(c) = c
However, in general, it will not be CP because there is no analog of the property (C.22) in
the GNS Hilbert space H,. Instead, we have

(a1]azar), = tr(alpaf{ag) = tr(p(p_lalp)aiag) = (ale(aD\ag)p (C.25)

1

where D,(a) = pap™" is the modular superoperator we introduced in section (B.1). If

Dy(c) € AY we can repeat the argument above to show

<C‘gp(a+)c>p = <0Dp(CT)’Ppa+>p = <PPCDP(CT)|G+>p
= (cDp(chay), = (clase), > 0. (C.26)

Therefore, if D,(c) € AY the superoperator &,(c) is CP and hence it is the unique p-
preserving conditional expectation from A to A®. If D,l,/ 2(0) € A% so is D,y(c) € A%,
therefore the condition in (2) is sufficient for (1).

(1— 2): Assume that &, exists and P, is its corresponding projection operator in
H,. Consider the Tomita superoperator S(a) = al. Since &y is a positive map we have
Ey(al) = E,(a)" which implies £,(S(a)) = S(,(a)). In the GNS Hilbert space, this implies
[P,,S,] = 0. Since P, is self-adjoint when &, is p-preserving we also have [P, S;T,] = 0.
Therefore, we find [P,, A,] = 0, where A, = S};Sp is the modular operator of p. Since both
operators are positive we have [P, A,l,/ 2] = 0, and using the superoperator representation
we obtain S(D,l,/Q(a)) = D,l,/Q(S(a)). For any ¢ € A"

(D () = D2 (E,(c) = D% () - (C.27)

Therefore, D,(c) = p'/2cp™1/? € A°.

(1— 3): We saw that (1) implies the commutation relation [P,, A,] = 0. Define the
state pc on the subalgebra A® as the restriction tr(pcc) = tr(pe).% Consider its GNS
Hilbert space H¢ spanned by ¢ |plc,/2> and the linear map W : Ho — Ha:

Welod?) = clp'/?) . (C.28)

It follows from the definition of po that this linear map is an isometry and WASWT is an
isometric embedding of A in A. Acting with the modular operator we find

S,We |plc/2> =l [p!/?) = WSee |pg2) . (C.29)

56Note that pc = E.(p) because tr(cpc) = tr(cp) = tr(Ee(cp)) = tr(cEe(p)).
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In other words, S,W = WS¢ and as a result we have WTApW = Ac and P,A,P, =
WAcWT. When [A,, P,] =0 we can take the square root of this equation to find

P,AY? = WA AWl (C.30)
or equivalently®”
AW =waly? . (C.31)

This together with S,W = WS¢ gives the form of the Takesaki condition J,W = WJc.
Then, the constraint that D,(c) € A becomes

DL2(c) [p1/?) = P,AY % |p/?) = WAL c|pd®) = WD (0) [nd?) = D (e) /2] C.32)
As a result, we have
p2ep~112 = D2 (c) = DY (e) = pedepc (C.33)

which is the condition in Takesaki’s theorem.

(3— 1): Consider a subalgebra AY C A and the isometric embedding map ¢ : A® —
A. The Petz dual Lf : A — AC is unital and CP. It follows from the definition of the
alternate inner product in (B.38) that the Petz dual satisfies

(if (@) Ad%e) = (alA}%e) . (C.34)

We now show that when (3) is satisfied this Petz dual map is a p-preserving conditional
expectation. All we need to show is that }'(c) = e

(ih(e|ader) = (@|A)?e) = (e|Dy*(e2),

— (DL (), = (1] AL ) (C.35)

P pc

where in the second line we have used (3) and cJ{ch/ 2(02) € AY. Since the isometric
embedding is trivial in this case the composite map £ f =0 Lf : A — AY is a p-preserving
generalized conditional expectation that becomes a conditional expectation (3) is satisfied.
O

All the steps of the arguments above can be repeated for an arbitrary von Neumann
algebra with p'/? replaced with Aé/ % The proof did not rely on the existence of a density
matrix or a trace, and trivially generalizes to an arbitrary von Neumann algebra and its
GNS Hilbert space representation:

Theorem 5 (Takesaki’s condition: von Neumann algebras) Let A® C A be an in-
clusion of von Neumann algebras. Let pa be a faithful state of A and pc be its restriction
to AC. Let ‘pi‘/2> and \pép) be the cyclic and separating vectors in Ha and He. Define the
isometry W : Ho — Ha as We \plc/2> =c ‘P114/2> for all c € A®. The following statements
are equivalent:

57We act with W' on the left and take the Hermitian conjugate.
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1. There exists a pa-preserving conditional expectation &£, : A — AC

2. The modular conjugations J4 and Jo corresponding to \p}f) and \pg2> satisfy JAW =
Wdc.

3. APW =waAl?

Our next question is given a p-preserving conditional expectation what other states are
also invariant under it? To characterize all “sufficient” states of a p-preserving conditional
expectation £, we show that it preserves another state w if and only if the sufficiency

condition

1/2

Wt = ptp (C.36)

is satisfied [46, 47]. If we are given a p-preserving conditional expectation £, the map

£%(a) = w51/2plc/25p (p—1/2w1/2aw1/2p—1/2> pg2w51/2 (C.37)

is a w-preserving CP map from A — AC. If it preserves every operator in ¢ € A® it
becomes an w-preserving conditional expectation. It is clear that if sufficiency condition
in (C.37) holds it becomes an w-preserving conditional expectation &, = &,. Therefore,
&, also preserves w. We now prove the converse: the conditional expectation &£, preserves
w only if the condition (C.36) holds. We basically repeat the proof of Takesaki’s theorem
for the relative Tomita operator S, ,a 1p*/?) = at|w'/?). The norm of this operator is

the relative modular operator A
1

wlp © Hp — Hp. The superoperator corresponding to it

is Dy|p(a) = wap™. We repeat the argument for the Takesaki theorem with the relative

modular map D,,|,(a) = wap~ ! to find [P, Ai/‘i] = 0. This implies
1/2 1/2 1/2
Ex(D,1, () = Dy (Ep(c)) = Dyfp(c) € A (C.38)

We define the isometries

1/2
Welpd?) = ¢|p'/?)

Waelwg?) = c|w'/?) (C.39)
so that
SuloeWo = WeSuc|pe
WAL LW = Dugipe - (C.40)
Since [P, A}u/li] = 0 we have
/2 _ 1/2 f
PA L =W,ALL W (C.41)
As a result,
1/2 1/2 1/2 1/2
DL 101) = AL e o) = WoAL2, elod”)
1/2 1/2 1/2
=W,D.%, () |pd®) = D2, ()02 . (C.42)
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We obtain that

_ 1/2 1/2 /2 —1/2
w'2ep1/? = Dw/‘p (c) = Dw/clpc (c) = wc/ cpo /2 (C.43)
In other words,
-1/2 —1/2 -1/2 —1/2 1/2
wc/w1/26p1/2pc/ :C:pc/pl/ch 1/2/)0/ (C.44)

which holds if and only if the sufficiency condition in (C.36) is satisfied.

The sufficiency condition can be expressed as

A2 =w,Al” Wi (C.45)

wlp welpc

Using the integral representation of X for o € (0, 1)

o _ sin(ma) [ (1 1
X% = - /0 ds s <s 5+X> (C.46)

we find

o0 1 1
1/2
/0 ds s*/ (8+ s W,j):o. (C.47)

wlp welpe

From the monotonicity of the relative modular operator [36, 48] we know that the operator
in the integrand above is positive, therefore it has be zero:

1 1

_ - wi C.48
s+ AWIp 75+ BDocloe * ( )
which implies
@ T
olp =W chlchp . (C.49)
Furthermore, for any continuous function f we have
Wof (Ac) lod®) = F(&) [07?) (C.50)

In particular, choosing f(z) = 2% for t € R we find that pcwc = p'w™*. This condition
implies that the relative entropy for any pair of sufficient states p and w:

S(wllp) = S(wellpe) - (C.51)
Intuitively, this says that a coarse-graining (conditional expectation) preserves a set of

states {px} (sufficient states) if and only if the distinguishability (relative entropy) of any
pair of them remains the same.
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C.3 Condition for exact error correction

The purpose of this appendix is to provide an intuitive understanding of why the Takesaki
condition WJg = J4W is the necessary and sufficient condition for exact quantum error
correction. To see how the subsystem error correction works in the language of algebras and
operators consider a vector [Qp) € Hp that we encode in [Q4) = W |Qp). The encoding
is such that the actions of the errors V. in A can be undone using the correction operators
Ry: RV, |Q4) o |Q24). We call the vector [€24) correctable. The goal is to protect the
operators in B’ from the errors V;. in A. The encoding map sends all vectors b’ [Qp) € Hp
to W' |Qp). The errors occur and we act with our correction operators R, to obtain the
vector R, V,W¥ |Qp). Since Wb'WT is supported on A’ it commutes with the errors V. and
R,

RV, WV |Qp) = R Vu,(WHWT) Q) = (WHYWHR,V, [Q4) o« W [Qp) . (C.52)

Therefore, if W |Q2p) is correctable all vectors Wb’ [Q2g) are correctable.

The subsystem error correction above is rather trivial. To make it more interesting
one would like to correct for errors V,! that occur inside A’. Assume for a moment that we
have complementary recovery which means that for all operators in B the encoding WbW T
are correctable and supported on A. Furthermore, assume that there exist swap operators
J4 and Jp that swap A <+ A’ and B <+ B’. Then, a simple idea is to first use the swap to
encode V' in B, and then use the map WbWT that brings to A. Now, it commutes with all
the errors V.

We use the swap J4 to map an error V! to A so that we can correct the vector [Q4)
using our correction operator R, in A:

Ry JaV! [Q4) o |4) - (C.53)

With the assumption of complementary recovery, it is easy to see that the correction R,
can correct all vectors W.Jgl' |Qp):

R, JAVIW gV |Q5) = R.J AV, (Wb JgWT)|Q4)

= R JA(W I JgWHV! [Q4) = JAa(W It JgWT)JAR, JAV! |Q24)

ox JAW Jgl' 1952)) (C.54)
if JAW = W.Jp holds as an operator statement. Here, we have assumed that J4 and Jp
are symmetries of the vectors [Q4) and |Qp) and J3 is identity, and J4 = JI‘.Gg The

encoding map that played a central role in correcting the errors in A’ is called the Petz

map:
(b)) = JAW Jb' JgW iy, . (C.55)
In the Heisenberg picture, in the absence of any errors this encoding map should satisfy

a(l®)) =V . (C.56)

58Swapping twice is the identity operation.
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This means that we should have

W (AW It JgWTI )W =1 . (C.57)

It is clear that since Ji =TI and J123' = I the condition J4W = W Jp is sufficient to satisfy
the equation above. Theorem 5 shows that the Takesaki condition J4W = W Jp is also

necessary for a vector to be correctable.
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