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We consider information spreading measures in randomly initialized variational quantum circuits
and introduce entanglement diagnostics for efficient variational quantum/classical computations.
We establish a robust connection between entanglement measures and optimization accuracy by
solving two eigensolver problems for Ising Hamiltonians with nearest-neighbor and long-range spin
interactions. As the circuit depth affects the average entanglement of random circuit states, the
entanglement diagnostics can identify a high-performing depth range for optimization tasks encoded
in local Hamiltonians. We argue, based on an eigensolver problem for the Sachdev-Ye-Kitaev model,
that entanglement alone is insufficient as a diagnostic to the approximation of volume-law entangled
target states and that a large number of circuit parameters is needed for such an optimization task.

I. INTRODUCTION

Noisy Intermediate-Scale Quantum (NISQ) technology
is being developed rapidly and poses a great challenge to
come up with efficient quantum algorithms [1], which will
operate on the NISQ computers and perform better than
classical algorithms. Many real-world use cases are asso-
ciated with machine learning and optimization, for which
variational quantum circuits offer an appropriate frame-
work. The typical optimization tasks can be formulated
as a search for the ground state of a Hamiltonian H,
which may encode an exact combinatorial problem [2, 3].

The variational quantum algorithms (VQA) consist of
two elements [4]. The first part is quantum, where one
constructs a parameterized quantum circuit composed of
L unitary layers on the product state of n qubits, |0)®".
The layer unitaries and quantum gates therein depend on
continuous parameters, each initialized with the uniform
measure on [0,27). Denoting all the circuit parameters
collectively by 6, the variational state is written as

[¥e(0)) = U(6)[0)*" . (1)

The second part of the variational quantum algorithm is
classical, where we estimate the Hamiltonian expectation
value with the variational circuit state, i.e.,

E(0) = (¢e(0)[H1pe(0)) (2)

and minimize it in the nL-dimensional parameter space
using the gradient descent method.

Entanglement encodes information in the qubit corre-
lations, which are generated by the successive application
of the circuit layers. Given two complementary systems
A/B, the Renyi-k entropy of the reduced density matrix

1
Ry = = logTr (o) (3)

measures their entanglement, so does the von Neumann
entropy that corresponds to (3) in the special limit k& — 1:

Spr = —Trpalogpa . (4)
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Figure 1. The circuit architecture used in Sections IIT and IV.
(a) The horizontal axis can be interpreted as the discrete time
L. We call the commuting set of simultaneous 2-qubit gates
as the circuit layer. (b) Each gate consists of the single-qubit
Pauli-y rotations (19) followed by the CZ operation (20).

The reduced density matrix p4 is obtained from the full
circuit density matrix p.(6) = |¥.(0))(1).(0)| by taking a
partial trace over the subsystem B.

The performance of the variational quantum algorithm
depends largely on whether the quantum circuit can pre-
pare an initial variational state [1).(6)) that is close to
the target ground state |¢b4) of the Hamiltonian. In this
paper we argue that the average entanglement entropy
(3) or (4) of random circuit states provides a distance
measure that can quantify a successful minimization of
the energy function. Note that, for their computation,
we specifically use the equal partition ng = ng = n/2
and the binary logarithm.

The evolution of the entanglement entropies as a func-
tion of the circuit depth L is schematically drawn in Fig-
ure 2. It is convenient to divide the range of L into three
regions A, B, and C.! A is where the entanglement en-
tropy continues to grow, while C' is where it has saturated
to a constant value. As for their scaling behavior in n,
the random circuit states in A/C obey the area/volume
law scaling of the entanglement entropies, respectively.
Since the ground states of gapped local Hamiltonians are
expected to have an area law entanglement entropy, we
expect that an initial variational state |1.(0)) in A would

1 Such usage of A, B, C should be distinguishable from the other
usage of A, B that denotes a subset of n qubits.
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Figure 2. A schematic plot for the growth of mean entan-
glement entropies and geometric distance of circuit-generated
states. We often distinguish the low, intermediate, high-depth
circuits in Sections III and IV and denote their corresponding
depth ranges by A, B, and C|, respectively.

lead to efficient VQA optimization in contrast to those
circuits in C. We also identify B as a transition region
between A and C, where the entanglement entropy has
already reached saturation yet the initial random param-
eter can determine the success/failure of the VQA opti-
mization.

The technical reason why the circuit optimization fails
in region C' is the vanishing gradient problem. When the
circuit distribution is approximately 2-design, such that
the first and second moments are indistinguishable from
those of the Haar distribution, the energy gradient at ini-
tial random values cannot deviate from zero, except for
an exponentially decaying probability in n [5-8]. It hap-
pens for the circuit ensemble in B/C, where the Renyi-2
entropy as a diagnostic of the quantum 2-design is closest
to na = n/2 that corresponds to the Haar ensemble.

Until now, we assumed that the entanglement entropy
of the target state follows the area law scaling, as in
gapped local one-dimensional systems [9]. However, it
does not always hold, and the variational circuit in A can-
not minimize the circuit energy (2) to the ground level.
For the Sachdev-Ye-Kitaev model [10-12], whose ground
state exhibits a volume law entanglement [13], the op-
timization does fail no matter to which of A/B/C the
variational circuit belongs. Incidentally, we argue that
higher-dimensional parameter space can assist the circuit
optimization even at high level of circuit state entangle-
ment, so that over-parameterized circuits can offer a high
precision approximation of volume law entangled target
states including the SYK ground state [14].

The rest of this paper is organized as follows: Sec-
tion IT motivates the entanglement diagnostics as the ini-
tialization condition to arrange variational states close to
the target. Section III studies the average entanglement
growth of circuit states as a function of the circuit depth.
Section IV examines the importance of the entanglement

diagnostics in the local gradient search of optimal circuit
parameters. Section V checks the validity of the entangle-
ment diagnostics by testing them against different circuit
architectures and also discuss the impact of shrinking the
circuit parameter dimension. The paper concludes with
discussion and outlook in Section VI. Additional details
are given in the appendices.

II. ENTANGLEMENT DIAGNOSTICS

Using the density matrix of the quantum circuit p.(6),
the expectation value of the Hamiltonian (2) reads:

E(0) = Tr (pe(0)H) . (5)

Our optimization task is to get as close as possible to the
ground state of the Hamiltonian by minimizing (5). It
can be achieved by multiple iterations of evaluating the
density matrix p.(f) and updating the parameters via
the gradient descent (26) that will finally stop at 6 = 6;.
We would like to reach the final parameter ¢ such that

AE =Tr ((pe(0) — py)H) ~ 0 (6)

where p, is the exact ground state of the Hamiltonian.
A simple upper bound of this approximation error AFE
follows from the Cauchy-Schwarz inequality,

Tr((ﬂc(ef) - PQ)H) < ||Pc(9f) - pg||1 ’ HH||1> (7)

where the trace norm ||OJ|; is the sum of singular values
of an operator O, i.e., eigenvalues of (OT0)'/2,

A natural condition for efficient reduction of AF is ar-
ranging an initial circuit state p.(6;,) to be in the proxim-
ity of the ground state with a small enough trace distance
lpe(Oin) — pgll,- However, we will confront two issues.
First, we generally do not know the ground state, thus be-
ing unable to estimate the trace distance || pc(0in) — pgll; -
Second, the trace distance can be very sensitive to tiny
changes of quantum states. So the above condition is
often over-restrictive, discarding most reasonable initial
states.

Instead, we want to relax the condition by using the
entanglement entropy of an initial circuit state as a dis-
tance proxy between p.(6;,) and py, from which one can
expect the success/failure of circuit optimization. It can
be motivated as follows: The inequalities on the von Neu-
mann and Renyi-k entropy differences [15-18]:

|SeE(pa) — SEE(0a)| < nllpa —oalli + (eln2)~, (8)
IR¥(pa) = R¥(oa) < k- 245Dl pg —oallt, (9)

show that, for given two quantum states p4 and 0 4, being
close in their quantum entropies is necessary for being
close in their trace distance ||pa — oa|1. Suppose now
that p4 and o4 are the density matrices of a subsystem
A, which can be combined with a complementary part B
to constitute the entire n qubit system, i.e., pga = Trg (p)



and 04 = Trp (0). Monotonicity of the trace distance
under the partial trace,

lpa—oally <llp—0ly, (10)

implies in turn that, for the trace distance between two
quantum states p and o to be small, the difference in
their entanglement entropies should necessarily be small.
Hence, the entanglement diagnostics of initial circuit
states can be considered as a weaker version of the prox-
imity measure.

We usually cannot estimate the trace distance from
the exact ground state p, due to our ignorance of
pg- However, we expect that the ground states of
gapped local Hamiltonians are far from typical quantum
states o, whose o4 are approximately maximally mixed
[19]. Thus, we require the trace distance between the
equiprobable state and the reduced density matrix of the
circuit state pa to be large. This requires non-maximal
entanglement entropies of the circuit states, i.e. they
should not scale with the subsystem size n4 [20]. This is
encoded in the following:

Theorem 1. (i) The trace distance between the re-
duced density matrix pa and the maximally mized state
274 I, , satisfies the following inequality:

[,(TLAypA)S;‘PA—Q{i 1SLI(nA,,oA) (11)
with

Ul pa) = (TLA_S;E(MY/Q (12)

L(na,pa) = i (2(1—k)R’2(pA) _ 2(171@)%) (13)

where Spp(pa) and R (pa) are the von Neumann and
Renyi-k entropies of the reduced state p 4, respectively.

(ii) In the large size limit ng > 1 of the subsystem A,
the following lower bound holds asymptotically:

1 I
1SEE(PA)§HP 14 (14)
na 2 2na
Proof. (i) We start from the Pinsker’s inequality:
2
sllp—olly < S(pllo) (15)

on the trace distance between two states p and ¢ and
their relative entropy. Plugging p = p4 and 0 = 2774 [ 4,

S(pallca) =na + Tr(palogpa) =na — Spe(pa) (16)

such that (15) becomes (12).
The continuity bound of the Tsallis-k entropy implies
[16]:

ITr (p%) — Tr (o%) | < kllpa —oall , (17)

which can turn into (13) by inserting o4 = 274 I4 and
Tr (p4) = 9(1=F)R% (pa)

(ii) Recall the Fannes—Audenaert inequality [17]:

|SeE(pa) — See(oa)| <3llpa — oall1log(2" — 1)
+ H(%llpa —oalh) (18)

where H(t) = —tlogt — (1 — t)log(1l — t). Substitut-
ing 04 = 2774 [4 and taking the large system size limit
na > 1, the LHS of (18) becomes (na—Sgg(pa)), which
leads to the asymptotic inequality (14). O

We stress that the entanglement diagnostic for cir-
cuit states is only a necessary condition to keep the ini-
tial and target states close. Remarkably, as we will see
in Section IV, the gradient-based optimization indeed
works efficiently for those variational circuits whose aver-
age entanglement entropy scales slower than the volume
law. Concerning the circuit depth, this suggests to avoid
intermediate-depth and high-depth circuits, respectively
corresponding to B/C' of Figure 2, and favor the circuits
with fewer layers that belong to A. We will estimate the
critical depth L, that divides A and B/C in the following
Section ITI.

III. RANDOM QUANTUM CIRCUIT

In this section, we study the growth of entanglement
entropy for the circuit states generated by a random cir-
cuit evolution of the initial product state |0)®™. Figure 1
is the quantum circuit architecture used in this paper. It
defines a (1 4 1)-dimensional discrete quantum system,
where the n qubits along the vertical axis represent the
space, and the L layers along the horizontal axis span the
time. The qubits are arranged identically with period n,
i.e., 1 >~ i + n, imposing a periodic boundary condition
along the spatial direction. At each time step, the wave-
function evolves by a chain of the 2-qubit unitary gates,
acting alternatingly on all neighboring odd-even/even-
odd qubit pairs. The 2-qubit gate is made of independent
Pauli-y rotations acting on single qubits,

cos ¢ singp) (19)

i) = explioye) = (o T

followed by the controlled-Z operation
CZ =diag(1,1,1,-1) (20)

that generically creates a pairwise entanglement. We will
collectively denote all rotation angles by § while using 6; ;
to indicate a specific angle that rotates the i’th qubit at
the I’th layer, where 1 < ¢ < mnand 1 < ¢ < L. These
variables are randomly chosen from U(0, 27), the uniform
distribution between 0 to 2.
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Figure 3. Von Neumann and Renyi-2 entropies for 8 < n < 20
averaged over 50 independent circuit states, as a function of
the circuit depth L.

A. Linearity of the Initial Entanglement Growth

Let us consider the evolution of the n-qubit state under
the random circuit unitaries of Figure 1, as a function of
the number of layers L. We measure the average growth
of the bipartite entanglement of random circuit states by
decomposing the n qubits into two equal-size subsystems,
na =np = n/2, and calculating the sample statistics of
various Renyi entropies for different n and L.

Figures 3a and 3b show the von Neumann and Renyi-
2 entropies averaged over 50 random circuit states with
different numbers of qubits n. Figure 4 compares the
Renyi entropies of different orders averaged over 50 ran-
dom circuit states with n = 12 and 20 qubits. They all
exhibit the linear growth of the entanglement entropies
at initial times. The curves then slow down in growth
and eventually reach the plateaus. See Figures 19-21 in
the appendix for the growth curves of several other en-
tanglement quantities with different system sizes n.

The early linear growth of the entanglement entropy,

Ri(pa) = vl , (21)

is a characteristic feature of the global quench dynamics
[21], which in our case is driven by the successive applica-
tion of the layer unitaries U(6y) to the n-qubit product
state [0)®™. The coefficient vy, is known as the entangle-
ment velocity and generally depends on k. We determine
vy, by the linear regression of the early-time entropies on
the range of 0 < L < n/2. The estimated values of vy,
computed at different n’s and k’s, are summarized in the
third columns of Tables I and II. We find that vy is in-
dependent of n except for minor fluctuations, identifying
(21) with the area-law entanglement of the early-time cir-
cuit states. Furthermore, vy decreases when the order k
of the Renyi entropy increases, i.e., vy, > v, for k1 < ks.

On the other end, at a late time, the Renyi-k entropy
saturates to a constant r, , for any n and k. We compute
the saturated value of RY by averaging it over the time
frame 200 < L < 250 and record that in the fifth columns
of Tables I and II. The resulting constants r,, ;, manifest
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Figure 4. Various Renyi-k entropies for n = 12 and n = 20
averaged over 50 independent circuit states, as a function of
the circuit depth L.

the following simple dependency on nyq = n/2:
RE(pa) = Tnp ~n/2 — ¢, = Vol(A) — ¢ (22)

implying the volume-law entanglement of the late-time
circuit states [22]. We also find that, as the entropy order
k increases, the saturated value 7, j, declines monotoni-
cally, so the shift constant ¢; > 0 can be only larger.

Combined with the discussion in Section II, the average
entanglement curves suggest to refrain from using a vari-
ational circuit in the region of the plateau, i.e., L > Ly,
in order to prepare an initial circuit state in proximity to
the target ground state that follows the area-law entan-
glement. We now turn to examine the scaling behavior
of the early-time and late-time scales, i.e., L; and L.

B. Timescale for the Entanglement Growth

Let us study the early-time L; and late-time scales L,
respectively, as the depth scales where the linear growth
(21) ends and where the saturation (22) begins. We mea-
sure L; and L using the following operational definitions:

Ly =max {L: |R%(L) — veL| < 2RMS;(0,n/2)} (23)
Ly =min {L: |RY(L) — r, x| < 2RMS;(200,250)},

L is the maximum depth L where the gap |RY (L) — v L|
between the Renyi entropy and its linear approximation

Type n vy Li rpr Ls Type n vy L Tox Ls

8 0.3669 7 3.2526 29

10 0.3480 6 4.2639 33

12 0.3533 13 5.2703 43
Spr 14 0.3551 9 6.2743 49 R%

16 0.3522 17 7.2766 58

18 0.3459 12 8.2776 65

20 0.3411 23 9.2781 71

8 0.2771 9 2.9722 29
10 0.2581 12 3.9821 36
12 0.2645 17 4.9896 43
14 0.2711 15 5.9944 49
16 0.2689 23 6.9973 60
18 0.2682 24 7.9986 65
20 0.2619 33 8.9993 71

Table I. Phenomenological estimation of the entanglement ve-
locity, saturation value, early-time scale, and late-time scale.



maintains smaller than two times the RMS deviation,

RMSj(a,0) = /=ty Sl (RE(D) — 002, (24)

for 0 < L < n/2. Similarly, Ls is the minimum depth
L whose difference |R” (L) — r,, x| between the Renyi en-
tropy and its saturated value remains to be smaller than
two times the RMS deviation (24) for 200 < L < 250.
The estimated values of L; and L, for different val-
ues of n and k are summarized in the fourth and sixth
columns of Tables I and II. We make three observations:
First, both timescales L; and Lg increase as the entropy
order k goes higher. Second, the saturation time L scales
linearly in the system size n, i.e., Ly ~ O(n), because

Vol(A4) — ¢ na

Ly~ =k
~ v - Area(0A) vy

~ O(n). (25)

This is consistent with [22] that a unitary design that
maximizes all Renyi entropies can be reached within a
linear complexity in the system size n. Third, there exists
a transient gap between L; and L, at least for finite-sized
systems, in which the entanglement growth is slower. De-
tails of the entanglement curves in this crossover region
are largely model-dependent. See [23] for an example.

IV. CIRCUIT OPTIMIZATION

Our focus in this section is on the classical component
of the hybrid quantum/classical algorithm. The objective
is to find circuit parameters 6* that closely approximate
the ground state energy, F(6*) ~ E,, by taking iterative
steps proportional to the negative gradient of the energy
function (5) at each point 0., i.e., 2

0,01 = 0. —VE(®,). (26)

The learning rate 7 scales the step size of each update. A
too-large 1 can cause overshooting near the minimum 6%,
while a too-small 1 can make the optimization trajectory
stuck at local minima. We will use n = 0.005 for most
experiments. When the parameters update is small, each
step of the gradient descent can reduce the energy by

AE(8,) = B(6r41) — E(0;) = —n [VE@G,)[3 . (27)

Due to the constant decrease of the energy (27), we ex-
pect to reach £, eventually if there are no other obstacles.
We will terminate the iteration after updating the circuit
parameter 10% times in all our numerical experiments.

2 Estimating the gradient requires the readout of the circuit state
pe at shifted gate parameters [24] conducted by repeated mea-
surements of Pauli strings. We will not consider the effect of the
readout noise in this paper.

A. Results

Let us discuss the eigensolver optimization results that
aim to solve the ground state of many-body systems. We
specifically consider the 1d transverse-field Ising mod-
els with nearest-neighbor and long-range interactions and
the Sachdev-Ye-Kitaev (SYK) models. See Appendix A
for a brief review of their Hamiltonians and ground-state
entanglement properties.

1. The Transverse-Field Ising Models

We search the ground states of interacting 1d spin-
chain systems. To break the degeneracy of ground states,
we turn on the magnetic coupling g to all the spin vari-
ables, choosing it to be g = 1 or 2. As we are interested
in finding a general correlation between the entanglement
diagnostics and the success of optimization, not relying
on specific characteristics of Hamiltonians, we study the
optimization for the following three Ising models:

(i) the nearest-neighbor spin coupling (A1) with g = 2
(ii) the nearest-neighbor spin coupling (Al) with g = 1
(iii) the long-range spin coupling (A3) with a = g = 1.

We repeatedly perform the circuit optimization 50 times,
to remove fluctuation made by random parameter initial-
ization, and record the circuit outputs in Figures 5-7 as
a function of the circuit depth L.

Each figure consists of three panels. The left ones rep-
resent the energy difference E(6)— E, between the circuit
state (5) and the exact ground state (A2). The middle
ones show the trace distance between the reduced circuit
state p. 4 and the reduced ground state py 4. The right
ones display the Renyi-2 entropy of the reduced circuit
state. All the orange/blue curves therein represent a cor-
responding quantity before/after the optimization.

Figure 5 is for the nearest-neighbor Ising model (A1)
with ¢ = 2. It reveals the relation between the aver-
age entanglement entropy of initial circuit states and the
success of gradient-based optimization: The optimiza-
tion works well for the circuits with L < 36. However, in
the intermediate range of 36 < L < 52, the success rate
gradually lowers as the circuit becomes deeper. Beyond
that, i.e., L 2 52, it always fails to close the gap be-
tween the exact ground state and the circuit state as to
their energy and entanglement entropies. Such relation
shows an advantage of using the circuits with L < Ly,
whose entanglement curve has not reached the plateau.
The above pattern also persists in Figures 6 and 7, which
correspond to the nearest-neighbor and long-range Ising
models with g = 1.

A notable difference of Figure 6 from Figures 5 or 7
appears in the trace distance curve, where the optimiza-
tion fails to narrow the distance even when the circuit
energy is close to the exact ground state energy. It is re-
lated to the fact that the ground state entanglement en-
tropy in the g = 1 nearest-neighbor Ising model is higher
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Figure 5. Measurements averaged over 50 independent circuits, before/after the VQA optimization with the nearest-neighbor
Ising Hamiltonian (A1) at g = 2, as a function of the number of circuit layers L.
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Figure 6. Measurements averaged over 50 independent circuits, before/after the VQA optimization with the nearest-neighbor
Ising Hamiltonian (A1) at g = 1, as a function of the number of circuit layers L.

than those in other Ising models, as shown in Figure 18.
When the entanglement entropy of target ground states
is higher, the local search of approximating circuit pa-
rameters becomes increasingly difficult. Such difficulty
leads to deviations between the post-optimization circuit
state and the exact ground state, to which the trace dis-
tance reflects much more sensitively than the energy and
entanglement entropy differences.

2. The Sachdev-Ye-Kitaev Model

We will now discuss the circuit optimization in a sit-
uation where the Hamiltonian ground state exhibits a
volume law scaling of the entanglement entropy.

The SYK, Hamiltonian (A4) defined with an instance
of random coupling constants has a ground state that
follows the volume law scaling of entanglement [13], as
reviewed in Appendix A and specifically in Figure 18. We
optimize the variational circuit to approximate the SYK,
ground state and summarize the output in Figure 8 as a
function of the circuit depth L.

Since the approximation target state itself behaves in
terms of entanglement like a generic quantum state, the
optimization task is now much more challenging. Unlike
the optimization towards the Ising ground state, even
choosing a less entangled circuit within the range L < 36
does not lead to success. Figure 8 manifests this failure,
not only in the trace distance between the circuit and
exact ground states but also their differences of energy
and entanglement entropy.

8. Optimization Speed

As another indicator of how difficult the circuit opti-
mization is, we draw in Figure 9 the evolution of Renyi-2
entanglement entropy R% (pc ) as a function of the num-
ber of parameter updates 7. The three curves therein are
for the circuits with L = 12, 40, 68, which represent the
characteristics of low-, intermediate-, high-depth circuits.
The entanglement entropy of the ground states is marked
by the dashed lines.

Towards the Ising ground states, the gradient descent
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Figure 8. Measurements averaged over 30 independent circuits, before/after the VQA optimization with a particular instance
of the SYK,4 Hamiltonian (A4), as a function of the number of circuit layers L.

works efficiently for the L = 12 circuit, rapidly reducing
the entanglement entropy within 102 steps of the update.
However, the same gradient descent takes a much longer
time for the L = 40 circuit and even fails to reach closely
the target state for the L = 68 circuit. As the average
entanglement entropy of initial circuit states increases,
the optimization difficulty becomes more evident not only
in the trace distance, as in Figure 6, but also through the
entanglement diagnostics.

The optimization task towards the SYK, ground state
is inherently more challenging such that all three curves
leave a large entanglement gap from the target state. In-
terestingly, the gradient descent constantly reduces the
entanglement entropy of the L = 12 circuit state, enlarg-
ing the gap over the optimization steps 7. In general,
over-parameterization can assist the circuit optimization
that starts from/ends at a highly-entangled typical quan-
tum state. An exponentially high-dimensional parameter
space was needed for the SYK, model to approximate its
ground-level energy with very high precision [14].

B. Entanglement Diagnostics and Optimization

Our results shown in Section IV A exemplify the diffi-
culty in finding a successful optimization trajectory that
starts from or ends at a typical quantum state that takes
up the vast majority of the Hilbert space. This has been
best described through the evolution of the entanglement
entropies, (3) and (4), over the optimization steps, rather
than a more commonly-used sensitive metric such as the
trace distance between the circuit and target states.

Suppose we can divide the Hilbert space into two sub-
regions distinguished by their entanglement entropies,
say A and B/C, in accordance with Figure 2. Generic
random states belong to the region B/C whose entangle-
ment entropies are approximately maximal.

For many interesting applications, the target state is a
non-generic state that resides in the region A, i.e., follow-
ing the area-law scaling of the entanglement [3]. Along
an optimization path inside the region A, the circuit state
entanglement tends to decrease regularly. However, when
an initial state p.(6in) belongs to the region B/C, the lo-
cal parameter update (26) is unable to cross over to the
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Figure 10. Von Neumann and Renyi-2 entropies for 8 <n <
20 averaged over 50 independent p = 1/2 circuit states, as a
function of the circuit depth L.

region A, thus failing to reach the ground state energy.
We make these observations from the optimization result
in Section IV A 1 that discusses the Ising Hamiltonians.

Even when the target state is maximally entangled and
lies in the region B/C, the entanglement entropy of the
circuit state p.(0,) still tends to decrease on average. It
means that the entanglement gap between the circuit and
target state can become larger, if an initial circuit state
has a smaller entanglement entropy than the target state,
i.e., R (pe,a) S Rli(pg,a). When R (pe,a) > Rli(pg,a),
the optimization moves towards narrowing the gap, but
often failing to match a desired level of the entanglement.
These observations are based on the optimization results
in Section IV A 2, obtained for the 1d SYK Hamiltonian.

The numerical results suggest that the Hilbert space
can be partitioned into multiple layers, distinguished by
the supported amount of the bipartite entanglement en-
tropy. It is a very demanding task to move across distant
layers via the gradient descent (26), which is doable only
for the over-parameterized circuits that involve exponen-
tially large parameter space [14].

—— Von Neumann —— Von Neumann
—— Rényi-2 2] —— Rényi-2
17 —— Rényi-4 —— Rényi-4
—— Rényi-6 — Rényi-6
0 —— Rényi-0 0 —— Rényi-c0
T T T T T T T T T T
25 50 75 100 125 25 50 75 100 125
L
(a) n =12 (b) n =20

Figure 11. Various Renyi-k entropies for n = 12 and n = 20
averaged over 50 independent p = 1/2 circuit states, as a
function of the circuit depth L.

V. OTHER CIRCUIT ARCHITECTURES

We discussed the importance of choosing the circuit to
avoid the saturation of its average initial entanglement
entropy, for a generic optimization task that finds a tar-
get state with the area law entanglement. This section
examines if the entanglement diagnostic still serves as
an indicator of efficient circuit optimization with differ-
ent circuit architectures. We also consider the effect of
reducing the number of circuit parameters while main-
taining a similar degree of entanglement.

A. Random Graph Architecture

Let us study a simple stochastic variation of the circuit
architecture that omits the CZ entangler (20) inside the
2-qubit gate of Figure 1b with a fixed probability p = 1/2.
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1. Entanglement Growth

Since the average number of the entangler is cut in half,
we expect that the entanglement growth rate would be
halved. Accordingly, the circuit depth L to reach the sat-
uration of the entanglement entropy would be doubled.

Figures 10 and 11 show the evolution of entanglement
diagnostics as a function of the circuit depth L, estimated
by the sample averages of 50 random states. The overall
shape of the curves remains the same, but the growth
rate has significantly decreased. Reaching a certain level
of the entanglement diagnostics requires twice the circuit
depth compared to the non-stochastic architecture, i.e.,
p = 1, as expected. See Figure 21b for the curve of the
geometric measure whose growth rate has been halved.

2. Optimization

Given the optimization task that reaches the nearest-
neighbor Ising ground energy (A2) with the background
field coupling g = 1, the outputs of the p = 1/2 stochastic

circuit are all collected in Figure 12 as a function of L.

The depth range of the p = 1/2 circuits where the
gradient descent remains successful has increased to L <
96. Beyond that, the optimization success rate continues
to drop until it reaches 0% at L ~ 144 and above. This
is consistent with the entanglement growth curves, which
maintain the same overall shape as in Section III but
only with a lower growth rate. We remark that the low
and intermediate ranges, in which the optimization may
succeed with a non-zero probability, has been extended
to L < 136, more than mere doubling. It is the impact
of the expanded parameter space whose dimension has
been doubled, as required for the p = 1/2 circuit to hold
the same level of entanglement.

Over the entire range of L, unlike the trace distance,
the entropy diagnostic holds a robust correlation with the
successful minimization of the circuit energy (5), showing
its usefulness regardless of circuit-specific details.
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Figure 14. Von Neumann and Renyi-2 entropies for 8 < n <
20 averaged over 50 independent restricted circuit states (28),
as a function of the circuit depth L.

B. Restricted Circuit Parametrization

Recall that an additional circuit layer increases both
the average entanglement entropy of initial circuit states
and the number of classical parameters. To isolate the
effect of the classical parameter space, we study the con-
sequence of imposing the following restriction:

Op1=6p2=---=86;,, foralll </{<L, (28)

which equates all the parameters in each layer, yet main-
tains the same growth rate of entanglement diagnostics.
The basic 2-qubit gate O; ; in Figure 1b reads:

Oiﬂ' = CZ@J‘ . R((gl,l) ® R(@l)]') s (29)

where CZ = diag(1,1,1 — 1) and R(0) is the Pauli rota-
tion (19) around the y-axis. It is curious to note that the
constraint (28) is equivalent to imposing [O; j, Qi ;] = 0
on the Hilbert space of (i, j) qubits, where:

gi+gq2 0 O 0
0 q¢q¢ O
i = 30
@i 0 @ aqa 0 (30)
0 0 0 qg1+4¢q

in the computational basis of (4, j) qubits. Still, there is
no globally conserved charge written as a tensor product
sum of Q; 41, because it does not generically commute
with O,_1,; and O; ;11 on the next layer.

1. Entanglement Growth

The entanglement entropies averaged over 50 random
circuit states under the parameter space restriction (28)
are illustrated in Figures 14 and 15 as a function of the
number of circuit layers L. Except small extra wiggles,
the overall growth shape and speed of the entanglement
diagnostics are similar to those of the unconstrained cir-
cuit. Such correspondence of the entanglement growth
curves renders the restricted circuit an appropriate setup
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Figure 15. Various Renyi-k entropies for n = 12 and n = 20
averaged over 50 independent restricted circuit states (28), as
a function of the circuit depth L.

to study separately the effect of the parameter space di-
mension on the circuit optimization.

As a side remark, we have seen that the evolution curve
of the geometric measure, illustrated in Figure 21c, for
the restricted circuit is far more fluctuating than as for
the unconstrained circuit, while their saturation depth
scales remain largely the same.

2. Optimization

We optimize the restricted circuit to approximate the
ground state of the nearest-neighbor Ising model at g = 1
using the gradient descent. The results are summarized
in Figure 13 as a function of L. It is notable that even the
circuit optimization with L < 20 often stops at AE 2> 1,
not giving a reliable approximation of the ground en-
ergy. Furthermore, starting from L 2 24, an increasingly
large proportion of the randomly initialized circuits fails
to reach the ground level energy E, and leave a large gap,
i.e., AE 2 8. Such transitional result emerges at a much
lower depth than L = 44 of the unconstrained circuit.

It emphasizes the importance of having enough param-
eters in applying the gradient descent to optimization
tasks, even for those circuits that remain within a suit-
able range of the entanglement diagnostics.

VI. DISCUSSION AND OUTLOOK

In this paper we considered the variational circuit
model of quantum computation, arguing for the effective-
ness of entanglement diagnostics in finding the circuit ar-
chitecture for efficient parameter optimization that min-
imizes the Hamiltonian expectation value. Introduced as
a distance measure between the circuit and target states,
the entanglement diagnostic has shown its usefulness by
illustrating that quantum circuits states within a suitable
range of entanglement entropies can successfully reach
the ground level energy of local Hamiltonians. It also says
that, while entanglement is a valuable non-local resource



for quantum computation, circuit states being highly en-
tangled do not necessarily have an advantage but it can
be rather the opposite.?

One way to control the average entanglement entropy
of circuit states is to adjust the number of circuit lay-
ers. The mean entropy grows linearly with the circuit
depth, then gradually slows down, and finally converges
to a constant near the theoretical maximum. Denoting
by L the saturation depth beyond which the average en-
tanglement entropy has converged, we divided the depth
range into two intervals, L < Ls and L > L, and called
them respectively A and B/C. A is typically the opti-
mal region that leads to efficient VQA computation, e.g.,
when we search an area-law entangled target state, while
B/C can suffer from the barren plateau problem, One
can further differentiate C' from B based on whether the
optimization success rate has become 0% or not yet.

Although the assumption of an area-law entangled tar-
get state covers most of the interesting VQA applications
[3], the ground states of some important Hamiltonians
exhibit volume-law entanglement scaling. Matching the
entanglement diagnostic alone is not sufficient to approx-
imate such states due to the overwhelming population of
highly-entangled quantum states. We need deep varia-
tional circuits whose depth L lies in B/C and that are
equipped with a large parameter space that can assist
high-resolution specification and approximation of the
desired target state [14]. Having more circuit parame-
ters can generally help to approximate the ground state
better, as exemplified by the decreased accuracy for a re-
duced number of independent variables? in Section V B,
as well as the increased success rate for circuits with extra
single-qubit rotation parameters [14, 27].

There are many follow-up directions for further in-
vestigation: First, for having additional substantial evi-
dence to the validity of the entanglement diagnostics, it
would be crucial to consider 2d gapped local Hamilto-
nians whose ground states follow the area law entangle-
ment scaling but are difficult to approximate. Second, we
would like to explore various circuit architectures, e.g.,
using other rotation and entangling gates [28], built on
different graph structures [29, 30|, or conserving diffu-
sive charges [31, 32]. Especially, symmetry-preserving
circuits can work efficiently for the VQA optimization if
the target state is known to respect the imposed built-in
symmetries [33, 34]. Third, the layered circuit defines
a discrete dynamical system. We would like to inves-
tigate the appearance of quantum chaos in the circuit
wavefunction, such as the emergence of random matrix
ensemble for the reduced density matrix [35] and the op-
erator spreading [36], relating them to the efficient VQA

3 See also the discussion in [25].

4 Tt is not a conflict with [26] which reduces parameter space redun-
dancy by identifying the principal directions carefully for maxi-
mal expressibility. Our reduction is rather arbitrary and without
a guarantee that the circuit with remaining independent param-
eters can be maximally expressible.
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optimization [37]. Finally, it is important to study differ-
ent types of noise and analyse how they affect the VQA
optimization performance [38, 39].
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Appendix A: Hamiltonians

Let us consider the following 1d Hamiltonian systems:
the nearest-neighbor and long-range Ising models coupled
to a transverse magnetic field and the Sachdev-Ye-Kitaev
model [10-12]. Here we summarize some of their impor-
tant characteristics, including the entanglement entropy
scaling of their ground states.

1. Nearest-Neighbor Ising Model

The 1d Hamiltonian with the nearest-neighbor spin in-
teraction coupled to a transverse magnetic field reads:

n n
H = E 0i0zit1 1+ 9 E Oz, s
i=1 i=1

where we assume the periodic boundary condition ¢ ~ i+
n and the magnetic coupling g being positive. o,,. ; are
Pauli-z/z matrices acting on the i’th spin, respectively.

One can solve this Hamiltonian exactly, leading to the
following ground-level energy [42]:

n—1 1/2
2rk
E,=— E <1+g2—29005<2)> .

k=0

(A1)

(A2)

The g = 0 ground state is in the anti-ferromagnetic phase
where all spin variables are aligned antiparallel to neigh-
boring spins, such that £, = —n. As g grows, the spin-
field coupling contributes more significantly to E,. Es-
pecially when g ~ g., the paramagnetic phase transition
occurs such that all spins are now aligned in —z direction.
As g > g, the ground energy approaches to F, ~ —gn.
See Figure 16 for the ground energy curves over the range
of the magnetic coupling 0 < g < 2.5 with different n.
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We also draw in Figure 18 the curves of various Renyi-k
entropies of the n = 12 Ising ground state for 0 < g < 2.5.
Figure 17 contains the scatter plot of energy and Renyi-2
entanglement entropy over all the eigenstates of the g = 1
Ising Hamiltonian with n = 12 qubits.

2. Long-Range Ising Model

We add the long-range spin-spin interaction whose cou-
plings decay with the distance. This Hamiltonian reads:

1 n
H = ZWUZ’iUZ’j “!‘QZ@L’,Z‘

i<j i=1

(A3)

where d(i, 7) is the shortest distance between the i’th and
7’th spins with the periodic boundary condition ¢ ~ i+mn.
All the non-local interactions vanish in the limit o — oo,
thus the Hamiltonian (A3) reduces to (Al).

As in the nearest-neighbor model, for any « > 0, the
long-range Ising model exhibits a transition between the
anti-ferromagnetic and paramagnetic phases. Note that
the ground state in the anti-ferromagnetic phase can have
the entanglement entropy that grows with n, thus violat-
ing the area law. Its scaling behavior in n is logarithmic
for > 1 and sub-logarithmic for o < 1 [43]. Since the
matrix product state ansatz can still closely approximate
the ground state [43, 44], we expect the mild violation of
the area law entanglement would not be a big obstacle of
the gradient-based optimization even for large n. Several
Renyi-k entropies of the n = 12 long-range Ising ground
state are shown in Figure 18 as a function of 0 < o < 20.

Figure 16 plots the g = 1 ground energy as a function
of the exponent 0 < a < 20 for different system sizes n.
Since the long-range interactions are almost negligible
for a 2 10, the curves converge to the energy (A2) of the
nearest-neighbor Ising model at g = 1. We also draw the
scatter plot of energy and Renyi-2 entanglement entropy
in Figure 17, denoting every eigenstate of the g =a =1
long-range Ising Hamiltonian with n = 12 qubits.

3. The SYK Model

The Sachdev-Ye-Kitaev (SYK) model [10, 11] consists
of random, long-range, all-to-all interactions of n qubits,
which correspond to the following random couplings of ¢
Majorana fermions:

H = ()12 >

1<i1<...<ig<2n

Jiy.igYin-Vig > (A4)

where the Majorana fermions {~; }1<;<2n satisfy the Clif-
ford algebra {v;,7,;} = d;; and can be translated to the
spin variables via the Jorgan-Wigner map. The coupling
constants J;, . ;, are randomly drawn from the Gaussian
distribution with mean 0 and variance (¢ — 1)!/(2n)?"1.
Much attention has been paid to the SYK, model because
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it is exactly solvable and exhibits a chaotic dynamics for
g > 4 at the same time [11, 12].

We focus on the SYK, model and drop the subscript
for brevity. Each random draw of the coupling constants
Jiy . i, from the Gaussian distribution defines a different
instance of the SYK Hamiltonian. The SYK ground en-
ergy for 100 individual instances with n qubits, or equiv-
alently, 2n Majorana fermions are displayed in Figure 16.
Similarly, the entanglement entropies of 100 instances of
the n = 12 SYK ground state are visualized in Figure 18,
illustrating the SYK ground state is much more highly-
entangled than that of the Ising models. More generally,
the energy-entropy scatter plot of Figure 17 denotes the
full spectrum for an instance of the n = 12 SYK Hamil-
tonian, exhibiting the volume-law scaling of the entan-
glement entropies [13]. Its energy gap is notably smaller
than that of the Ising models, thus violating the assump-
tion [9] for the area-law entanglement of the ground state.

Appendix B: Other Entanglement Measures
1. Max-Min entropies

The min-entropy and max-entropy arise as two limiting
cases of the Renyi-k entropies, i.e.,

Smaa: (pA) =limg o RZ(PA) = IOg (rank pA)

. (B1)
Smin (PA) =limp 00 Rl‘z} (pA) = - log (Amaz (PA))

where Apqz(p) is the largest eigenvalue of p. Given the
three architectures in Figure 1 and Section V, their aver-
age max-min entanglement entropies of 50 random circuit
states are given in Figures 19 and 20 as a function of L.

The max-entropy shows rapid initial growth caused by
the circuit architecture in Figure la, which increase the
rank of the reduced density matrix pa every second layer
until the rank saturates at the allowed maximum, 274.
The non-negativeness and normalization of the reduced

Type n v Li 7ok
8 0.8534 6 3.9985 9

L; Type n vy L rng Ls
8 0.1724 9 2.2341 23

10 0.9342 6 4.9983 12 10 0.1611 14 3.1373 33
12 0.8694 8 5.9974 18 12 0.1651 21 4.0823 39
Smax 14 0.8922 8 6.9965 23 Smin 14 0.1739 23 5.0491 46
16 0.8510 9 7.9956 32 16 0.1715 35 6.0303 53
18 0.8305 10 8.9947 35 18 0.1726 39 7.0181 60
20 0.8011 11 9.9931 47 20 0.1686 49 8.0118 66
8 0.2232 9 2.7084 29 8 0.2050 9 2.5798 27
10 0.2077 12 3.7101 33 10 0.1911 14 3.5708 33
12 0.2134 19 4.7177 43 12 0.1963 21 4.5764 41
RY 14 0.2225 19 5.7234 49 RS 14 0.2057 22 5.5823 49
16 0.2199 29 6.7272 60 16 0.2031 31 6.5866 60
18 0.2212 32 7.7290 63 18 0.2046 35 7.5887 63
20 0.2156 41 8.7299 71 20 0.1995 43 8.5899 71

Table II. Estimation of the entanglement velocity, late-time
saturation value, early-time scale, and the late-time scale.
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Figure 19. The max-entropy of the circuit reduced density matrix pa(6) as a function of the number of layers L.

87 8
74 71
61 61
59 57
4 44
31 3]
2 24
=% —— n=10 3/ ——n=10
ol n=8 01 n=8

10 20 30 40 50 60 25 50 75 100 125 10 20 30 40 50 60

L L L
(a) The circuit of Figure 1 (b) The p = 1/2 circuit (c¢) The restricted circuit
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Figure 21. The geometric measure of the circuit reduced density matrix pa(€) as a function of the number of layers L.



density matrix, i.e., \i(pa) > 0and Y, Ai(pa) = 1, then
implies the change of the eigenvalue statistics from hav-
ing one A being non-zero and having a value of 1 to all A’s
being non-zero and having similar values around 2774.
Such decrease in the largest eigenvalue of p 4 is displayed
in the min-entropy curve. We note this spectral change of
pa can be a contributing factor for the emergence of the
random matrix behavior of p4, studied elsewhere [37].
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2. Geometric Measure

Another way to measure the quantum entanglement of
circuit states is to study the geometric measure of entan-
glement, based on the overlap between the circuit state
|1)(6)) and its nearest product state [45]. It reads:

E([9(0))) = ~log sup [l (@)* (B2)

where P is the set of qubit product states. Figure 21
shows that the geometric measure of entanglement grows
in the same pattern as of the entanglement entropy curve.
However, note that the geometric measure is directly cal-
culated from the full density matrix p, while the entan-
glement entropies are found from the reduced state p4.
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