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1 | INTRODUCTION

Mathias Vuille?

Abstract

The Parana River of South America is one of the largest rivers in the world.
Although the connection between Parand streamflow and El Nifio—Southern
Oscillation (ENSO) has been studied before, little is known about the long-
term (interdecadal) changes of this connectivity. Here we reveal these changes
by analysing long instrumental records of Parana flow, ENSO indices and
other climate variables. We find that flow and ENSO were connected in 1876-
1940 and 1983-2016, but disconnected in 1941-1982. Flow variability was
more related to central Pacific ENSO fluctuations in 1876-1940 but more
linked with eastern Pacific ones in 1983-2016, probably because the ENSO-
Parana basin teleconnection was different in the two periods. ENSO-related
Pacific climate anomalies exhibited their smallest amplitudes during the dis-
connection period 1941-1982, suggesting that the ENSO-flow link vanishes
when ENSO is weak. We also find that the ENSO—-flow disconnection coin-
cided with the coldest phase of the Interdecadal Pacific Oscillation (IPO) in
the study period. Thus, the IPO may be modulating the ENSO-flow connectiv-
ity. Interestingly, during the disconnection years (1941-1982), flow was related
to climate variability observed in sectors of the southern South Atlantic and
tropical North Atlantic oceans. This and the other empirical results presented
here provide new insights into the Parana response to ENSO and thus provide

valuable information for future mechanistic studies on this response.
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Brazil), and a vital water resource (UNESCO, 2007). Occa-
sionally, floods caused by extreme Parana flows have devas-

The Parand River streamflow is the third largest in South
America (after the Amazon and Orinoco flows), and one of
the largest in the world (Schumm and Winkley, 1994). Fur-
thermore, the Parana basin covers a vast surface area in
southeastern South America (SESA) that equals about 60%
of the European Union area (see basin location in Figure 1).
In SESA, the massive Parana constitutes an important water
way, a major source of hydropower (especially in southern

tating socioeconomic consequences in SESA (Anderson
et al., 1993). Because of these important scientific, social and
economic aspects of the Parand River, a large number of
studies analysed the variability of its flow (e.g., Amarasekera
et al., 1997; Robertson and Mechoso, 1998; Camilloni and
Barros, 2000, 2003; Dettinger and Diaz, 2000; Grimm
et al., 2000; Labat et al., 2005; Pasquini and Depetris, 2010;
Antico et al., 2014; 2016; Silva et al., 2017; Lee et al., 2018;
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Montroull et al., 2018; Antico and Diaz, 2020; Abou Rafee
et al., 2022, among others). Many of these studies revealed
that the Parand flow variability is related to El Nifio—
Southern Oscillation (ENSO) in a manner that large and low
flows tend to coincide with El Nifio and La Nifia events,
respectively (during El Nifio events, spring precipitation
increases in the Parand basin because baroclinic activity is
enhanced by a stronger subtropical jet stream; see Garreaud
et al, 2009, and references therein). However, only few
authors reported long-term (interdecadal) changes in the
ENSO-Parana link (e.g., Labat et al., 2005), and they neither
interpreted these changes nor considered pre-1900 instru-
mental hydroclimate observations in their analyses. This
illustrates the current need for a better understanding of
many aspects of the ENSO influences on the climate of
South America. As stressed by Cai et al. (2020), to fulfil this
need it is important to extend back in time the actual
observation-based studies of South American climate vari-
ability. Hence, here we analyse a recently rescued 1876-2016
Parand flow record and other observational datasets in order
to improve the current knowledge on long-term changes in
ENSO-Parana flow connectivity.

The rest of this paper is organized as follows.
Section 2 describes the data and methods used in this
work. Next, section 3 presents, discusses and interprets
the observed long-term changes of the ENSO-Parana
flow connection. Finally, section 4 presents the conclu-
sions of this study.

2 | DATA AND METHODS

Recently, Antico et al. (2018, 2020) made available
records of monthly mean Parand flow observed at

15°S
20°S South
America

25°S <

30°S

35°S

65°W 55°W 45°W
FIGURE 1 Location map of the Parana River basin (highlighted

area). Inside this basin, black lines depict the drainage system. The
locations of Rosario (R) and Corrientes (C) cities are indicated by the
open circles; both are in Argentina. The basin boundary shown in this
figure and used in this study is from GRDC (2020) [Colour figure can
be viewed at wileyonlinelibrary.com]

Rosario City (32°57'S, 60°38'W) covering the period
1875-2017. These records are complete (no missing
values) and were subjected to quality and homogeneity
tests (see Antico et al., 2018, 2020, for descriptions of
these tests and of the history of Rosario gauges). More-
over, these flow data were corrected for the gradual gauge
sinkings that occurred in 1875-1908 (see Antico
et al., 2018, 2020). Since Rosario is relatively close to the
river mouth (see Figure 1), flow data from this city reflect
changes in runoff integrated over most of the Parana
basin.

The 1875-2006 record of monthly precipitation
observed at Corrientes City (27°29’S, 58°50'W) was also
used here and it was obtained from the quality-
controlled dataset provided by the NOAA Global His-
torical Climatology Network (version 2) (Vose
et al., 1992). This rainfall time series contains 27 missing
values (2% of the record length) and no filling proce-
dure was used in this study. It is the only available
instrumental precipitation record that goes back to 1875
in the central part of the Parand basin, far (>500 km)
from the river mouth (see Corrientes City location in
Figure 1).

To characterize the time evolution of ENSO, we
considered two widely used indices: (a) the Nifio 3.4
index (N3.4), which is the sea surface temperature
(SST) averaged over the El Nifio region 3.4 (5°N-5°S,
170°-120°W), and (b) the Southern Oscillation Index
(SOI), which is the normalized sea level pressure (SLP)
difference between Tahiti and Darwin, Australia. Note
that while N3.4 is an oceanic index, SOI is an atmo-
spheric one. Whereas positive (negative) values of N3.4
correspond to El Nifio (La Nifia) events, positive (nega-
tive) SOI values are associated with La Nifia (El Nifio)
episodes. To facilitate the comparison of these two
ENSO indices, the sign of the original SOI values was
reversed in this study. Zonal asymmetries of ENSO
events are taken into account by considering the Nifio
3 (N3) and Nifio 4 (N4) indices, which are the SST
averaged, respectively, over El Nifio regions 3 (5°N-5°S,
150°-90°W) and 4 (5°N-5°S, 160°E-150°W). Monthly
means of N3, N4, N3.4 and SOI were considered here
for the period 1875-2016. To interpret low-frequency
changes in the ENSO-Parand flow relationship, we
used an index of the Interdecadal Pacific Oscillation
(IPO), a slow ENSO-like mode of Pacific climate vari-
ability. More specifically, we considered a monthly
1854-2020 record of the tripole IPO index (TPI IPO),
which is the difference between the SST anomalies in
the equatorial Pacific (10°N-10°S, 170°E-90°W) and
those in the Northwest and Southwest Pacific (45°-
25°N, 140°E-145°W; 15°-50°S, 150°E-160°W) (Henley
et al., 2015).
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FIGURE 2 Correlation between annual means of Parand flow
at Rosario and basin-integrated precipitation. This correlation was
obtained over 1950-2016 and for different definitions of a
12-month year. Letters on the abscissa correspond to month
initials. From left to right, the first correlation corresponds to the
calendar year January-December (J-D), the second one to the year
that starts in February and ends in January of the following year
(F-J), and so on. The maximum correlation (0.80) was obtained for
the year September-August (S-A). The basin area shown in

Figure 1 and the gridded observational rainfall data described in
section 2 were used to obtain the basin-integrated precipitation

We also used the following monthly gridded observa-
tional data sets: (a) NOAA Extended Reconstructed SST
version 5 (NOAA ERSSTv5) data at 2° x 2° latitude-
longitude resolution for 1854-2020 (Huang et al., 2017);
(b) Hadley Centre SLP version 2r (HadSLP2r) data at
5° x 5° resolution for 1850-2019 (Allan and Ansell,
2006); and (c) Global Precipitation Climatology Centre
(GPCC) version 2018 rainfall data at 0.5° X 0.5° resolu-
tion for 1950-2016 (Schneider et al., 2018). We did not
considered pre-1950 GPCC data because the Parana-basin
pluviometer network was considerably less dense before
1950 than afterwards.

In addition to the above described observational data,
we used monthly gridded precipitation estimates from
the versions 2c¢ and 3 of the NOAA-CIRES-DOE 20th cen-
tury reanalysis (20CRv2c and 20CRv3, respectively)
(Compo et al., 2011; Slivinski et al., 2019), and from the
ECMWF 20th century reanalysis (ERA20C) (Poli
et al, 2016). The 20CRv2c, 20CRv3 and ERA20C
reanalyses provide, respectively, precipitation data at
2° % 2°,1° x 1° and 1.4° x 1.4° resolution for 1851-2014,
1836-2015 and 1900-2010.

In this study, we considered the hydrological year
that starts in September and ends in August of the follow-
ing year. As shown in Figure 2, this year was identified as
the 12-month year that gives the highest correlation
between Parand flow and basin-integrated precipitation.
We designate this hydrological year by the calendar year

of Climatology

in which it ends; for example, the year ending in August
2000 is called the 2000 hydrological year. All the results
presented in this article were obtained using September-
August annual means, with the only exception of those
shown in Figure 2. We note that the ENSO mature sea-
son (December-February) lies well within the hydrologi-
cal year considered here (September-August), and thus
annual mean flows based on this year definition are suit-
able for studying the ENSO-Parand flow link. Another
reason for this suitability is the fact that annual averaging
filters out subannual flow changes of anthropogenic ori-
gin, such as those caused by dam operations (Robertson
and Mechoso, 1998).

The zero-lag Pearson correlation coefficient (r) was
used in this work to measure the correlation between two
time series. To analyse the interdecadal variability of the
link between two variables (e.g., Parana flow and N3.4),
we obtained sliding correlation coefficients between them
using a 31-year moving window. We chose this window
because it encompasses about six full ENSO cycles, and
because its length is almost the same as those used in
previous studies on long-term changes in the climate
responses to ENSO (e.g., McCabe and Dettinger, 1999;
Garreaud et al., 2009). The latter facilitates the compari-
son of the results from our work with those from other
studies. We also used a 31-year moving window to calcu-
late the running variance of ENSO indices; this was per-
formed to describe the interdecadal changes in ENSO
intensity. Correlation maps between Parana flow and sur-
face climate variables (SLP and SST) were obtained for
different time intervals. These maps allowed us to find
the large-scale climate patterns associated with the inter-
annual flow variability observed during particular time
periods.

3 | RESULTS AND DISCUSSION

This section presents, discusses and interprets the
observed long-term changes in the connectivity between
ENSO and Parana flow. The ability of the state-of-the-art
climate reanalyses to reproduce our results is also dis-
cussed at the end of this section.

3.1 | Observed changes in ENSO-Parana
flow connectivity

Figure 3a presents the annual mean records of Parand
flow and ENSO indices, and Figure 3b shows the sliding
correlation of this flow with these indices. As revealed by
the latter (Figure 3b), there were significant positive cor-
relations between Parand flow and ENSO indices in
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1876-1940 and 1983-2016, when large and low flows
coincided with El Nifio and La Nifia episodes, respec-
tively. This Parand flow response to ENSO is in agree-
ment with that reported in numerous previous studies

et al., 2000; Camilloni and Barros, 2003; Labat et al.,
2005; Antico et al., 2014). However, Figure 3b also shows
that interannual flow changes were not related to ENSO
in 1941-1982, when the sliding correlation of flow with

(e.g., Amarasekera et al, 1997; Camilloni and both SOI and N3.4 was not significant (i.e., below the
Barros, 2000; Dettinger and Diaz, 2000; Grimm 95% confidence  threshold). This  ENSO-flow
1 1 1 1 1 1 1
(a) Records gg’:‘
I~ A Nifo
o INiﬁa
1941-1982 FIGURE 3 (a)Standardized
annual mean 1876-2016 records
g'g i i of Paran4 flow at Rosario (QR),
05 g:, 234 N3.4, and SOI; to better visualize
0.4 ’ L the records, an offset of 3 was
o34 -\ A~™M I - added to QR, and the SOI sign
0.2 B was reversed. (b) Sliding
0.1 7 B correlation of QR with N3.4 and
SOLI. (c¢) Running variance of
134 (c) variance N L standardized N3.4 and SOI.
- sol - (d) Moving average of the tripole
117 i IPO index (TPI IPO). In (b-d), a
0.9 L 31-year moving window was
N B used. In (b) the dashed line
0.7 i indicates the upper 95%
confidence threshold (2-tailed ¢
01 (d) TPI IPO i test). Tl.le shaded area indicates
0 B the period 1941-1982, when the
O 014 o correlation of QR with both N3.4
0.2 - - and SOI was below that
-0.3 - threshold, that is, when Parana
; ; ; ; . . ; flow was not connected to ENSO
1880 1900 1920 1940 1960 1980 2000 2020 [Colour figure can be viewed at
Year wileyonlinelibrary.com]
1 1 1 1 1 1 1
(a) Records
4 L
0 1 sol I
-2 I ¥ Nifa
1941-1982
0.7 (b) Correlation -
0.6 L
0.5 - FIGURE 4 Same as Figure 3a,b but
044 _ _ N MIWNAY N YYD oA - oA B for the correlation of the precipitation at
82 : PC, N3.4 : Corrientes (PC) with N3.4 and SOI. In
014 PC, SOI B (a) the records were standardized and an
0 ; ; ; ; . . ; offset of 3 was added to PC [Colour
1880 1900 1920 1940 1960 1980 2000 2020 ﬁgure can be viewed at
Year

wileyonlinelibrary.com]
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disconnection period was also reported, but with less
detail, by Labat et al. (2005) who conducted a cross wave-
let analysis of Parand flow and SOI records over the
period 1904-1983. It is interesting to note that the four
decades of disconnection in the 20th century explain why
some authors (e.g., Amarasekera et al., 1997; Antico
et al., 2014) obtained weak or moderate correlations
(r < 0.5) when they correlated ENSO indices and Parana
flow over periods spanning most of the 20th century. But,
as shown in Figure 3b, if these variables are correlated

QR, SST

<,.
<,.,

of Climatology

before 1941 or after 1982, then moderate-to-high correla-
tions (r > 0.5) are obtained.

The precipitation record from Corrientes City pro-
vides information from a single point location inside the
Parand basin, and thus may not reflect the interannual
variability of basin-integrated runoff. Nevertheless, the
comparison of Figures 3b and 4 reveals that the inter-
decadal changes in the correlation of ENSO with Parana
flow are similar to those in the correlation between
ENSO and Corrientes precipitation. Hence, this similarity

Correlation

FIGURE 5
right) for the periods 1876-1940 (top), 1941-1982 (middle) and 1983-2016 (bottom). Correlation is shown only if significant at the 95% level
(2-tailed t test). Sectors considered in this study in the southwestern South Atlantic (SWSA; 25°-35°S, 45°-15°W), tropical North Atlantic
(TNA; 25°-10°N, 55°-20°W) and southern South Atlantic (SSA; 30°-45°S, 40°W-5°E) are shown. The Parana basin is indicated by the black
area in left maps and by the thick black line in right maps [Colour figure can be viewed at wileyonlinelibrary.com]

Patterns of correlation of Parand flow at Rosario (QR) with sea surface temperature (SST; left) and sea level pressure (SLP;
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FIGURE 6

Same as Figure 3a,b but for the correlation of Parana flow at Rosario (QR) with the N3, N4 and N3.4 indices, which are the

sea surface temperature averaged respectively over El Nifio regions 3 (5°N-5°S, 150°-90°W), 4 (5°N-5°S, 160°E-150°W) and 3.4 (5°N-5°S,
170°-120°W). The inset map shows the location of these regions (rectangles) and that of the Parana basin (dark grey area). In (a) the records
were standardized and an offset of 3 was added to QR. In (b) the dashed line indicates the upper 95% confidence threshold (2-tailed ¢ test)

[Colour figure can be viewed at wileyonlinelibrary.com]

lends further support to the observed long-term changes
in the ENSO-Parana flow link. We also note that, as
expected, the interdecadal variations of ENSO-Corrientes
rainfall correlation shown in Figure 4 are similar to those
shown by Garreaud et al. (2009). But they are not identi-
cal because, while we averaged variables over the hydro-
logical year September-August, Garreaud et al. (2009)
considered October-December averages of SOI and Cor-
rientes precipitation.

It is also worth mentioning that, since 1875, the most
devastating Parand floods occurred in the hydrological
years 1878, 1905, 1983, 1992 and 1998, when strong El
Nifio events developed (Antico et al., 2016; 2020; Antico
and Diaz, 2020). That is, none of these extreme floods
occurred during 1941-1982, when there was no relation-
ship between ENSO and Parand flow. This is consistent
with previous studies that indicated an important role of
ENSO in the generation of extreme Parana floods
(e.g., Grimm et al., 2000; Camilloni and Barros, 2003;
Antico et al., 2016; Antico and Diaz, 2020).

3.2 | SST and SLP patterns associated
with periods of connection and
disconnection

Top and bottom maps of Figure 5 show the large-scale SST
and SLP patterns that were associated with Parand flow var-
iability during the two periods of significant ENSO-flow
connection (1876-1940 and 1983-2016). As expected, these
SST and SLP patterns are those characteristic of ENSO.

Given that these patterns are widely described and dis-
cussed in the literature (see the review by Cai et al., 2020),
they are not discussed here. We only make the following
two comments about them. First, the significant SST-flow
correlation observed in the Pacific sector of the Southern
Ocean in 1876-1940 and 1983-2016 (see left top and left
bottom of Figure 5) probably reflects the ENSO tele-
connection to the Southern Ocean (Yuan and
Martinson, 2000; Kwok and Comiso, 2002), rather than a
direct influence of this ocean on the Parana flow. Second,
the region of strongest SST-flow correlation changed its
location from the central equatorial Pacific in 1876-1940 to
a more eastern location in 1983-2016 (compare left top and
left bottom maps of Figure 5). This is corroborated by the
results shown in Figure 6, where it can be seen that the
Parana flow variability was generally more correlated with
central equatorial Pacific SST changes (described by N4)
before 1941, but notably more correlated with eastern equa-
torial Pacific SST (depicted by N3) after 1982. Such an east-
ward shift of the maximum SST-flow correlation region
could imply a change in the ENSO-Parand basin tele-
connection pattern (Sulca et al., 2018).

For the period when the relationship between
Parand flow and ENSO was weak and not significant
(1941-1982), the middle maps of Figure 5 present the
patterns of correlation of flow with SST and SLP. While
the SST pattern shows a significant positive SST-flow
correlation in a sector of the southwestern South Atlan-
tic (SWSA), the SLP pattern reveals a significant positive
SLP-flow correlation in sectors of the tropical North
Atlantic (TNA) and southern South Atlantic (SSA)
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FIGURE 7 Same as Figure 3a,b

but for the correlation of Parana flow (a) Records
at Rosario (QR) with sea surface 4

temperature (SST) averaged over the 2 ]
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(a) the records were standardized and 0.2
an offset of 3 was added to QR. In 0
(b) the dashed lines indicate the 95% -0.2

-0.4 1

confidence thresholds (2-tailed ¢ test)

(b) Correlation

SSA SLP o
TNA SLP
SWSA SST

1941-1982

QR, SSA SLP
QR, TNA SLP
QR, SWSA SST

[Colour figure can be viewed at T T

wileyonlinelibrary.com] 1880 1900

Oceans. To further investigate these correlations, we cal-
culated the sliding correlation of Parana flow with SST
averaged over the SWSA sector, and with SLP averaged
over the TNA and SSA sectors. As shown in Figure 7,
the obtained moving correlations confirm that a signifi-
cant relationship between Parana flow and climate vari-
ability in the SWSA, TNA and SSA sectors existed in
1941-1982, when this river flow was not related to
ENSO. Interestingly, Figure 7 also reveals that in these
years the correlation of Parana flow with SWSA SST and
with TNA SLP was stronger and more persistent than
that with SSA SLP. This suggests that in 1941-1982 the
Parand flow variability was more influenced by TNA
SLP and SWSA SST changes than by the SSA SLP vari-
ability. In line with this, it is noteworthy that previous
observational and numerical studies identified a link
between southeastern South American rainfall and
SWSA SST (Barros et al., 2000; Grimm and Zilli, 2009;
Bombardi et al., 2014; Cherchi et al., 2014). According to
these studies, warmer (colder) SWSA SSTs are accompa-
nied by a southward (northward) displacement of the
South Atlantic Convergence Zone, and this shift is in
turn associated with enhanced (diminished) Parana
basin rainfall.

3.3 | Possible causes of changes in
ENSO-Parana flow connectivity

The ENSO-related Pacific SST and SLP changes can be
described as anomalies or departures from a background
mean state (Fedorov and Philander, 2000). This mean
state and the amplitude of these anomalies both exhibit
interdecadal fluctuations that can drive long-term
changes in the teleconnections of ENSO to the climate of

T T T T T
1920 1940 1960 1980 2000 2020
Year

a particular region (Diaz et al., 2001). As explained below,
this seems to be the case for the Parand basin.

Figure 3b,c reveals that ENSO anomalies of Pacific
SST and SLP (i.e., N3.4 and SOI changes, respectively)
reached their lowest insignificant correlation with Parana
flow around 1960, approximately at the time when they
also reached their lowest variances (squared amplitudes).
Hence, the ENSO teleconnection to Parand flow appears
to vanish when these Pacific ENSO anomalies are too
small to exert a noticeable influence on the Parand basin
climate. Conversely, an ENSO-Parana flow relationship
seems to exist when these anomalies become larger (see
Figure 3b,c). This behaviour is consistent with numerical
climate simulations whose results show that the ENSO
influence on Pacific-North American climate becomes
stronger as the tropical ENSO SST anomalies get larger
(Kumar and Hoerling, 1998).

Since the ENSO teleconnections are ultimately deter-
mined by the absolute values of equatorial Pacific SSTs, a
change in the background state of these SSTs can alter
the teleconnections, even if there is no change in the
amplitude of the SST anomalies that fluctuate around the
mean state (Diaz et al., 2001). Thus, because low-
frequency changes of the background equatorial Pacific
SST follow those of the IPO, it seems sensible to investi-
gate whether or not this Pacific multidecadal mode of vari-
ability is related to the observed changes in the ENSO-
Parana flow connection. Figure 3b,d reveals that when
this connection disappeared in 1941-1982, the IPO TPI
did indeed reach its most negative values. This suggests
that the ENSO teleconnection to Parand flow vanishes
during very cold IPO phases. Interestingly, such an IPO
modulation of ENSO influences on climate was also found
in other regions such as the western United States, north-
eastern Australia, northern India and southern Africa
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FIGURE 8 Sliding correlation (31-year window) of Parand

flow observed at Rosario (QR) with basin-integrated precipitation
(P) from three long-term climate reanalyses (20CRv2c, 20CRv3 and
ERA20C; see section 2 for details on these reanalyses). Dashed lines
indicate the 95% confidence thresholds (2-tailed ¢ test) [Colour
figure can be viewed at wileyonlinelibrary.com]

(McCabe and Dettinger, 1999; Power et al., 1999; Dong
and Dai, 2015). However, in contrast to the Parana basin,
some of these other regions (e.g., western United States
and northeastern Australia) experienced a weakened or
no ENSO-climate connection during warm IPO phases.
That is, as shown by Dong and Dai (2015), the IPO modu-
lation appears to operate differently in different regions.
Furthermore, in a given region this modulation can be
asymmetric with respect to ENSO and IPO phases (Dong
et al., 2018). For instance, the IPO can modulate El Nifio
effects differently than La Nina effects. Future proxy and
modelling studies could investigate the existence of such
asymmetric IPO modulation in the Parand basin.

3.4 | Are climate reanalyses suitable to
study changes in ENSO-Parana flow
connectivity?

Twentieth-century reanalysis products spanning the last
100 years or more would be ideally suited to diagnose the
mechanisms that can explain the above described long-term
changes in ENSO-Parana flow connectivity. However, the
state-of-the-art climate reanalyses do not satisfactorily
reproduce the interannual variability of precipitation inte-
grated over the Parand basin. In the case of the NOAA
20CRv2c reanalysis, the diagnosed basin-integrated rainfall
was never significantly and positively correlated with the
observed Parana flow (see Figure 8). Basin precipitation
from the ERA20C reanalysis is realistic but only for the
years before 1930 and after 1985 (Figure 8). The rainfall
from the NOAA 20CRv3 reanalysis has been in reasonable
agreement with the observed flow, but only since 1970
(Figure 8). This probably reflects the relatively low number
of pre-1970 meteorological observations assimilated into the
reanalysis system. Thus, the agreement between the

observed Parand flow and rainfall from reanalyses could be
improved by future work aimed at assimilating more pre-
1970 observations into the reanalyses. Future improvements
of reanalysis numerical models could also increase this
agreement, not only before 1970, but also after this year. In
the meantime, the limited agreement reported here high-
lights the need and usefulness of conducting observation-
based studies like the one presented here.

4 | CONCLUSIONS

We have revealed in detail the long-term changes in the
connectivity between ENSO and the flow of the Parana,
one of the world's largest rivers. To do this, we employed
a recently rescued 1876-2016 record of Parana flow in
conjunction with other observational climate datasets.
Our main conclusions are the following:

1. ENSO significantly influenced Parana flow in 1876-
1940 and 1983-2016, but not during the period
1941-1982.

2. Parana flow variability was more related to central
Pacific ENSO SST fluctuations before 1941, but more
linked with eastern Pacific SST after 1982. That is, the
region of strongest SST-flow correlation changed its
location from the central equatorial Pacific in 1876-
1940 to a more eastern location in 1983-2016. This
result suggests a change in the ENSO-Parana basin
teleconnection pattern.

3. From 1941 to 1982, the interannual variability of
Parand flow was positively correlated with SST in the
southwestern South Atlantic Ocean, and with SLP in
the tropical North Atlantic and southern South Atlan-
tic Oceans. That is, Atlantic climate variability may
have notably influenced the Parana flow variability at
a time when ENSO had no effect on this river flow.

4. ENSO-related Pacific climate anomalies reached their
lowest insignificant correlation with Parand flow
around 1960, approximately at the same time as when
they also reached their lowest amplitudes. A possible
explanation for this observation is that the Parana
flow becomes disconnected from ENSO when this cli-
mate mode is too weak to exert a significant influence
on Parana basin precipitation.

5. The ENSO-Parana flow relationship disappeared dur-
ing the coldest IPO phase of the study period. Hence,
the IPO may be modulating the ENSO effect on
Parand flow in a manner that disables this tele-
connection during very cold IPO phases. This in turn
suggests that the IPO may determine during which
decades ENSO indices (e.g., SOI) can serve as useful
predictors for Parana flow.
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6. Twentieth-century climate reanalyses do not success-
fully reproduce the observed Parand basin rainfall
and, thus, cannot aid in the interpretation of our
results. This problem might be overcome by future
reanalysis improvements, such as the assimilation of
more historical (pre-1970) meteorological observations
into the reanalyses.

Finally, we emphasize that although we notably
improved the description and interpretation of decadal
changes in the ENSO-Parana flow connectivity, we did
not focus on the physical mechanisms that underlie
these changes. Nonetheless, we offer our observation-
based results as valuable diagnostic information for
future modelling studies aimed at elucidating these
mechanisms.
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