
QLB: Collision-Aware�asi-Newton Solver with Cholesky and
L-BFGS for Nonlinear Time Integration

Bethany Witemeyer
Texas A&M University

USA

Nicholas J. Weidner
Texas A&M University

USA

Timothy A. Davis
Texas A&M University

USA

Theodore Kim
Yale University

USA

Shinjiro Sueda
Texas A&M University

USA

Figure 1: Our method accelerates the convergence of nonlinear implicit time integration schemes, and works with complex
materials, frictional contact, and self collisions.

ABSTRACT
We advocate for the straightforward applications of the Cholesky
and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithms in the context of nonlinear time integration of
deformable objects with dynamic collisions. At the beginning of
each time step, we form and factor the Hessian matrix, accounting
for all internal forces while omitting the implicit cross-coupling
terms from the collision forces between multiple dynamic objects
or self collisions. Then during the nonlinear solver iterations of
the time step, we implicitly update this Hessian with L-BFGS. This
approach is simple to implement and can be readily applied to any
nonlinear time integration scheme, including higher-order schemes
and quasistatics. We show that this approach works well in a wide
range of settings involving complex nonlinear materials, includ-
ing heterogeneity and anisotropy, as well as collisions, including
frictional contact and self collisions.

CCS CONCEPTS
• Computing methodologies! Physical simulation; Simula-
tion by animation.

KEYWORDS
Physical simulation, deformation, �nite elements

ACM Reference Format:
Bethany Witemeyer, Nicholas J. Weidner, Timothy A. Davis, Theodore Kim,
and Shinjiro Sueda. 2021. QLB: Collision-Aware Quasi-Newton Solver with

MIG ’21, November 10–12, 2021, Virtual Event, Switzerland
© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The de�nitive Version of Record was published in Motion,
Interaction and Games (MIG ’21), November 10–12, 2021, Virtual Event, Switzerland,
https://doi.org/10.1145/3487983.3488297.

Cholesky and L-BFGS for Nonlinear Time Integration. InMotion, Interaction
and Games (MIG ’21), November 10–12, 2021, Virtual Event, Switzerland.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3487983.3488297

1 INTRODUCTION
Physics-based simulation has become an important tool in computer
animation. Starting with the seminal work by Terzopoulos et al.
[1987], many sophisticated methods have been proposed to improve
various aspects of these simulations. An early example of this is
the linearly implicit Euler integration method of Bara� and Witkin
[1998], which is still in use today in a production environment
due to its favorable blend of e�ciency, stability, and visual �delity
[Kim and Eberle 2020]. More recently, nonlinear integration meth-
ods have become increasingly popular in physics-based animation,
with examples including BDF1 (1st-order Backward Di�erentiation
Formula) [Hairer et al. 2006], BDF2 (2nd-order Backward Di�eren-
tiation Formula) [English and Bridson 2008; Geilinger et al. 2020],
TR-BDF2 (Trapezoidal-BDF2) [Xu and Barbič 2017], and SDIRK2
(2nd-order Singly-Diagonal Implicit Runge-Kutta) [Löschner et al.
2020]. Quasistatic simulations with time-varying boundary condi-
tions, which require nonlinear solves, have also been extensively
studied [Smith et al. 2018; Modi et al. 2021; Brown and Narain 2021].

We accelerate the convergence of these nonlinear time inte-
gration schemes by combining the frozen factorization approach
[Bank and Rose 1981; Deu�hard 2011] and the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [Nocedal
1980]. With the frozen factorization approach, the Hessian matrix
is kept constant during the nonlinear solve, which can be advan-
tageous since it is often expensive to form and factor the Hessian.
Like other quasi-Newton methods, as long as the gradient vector is

1

https://doi.org/10.1145/3487983.3488297
https://doi.org/10.1145/3487983.3488297


MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Witemeyer, et al.

computed exactly, using an approximate Hessian only a�ects the
convergence rate and not the �nal solution. Unfortunately, with the
frozen factorization approach, the number of iterations can become
too large, even though each iteration is quick. We therefore use the
L-BFGS algorithm to prevent the frozen Hessian from going stale.
At the beginning of each nonlinear solve, we form and factor the
Hessian matrix at the current state of the system. Then during each
step of the nonlinear solve, we use the latest system information to
store and apply the implicit updates to the frozen Hessian.

Our method is a general, practical method to accelerate nonlin-
ear time integration for deformable object simulations. The e�-
ciency advantage provided by our approach is the greatest when
the required number of nonlinear iterations is high. In Sec. 4 we
show this experimentally by changing various scene parameters
(e.g., anisotropy, heterogeneity, collisions, time step) and measuring
the corresponding change in the wallclock time. In some cases, we
obtain a speedup of 7.9x compared to the baseline method.

2 RELATEDWORK
There are many existing methods for improving the e�ciency of
simulation-based techniques.

Subspace dynamics [Pentland and Williams 1989; Barbič and
James 2005; Choi and Ko 2005; Fulton et al. 2019; Lan et al. 2020]
or condensation [Guyan 1965; Teng et al. 2015; Mitchell et al. 2016;
Weidner et al. 2020] can achieve impressive speedups, but they
inevitably introduce errors in the resulting motion. The focus of our
paper is on improving computational e�ciency without changing
the model of the underlying system. Furthermore, unlike some
of these existing techniques, our method does not require any
precomputation of modes or basis functions. The recent work by
Fulton et al. [2019] uses an autoencoder to compute the latent space,
and they also use a combination of matrix factorization and L-BFGS
to accelerate the nonlinear solve. We use a similar idea, but in
the full, unreduced deformation space. Li et al. [2019] also use the
same idea for domain-decomposed time integrator with impressive
results. We do not use domains, but we also introduce a simple way
to make the approach collision-aware.

Unlike these reduction based methods, multigrid methods are
capable of producing massive speedups for the full, non-reduced
problem [McAdams et al. 2011; Tamstorf et al. 2015; Xian et al. 2019].
However, non-trivial extensions are necessary to support complex
materials involving heterogeneity and anisotropy [Chen et al. 2019].
Also, no previous work has simultaneously demonstrated collisions
and higher-order time integration schemes.

Since our method is based on factoring a global matrix and
reusing its decomposition, it is similar in �avor to Projective Dy-
namics (PD), ADMM, and other global-local methods [Bouaziz et al.
2014; Narain et al. 2016; Liu et al. 2017; Peng et al. 2018; Zhang et al.
2019; Brown and Narain 2021]. In particular, the quasi-Newton
approach of Liu et al. [2017] is highly related to our paper, as they
also use L-BFGS to accelerate the convergence. In the context of PD,
their method is clearly the fastest method around, since they require
only one factorization at the beginning of the time step, and during
the rest of the simulation, they only require forward/backward
solves and L-BFGS updates. Furthermore, their L-BFGS updates

allow them to e�ciently account for any nonlinear material mod-
els. Outside of the PD framework, however, their initial Hessian
becomes not applicable. They also did not show any results involv-
ing collisions between multiple dynamic objects, self collisions, or
friction.

Position-based Dynamics (PBD) is an attractive option for real-
time multi-physics simulation that is capable of modeling every-
thing from rigid and elastic bodies to �uids [Müller et al. 2007].
Many features have been added over the years, including new ma-
terial models, new constraints, and more sophisticated integrators
[Bender et al. 2017]. However, PBD is a fundamental departure
from classical methods, and cannot be readily deployed without
changing the core of an existing simulator.

Similar to our work, Cholesky factorizations have been re-used
or updated in geometry processing, but they either apply to local
solutions [Herholz et al. 2017; Herholz and Alexa 2018], or update
based on changing boundary conditions [Herholz and Sorkine-
Hornung 2020]. These methods are e�cient for nonlinear solves
involving a subset of vertices but are ine�cient for nonlinear solves
involving all of the vertices of the deformable objects. They further
assume that the underlying energy is Laplacian. Several simulation
works have also attempted to use updated factorizations, but either
only apply to linear [James and Pai 1999] or co-rotational materials
[Hecht et al. 2012; Mitchell et al. 2016].

3 METHODS
In this section, we describe our approach, which we call QLB: a
Quasi-Newton approach that uses the Cholesky factor L and L-
BFGS updates.1 First, in §3.1, we describe the general formulation
of the nonlinear solver. Then in §3.2, we describe how we use
Cholesky and L-BFGS to e�ciently compute the search direction.
Finally, in §3.3, we describe how we handle dynamic collisions
within this framework.

3.1 Background
Our approach is applicable to a wide range of nonlinear integra-
tors, but for brevity we use BDF1 [Hairer et al. 2006] as a concrete
example throughout this section. Let x and v be the nodal positions
and velocities of the volumetric solid, andM be the constant mass
matrix. Furthermore, let f (x, v) be the force vector, and derivatives
D = 3f/3v and K = 3f/3x be the damping and sti�ness matrices,
respectively. We use a trailing superscript with parenthesis to de-
note the time step. Thus, the goal of each integrator is to compute
the nodal positions x(:+1) given x(:) . After computing x(:+1) , we
compute the nodal velocities v(:+1) using the discretization scheme
of the particular integrator.

With BDF1 (see supplemental material for other integrators), we
solve a nonlinear system to advance the state from step : to : + 1:

Mv(:+1) = Mv(:) + ⌘f (:+1) (1a)

x(:+1) = x(:) + ⌘v(:+1) , (1b)

where ⌘ is the time step. We substitute Eq. 1a into Eq. 1b to arrive
at the following equation:

x(:+1) = x(:) + ⌘
⇣
v(:) + ⌘M�1f (:+1)

⌘
. (2)

1QLB can also mean “Quick Like a Bunny.”

2



QLB: Collision-Aware�asi-Newton Solver with Cholesky and L-BFGS for Nonlinear Time Integration MIG ’21, November 10–12, 2021, Virtual Event, Switzerland

We now solve for a root x(:+1) that satis�es the nonlinear system.
After some rearranging (see supplemental material), the Newton
search direction is then �x8 = �H�1

8 g8 , with

g8 = M
⇣
x(:+1)8 � x(:) � ⌘v(:)

⌘
� ⌘2f (:+1)8

H8 = M � ⌘D(:+1)
8 � ⌘2K(:+1)

8 ,
(3)

where 8 indicates the current iteration of the nonlinear solve.

3.2 Accelerated Nonlinear Solver
One way to accelerate the nonlinear solver is the frozen Cholesky
approach [Bank and Rose 1981; Deu�hard 2011]. This approach im-
proves the e�ciency of nonlinear solvers by forming and factoring
the system matrixH only periodically and reusing the frozen factor-
ization L = chol(H) multiple times, even when H changes during
the nonlinear solver iterations. To compute the search direction,
only forward/backward solves are required: �x8 = �L�>L�1g8 . The
main di�culty with the frozen Cholesky approach, however, is that
the L factor can become stale over time—i.e., LL> is no longer a
good approximation of H.

The L-BFGS algorithm is an ideal candidate to overcome this
di�culty [Nocedal 1980]. Since we are performing a root-�nding
operation, we can view the Newton solve as optimizing some func-
tion with gradient g and Hessian H. L-BFGS applies corrections
to the inverse Hessian implicitly, so that the computation of the
line search takes into account the curvature information obtained
during the nonlinear iterations. While this approach has also been
used previously for Projective Dynamics by Liu et al. [2017] and
for reduced dynamics by Fulton et al. [2019], in this paper, we ap-
ply L-BFGS in the context of classical nonlinear integrators for
scenes with collisions between dynamic objects, self collisions, and
frictional contact.

We use the standard, two-loop recursion version of the L-BFGS
algorithm [Nocedal 1980; Nocedal and Wright 2006]. For clarity,

Algorithm 1 Stores the necessary information for implicitly up-
dating H�1 with L-BFGS. Both s and y are lists of vectors 2 R= , and
d is a list of scalars. All three lists have length<. Here we assume
that elements of these lists have been �lled up to< � 1.

1: procedure LBFGS������(x, xprev, g, gprev)
2: s< = x � xprev
3: y< = g � gprev
4: d< = (s><y<)�1

Algorithm 2 Computes z = H̄�1b, where H̄�1 is the implicitly
updated inverse Hessian.

1: procedure LBFGS�����(b, L) ! (z)
2: for 8 =<, · · · , 1 do
3: U8 = d8 (s>8 b)
4: b�= y8U8
5: z = L�>L�1b
6: for 8 = 1, · · · ,< do
7: V = d8 (y>8 z)
8: z+= s8 (U8 � V)

Algorithm 3 QLB solver for stepping from x(:) to x(:+1) .

1: procedure QLB(x(:) ) ! (x(:+1) )
2: Compute HP (x(:) ) ù Hessian depends on integrator
3: LP = chol(HP) ù persistent Cholesky factor
4: x = x8=8C ù initial guess depends on integrator
5: while not converged do
6: Compute g(x) ù gradient depends on integrator
7: LBFGS������(x, xprev, g, gprev)
8: �x = �LBFGS�����(g, LP) ù search direction
9: Line search for _
10: x+= _�x
11: x(:+1) = x

we divide the algorithm into two stages: LBFGS������ and LBFGS�
�����, shown in Alg. 1 and Alg. 2, respectively. The parameter<
controls the number of past steps to use to compute the correction
to the Hessian. Given<, we store a pair of vectors {s8 , y8 } and a
scalar d8 from each of the past< iterations. In LBFGS������, we
take the current and previous values of x and g, and then update
s, y, and d , throwing away old values from < iterations ago. In
LBFGS�����, we use the stored values to compute z = H̄�1b, where
H̄�1 is the implicitly updated inverse Hessian. Computationally,
the only bottleneck is the forward/backward solve in line 5, since
the two for-loops contain only vector dot products and scalar oper-
ations. Importantly, unlike with the original BFGS algorithm, the
actual rank-1 updates to the inverse Hessian are never constructed,
which would be prohibitively expensive since they would be fully
dense. If< = 0, this algorithm reverts back to the frozen Cholesky
approach, since the two for-loops would not be executed.

Alg. 3 shows our QLB nonlinear solver that combines Cholesky
and L-BFGS, which can be applied to a variety of nonlinear time
integration schemes. In line 2, we compute the Hessian matrix using
the current vertex positions. (In §3.3, we explain the subscript ‘P’,
which is for ‘persistent’.) Then in line 3, we compute the Cholesky
factor of theHessian, which is passed into the L-BFGS solve function
in line 8.

3.3 Dynamic Collisions
One of the bottlenecks in the QLB procedure is the Cholesky factor-
ization (Alg. 3, line 3). And within the sparse Cholesky factorization
routine, the two major steps are symbolic analysis and numeric
factorization. With our implementation (which uses Cholmod) and
our examples, we found that symbolic analysis can take up to 20%
of the time of numerical factorization. Therefore, it is highly advan-
tageous to keep the sparsity the same if at all possible throughout
the course of the simulation.

If a dynamic object collides only with a kinematic object (or a
kinematically moving object), then the sparsity pattern remains con-
stant. This is because the sti�ness matrix entries from the penalty
collision forces already exist in the sti�ness matrix of the internal
deformation forces. More formally, let Kext and Kint be the sti�ness
matrices of external (collision) and internal (deformation) forces.
With dynamic-static collisions, the non-zero entries of Kext are a
subset of the non-zero entries of Kint. However, when there are
dynamic-dynamic collisions (e.g., between two dynamic objects or

3



MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Witemeyer, et al.

Figure 2: Collision between two bodies with 5 vertices each.
The blue circles represent the non-zero entries from the
elastic forces. (Each circle corresponds to a 3x3 block for
a vertex.) Collisions between a body and a kinematic object
(e.g., ground) add entries only to existing blue entries (green
outline). Dynamic collisions between two bodies (or self con-
tact) add entries to existing blue entries (orange outline) and
to new locations (orange solid). We call solid orange entries
the transient matrix HT and all the other entries (solid blue,
green outline, and orange outline) the persistent matrix HP.

self collisions), then the non-zero entries of Kext are no longer a
subset of the non-zero entries of Kint.

As a simple example, consider a collision between a vertex from
one object and a triangle from another object, as shown in Fig. 2.
The two objects have �ve vertices each, and the non-zero entries in
the systemmatrix corresponding to these vertices are shown as blue
circles, with each circle representing a 3x3 block of a vertex. One of
the objects is colliding with a kinematic object (e.g., ground), and the
resulting non-zero entries are shown in green. For these kinematic
collisions, no new non-zero entries are required. However, new
non-zero entries are required for collisions between two dynamic
objects or self collisions. The entries corresponding to these types
of collisions are shown in orange. Some of the entries are added to
existing non-zero entries (orange outline), but the cross-coupling
terms are added to new locations in the matrix (orange solid). We
partition H into persistent and transient matrices: H = HP +HT. The
transient matrix contains just the cross-coupling entries (orange
solid), and the persistent matrix contains all of the other entries
(blue solid, green outline, and orange outline).

Through experimentation, we found that ignoringHT and simply
using HP gives the best overall result in terms of wallclock time.
Even though using H = HP + HT results in fewer iterations, the
added overhead of symbolic factorization cannot be overcome. For
the D���� scene (§4.4), using H = HP + HT resulted in a wallclock
time 11% slower than simply using HP. Additionally, ignoring HT
leads to a simpler implementation.

Intuitively, what is the error introduced by ignoring the transient
matrix HT? Ignoring the transient and only using the persistent
component removes the cross coupling terms from the sti�ness
and damping matrices, which correspond to the colliding portions
of the deformable object(s). When we do not take into account the
cross coupling terms, we are in fact assuming that the collision
involves a static object—each body assumes that the other body

is static. Note, however, that this “error” only a�ects the speed of
convergence and not the �nal solution.

4 RESULTS
We implemented our system in C++ and ran the simulations on
a desktop with an Intel Core i7-7700 CPU @ 3.6 GHz and 16 GB
of RAM. We use Eigen for dense linear algebra and Cholmod with
MKL for sparse linear factorizations and solves [Guennebaud et al.
2010; Chen et al. 2008]. We use the Stable Neo-Hookean material
as the base isotropic material [Smith et al. 2018] with strain rate
damping [Sánchez-Banderas and Otaduy 2018]. For all materials,
we clamp the eigenvalues to ensure that the Hessian is semide�nite
[Smith et al. 2018, 2019; Kim et al. 2019]. We parallelize the matrix
�ll with OpenMP and use multithreaded versions of the libraries.
We compare the following solvers:
• ND (Newton-Direct): A full Newton method where we form the
exact Hessian every iteration and use a direct method (Cholmod)
to solve the linear system.

• QLF (Quasi ChoLesky Frozen): A quasi-Newton method where
we form and factor the Hessian at the beginning of the time step,
and then use this frozen factor for the duration of the time step.

• QLB (ours: Quasi ChoLesky L-BFGS): A quasi-Newton method
where we form and factor the Hessian at the beginning of the
time step, and update the Hessian implicitly with L-BFGS.

verts tets mass

B�� 10,125 51,744 3.00
A��� 25,317 98,486 1.37
B���� 3,907 14,374 2.25
D���� 12,800 36,800 1.31

We also tried a PCG-based
Newton solver with block
Jacobi preconditioner and
early termination, but its per-
formance was signi�cantly
worse than ND for the sti�
armadillo example, so we did not include it in our results. How-
ever, for very large meshes with lower sti�ness, a carefully crafted
matrix-free PCG implementation may outperform ND. Addition-
ally, we experimented with using a scaled identity as the Hessian
approximation in L-BFGS (line 5 in Alg. 2) [Nocedal 1980], but the
simulation quickly became unstable. We use 1��6 as the relative
and absolute tolerance for the Newton and quasi-Newton solvers.
A detailed list of parameters is shown in Table 1. Screenshots of the
scenes are shown in Fig. 1, and the animations are available in the
supplemental video. We also include a supplemental document with
the iteration information for the experiments. Our QLB method
consistently performs the best.

4.1 B��
Our �rst experiment is a bar undergoing time-varying boundary
conditions. Over a period of 5 simulation seconds, the bar is com-
pressed, stretched, bent, and twisted by rigidly moving the vertices
of the free end of the bar. We vary several di�erent parameters to
see the e�ect on the convergence of the nonlinear solvers.

4.1.1 L-BFGS storage. First, we modify<, the number of past steps
that are used for the L-BFGS update. We run the same B�� scene
with the default parameters, with< set to 2, 5, 10, and 20, and the
overall wallclock times are shown in Fig. 4a. As reported in the
literature [Nocedal and Wright 2006], only a modest number is
required, with< = 10 giving us the best results.

4



QLB: Collision-Aware�asi-Newton Solver with Cholesky and L-BFGS for Nonlinear Time Integration MIG ’21, November 10–12, 2021, Virtual Event, Switzerland

Table 1: Scene parameters. vary: scene parameter to vary. material: material model. ⇢: Young’s modulus (Pa). `: Poisson’s ratio.
damping: damping coe�cient. ⌘: time step (s). integrator: time integrator scheme.<: L-BFGS corrections.

vary material ⇢ ` damping ⌘ integrator <

B�� ⇢ SNH 6�3, 2�4, 5�4, 1�5 0.49 5��3 5��2 BDF2 10
B�� ` SNH 2�4 0.42, 0.49 5��3 5��2 BDF2 10
B�� hetero SNH 6�4, 2�4 0.49 5��3 5��2 BDF2 10
B�� aniso aSTVK+SNH 3�4+2�4 0.49 5��3 5��2 BDF2 10
B�� integrator SNH 2�4 0.49 5��3 5��2 quas., BDF1, BDF2 10
B�� < SNH 2�4 0.49 5��3 5��2 BDF2 2, 5, 10, 20
A��� damping SNH 1�7 0.49 0, 1��6 1��2 BDF2 10
A��� material STVK, SNH 1�7 0.49 0 1��2 BDF2 10
A��� ⌘ SNH 1�7 0.49 0 5��3, 1��2, 2��2 BDF2 10
B���� - SNH 8�4 0.49 1��3 5��3 SDIRK2 10
D���� - SNH 5�4 0.49 4��3 1��2 SDIRK2 10

4.1.2 Young’s Modulus. We run the simulation with the Young’s
modulus values of 6�3, 2�4, 5�4, and 1�5. As shown in Fig. 3a, our
QLB method works well across a range of sti�ness values. With the
highest Young’s modulus value of 1�5, our QLB is 7.9x faster than
ND. When the B�� gets sti�er, the wallclock time of QLB increases
more slowly than the wallclock time of both ND and QLF.

4.1.3 Poisson’s Ratio. Nextwe change the Poisson’s ratio to control
the amount of volume preservation. The resulting wallclock times
are shown in Fig. 3b. For all three methods, the wallclock time is
shorter when the Poisson’s ratio is lower. The relative performance
gain by going from the default value of ` = 0.49 down to ` = 0.42
is modest for QLB, but it still beats the baseline methods.

4.1.4 Heterogeneity. We repeat the simulation with a heteroge-
neousmaterial distribution, alternating soft and sti�materials along
the length of the bar. When heterogeneity is added, the wallclock
times of all three methods increase due to the added nonlinearity.
As shown in Fig. 3c, QLB is the fastest of the three methods despite
the added nonlinearity.

4.1.5 Anisotropy. We use anisotropic �bers within the B�� to in-
troduce nonlinearities. On top of the background SNH material, we
add the anisotropic StVK material [Kim et al. 2019] to model the
�bers. The added complexity makes the three methods noticeably
slower across the board, however as seen in Fig. 3d, the relative
slowdown for QLB is the smallest of the three methods.

4.1.6 Integrator. Finally, with the same default parameters, we
switch out the time integration scheme. In addition to the default
integrator of BDF2, we use BDF1 and quasistatics. The wallclock
times for all three integrators are shown in Fig. 3e. The times for
BDF2 and BDF1 are similar. The conditioning for the quasistatics
integrator is worse, leading to slower wallclock times. QLB has the
smallest relative slowdown when using the quasistatics integrator.

4.2 A���
Next we simulate the A���dillo with BDF2 for 1 second. The sti�
A��� is attached to a base by its feet, and the base is moved kine-
matically to induce motion.

4.2.1 Damping. We �rst add damping. Since we use a higher-order
integrator, the added damping is much more controllable and does

not depend heavily on the time step (see below). Fig. 3f shows
the wallclock time for the default and damped A���. QLB works
well both with and without damping. For the A��� scene with the
default parameters, QLB is 3.1x faster than ND and 3.9x faster than
QLF.

4.2.2 Material. We now change the material model of the object.
In addition to the default material of SNH, we use the StVK material.
The wallclock times for each material are shown in Fig. 3g. For both
materials used, QLB results in the fastest wallclock time.

4.2.3 Time step. Using BDF2, we use half and double the default
time step of ⌘ = 1��2. At the high time step, the resulting simulation
is slightly more damped, due to the small amount of numerical
damping in BDF2. As seen in Fig. 3h, the speedup gained by QLB
is not as large for the high time step, but QLB still results in the
fastest wallclock times for all three step sizes.

4.3 B����
We show self collisions with a B���� with the SDIRK2 integra-
tor for a 3 second scene. We use the contact model by Geilinger
et al. [2020] for collisions with the �oor, and the contact model
by McAdams et al. [2011] for self collisions. As shown in the sup-
plemental material, the SDIRK2 integrator requires two nonlin-
ear solves per time step. However, unlike BDF2, it is a single-step
method and is potentially more suitable for simulations with con-
tact [Löschner et al. 2020] (though Geilinger et al. [2020] do use
BDF2). We use a relatively small time step of ⌘ = 5��3 to deal with
the thin ears. The overall wallclock times are shown in Fig. 4b. For
this 3 second simulation, QLB has a 4.5x speedup over ND. QLF
failed to converge and thus is not included for this simulation.

4.4 D����
For the �nal scene, we simulate 100 contacting D���� with the
SDIRK2 integrator for 2 seconds. For added stability, in addition to
Green damping (Table 1), we also added some velocity-based contact
damping forces. Unlike the BDF1 integrator, adding damping forces
is much more controllable, since changing the time step does not
add signi�cant arti�cial damping. We use all three methods for this
scene, with a large time step of ⌘ = 1��2. The overall wallclock

5



MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Witemeyer, et al.

ND QLF QLB
0

200

400

600

800

1000
Ti

m
e 

(s
)

6e3
2e4
5e4
1e5

(a) B��: Young’s Modulus

ND QLF QLB
0

200

400

600

800

1000

Ti
m

e 
(s

)

0.42
0.49

(b) B��: Poissons’ Ratio

ND QLF QLB
0

200

400

600

800

1000

Ti
m

e 
(s

)

on
off

(c) B��: Heterogeneity

ND QLF QLB
0

200

400

600

800

1000

Ti
m

e 
(s

)

on
off

(d) B��: Anisotropy

ND QLF QLB
0

200

400

600

800

1000

Ti
m

e 
(s

)

BDF2
BDF1
Quasistatics

(e) B��: Integrator

ND QLF QLB
0

200

400

600

800

1000
Ti

m
e 

(s
)

0
1e-6

(f) A���: Damping

ND QLF QLB
0

200

400

600

800

1000

Ti
m

e 
(s

)

SNH
StVK

(g) A���: Material

ND QLF QLB
0

200

400

600

800

1000

Ti
m

e 
(s

)

5e-3
1e-2
2e-2

(h) A���: Time Step

Figure 3: Wallclock times for B�� with: (a) di�erent Young’s moduli; (b) di�erent Poisson’s ratios; (c) heterogeneity on/o�; (d)
anisotropy on/o�; (e) di�erent integration schemes; and A��� with: (f) di�erent damping coe�cients; (g) di�erent materials;
(h) di�erent time steps. In all the plots, the B�� and A��� with the default parameters are shown in blue.

2 5 10 20
0

20
40
60
80

100

Ti
m

e 
(s

)

(a) B��:<

ND QLB
0

300
600
900

1200
1500
1800

Ti
m

e 
(s

)

(b) B����

ND QLF QLB
0

1000

2000

3000

Ti
m

e 
(s

)

(c) D����

Figure 4: Wallclock times for (a) di�erent numbers of past
steps used for the L-BFGS update for the default B�� scene;
(b) B����; and (c) D����.

times are shown in Fig. 4c. For this 2 second simulation, QLB is 2.9x
faster than ND and 5.8x faster than QLF.

5 CONCLUSION
We showed through a variety of examples that a straightforward
application of Cholesky and L-BFGS gives excellent performance
when used in the nonlinear solver for higher-order time integration.
We showed that our approach can handle a wide range of complex
material models, including anisotropy and heterogeneity, as well
as collisions between dynamic objects, self collisions, and frictional
contact. In some simulations, QLF performs worse than ND. This
is due to QLF not always converging quickly, and it is hard to
predict when this will happen. QLB does not su�er from this problem
and performed the best in every test case. Our approach is practical,
general, and easy to implement.

5.1 Discussions & Limitations & Future Work
In our work, we only reuse the factorization within a single time
step, but it can also be used across time steps. There are standard

methods to detect when a re-factorization is required, such as max-
imum Newton iterations or the change in the norm of residual
across time steps [Bank and Rose 1981]. In this work, rather than
reusing the factorization, we take larger time steps when possible,
since our approach supports higher-order integrators that do not
signi�cantly su�er from arti�cial damping.

We use a simple back-tracking strategy for our line search,
which may not always produce stable L-BFGS updates [Nocedal
and Wright 2006]. Though we have not encountered any issues
with our examples, more sophisticated strategies may be needed in
other cases.

Our approach currently does not support hard constraints. Ac-
celerating the quadratic programming approach of Löschner et al.
[2020] using our approach is an interesting avenue of future work.

One advantage of higher-order schemes is that damping becomes
more controllable. It would be interesting to apply our approach to
an adaptive time stepping scheme, since adaptively changing the
time step would not overly introduce numerical damping.

If implemented properly, GPU solvers can often be considerably
faster than their CPU counterparts. Since direct solvers have been
successfully deployed on the GPU [Rennich et al. 2016], our method
can also be ported to the GPU. We leave this as future work.

ACKNOWLEDGMENTS
This work was sponsored in part by the National Science Founda-
tion (CAREER-1846368).

REFERENCES
Randolph E Bank and Donald J Rose. 1981. Global approximate Newton methods.

Numer. Math. 37, 2 (1981), 279–295.
David Bara� and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Annual

Conference Series (Proc. SIGGRAPH). 43–54.
Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-

Kirchho� Deformable Models. ACM Trans. Graph. 24, 4 (July 2005), 982–990.

6



QLB: Collision-Aware�asi-Newton Solver with Cholesky and L-BFGS for Nonlinear Time Integration MIG ’21, November 10–12, 2021, Virtual Event, Switzerland

Jan Bender, Matthias Müller, and Miles Macklin. 2017. A Survey on Position Based
Dynamics. In Proceedings of the Eurographics: Tutorials. Article 6.

So�en Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM
Trans. Graph. 33, 4, Article 154 (July 2014).

George E. Brown and Rahul Narain. 2021. WRAPD: Weighted Rotation-aware ADMM
for Parameterization and Deformation. ACM Trans. Graph. 40, 4 (July 2021).

Jiong Chen, Max Budninskiy, Houman Owhadi, Hujun Bao, Jin Huang, and Mathieu
Desbrun. 2019. Material-Adapted Re�nable Basis Functions for Elasticity Simulation.
ACM Trans. Graph. 38, 6, Article 161 (Nov. 2019).

Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam.
2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and
Update/Downdate. ACM Trans. Math. Softw. 35, 3, Article 22 (Oct. 2008).

Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal Warping: Real-Time Simulation
of Large Rotational Deformation and Manipulation. IEEE TVCG 11, 1 (Jan. 2005),
91–101.

Peter Deu�hard. 2011. Newton methods for nonlinear problems: a�ne invariance and
adaptive algorithms. Vol. 35. Springer Science & Business Media.

Elliot English and Robert Bridson. 2008. Animating Developable Surfaces Using
Nonconforming Elements. ACM Trans. Graph. 27, 3, Article 66 (Aug. 2008).

Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson.
2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer
Graphics Forum (Proc. Eurographics) (2019).

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski,
and Stelian Coros. 2020. ADD: Analytically Di�erentiable Dynamics for Multi-Body
Systems with Frictional Contact. ACM Trans. Graph. 39, 6, Article 190 (Nov. 2020).

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Robert J Guyan. 1965. Reduction of sti�ness and mass matrices. AIAA journal 3, 2

(1965), 380–380.
Ernst Hairer, Christian Lubich, and Gerhard Wanner. 2006. Geometric numerical

integration: structure-preserving algorithms for ordinary di�erential equations. Vol. 31.
Springer Science & Business Media.

FlorianHecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien. 2012. Updated
Sparse Cholesky Factors for Corotational Elastodynamics. ACM Trans. Graph. 31,
5, Article 123 (Sept. 2012).

Philipp Herholz and Marc Alexa. 2018. Factor Once: Reusing Cholesky Factorizations
on Sub-Meshes. ACM Trans. Graph. 37, 6, Article 230 (Dec. 2018).

Philipp Herholz, Timothy A. Davis, and Marc Alexa. 2017. Localized Solutions of
Sparse Linear Systems for Geometry Processing. ACM Trans. Graph. 36, 6, Article
183 (Nov. 2017).

Philipp Herholz and Olga Sorkine-Hornung. 2020. Sparse Cholesky Updates for
Interactive Mesh Parameterization. ACM Trans. Graph. 39, 6, Article 202 (Nov.
2020).

Doug L. James and Dinesh K. Pai. 1999. ArtDefo: Accurate Real Time Deformable
Objects. In Proceedings of SIGGRAPH. 65–72.

Theodore Kim, Fernando De Goes, and Hayley Iben. 2019. Anisotropic Elasticity for
Inversion-Safety and Element Rehabilitation. ACM Trans. Graph. 38, 4, Article 69
(July 2019).

Theodore Kim and David Eberle. 2020. Dynamic Deformables: Implementation and
Production Practicalities. In ACM SIGGRAPH 2020 Courses. Article 23.

Lei Lan, Ran Luo,Marco Fratarcangeli,Weiwei Xu, HuaminWang, XiaohuGuo, Junfeng
Yao, and Yin Yang. 2020. Medial Elastics: E�cient and Collision-Ready Deformation
via Medial Axis Transform. ACM Trans. Graph. 39, 3, Article 20 (April 2020).

Minchen Li, Ming Gao, Timothy Langlois, Chenfanfu Jiang, and Danny M. Kaufman.
2019. Decomposed Optimization Time Integrator for Large-step Elastodynamics.
ACM Trans. Graph. 38, 4, Article 70 (July 2019), 70:1–70:10 pages.

Tiantian Liu, So�en Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for
Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 4, Article
116 (May 2017).

Fabian Löschner, Andreas Longva, Stefan Jeske, Tassilo Kugelstadt, and Jan Bender.
2020. Higher-Order Time Integration for Deformable Solids. In Proc. ACM SIG-
GRAPH / Eurographics Symp. Comput. Anim. Article 15.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. 2011. E�cient Elasticity for Character Skinning with
Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (July 2011).

Nathan Mitchell, Michael Doescher, and Eftychios Sifakis. 2016. A Macroblock Opti-
mization for Grid-Based Nonlinear Elasticity. In Proc. ACM SIGGRAPH / Eurograph-
ics Symp. Comput. Anim. (Zurich, Switzerland). 11–19.

Vismay Modi, Lawson Fulton, Alec Jacobson, Shinjiro Sueda, and David I. W. Levin.
2021. EMU: E�cient Muscle Simulation in Deformation Space. Computer Graphics
Forum 40, 1 (2021), 234–248.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcli�. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109–118.

Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ◆ Projective
Dynamics: Fast Simulation of General ConstitutiveModels. In Proc. ACM SIGGRAPH
/ Eurographics Symp. Comput. Anim. 21–28.

Jorge Nocedal. 1980. Updating quasi-Newton matrices with limited storage. Mathe-
matics of computation 35, 151 (1980), 773–782.

Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer Science &
Business Media.

Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang Liu. 2018.
Anderson Acceleration for Geometry Optimization and Physics Simulation. ACM
Trans. Graph. 37, 4, Article 42 (July 2018).

Alex Pentland and JohnWilliams. 1989. Good Vibrations: Modal Dynamics for Graphics
and Animation, Vol. 23. ACM, New York, NY, USA, 207–214.

Steven C. Rennich, Darko Stosic, and Timothy A. Davis. 2016. Accelerating sparse
Cholesky factorization on GPUs. Parallel Comput. 59 (2016), 140–150.

Rosa M. Sánchez-Banderas and Miguel A. Otaduy. 2018. Strain rate dissipation for
elastic deformations. In Computer Graphics Forum (Proc. Symposium on Computer
Animation), Vol. 37. 161–170.

Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean
Flesh Simulation. ACM Trans. Graph. 37, 2, Article 12 (March 2018).

Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic Eigensystems
for Isotropic Distortion Energies. ACM Trans. Graph. 38, 1, Article 3 (Feb. 2019).

Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed Aggregation
Multigrid for Cloth Simulation. ACM Trans. Graph. 34, 6, Article 245 (Oct. 2015).

Yun Teng,MarkMeyer, TonyDeRose, and Theodore Kim. 2015. Subspace Condensation:
Full Space Adaptivity for Subspace Deformations. ACM Trans. Graph. 34, 4, Article
76 (July 2015).

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically
Deformable Models. In Computer Graphics (Proc. SIGGRAPH), Vol. 21. 205–214.

Nicholas J. Weidner, Theodore Kim, and Shinjiro Sueda. 2020. ConJac: Large Steps in
Dynamic Simulation. In Motion, Interaction and Games. ACM, Article 6.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A Scalable Galerkin Multigrid
Method for Real-time Simulation of Deformable Objects. ACM Trans. Graph. 38, 6,
Article 162 (Nov. 2019).

Hongyi Xu and Jernej Barbič. 2017. Example-Based Damping Design. ACM Trans.
Graph. 36, 4, Article 53 (July 2017).

Juyong Zhang, Yue Peng, Wenqing Ouyang, and Bailin Deng. 2019. Accelerating
ADMM for e�cient simulation and optimization. ACM Trans. Graph. 38, 6, Article
163 (Nov. 2019).

7


	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Background
	3.2 Accelerated Nonlinear Solver
	3.3 Dynamic Collisions

	4 Results
	4.1 Bar
	4.2 Arma
	4.3 Bunny
	4.4 Ducks

	5 Conclusion
	5.1 Discussions & Limitations & Future Work

	Acknowledgments
	References

