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Highlights

• A multi-scale closed loop model for axonal length regulation, incorporating motor-motor interactions and in-
cluding a back end signaling pathway, is developed

• This model captures two key experimental findings

• The model predicts that increasing motor density will cause an axon to grow, thereby providing key insight into
what future experiments need to be done to validate the model and understand axonal length control.

Abstract

This article develops a closed-loop multi-scale model for axon length regulation based on a frequency-dependent
negative feedback mechanism. It builds on earlier models by linking molecular motor dynamics to signaling delays
that then determine signal oscillation period. The signal oscillation is treated as a front end for a signaling pathway
that modulates axonal length. This model is used to demonstrate the feasibility of such a mechanism and is tested
against two previously published reports in which experimental manipulations were performed that resulted in axon
growth. The model captures these observations and yields an expression for equilibrium axonal length. One major
prediction of the model is that increasing motor density in the body of an axon results in axonal growth—this idea
has not yet been explored experimentally.
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1 Introduction
An axon is a long protrusion from the cell body of a neuron whose length can be hundreds or thousands of times
larger than the diameter of the cell body. It transmits electrical impulses from the cell body to downstream target
neurons. In the first stage of the development of an axon, a growth cone forms and leads its spontaneous extension.
In the second stage, the axon tip approaches its targets and synapses ultimately form [1, 2]. The growth rate during
this second stage depends on factors released by the target cells [3, 4]. What determines the growth rate during the
first stage? This question is the focus of this study.

An axon is composed of microtubules in its center, membrane wrapping the microtubules, and cytosol between
the microtubles and the membrane (Fig. 1). Microtubules are directionally polarized filaments with biophysically
distinguishable “+” ends and “–” ends [5]. They provide structural integrity for cells and form filaments upon which
molecular motors move to transport various cargo such as proteins that can act as signaling molecules [6–8]. The
polarity at a given end of the microtubule dictates what kind of molecular motor will travel along in a given direction.
For example, kinesins generally walk in the “+” direction along microtubules whereas dyneins tend to walk in the “–”
direction. Motor dynamics along microtubules has been the focus of many theoretical investigations in recent years
[9–12].

Recently, Rishal et al. proposed a possible mechanism for axon length regulation [13–15] based on bidirectional
motor transport (Fig. 1). They hypothesized that an excitatory signal E was carried by kinesins from the cell body to
the axon tip, where it induced an inhibitory signal I. This signal was assumed to be transported by dyneins from the
tip to the cell body and suppress the signal E. With sufficient time delays, oscillations in both signals arise, which they
proposed was the key to axon length sensing . In particular, information regarding axonal length could be encoded in
the oscillation frequency, which could be used to regulate axon growth. Encoding information with oscillatory signals
has been shown to be advantageous over constant signals in some biological systems [16, 17].
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1



Figure 1: A schematic diagram showing the structure of an axon and the delayed-feedback mechanism proposed by
Rishal et al. [13]. The axon is composed of microtubules, cytosol and membrane. The molecular motors, kinesins and
dyneins, move along the microtubules in opposite directions and carry the excitatory signal E and inhibitory signal
I, respectively. After arriving at the axon tip, the signal E promotes the production of the signal I, which suppresses
the production of the signal E when it reaches the cell body.

Based on this hypothesis, Karamched et al. developed a delayed feedback model that was used to show that oscilla-
tions appeared when the axon length crossed some threshold (a supercritical Hopf bifurcation point) and demonstrated
a negative correlation between the frequency and the length [18]. The model also replicated the experimental result
that knockdown of either kinesin or dynein caused axon growth [13]. A follow-up study by Folz et al. added down-
stream signaling pathways to the model of Karamched et al. that provided a possible mechanism by which a neuron
could decode the length information in the oscillating signals [19]. In spite of the progress in modeling, several aspects
of this frequency-dependent length regulation remain unclear. First, neither model includes the possible influence of
motor-motor interactions upon motor densities in the axon and thus on the delays. Second, a follow-up experimental
study by Perry et al. showed that importin-β1 mRNA and its protein product (importin β1) could serve as the excita-
tory and inhibitory signal, respectively [20]. Disrupting the interaction between the mRNA and its carriers (kinesins)
was shown to induce axon growth. This is a key test of the axon growth mechanism, and it is not clear whether this
can be explained by the frequency-dependent mechanism.

In this article, we begin with the model of Karamched et al. and build on it by explicitly considering the transport
of E and I signals by kinesin and dynein motors and by considering interactions between motors. This allows us to
determine the relationship between axon length and the time delays that is key to the oscillation mechanism. We
then form a closed-loop system that allows us to simulate experimental manipulations performed in [13, 20]. The
closed-loop model also facilitates an analysis of how the equilibrium axon length varies with system parameters, and
we demonstrate step-like changes that can be linked to the initiation/termination of oscillations in the E-I system.

2 How are oscillations in signaling molecules generated?
The basis for axon length detection in the mechanism postulated in [13] relies on oscillations in the concentration of
signaling molecules. It is postulated that these oscillations are the result of delayed negative feedback of an inhibitory
signaling molecule I on an excitatory signaling molecule E. To demonstrate this mathematically, we use a system of
delay differential equations that describe the processes in Fig. 1. Let Eb, Ib and Et, It be the concentrations of E and
I in the cell body and axon tip, respectively. Their temporal evolution is described by the following:

dEb

dt
= pE,b(t)− dE,bEb(t)− wEJKEb(t), (1)

dEt

dt
= −dE,tEt(t) + rV wEJKEb(t− τK), (2)

dIb
dt

= −dI,bIb(t) + wIJDIt(t− τD)/rV , (3)

dIt
dt

= pI,t(t)− dI,tIt(t)− wIJDIt(t), (4)

where pE,b and pI,t are the production rates of E and I. A Hill function H describes the activation of I by E:

pI,t = pIH (Et,KI , nI) , (5)

where
H (x,K, n) =

xn

xn +Kn
. (6)
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Figure 2: Solutions of the delayed feedback model for different delay values. (A) τK = τD = 0.2. (B) τK = τD = 2.
(C) τK = τD = 20. Other parameter values are given in Table 1.

In Eq. (5), pI is the maximum production rate, KI is the half-activation level, and nI is the Hill coefficient for the
signal I. A Hill function also describes the suppression of E by I:

pE,b = pE(1−H (Ib,KE , nE)), (7)

where pE is the unsuppressed production rate and the parameters KE and nE are analogous to KI and nI . The term
wEJKEb(t) in Eq. (1) reflects the transport of E away from the cell body by kinesin motors. The quantity JK is the
current of the kinesin motors through the axon; it is the number of kinesin motors entering the axon or arriving at
the axon tip per unit time. The quantity wE represents the average number of E molecules carried by a single kinesin
and reflects the binding affinity of E to kinesin motors. The delay τK in Eq. (2) represents the average time for a
kinesin motor to traverse the distance from the cell body to the axon tip, so the term rV wEJKEb(t− τK) corresponds
to the arrival of the signal E at the tip. This term includes the volume fraction, rV , of the axon body to the axon tip.
Similarly, wIJDIt(t) and wIJDIt(t− τD)/rV in Eqs. (4) and (3) describe retrograde transport of I by dynein motors.
The terms dE,bEb, dE,tEt, dI,bIb and dI,tIt describe natural degradation of E and I.

The current model improves on an earlier one [18] by explicitly describing the dependence of the production of
each signal on the concentration of the other signal (Eqs. (5) and (7)). It is motivated by the experimental finding
that importin-β1 mRNA may act as the signal E, whose product (importin-β1 protein) may act as the signal I [20].
The translation of importin-β1 occurs at the axon tip, thereby spatially separating the mRNA production from the
protein production. It is not yet clear how importin-β1 protein inhibits the production of importin-β1 mRNA, but it is
likely through repression of gene transcription. Our model does not specify the identity of the signaling molecules, or
the means of production. Rather, it is more general, relying only on the spatial segregation of the E and I production
sites and the mutual feedback between the two.

We use a dimensionless form of Eqs. (1)–(4), as shown in the next section. They are very similar, except that
the volume ratio rV scales out. To investigate the effects of changes in the time delays on system dynamics, the
dimensionless equations, Eqs. (20)–(23), are solved numerically by using the “dde23” solver in MATLAB [21]. The
initial conditions are Eb(t) = Et(t) for t ∈ [−τK , 0] and Ib(t) = It(t) = 0 for t ∈ [−τD, 0]. The values of the delays
are given in the caption of Fig. 2, and other parameter values are given in Table 1. For small time delays, numerical
calculation shows that there is a stable equilibrium following transient oscillations (Fig. 2A). As the delays are increased,
the stable equilibrium bifurcates into a limit cycle as the system undergoes a supercritical Hopf bifurcation. The
oscillations are nearly sinusoidal for delays close to the critical values for oscillation initiation (Fig. 2B) and approach
a square wave form as the delays are increased further (Fig. 2C). In the latter case, each signal remains at its maximal
or minimal value for a duration of approximately τK+τD time units, with very rapid switches between (Fig. 2C). This
is shown in more detail in Fig. 3, which includes all four state variables. It can be seen that Eb starts to grow rapidly
around t = 850 (black curve). After time τK time units, the signal E reaches the axon tip, leading to a rapid increase
in Et (blue curve). This causes the production of the signal I at the tip, corresponding to the increase in It (green
curve). The signal I then travels retrogradely and reaches the cell body after τD. This leads to a quick increase in Ib
(red curve) and a decrease in Eb (black curve). The axon tip senses the low level of Eb after τK and stops producing
the signal I, resulting in a drop in It. This drop leads to a drop in I at the cell body after τD time units, allowing Eb

to rise again and starting a new cycle. Therefore, the oscillation period T is

T ≈ 2(τK + τD). (8)

3 What is the relationship between the oscillation period and the axon
length?

To relate the signal oscillation period with axonal length, we next model the transportation of the signals along an
axon by molecular motors as a Totally Asymmetric Simple Exclusion Process (TASEP) [22–25], which is illustrated in
Fig. 4. This enables us to relate the delays to the axon length. Furthermore, the TASEP provides relations between the
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Figure 3: Square-wave oscillations that occur when τK = τD = 20. The oscillation period is approximately 2(τK+τD).

motor currents (JK and JD) and the motor densities. These relations are combined with the delayed feedback model
to describe how the oscillation period varies with various biophysical parameters—specifically bulk motor density and
motor-signal affinity.

Figure 4: The Totally Asymmetric Simple Exclusion Process (TASEP). In this process, particles enter a lane of lattice
sites with rate νenter and exit with rate νexit. After entry, each particle hops to its next site with rate ν, provided the
site is empty.

Multiple microtubule tracks traverse the axon. The molecular motors kinesin and dynein traverse these tracks
with periods of ballistic motion interspersed with periods of track switching [26]. However, it has been shown that
the motor transport along multiple tracks is mathematically equivalent to motor transport along a single track, in an
average sense [27]. We therefore model the motion of kinesin along a single track and dynein along a second track.
The kinesin and dynein dynamics are each described with a TASEP that consists of a lane of lattice sites and multiple
particles that move along the lane (see Fig. 5). Specifically, a particle at some site can only jump to the next site if the
latter is unoccupied. The probability for such a successful jump within a small time duration dt is νdt, where ν is the
hopping rate constant. Particles enter the lane through the first site and leave from the last, and the corresponding
rate constants are νenter and νexit. We assume νenter = νexit = ν.

To derive a relation between τK and the TASEP parameters, we invoke a mean-field approximation [28]. Let N
be the total number of sites of the lane for the kinesin motors and νK be the hopping rate (we assume that it is the
same with or without cargo). The state of site i can be described by an occupation number OK,i(t), defined as

OK,i(t) =

{
0 site i is vacant,
1 site i is occupied.

(9)

With time discretized into units of dt, the conditional probability for a kinesin to jump to site i+1 at t0+dt, provided
it is at site i at t0, is given by

Pr{at site i+ 1 at t0 + dt|at site i at t0} = (1−OK,i+1(t0))νKdt. (10)

Then the conditional probability for the kinesin to jump to site i+ 1 at t0 + 2dt, provided that it is at site i at t0, is

Pr{at site i+ 1 at t0 + 2dt|at site i at t0}
= Pr{at site i+ 1 at t0 + 2dt|at site i at t0 + dt} · Pr{at site i at t0 + dt|at site i at t0}
= (1−OK,i+1(t0 + dt))νKdt[1− (1−OK,i+1(t0))νKdt]. (11)

Continuing this process, the conditional probability for the kinesin to jump to site i+ 1 at t0 + ndt, provided that it
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Figure 5: Bidirectional transport of signaling molecules along an axon is the basis of the delayed feedback model.
Excitatory signaling molecules E (red hexagons) are produced in the cell body and transported by kinesins (blue
circles) to the axon tip, where they promote the production of inhibitory signaling molecules I (grey triangles). These
molecules are carried by dyneins (green circles) to the cell body where they suppress the production of the signal E.
The degradation of the E and I molecules is not shown. The microtubules along which the motors travel are modeled
as two lanes of lattice sites.

is at site i at t0, is

Pr{at site i+ 1 at t0 + ndt|at site i at t0}

= (1−OK,i+1(t0 + (n− 1)dt))νKdt

n−1∏
i=1

[1− (1−OK,i+1(t0 + (i− 1)dt))νKdt]. (12)

Let ρK,i be the ensemble average of OK,i(t) at equilibrium. By the mean-field approximation [28], the probability
for a kinesin motor to stay at site i for ndt time units can be calculated by replacing all the occupation numbers at
different times by their ensemble average ρK,i+1, namely

Pr{Stay for ndt} = (1− ρK,i+1)νKdt(1− (1− ρK,i+1)νKdt)n−1, (13)

We also set t0 = 0 since the TASEP is autonomous. The average duration ri that a kinesin stays at site i is then given
by

ri ≡
∞∑

n=1

ndt(1− ρK,i+1)νKdt(1− (1− ρK,i+1)νKdt)n−1

=
1

νK(1− ρK,i+1)
, (14)

where the second equality is proved in Appendix A.
It has been shown that ρK,i is nearly uniform for most bulk sites in the lane [29–31]. There can be boundary layers

at either the entrance or the exit or both, but we ignore their contribution to the total residence time of a kinesin
within the lane, i.e., the delay τK , because the boundary layers encompass only a small number of sites. Let ρK,bulk
be the constant for the bulk sites, then using this approximation, the total time required for a kinesin molecule to
move from the axon body to its tip is

τK =

N∑
i=1

ri =
N

νK(1− ρK,bulk)
. (15)

Let L be the axon length and a the size of a single lattice site, then N = L/a and Eq. (15) becomes

τK =
L

aνK(1− ρK,bulk)
. (16)

Thus, τK is proportional to L, which coincides with previous models [18, 19]. However, it also indicates that τK
becomes large if the motors crowd the lane (i.e., if ρK,bulk ≈ 1), which was not considered in previous models. From
an identical derivation,

τD =
L

aνD(1− ρD,bulk)
, (17)

where νD is the hopping rate of the dynein motors and ρD,bulk is the average of the occupation numbers for the bulk
sites in steady state. We refer to ρK,bulk and ρD,bulk as the bulk densities of kinesin and dynein motors, respectively.
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Parameter Definition Value
pE Basal production rate of signal E molecules at the cell body 6
pI Basal production rate of signal I molecules at the cell body 6
wE Average number of signal E molecules carried by a single kinesin 5
wI Average number of signal I molecules carried by a single dynein 5
νK Hopping rate of kinesins 1
νD Hopping rate of dyneins 1

ρK,bulk Bulk density of kinesins 0.5
ρD,bulk Bulk density of dyneins 0.5
dE,b Degradation rate of signal E molecules at the cell body 1
dE,t Degradation rate of signal E molecules at the axon tip 1
dI,b Degradation rate of signal I molecules at the cell body 1
dI,t Degradation rate of signal I molecules at the axon tip 1
L Axon length 10

Table 1: Dimensionless parameter descriptions and values. Values of pE , pI , wE , wI , dE,b, dE,t, dI,b and dI,t are
adopted from the previous model [18]. For simplicity, we assume that the hopping rates of kinesins and dyneins are
the same (for a discussion on different hopping rates, please see Section 7). By choosing the characteristic hopping
rate (v∗ in the appendix) to be the rate for kinesins, we get νK = νD = 1. We choose ρK,bulk = ρD,bulk = 0.5 in order
to get maximum currents (see Eq. (25)). The value of L is set to be 10, such that the signals oscillate like square
waves.

Like τK , the current JK of the kinesin motors also depends on ρK,bulk [27, 29–31], whose mean field approximation
to leading order in a is [23]

JK = νKρK,bulk(1− ρK,bulk). (18)

This relation indicates that JK is symmetric about its maximum value, which occurs at ρK,bulk = 0.5. The decline in
JK after ρK,bulk passes 0.5 reflects crowding of the motors. The approximation for JD is the same:

JD = νDρD,bulk(1− ρD,bulk). (19)

The times required for motors to move from one end of the axon to the other, τK and τD, become time delays for
the signaling molecule concentrations. With the above relations for the delays and currents, a dimensionless system
of delay differential equations, with characteristic scales detailed in Appendix 2, is:

dEb(t)

dt
= pE,b(t)− dE,bEb(t)− wEJKEb(t), (20)

dEt(t)

dt
= −dE,tEt(t) + wEJKEb(t− τK), (21)

dIb(t)

dt
= −dI,bIb(t) + wIJDIt(t− τD), (22)

dIt(t)

dt
= pI,t(t)− dI,tIt(t)− wIJDIt(t), (23)

and the expressions for the dimensionless delays and currents are

τK =
L

νK(1− ρK,bulk)
, τD =

L

νD(1− ρD,bulk)
(24)

JK = νKρK,bulk(1− ρK,bulk), JD = νDρD,bulk(1− ρD,bulk). (25)

For simplicity, we use the same notation for the dimensionless equations as for the previous dimensional equations.
For the remainder of the study we use the dimensionless variables and equations. Parameter values are given in Table
1 unless used as a bifurcation parameter.

From Eqs. (16) and (17), the axon length L affects the time delays linearly. The diagrams in Fig. 6 show how
changes in L influence oscillations in Ib (and thereby Eb). At a small value of L, the equilibrium solution (black)
loses stability (Fig. 6A), and gives rise to a branch of periodic solutions (red). These solutions are depicted with two
curves, one for the oscillation minimum and one for the maximum. After the emergence of the periodic branch at a
supercritical Hopf bifurcation (green filled circle) the oscillation amplitude (distance between the red curves) grows
quickly and after L = 1 changes very little. In contrast, the oscillation period, shown in Fig. 6B, grows almost linearly
over the entire range of L values shown. Thus, oscillation period, but not amplitude, is capable of encoding axonal
length.
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Figure 6: The bifurcation diagram and period variation with respect to L. (A) The bifurcation diagram shows that
an oscillatory solution emerges from a supercritical Hopf bifurcation point (green circle) and the oscillation maximum
and minimum (red curves) rapidly flatten out as L increases. The stationary branch is generated numerically using the
BIFTOOL software package [32], and the periodic branch is generated through numerical integration of the equations
over a range of L values. (B) The period T increases almost linearly with L.

4 Experimental manipulations support an inhibitory role for oscillations
If our assumption that axon growth is determined by the oscillation period of the signaling molecules E and I is correct,
then since the period increases with axon length in our model, it must be true that axon growth is inhibited at larger
periods. Otherwise, the axon would grow without bound. Also, we assume that the axon grows when the signal is at
a low level equilibrium, because there is no inhibitory influence to act against the growth. In this section, we explore
two experimental manipulations that have been performed which, together with bifurcation analysis, support these
features of the model.

In one manipulation, Perry et al. used the anti-nucloelin aptamer AS1411 to disrupt the binding between kinesins
and nucleolins and found that it led to axon growth [20]. The nucleolins carry importin-β1 RNA, which was assumed
to be the excitatory signaling molecule E. Thus, application of AS1411 would result in a reduction in wE , since this
parameter reflects the binding affinity between signal E and kinesins. To investigate the effect of application of AS1411
in the model, we performed a bifurcation analysis of the E-I system with respect to wE (Fig. 7). For a large range of
values of wE there is little change in either the amplitude or period of oscillations. However, for values of wE below the
Hopf bifurcation, the oscillations are replaced by a branch of stable stationary solutions. Since the signaling system is
not oscillating here, there is no inhibition of axon growth, so for wE values below the Hopf bifurcation the axon would
grow. Thus, we interpret the experimental manipulation as reducing wE from a value in which oscillations occur and
provide an inhibitory influence to further axon growth, to a value in which there are no oscillations to inhibit axon
growth, so the axon increases in length, as observed in the experiments.

Figure 7: Analysis of signaling molecule oscillations with changes in the binding affinity between E and kinesins (wE).
(A) The one-parameter bifurcation diagram shows that the oscillation starts at a Hopf bifurcation point of wE (green
circle) and the peak value rapidly flattens out. (B) There is little change in period with wE .

In another manipulation, Rishal et al. reduced the motor densities by knocking down the related motor heavy
chains, and in response observed axon growth [13]. To check consistency with our model, we performed bifurcation
analysis with respect to the average bulk densities ρK,bulk and ρD,bulk. In both cases, oscillations occur at intermediate
levels of the densities, and these are deliminated by Hopf bifurcations. Also, in both cases, the oscillation period
increases monotonically with the bulk density (Fig. 8B, D). Thus, a manipulation that reduces the bulk density of
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either type of motor would reduce the oscillation period. This reduction would promote axon growth, as seen in the
experiments.

Considering both experiments and the corresponding bifurcation analysis, we conclude that the overall effect of
the oscillation on axon growth is inhibitory, and the inhibition is stronger at greater periods. In the next section, we
implement this by combining the delayed feedback model with a generic signaling pathway for axon growth.

Figure 8: Analysis of signaling molecule oscillations with changes in the bulk densities (ρK,bulk and ρD,bulk). (A, C)
The bifurcation diagrams show that oscillations are initiated and terminated by supercritical Hopf bifurcations. (B,
D) The period increases with increases in the bulk densities.

5 How does a neuron regulate the length of its axon according to the
signal frequency?

Most materials for axon growth are produced in the cell body and transported into an axon [33, 34], although there
are also organelles within the axon that enable local production [15, 35]. To regulate axonal growth according to the
oscillatory signals, there must be signaling pathways that link the signals to some effector proteins which control the
production of the materials in the cell body. In this section, we analyze the following minimal signaling pathway

Ib ⟞ Y −→ X, (26)

which provides a phenomenological description of a mechanism that could be used by a neuron to regulate its axon
length. The concentration of the inhibitory signal I at the cell body, Ib, is chosen to be the input in this pathway, which
inhibits an intermediate signaling protein Y . Y subsequently activates an effector protein X, which is assumed to
positively regulate the production of materials for axon growth in the cell body. The intermediate node Y is necessary,
otherwise the average level of X cannot encode the frequency of Ib [19].

For simplicity, we assume that the average level of X determines the axon length,

L = αX⟨X⟩, (27)

where ⟨X⟩ is the time average of X. If X is at equilibrium, ⟨X⟩ is equal to X. If X is oscillating, ⟨X⟩ is the average of
X over a period. The biological assumption underlying Eq. (27) is that X positively regulates the length L. Eq. (27)
is the simplest way to capture this mathematically. More complicated models may include a differential equation
for L [36, 37], where the extension rate or retraction rate depends on X. However, the result is still the existence
of a (nonlinear) positive correlation between L and X. Choosing any such nonlinear structure does not change our
conclusions; we elected to proceed with Eq. (27) for analytic tractability of our model. Equation (27) together with
Eqs. (8) and (24) gives

T = αT ⟨X⟩, (28)
where

αT = αX

(
2

νK(1− ρK,bulk)
+

2

νD(1− ρD,bulk)

)
. (29)
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Figure 9: Time evolution of Ib, Y and X in the closed-loop model. The MATLAB solver “ddesd” is used to solve
Eqs. (31) and (32) together with Eqs. (1)–(4) simultaneously. The delays at each time step are set according to
τK = αXX/(νK(1− ρK,bulk)) and τD = αXX/(νD(1− ρD,bulk)) and taking advantage of the much slower change in X
than Ib and Y so that it approximately constant over an oscillation period. The black curve shows that as the mean
value of X equilibrates, so does the axon length. Parameter values are listed in Table 1 and Table 2. All quantities,
including X, Y and the four signal concentrations, are initially set to zero.

From Eqs. (27)–(29), we can see that the period is determined by the length through the following relation:

T = L

(
2

νK(1− ρK,bulk)
+

2

νD(1− ρD,bulk)

)
. (30)

T also influences the time evolution of L. This mutual feedback leads to an equilibrium length which we derive in the
following.

With the signaling pathway (Eq. (26)), we have the following equations for the time evolution of activated Y and
X

dY

dt
= pY (1− θ (Ib −KY ))− dY Y, (31)

dX

dt
= pX − (dX − dX,Y θ (Y −KX))X, (32)

where θ is the Heaviside function, given by

θ(x) =

{
0, x < 0

1, x ≥ 0
. (33)

The first term in Eq. (31) describes activation of Y that can be inhibited by Ib if Ib is above a threshold KY (similar
to the inhibition of Eb production by Ib), while the second term describes linear deactivation of Y . pY and dY are
activation and deactivation rate constants. The second term in Eq. (32) ensures that Y promotes X by repressing its
deactivation when Y is above another threshold KX . (dX,Y < dX for the system to remain bounded.) The first term
in this equation, pX , is the activation rate of X, which is not affected by Y .

At this point, the model forms a closed-loop system, where axon growth is determined by the period of oscillation
of Ib and, in turn, the period of the oscillation depends on the axon length. A simulation of the full model is shown
in Fig. 9. Initially, the oscillations in Ib (grey curve) are fast and of small amplitude, so that Y (blue) is large. This
allows for rapid growth in ⟨X⟩ (black curve shows X, with evident rise in mean value). As ⟨X⟩, and thus axon length,
continues to grow, the oscillation period in Ib increases, resulting in a decline in the mean value of Y . Consequently,
⟨X⟩ levels off to an asymptotic value. At this point, there are still small oscillations in X (upper inset), but its mean
has equilibrated. Thus, oscillations and axon growth interact to achieve an equilibrium length.

The key element of equilibrated axon length with the close-loop model is increased inhibition of growth with greater
oscillation period of Ib. We next show that this is true in general. We first aim at obtaining ⟨X⟩∞, the value of ⟨X⟩
when the means and oscillation amplitudes of Ib, Y and X are at asymptotic levels (i.e., after transients have died
out). The lower inset in Fig. 9 indicates that we can ignore the rapid transition of Ib from one level to the other so
that it can be approximated by a square wave. We show this approximating square wave together with time evolutions
of Y and X in Fig. 10. Note that Ib spends the same amount of time at its maximum and minimum values within a
period, which is approximately τK + τD ≡ D. During the cycle in Fig. 10A, which starts at t0, Y evolves as:

dY

dt
=

{
−dY Y t0 ≤ t ≤ t0 +D,

pY − dY Y t0 +D ≤ t ≤ t0 + 2D.
(34)
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Parameter Definition Value
pY Basal activation rate of Y 0.0585
dY Basal deactivation rate of Y 0.0195
KY Threshold for Ib to suppress activation of Y 2.25
pX Basal activation rate of X 0.0019
dX Basal deactivation rate of X 0.0019
dX,Y Reduction in the deactivation rate of X due to Y 0.0018
KX Threshold for Y to suppress the deactivation X 1
αX Scale factor linking ⟨X⟩ to L 1.5

Table 2: Parameter values for the signaling pathway (Eq. (26)).

Y starts each cycle from a maximum value Ymax, arrives at Ymin halfway through, and returns to Ymax at the end. By
solving Eq. (34), we obtain

Y =

{
Ymaxe

−dY (t−t0) t0 ≤ t ≤ t0 +D,

Ys − (Ys − Ymin)e
−dY (t−t0−D) t0 +D ≤ t ≤ t0 + 2D,

(35)

where Ys(= pY /dY ) is the equilibrium value of Y in the absence of inhibition by Ib. Imposing continuity at the
midpoint of the cycle gives

Ymin = Ys
1

edY D + 1
, (36)

Ymax = Ys
edY D

edY D + 1
. (37)

Let DY be the amount of time per oscillation that Y is above KX , and rY be the ratio of this duration to the period
(i.e., rY = DY /T ). Also define EY as the amount of time per oscillation when Ib is below KX . Thus, EY +DY = T .
Under the condition that Ymin < KX < Ymax, we obtain rY as

rY =
1

2
+

βY

T
, (38)

where βY = ln((Ys/KX)− 1)/dY . We showed in Section (4) that the inhibition due to oscillation becomes stronger as
the period T increases. To correctly describe this, we require that βY > 0, which implies KX < Ys/2. Thus, as an
axon grows, T becomes larger and rY gets smaller, which means that the growth is less sustained throughout a cycle.

Figure 10: The evolution of Ib, Y and X in the long run. (a) Y declines from Ymax to Ymin when Ib is in its upper
level and returns to Ymax again when Ib is in its lower level. DY and EY are the durations when Y is above and below
KX , respectively. D is the duration when Ib stays in either of its two levels and the period T is 2D. (b) Evolving on
a larger time scale, X increases and decreases linearly during DY and EY , respectively.

Now we consider ⟨X⟩. Note that X evolves as a piecewise linear function, indicated by the upper inset in Fig. 9
and also schematically shown in Fig. 10B. This reflects the fact that X is a slow variable on the time scale of an
oscillation period and is related to the production of materials in the cell body. After transient changes in the mean
and amplitude of X, the oscillation of X becomes stable and there is no net change in X during each cycle, as shown
in Fig. 10B. Therefore, integrating Eq. (32) from some time t0 over one period T gives us

0 =

∫ t0+T

t0

dX

dt
dt =

∫ t0+T

t0

[pX − (dX − dX,Y θ (Y −KX))X]dt. (39)

According to the definitions of DY and EY , Eq. (39) becomes

pXDY − (dX − dX,Y )

∫ t0+DY

t0

Xdt+ pXEY − dX

∫ t0+T

t0+DY

Xdt = 0 (40)
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Since X evolves linearly during DY and EY , we have∫ t0+DY

t0

Xdt = DY ⟨X⟩∞,

∫ t0+T

t0+DY

Xdt = EY ⟨X⟩∞, (41)

where ⟨X⟩∞ denotes the equilibrium level of ⟨X⟩, achieved at sufficiently large t. Then Eq. (40) becomes

[pX − (dX − dX,Y )⟨X⟩∞]DY + (pX − dX⟨X⟩∞)EY = 0, (42)

which yields
⟨X⟩∞ =

pX
dX − dX,Y rY

. (43)

We next compare our results to the experiments in [13], where the oscillation period of Ib was changed by partially
removing motors from axons. The following closed system determines the oscillation period T and the equilibrium
axon length L∞: 

⟨X⟩∞ = pX

dX−dX,Y rY
,

rY = 1
2 + βY

T ,

T = αT ⟨X⟩∞,

L∞ = αX⟨X⟩∞.

(44)

We define the rescaled equilibirum length l∞ by

l∞ :=
L∞

L0
=

αX⟨X⟩∞
αX⟨X⟩0

=
⟨X⟩∞
X0

, (45)

where X0 is the equilibrium value of X when there is no inhibition on the growth, given by

X0 =
pX

dX − dX,Y
. (46)

Solving Eq. (44) then gives

l∞ =
crd + 2(1− rd)

2− rd
, (47)

where
rd ≡ dX,Y

dX
, c ≡ 2βY

αTX0
. (48)

Note that c is a function of αT and αT is a function of ρK,bulk and ρD,bulk (Eq. (29)). Thus Eq. (47) relates l∞ to the
bulk densities of motors. To reproduce the experimental data in [13], we consider the limiting case where l∞ = c (i.e.
rd → 1). For simplicity, we also assume νK = νD. In [13], either or both of ρK,bulk and ρD,bulk were reduced by 40%.
Starting with ρK,bulk = ρD,bulk = 0.5, we obtain a 17% increase in l∞ when either ρK,bulk or ρD,bulk is reduced to 0.3,
and a 40% increase if both are reduced to 0.3. These predictions match the data in [13], which demonstrates that the
signaling pathway proposed in the beginning of this section captures experimental observations.

Thus far, we have focused on the equilibrium length when Y oscillates about KX . If Y is always above KX the
growth is never inhibited and l∞ = 1. Conversely, if Y stays below KX , the growth is inhibited throughout a cycle
and l∞ = 1− rd. In summary, we have

l∞ =


1 if Y (t) > KX for all t,
crd+2(1−rd)

2−rd
if Y (t) oscillates and Ymin < KX < Ymax,

1− rd if Y (t) < KX for all t,
(49)

which describes three equilibrium states: (1) an uninhibited state, (2) a partially inhibited state and (3) and a fully
inhibited state. The growth observed experimentally in [20] when the binding affinity between kinesin motors and
signal E molecules was reduced corresponds, in our model, to a switch from the second state to the first . The growth
observed experimentally in [13] when the motor densities were reduced corresponds, in our model, to an increase in
l∞ due to a change in c. During normal development, an axon would grow freely in the beginning and reach an
equilibrium length due to partial inhibition by the oscillation, which is a transition from the first state to the second.
The third state cannot be reached in this case and it may correspond to abnormal physiological conditions. In the
next section, we will see that changes in some parameters of the delayed feedback model can drive l∞ to the third
case.
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6 The model predicts steps in axon length
In this section we use numerical continuation of the full closed-loop model to analyze the dependence of the equilibrium
axon length on model parameters. To increase the biological fidelity of our model, we replace the Heaviside functions
used in production and degradation terms for mathematical convenience previously with Hill functions. Thus, the
dynamics of X and Y are now described by

dY

dt
= pY (1−H (Ib,KY , nY ))− dY Y, (50)

dX

dt
= pX − (dX − dX,Y H (Y,KX , nX))X. (51)

where H (·, ·, ·) is defined in Eq. (6) with nX = nY = 5.

Figure 11: The variation of equilibrium axon length with variation in wE , the number of E molecules carried by a
single kinesin motor. (A) The equilibrium length exhibits a step down as wE is increased. (B) The bifurcation diagram
has a single Hopf bifurcation. The threshold for inhibition of Y is superimposed as a dashed line.

We begin by examining the effects of varying wE , the parameter describing the average number of E molecules
carried by a single kinesin motor. For small values of the parameter the equilibrium length is large. As wE is increased,
l∞ changes little until there is a sharp drop to a lower value (Fig. 11A). This lower value is maintained for the remainder
of the range of wE values examined. Thus, there is a single step down in the equilibrium length as wE is increased.
The reason for this step-like behavior is apparent from the Ib bifurcation diagram (Fig. 11B). Once wE reaches a value
large enough that the peak of the oscillation in Ib exceeds the threshold value KY , the signaling molecule Y will
be subject to inhibition by Ib (Fig. 11B). Thus, the curves in Fig. 11 reflect a switch from a free-growth state to an
inhibited state. Similar behaviors occur when wI or pI are varied.

Figure 12: The variation of equilibrium axon length with variation in the degradation parameter dE,b. (A) The
equilibrium length exhibits a step up as dE,b is increased. (B) The bifurcation diagram in Ib has a single Hopf
bifurcation. The threshold for inhibition of Y is superimposed as a dashed line.

We next examine the effects of varying the degradation parameter dE,b. For small values of this parameter the
equilibrium length is small. As in the previous case, there is a step-like behavior as dE,b is increased, but this time
there is an upward step (Fig. 12A). This upward step occurs when the peak value of Ib during an oscillation falls below
KY , which removes inhibition of Y . This results in an increase in the equilibrium ⟨X⟩ and thus an increase in the
equilibrium axon length. The equilibrium axon length exhibits similar upward step behaviors when dI,b or dI,t are
increased.
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Figure 13: The variation of equilibrium axon length with variation in the E production parameter pE . (A) The
equilibrium length exhibits two steps down as pE is increased. (B) The bifurcation diagram in Ib has two Hopf
bifurcations. The threshold for inhibition of Y is superimposed as a dashed line.

Unlike the cases above, there is a two-step decrease in l∞ as pE , the basal production rate of E at the body, is
increased (Fig. 13A). The first step down occurs for pE values just past the initiation of oscillations in Ib. That is, just
beyond the left Hopf bifurcation point in the Ib bifurcation diagram (Fig. 13B). The rapid increase in the amplitude
of the oscillation that occurs after the bifurcation results in the peak Ib values moving past KY , inhibiting Y and
reducing the equilibrium axon length. At larger values of pE a second Hopf bifurcation occurs. As this bifurcation is
approached, the peak Ib value is almost unchanged, but the minimum value during the oscillation increases, so that
at some point Ib > KY throughout the entire oscillation cycle. This case of maximum inhibition of Y by Ib results
in a second downward step in the equilibrium axon length and corresponds to the third case in Eq. (49). Biologically,
over-production of the signal E molecules leads to a high level of I and prevents the system from oscillating. There is
a similar two-step change in l∞ when dE,t is increased, except that l∞ increases twice instead of falling twice.

All cases discussed thus far exhibit monotonic increases or decreases of l∞ when the bifurcation parameter is
increased. If we look instead at the effects of changes in the bulk densities of motors the situation is different.
Figure 14A shows that l∞ is initially unaffected by an increase in ρK,bulk, but then steps down to a lower value.
However, once ρK,bulk is sufficiently large, there is a step back to the original equilibrium axon length. This result
can be explained by an analysis of the Ib bifurcation diagram (Figure 14B), which has two Hopf bifurcations that
initiate and terminate the oscillations. For a range of values of ρK,bulk between, the peak Ib value of the oscillations is
above KY so Y is inhibited. Outside of this range Y is not inhibited, so l∞ takes on its maximum value. Biologically,
as ρK,bulk increases, the kinesin motors get crowded within an axon. This prevents them from transporting the
signal E effectively, which in turn leads to cessation of the oscillation and removal of inhibition from the axon growth
mechanism. Similar behavior occurs if ρD,bulk is varied.

Figure 14: The variation of equilibrium axon length with variation in the kinesin bulk density constant ρK,bulk. (A)
The equilibrium length exhibits a non-monotonic behavior as the bulk density is increased. (B) The bifurcation
diagram has two Hopf bifurcations. The threshold for inhibition of Y is superimposed as a dashed line.

7 Discussion
In this article, we developed a multi-scale model of a mechanism for axon length regulation proposed by Rishal et al
[13]. Our model extends earlier models [18, 19] by using a TASEP approach to characterize motor dynamics. This
enabled us to form a direct link between molecular motor dynamics, signaling delays, and axon length. We further
derived a closed system by introducing a gene signaling pathway that maps the oscillation period to the strength of
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inhibition for axon growth. This closed-loop model captures the results of two experimental manipulations [13, 20]
and yields expressions for equilibrium axon length that has three distinct equilibrium states: (1) a free-growth state,
(2) a partially-inhibited state, and (3) a fully inhibited state. Changes in system parameters induce transitions from
one state to another. That is, our model links microscopic changes in motor density in an axon to the macroscopic
property of axonal length.

One important prediction of our model is that increasing motor density to a sufficiently high value results in axonal
growth (Fig. 14). This result manifests from the assumption that the signal oscillation drives inhibition. As far as
we know, experimental studies have not investigated such behavior. Such investigation could validate our model and
provide circumstantial evidence for inhibition being driven by signal oscillations.

Throughout the paper, we assume that the hopping rates of kinesin and dynein motors are the same. However,
data indicate that they can be different [38]. In the current delayed feedback model (Eqs. (1)–(4)), the currents (JK
and JD) and the delays (τK and τD) depend on the hopping rates. If νK > νD, JK and τK will be more sensitive to
a change in ρK,bulk than JD and τD to the same change in ρD,bulk. But this does not qualitatively alter our model
results.

To see this point more clearly, consider the equilibrium length l∞, which is given by Eq. (49). For simplicity, let
rd → 1, so that l∞ = c. By the definitions of c (Eq. (48)) and αT (Eq. (29)), we get

l∞ ∼ 1
1

νK(1−ρK,bulk)
+ 1

νD(1−ρD,bulk)

. (52)

From this relation, we can see that l∞ changes faster with ρK,bulk if νK is larger. However, l∞ still decreases with
ρK,bulk or ρD,bulk and this result matches the experimental observation in [13]. Additionally, JK appears in a product
with wE in the delayed feedback model (Eqs. (1)–(4)) and they thus play the same role mathematically. Our bifurcation
analysis of wE shows that it only affects the oscillation amplitude, not the frequency (Fig. 7). Therefore, an increase
in JK due to larger νK will not affect the oscillation frequency. Furthermore, the bifurcation diagram with respect to
ρK,bulk will not change qualitatively for a larger νK , although the Hopf bifurcation points may change their locations.
Thus, our prediction regarding equilibrium length (Fig. 14) remains the same. The above discussion also applies to
νD.

To model the transportation of motors, we used two uncoupled TASEPs in opposite directions. In reality, kinesin
and dynein motors share the same tracks and their steric interactions reduce the currents of both motors and prolong
the delays to traverse the axon. Indeed, a recent study shows that co-existence of two types of motors hinder their
motions [38]. However, the current-density and delay-density relations remain qualitatively the same in this case.
That is, for small densities, the current increases as a function of density until a critical value is reached, beyond which
the current decreases with motor density to zero. Moreover, delay times to traverse the axon increases with increasing
motor density. Thus, the conclusions in this paper do not change.

Another complexity our model fails to explicitly capture is that some cargoes are attached to both motors simul-
taneously and their motion is bidirectional [39, 40]. It is possible that our hypothesized chemical signals’ dynamics
undergo bidirectional motion. In spite of this, we expect the average excitatory signal current to be in the anterograde
direction and the average inhibitory signal current to be in the retrograde direction. Thus, we expect the qualitative
behavior of our model in this case to be similar to the model we analyzed in this paper, albeit perhaps with smaller
motor currents and longer delays.

There are a number of issues we hope to explore in future work. First, we hope to capture finer details of motor
transport with a mathematical model. For example, motors detach from microtubules, diffuse in cytosol, and re-
attach to the microtubules during cargo transport. To model these phenomena, a two-lane lattice system can be used
where one lane describes the active motor movement along microtubules and the other lane describes their passive
diffusion [27, 41–44]. The attachment and detachment can be modeled as a switch between the two lanes. More
generally, we can frame transitions in the states of molecular motors and the corresponding dynamics as a piecewise
deterministic Markov process [24, 45–47], wherein a Markov process governs transitions between microscopic states and
the dynamics in each state are deterministic. Indeed, motor-driven cargo exhibits ballistic anterograde or retrograde
motion interspersed with periods of long pauses [26]. Incorporating such details will allow us to better characterize
the effect of noise at the motor level on the full system.

Second, we hope to incorporate intrinsic noise in gene activation states into the model. Our signaling pathway
implicitly assumes a large copy number for the number of gene states and therefore allows us to use kinetic equations to
describe protein dynamics in response to the oscillating retrograde signal. If copy numbers are low, a master equation
needs to be constructed to describe the dynamics and can be useful to quantitate intrinsic noise. Though this has
been done previously [19, 48], our formulation is more general in that we make no attempt to specify cellular processes
affected by oscillatory signals.

Finally, we note that an alternative axonal length-sensing mechanism has been proposed [49]. There, Roossien et
al. tracked the movement of docked mitochondria in order to establish that the physical mechanism of growth cone
advance in Drosophila is similar to vertebrate neurons. That is, the bulk forward translocation of microtubules along
the axon underlies the advance of the growth cone C-domain. They also compared the length of axons grown on two
different substrates, either poly-ornithine or Drosophila ExtraCellular Matrix (DECM). They found that axons grown
on the faster substrate DECM ended up being longer than the other substrate. The authors suggested that if a length
sensor were the sole regulator of the cessation of elongation, then neurons grown on poly-ornithine would be expected
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to sustain elongation for a longer time than neurons grown on DECM so that they end up having similar lengths.
Since this was not observed, it suggests that there may be some internal clock that is independent of axonal length
and terminates elongation after a set period of growth.

Appendix A: Derivation of Eq. (14)
Here we show how to obtain the relation

ri =
1

νK(1− ρK,i)
(A.1)

from
ri =

∞∑
n=1

ndt(1− ρK,i)νKdt(1− (1− ρK,i)νKdt)n−1. (A.2)

Let A = (1− ρK,i)νKdt, then we have

ri = Adt

∞∑
n=1

n(1−A)n−1 = AdtS, (A.3)

where
S =

∞∑
n=1

n(1−A)n−1 = 1 · (1−A)0 + 2 · (1−A)1 + · · · . (A.4)

Multiplying both sides of this equation by 1−A gives

(1−A)S = 1 · (1−A)1 + 2 · (1−A)2 + · · · . (A.5)

Substracting Eq. (A.5) from Eq. (A.4) gives

AS = (1−A)0 + (1−A)1 + · · · = 1

A
. (A.6)

Therefore we have
S =

1

A2
(A.7)

and
ri = Adt · 1

A2
=

dt

A
=

1

νK(1− ρK,i)
. (A.8)

Appendix B: Nondimensionalization of the delayed feedback model
Hew we show how Eqs. (20)–(25) are derived by properly choosing characteristic scales for model parameters. We first
select the following rescaled parameters

τ̃K =
τK
t∗

, l̃ =
l

l∗
, ã =

a

l∗
, ν̃K =

νK
ν∗

, (B.1)

where we use tildes for the dimensionless parameters and stars for their characteristic scales. Thus, Eq. (16) becomes

τ̃K =
l̃

ãν̃K(1− ρK,bulk)t∗v∗
. (B.2)

The characteristic time scale t∗ for motion along the microtubules will be inversely proportional to the hopping rate,
so we set t∗ = 1/v∗. Then,

τ̃K =
l̃

ãν̃K(1− ρK,bulk)
. (B.3)

For dynein motors, we have a similar relation

τ̃D =
l̃

ãν̃D(1− ρD,bulk)
. (B.4)

To nondimensionalize the equations (Eqs. (1)–(4)), we use the rescaling

Ẽb =
Eb

E∗ , Ẽt =
Et

E∗rV
, Ĩb =

rV Ib
E∗ , Ĩt =

It
E∗ , (B.5)

p̃E =
t∗

E∗ pE , p̃I =
t∗

E∗ pI , K̃E =
KE

E∗rV
, K̃I =

rV KI

E∗ , (B.6)

d̃E,b = t∗dE,b, d̃E,t = t∗dE,t, d̃I,b = t∗dI,b, d̃I,t = t∗dI,t. (B.7)
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Then we have

dẼb

dt
= p̃E,b − d̃E,bẼb(t)−

wE

ã
J̃KẼb(t), (B.8)

dẼt

dt
= −d̃E,tẼt(t) +

wE

ã
J̃KẼb(t− τK), (B.9)

dĨb
dt

= −d̃Ĩ,bĨb(t) +
wI

ã
J̃D Ĩt(t− τD), (B.10)

dĨt
dt

= p̃Ĩ,t − d̃I,tIt(t)−
wE

ã
J̃D Ĩt(t), (B.11)

where

p̃E,b = p̃E
ẼnE

b

ẼnE

b + K̃nE

E

, p̃I,t = p̃I
ĨnI
t

ĨnI
t + K̃nI

I

(B.12)

J̃K = ãν̃KρK,bulk(1− ρK,bulk), J̃D = ãν̃DρD,bulk(1− ρD,bulk). (B.13)

For convenience, we still use ν̃K and ν̃D for ãν̃K and ãν̃D, and w̃E and w̃I for w̃E/ã and w̃I/ã. Only the dimensionless
equations will be used in the following, so we drop all the tildes to obtain

dEb(t)

dt
= pE,b(t)− dE,bEb(t)− wEJKEb(t), (B.14)

dEt(t)

dt
= −dE,tEt(t) + wEJKEb(t− τK), (B.15)

dIb(t)

dt
= −dI,bIb(t) + wIJDIt(t− τD), (B.16)

dIt(t)

dt
= pI,t(t)− dI,tIt(t)− wIJDIt(t), (B.17)

with the relations for the dimensionless delays and currents

τK =
l

νK(1− ρK,bulk)
, τD =

l

νD(1− ρD,bulk)
(B.18)

JK = νKρK,bulk(1− ρK,bulk), JD = νDρD,bulk(1− ρD,bulk). (B.19)
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