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Abstract—The current freight transportation network is highly
unbalanced as routing decisions are made by individual users
without coordination. Certain routes may become congested
when chosen based on current traffic information without any
anticipation that if other users do the same, these routes may
become congested. In this paper we show how a centrally
coordinated load balancing system that considers all vehicles to
be diesel can take into account electric trucks as mixed fleets.
The electric trucks impose additional constraints due to the
limitation of range, charging time of batteries as well as the
dependency of the battery charge on traffic conditions. The use
of a co-simulation approach as part of the system accounts for
these nonlinear dependencies and provides more realistic cost
estimates for the optimization part. Traffic simulation results
using a realistic road network reveal the benefits of applying
load balancing and show that as the number of electric trucks
increases, the emissions reduce; however, due to the cost of
charging, their operational costs are not necessarily less than
those of the corresponding diesel trucks. For the electric trucks
to compete with diesel, charging should occur when drivers are
off duty since the cost of charging includes the labor cost of
the waiting driver. It is also shown that a centrally coordinated
truck routing system that considers the characteristics of electric
trucks in mixed fleets can reduce the operational cost of trucks
and encourage the deployment of electric trucks in order to
reduce emissions and improve air quality.

Index Terms—Load Balancing System, Co-Simulation, Mixed
Freight, Electric Truck, Routing.

I. INTRODUCTION

THE efficient movement of goods is a critical factor for
the sustainability and well-being of the world’s popula-

tion especially in urban areas. Worldwide container trade is
expected to grow at a 4.3% annual rate [1]. Current forecasts
expect US commodity trade to approximately double by 2030
[2]. With the rising volume of containers processed in ports,
especially in some of the largest ports such as New York and
Los Angeles, congestion and air pollution are significantly ex-
acerbated. According to [3], there will be significant increases
in highway congestion around US ports, air cargo, and border
crossing nodes in the future. Congestion results in enormous
costs to shippers, carriers and the economy. According to [4],
the total cost of truck congestion amounted to approximately
$74.5 billion in 2016 across the US national highway system
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with the delay of 1.2 billion hours. Freight transport is also a
significant contributor of NOx, CO2, PM10 and other pollu-
tants. Of the Greenhouse Gases (GHG) emissions coming from
transportation related sources, freight movement (trucks, ships,
trains, airplanes and pipelines) account for 29% of the total;
trucks are responsible for emitting 68% of GHG from these
freight sources [5]. According to a report from the European
Union [6], about 26% of the CO2 emissions are due to heavy-
duty vehicles.
The above statistics together with the efforts of cutting down
emissions motivate a number of key technologies and set the
trend for the future of the trucking industry. One such trend is
the use of electric trucks. It is forecasted that the penetration
of electric trucks into the global medium and heavy duty
market to be 9.4% [7]. During recent years researchers studied
the deployment of electric trucks from the point of view of
policy [8], [9], strategy [10] and operation [11]–[15]. Ambrose
and Jaller examined the result of electric drayage trucks at
the Port of Los Angeles and assessed emission reductions
with increased electrification of port truck operations [16].
Related research efforts can be found in [17]–[25]. The use of
electric trucks brings up the constraints of available charging
stations and charging times which will affect optimum routing
decisions. Since electric trucks are expected to be put in
use gradually the problem of traffic assignment of mixed
fleet of trucks with different characteristics and constraints is
at important area of study. Numerous research efforts have
addressed this problem under various constraints [26]–[34].
However, the dynamics of the background traffic system is
not taken into account in these approaches, which means the
decisions are made with the assumption that the behavior
of background traffic in the same transportation system will
not change. But in reality, the background traffic will be
affected when trucks are added to the flow due to the size and
dynamical characteristics of trucks and of course depending on
their number. The absence of the interactions with background
traffic may result in an non-optimal or even non-feasible
solution when used in a realistic practical scenario. To include
the dynamics of the transportation system, the problem should
be formulated as a variant of a traffic assignment problem
(TAP), which was first formulated by Beckmann et al. [35]
and widely used in transportation planning to predict an
optimal route distribution in terms of minimizing the total
cost, e.g. travel time spent by all users in the network. In
some cases, TAP is formulated to capture desirable properties
such that the solution in the form of traffic flow pattern
spreading across the network is consistent with actual traffic
behavior. These properties include queue spillback considered
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in [36]–[38], first-in-first-out (FIFO) in [39], [40] and nonve-
hicle holding in [41], [42]. On the other hand, TAP is also
formulated to develop meaningful operational strategies for
the goods movement industry, especially on the intelligent
assignment of multimodal freight. For example, Guelat and
Florian proposed a linear approximation algorithm to solve
a multimodal and multiproduct freight TAP [43]. Castelli
et al. used a Lagrangian-based heuristic procedure to solve
the freight scheduling problem [44]. Ham, Kim and Boyce
showed the application of Wilson’s iterative balancing method
in interregional multimodal shipment planning [45]. Zografos
et al. developed a dynamic programming based algorithm for
multimodal scheduling [46]. Moccia et al. solved a multimodal
routing problem with timetables and time windows by inte-
grating a heuristic methodology with the column generation
algorithm [47]. Crainic et al. proposed meta-heuristic methods
for freight demand distribution in congested urban areas in
[48], [49]. Additional work can be found in [50]–[53].
With respect to research on incorporating electric trucks into
TAP, Nan et al. presented a mathematical programming model
and solution method for the path-constrained traffic assignment
problem for electric vehicles in congested networks [54].
Bahrami et al. proposed a complementarity equilibrium model
for electric vehicles without violating driving range constraints
[55]. Based on the assumption of large adoption of electric
vehicles, Faridimehr et al. [56] proposed a two-stage stochastic
programming model to determine the optimal network of
charging stations for a community as well as the charging
decision for each electric vehicle. For a more detailed topic
for electric vehicle traffic assignment, Yao et al. [57] compared
the electric vehicle’s energy consumption rate on different road
types from the floating car data collected from road networks
in Beijing.
Despite the amount of research in TAP, there are many issues
that need to be addressed and new techniques need to be
developed in order to make full use of the emerging electric
vehicle technologies in a way that benefit the overall system
and the environment. The complexity of the traffic network is
immense due to the non-homogeneous dynamics of different
vehicle classes at the vehicle level to model nonlinear behavior
at the traffic flow level. Mathematical models used by most
TAP schemes cannot possibly capture the complexity of the
real system in order to achieve the best possible outcome
especially due to the added constraints of the electric trucks.
A true optimum route for a truck for example may end up
being far away from the optimum generated from a model
due to uncertainties not captured by the mathematical model
that optimality is based on. The development of accurate
mathematical models to describe traffic characteristics has
always been a challenge and is becoming more of a challenge
if electric trucks are included in the model. The availability
of fast computers and advanced software tools allows the
development of traffic simulation models which can run in
real time to provide the information and predicted states of the
traffic network to choose routes that are more likely to be close
to optimality than those based on simplified mathematical
models. The challenge is how these simulation models can be
integrated with optimization tools to generate more realistic

outcomes. In past work [53], [58],we considered the use of
real time traffic simulators as part of a centrally coordinated
multimodal freight load balancing system and showed the
significance of traffic simulators in planning freight routes to
achieve a good balance of freight loads across the road and
rail network.
In this paper, we extend the work of [53], [58] which was
focused on diesel trucks to include electric trucks in mixed
fleets with diesel trucks. Electric trucks will be gradually
entering the market due to efforts to reduce emissions and
many companies will be operating mixed fleets of trucks.
Therefore, routing mixed fleets of trucks in a coordinated
manner that will have additional benefits to the environment
and costs is an important research problem. The contribution
of this paper is the development and evaluation of a centrally
coordinated load balancing approach for a mixed fleet of trucks
that is computationally feasible and allows to increase the
proportion of electric trucks from zero to 100%. Specifically,
the contributions are:

• A centrally coordinated mixed freight dynamic routing
system which takes into account background traffic inter-
actions to achieve systematic minimal cost is formulated
and constructed.

• A multi layer co-simulation optimization method to solve
the central coordination problem for the mixed freight
fleet that achieves load balancing across the road network
by taking into account the impact of loads on travel time
and cost is presented and analyzed.

• The diesel and electric truck energy consumption is
accurately estimated with the integrated use of an esti-
mated model with a traffic co-simulation that provides
information such as link travel times.

• The central coordination system proposed experimentally
shows that it can provide better arrangement in aspect of
total cost for the mixed freight dynamic routing problem
with background traffic interactions taken into account.

• The system is tested under scenarios under various per-
centages of electric trucks in the whole mixed freight
fleet and background traffic conditions. The proposed co-
simulation optimization method is experimentally shown
to outperform a non-load balanced approach for these
scenarios.

As the percentages of electric trucks in a mixed fleet increases
from 0% to 100%, the results show that the proposed centrally
coordinated routing system reduces the overall cost when
compared without such coordination. With the EPA emission
model MOVES, it also shows that as the percentage of electric
trucks in the fleet increases the emissions reduce linearly as
expected. The operational cost however does not reduce as
the percentage of electric trucks increases due to the charging
cost if we assume that the charging cost takes place while the
driver is on duty. In order to see reduction in the operational
cost with increasing number of electric trucks the charging
of batteries should be done when the driver is off duty or in
waiting mode for other than charging purposes.
The remainder of this paper is organized as follows. Section 2
deals with the problem formulation and solution methodology.
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Section 3 presents the numerical results of the proposed
system. Finally, conclusions are presented in Section 4.

II. PROBLEM AND METHODOLOGY

Recent advances in battery technologies led to the de-
velopment of electric trucks that offer strong potential of
cutting operational costs and reducing pollution. Since their
penetration will be gradual the question is how the centrally
coordinated load balancing approach developed for diesel
trucks [53] can be extended to deal with mixed fleets of
trucks, diesel and electric. The problem is not straightforward
because electric trucks have limited range, require longer
charging times and the rate of depletion of battery life depends
on traffic conditions. Our proposed method is described as
follows: a central coordinator receives from individual users
their origin/destination (O/D) demand and information about
the mixed fleet of diesel and electric trucks and generates
routes that minimize an overall system cost. The impact of
the loads on each link is taken into account to achieve a load
balance across the road network. The dynamic and predicted
link cost information is generated by a traffic simulator that
is part of the overall co-simulation optimization approach.
The predicted link costs such as travel time is important in
calculating battery life in the case of electric trucks.

A. Formulation
Consider the road network to be a directed graph G(E, V ),

where E is the set of all links and V is the set of all nodes.
Among all the nodes, a subset of them are origin nodes,
denoted as O, i.e. O ⊂ V . Another subset of nodes are
destination nodes, denoted as D, i.e. D ⊂ V . For a certain
pair of origin and destination nodes (i, j), i ∈ O, j ∈ D, the
demand volume is qi,j . All the truck types are included in a
set U . To represent the distribution of trucks, we use mu

i as
the number of available trucks of type u at node i. To cope
with the temporal dimension, we discretize the time horizon
into |K| time intervals and use K as the set of all the time
intervals. The following notation is used in the formulation to
follow:
• Rui,j : The set of routes for trucks of type u from i to j,
i ∈ O, j ∈ D

• Xu
i,j,r,k: The number of trucks of type u from i to j,

i ∈ O, j ∈ D, using route r in route set Rui,j with a
departure time k; The collection of Xu

i,j,r,k is denoted as
X .

• Sui,j,r,k(X): The average service cost per container ful-
filled by a truck of type u from i to j, i ∈ O, j ∈ D,
using route r in route set Rui,j with a departure time k;

Given the above notation we formulate the problem as follows:

min
X

∑
k∈K

∑
i∈O

∑
j∈D

∑
u∈U

∑
r∈Ru

i,j

Sui,j,r,k(X)Xu
i,j,r,k (1)

∑
k∈K

∑
u∈U

∑
r∈Ru

i,j

Xu
i,j,r,k = qi,j , ∀i ∈ O, j ∈ D (2)

∑
k∈K

∑
j∈D

∑
r∈Ru

i,j

Xu
i,j,r,k ≤ mu

i , ∀i ∈ O, u ∈ U (3)

Xu
i,j,r,k ≥ 0 (4)

Equation (1) is the objective function, which aims to minimize
the sum of the service cost of all the freight loads which are
assumed to be containers. Sui,j,r,k(X) is the unit service cost
of transporting a container with a truck of type u using route
r from i to j at time k given X . The cost Sui,j,r,k(X) is given
by

Sui,j,r,k(X) = Cui,j,r,k(X) + ηTui,j,r,k(X) (5)

where Cui,j,r,k(X) is the cost of the consumed energy,
Tui,j,r,k(X) is the travel time and η is the value of time.
The energy and travel time cost depend on the dynamics of
the traffic network. The dynamics of the traffic network can
be expressed as nonlinear dynamic functions of all decision
variables, denoted as X , and will be discussed in the following
sections. Note here, the calculation of the energy cost is
different from the one used in the work of Zhao et al. [53],
where it is treated as a constant. In our case, the energy
cost depends on the dynamics of the traffic network. More
specifically, we formulate the energy cost coefficient of each
truck type as a polynomial function of the speed of the road
link, where the parameters of the function are estimated using
regression over a set of testing data. Here we assume one truck
can only load one container, so the total number of trucks
for an O/D pair is equal to the demand of the O/D pair, as
shown in equation (2). Equation (3) represents the constraints
on availability of a certain type of truck at each node while in
the work of [53] the use of trucks is assumed to be unlimited
and one can only constrain the number of trucks indirectly
by imposing the capacity on the service segment. Equation
(3) can also be used to formulate the distribution of available
mixed freight vehicles over the road network at the beginning
of the time horizon.
The dynamics of a traffic network are highly nonlinear and
exhibit the following temporal-spatial relations: traffic flow
dynamics in a link and between links. The dynamics in a link
describe how the traffic flow moves from the upstream end
of a link to the downstream end, while the dynamics between
links describe how the traffic flow propagates across the traffic
network. In most of the literature of vehicle routing, the
complex dynamics of the traffic network are overly simplified
and the dynamics between links are ignored. As a result, the
calculated optimum routes may not be optimum in a realistic
situation. In our approach, we introduce the following changes
that makes it more likely for a theoretical optimum to be closer
to one in practice:
• Instead of using a simplified mathematical model to

account for the complex traffic dynamics, we use a
traffic simulation model in a co-simulation optimization
approach. The simulation model provides a far more ac-
curate description of the traffic dynamical characteristics
to be used by the optimum route generator.

• To efficiently apply the simulation model, we construct
a service network layer as a connection between the
optimizer and the simulation model.

• To speed up the iterative algorithm process, we propose
a way to intelligently choose the direction and step size
at each iteration based on the knowledge of the marginal
cost.
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In the next subsection, we discuss the configuration of the
service network and the changes it brings to the above formu-
lation.

B. Service Network

To differentiate the notation between the service network
and the road traffic network, we use the following terminolo-
gies:
• Road network link: edge in the road network
• Path: a sequence of concatenated road network links
• Service segment: edge in the service network
• Route: a sequence of concatenated service segments

A service network can be configured based on a traffic network
in the following steps:
• Collect a subset of nodes in the traffic network including

all O/D nodes as well as the nodes necessary for the
routing of freight vehicles to form the service node set
NS. These necessary nodes can be port terminals, truck
depots, charging stations and so on.

• Construct a set of segments L connecting nodes in NS.
The service network can be seen as an abstracted upper
layer of the traffic network. With the inclusion of the service
network, the relations between routes and links can be divided
into two parts: relations between routes and service segments
and relations between service segments and traffic network
links. Let xul,k be the number of trucks of type u passing
through segment l at time k. Then the relations between routes
and service segments can be shown as follows:∑

i∈O

∑
j∈D

∑
u∈U

∑
r∈Ru

i,j

∑
τ≤k

Xu
i,j,r,kδ

u
l,r,τ,k = xul,k (6)

where l ∈ L, k ∈ K and δul,r,τ,k = 1 when the truck of type u
uses route r with departure time τ passing through segment l
at time k, otherwise, δul,r,τ,k = 0. As for the relations between
the service segment and traffic network links, we denote as
tpl,k the travel time on path p if a truck departs from the origin
of segment l at time k. Assume links constituting path p to
be ep,1, ep,2, . . . , ep,Np , where Np is the total number of links
on path p. We define ξe,k as the entering time at link e of
a truck with a departure time k from the origin of that path.
With we,k to be the travel time of link e at time k, we now
write the travel time of a path as follows:

tpl,k =

Np∑
np=1

wep,np ,ξk,ep,np
(7)

ξk,ep,1 = 1 (8)
ξk,ep,np+1 = ξk,ep,np

+ wep,np ,ξk,ep,np
(9)

where np = 1, . . . , Np − 1. To make the notation simpler, we
let ŵp,np,k ≡ wep,np ,ξk,ep,np

to denote the travel time of link
ep,np on path p with the path departure time being ξk,ep,np

.
Given the service segment volume xul,k and the path set of
segment l, namely Pl, the vehicle dispatching problem in the
traffic network can be expressed as follows:

min
yu

TC =
∑
k∈K

∑
l∈L

∑
p∈Pl

(cp,ul,k + ηtp,ul,k )yp,ul,k (10)

where TC stands for the total cost of the assignment with
mixed freight vehicles, which is a combined value of energy
consumption cost and travel time cost. cp,ul,k is the energy
consumption coefficient for trucks of type u passing through
path p of segment l at time k, tp,ul,k is the travel time of the path
p in segment l that departs at time k, yp,ul,k is the number of
trucks of type u assigned to pass through path p of segment l
at time k and η is the value of time as mentioned before.
The total cost is represented by summing over the energy
consumption cost and travel time cost of all the segments with
respect to time and the objective is to find out an assignment
for the mixed freight vehicles with minimum total cost. The
constraints are defined by equations (6)-(9) generated from
the service network as well as the complex dynamics from
the simulated traffic network. In our method, the nonlinear
dynamical functions for traffic networks are replaced by the
real time traffic flow simulation model that generates the
states of the network to be used in the optimization problem.
Aside from equations (6)-(9), the following equations are used
to represent the relation between variables from the service
network and the simulated traffic network:∑

p∈Pl

yp,ul,k = xul,k, ∀l ∈ L, k ∈ K (11)

yp,ul,k ≥ 0, ∀l ∈ L, p ∈ Pl, k ∈ K (12)

In this subsection, we discussed the inclusion of the service
network and its relations between routes and traffic network
links. In the next subsection, we present a co-simulation opti-
mization method for solving the multi-layer routing problem.

C. Solution Methodology

In this subsection, we present the details of the proposed
multi-layer co-simulation optimization method for solving the
mixed freight dynamic routing problem stated previously.
Figure 1 gives a general overview of the method. The service
graph optimization plays a central role; in practice, it can
be a central coordinator whose aim is to assign trucks to
fulfill demands at minimal system cost. The input to the
optimization are demands, truck types and their distribution,
emission model and other predetermined parameters. Demands
represent the number of containers to be transfered from origin
to destination nodes. The truck types include the physical
(weight, length, frontal area, et al.), dynamic (max speed,
acceleration, et al.) and energy consumption (the amount of
energy consumed based on the dynamic states) character-
istics. Based on the energy consumption characteristics of
diesel/electric trucks, the cost coefficients on each segment
of both types of trucks are calculated under different traffic
conditions. An emission model from National Renewal Energy
Laboratory (NREL) is used to calculate the emissions. A
real-time traffic simulator is used to capture the dynamical
characteristics of traffic and provide traffic status such as travel
times along the links and routes as well as estimates of the
energy cost of diesel and electric trucks depending on the
simulated traffic flow. The information from the simulator is
used by the service graph optimization component to update
the marginal cost of each service segment, which is used to
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update the route cost. Based on the simulated route cost,
the route collection for each O/D pair is updated as well.
Then given the updated route collection, the assignment of
diesel/electric trucks for each O/D pair is updated by solv-
ing an integer combinatorial programming problem using a
properly selected efficient step size. The new assignment is
then generated and passed to the next iteration. The traffic
simulator uses two types of inputs: background traffic flow
and assignment traffic flow. The background traffic flow is
obtained from various sources, such as PeMS [59] and Google
Maps [60]. The assignment traffic flow is generated by the
optimizer. The co-simulation optimization procedure iterates
in a feedback loop that involves the traffic simulator and
service graph optimization. Through this procedure, the states
of assignment traffic flow and road network feedback are
sequentially updated until both states converge. The difficulty
in this procedure is to calculate the marginal cost of each route,
which is equal to the change in the total cost as a result of
adding one unit of demand on that route. Since the total cost
TC of equation (10) is complex, the marginal cost with respect
to a route cannot be calculated directly. One way to calculate
the marginal cost is to use Monte Carlo to simulate the impact
of one unit of demand on each route at each time. However, it
is impractical to enumerate all routes due to the fact that the
number of possible routes grows exponentially with respect
to the service network size. Our proposed approach bypasses
this issue and works as follows:
Step 1: Initialize cost coefficients based on the physical fea-

tures such as speed limit for each segment l and itera-
tion number n = 0. Initialize the diesel/electric route
collections for each O/D pair based on the segment
cost calculated with the cost coefficients. Establish the
initial route flow vector X(0) by assigning the portion
of demands in the origin node to electric trucks with
the portion of demand to be equal to the portion of
electric trucks in the mixed fleet.

Step 2: If n > 1, check if the objective function value of
the current iteration converges, i.e., |TC(X(n)) −
TC(X(n−1))| < ε; ε is set to be a small number. If
it converges, then stop the procedure and return with
route flow vector; otherwise, continue to the next step.

Step 3: Input the route flow vector X(n) into the traffic sim-
ulator and obtain the marginal cost of each segment.

Step 4: Update the marginal cost of each segment as well
as diesel/electric routes for each O/D pair and check
whether there is a new minimal marginal cost route.
If there is, then add it into the route collection.

Step 5: Solve the following optimization problem for each
origin node o to obtain a feasible route flow vector
X̂n.

min
X

∑
u∈U

∑
k∈K

∑
j∈D

∑
r∈Ru

o,j

MCuo,j,r,kX
u
o,j,r,k (13)

∑
u∈U

∑
k∈K

∑
r∈Ru

o,j,k

Xu
o,j,r,k = qo,j , ∀j ∈ D (14)

∑
k∈K

∑
j∈D

∑
r∈Ru

o,j,k

Xu
o,j,r,k ≤ mu

o , ∀u ∈ U (15)

where MCuo,j,r,k is the marginal cost of route r from
o to j with a truck of type u departing at time k. The
marginal cost of a route is the sum of the marginal
costs of the segments along it. The computation of
the marginal cost of a segment will be addressed in
the next subsection.

Step 6: Set the route flow vector for the next iteration as
X(n+1) = X(n) + λ(n) · (X̂n −X(n)), where λ(n) is
the step size at the nth iteration, and go back to step
2. The step size λ(n) at the nth iteration is selected
as in [53].

X(n+1) = X(n) + λ(n) · (X̂n −X(n))

λni,j = min{λmax,∑
i∈O

∑
j∈D

λn−1i,j ·
σ(qi,j)∑

i∈O
∑
j∈D σ(qi,j)

}
(16)

where σ(qi,j) is the standard deviation of the marginal
cost of all the routes by demand qi,j and λmax is the
upper bound of the step size.

Rather than a single-type load balancing case in [53], this
paper addresses the two-type vehicle load balancing case.
Due to that, the type of steepest descent direction used in
the work of [53] may not be feasible for the mixed freight
case. The update of each iteration should consider not only
the marginal cost of a certain route but also the availability
of each type of truck at a certain node. In step 5, a linear
programming subproblem is formulated by explicitly imposing
the availability constraints at each node for each type of truck
as shown in equations (13 - 15).
As mentioned in step 5 and step 6, the marginal cost plays
an important role with respect to providing a feasible descent
direction as well as an appropriate step size for the algorithm.

D. Marginal Cost

The marginal cost of a service segment represents the
change in the total cost if one unit of demand/container is
changed on the segment, which can be calculated through the
marginal cost of a path in the segment based on the traffic
status from the traffic simulator. Let MCP p,ul,k be the marginal
cost of path p of segment l with departure time k for the trucks
of type u. It can be formulated as following:

MCP p
′
,u

′

l′ ,k′
=

∂TC

∂yp
′ ,u′

l′ ,k′

=
∂
∑
k∈K

∑
l∈L

∑
p∈Pl

(cp,ul,k + ηtp,ul,k )yp,ul,k

∂yp
′ ,u′

l′ ,k′

= cp
′
,u

′

l′ ,k′
+ ηtp

′
,u

′

l′ ,k′
+

η
∑
k∈K

∑
l∈L

∑
p∈Pl

yp,ul,k
∂tp,ul,k

∂yp
′ ,u′

l′ ,k′

+

∑
k∈K

∑
l∈L

∑
p∈Pl

yp,ul,k
∂cp,ul,k

∂yp
′ ,u′

l′ ,k′

(17)

where the first two terms are the cost of the path and the third
term describes the travel time cost change due to the impact
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Fig. 1. Framework of proposed mixed freight dynamic routing system

on the link travel time based on the dynamics of the traffic
system. The fourth term accounts for the change of energy
cost associated with the changes in link volume and can be
calculated approximately using the traffic network states from
the simulator. A detailed derivation procedure is presented in
appendix. The final form of marginal cost is:

MCP p
′
,u

′

l′ ,k′
≈ cp

′
,u

′

l′ ,k′
+ ηtp

′
,u

′

l′ ,k′

+
∑
k∈K

∑
l∈L

∑
p∈Pl

Np∑
np=1

1e′p,np
,ξ

k
′
,e

′
p,np

(ep,np , ξk,ep,np
)

· yp,ul,k
1

vp,np,k∆t
(η +

∂hu(vp,np,k)

∂ŵp,np,k
dp,np

)Bp,np,kẑ
βep,np

−1
p,np,k

∀l
′
∈ L, p

′
∈ Pl′ , k

′
∈ K,u

′
∈ U

(18)
where

∂hu(vp,np,k)

∂ŵp,np,k
is obtained from equation (30). Since the

first and second terms are decomposable with respect to
the links, the marginal costs of the paths belonging to the
same segment will be placed in equilibrium by running a
dynamic assignment algorithm. Then the marginal cost for a
segment MCu

′

l′ ,k′
is approximated by its marginal cost of path

MCP p
′
,u

′

l′ ,k′
,

MCu
′

l′ ,k′
≈MCP p

′
,u

′

l′ ,k′
, ∀l

′
∈ L, k

′
∈ K,u ∈ U (19)

From equation (31), we can see that to calculate the marginal
cost of a segment requires the knowledge of the propagation
of other segments (1e′p,np

,ξ
k
′
,e

′
p,np

(ep,np
, ξk,ep,np

)), the basic

traffic network status (ŵp,np,k, ẑp,np,k, vp,np,k, h
u(vp,np,k)),

as well as the aggregated segment-level information
(cp,ul,k , t

p,u
l,k , y

p,u
l,k ) from the simulator. With the marginal cost

of each segment updated, route collections are updated by
checking whether there are new lower marginal cost routes.
Then the route flow vector X is updated to move along the
descent direction with the step size described in the previous
subsection with the knowledge of the updated marginal cost.
The algorithm stops when no more improvement on the total
cost can be gained. In the next section we implement the
method and present some numerical results.

III. NUMERICAL EVALUATION

This section presents the evaluation of the proposed ap-
proach using a regional transportation network which covers
the Los Angeles/Long Beach terminal port area from the
south to I 105 freeway in the north. Lane characteristics
such as length, capacity, speed limit et al. are incorporated
in the network. The freight vehicles from and to the terminal
port area account for a large amount of traffic around the
area and has a great impact on the environment. The road
traffic network is shown in Figure 2 and simulated using the
macroscopic traffic simulator VISUM [61]. The background

Fig. 2. Road Network Overview

traffic is expressed as the number of trips between nodes that
are origins and destinations. The historical freeway traffic flow
data are obtained from PeMS [59] and Google Maps [60]. The
raw traffic data are processed (formatted/truncated/aggregated)
to fit the format of the traffic simulator. The traffic conditions
used in the numerical evaluation are: off-peak (2am to 6am),
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medium (12pm to 4pm), peak (7am to 11am). The demand for
the O/D matrix is shown in Table I. The total number of all
demands is 1715 containers according to the demand matrix
in Table I, with the assumption that each truck can only load
one container and the demand is considered to be fulfilled by a
single-direction route. As a result, the total number of freight
vehicles is equal to 1715. The locations of service network
nodes are presented in numbers with circle around in Figure
2. The service network nodes are composed of O/D nodes
as well as intersections of freeways and major arterial ways.
The service nodes also play roles of charging stations. To
make sure the routes of electric trucks are feasible, we assume
every charging station has enough capacity for charging and
electric trucks always get charged the amount of electricity
they consumed on the previous segment along the route. The
length of each interval is 30 minutes.
The advantage of the optimized load balancing co-simulation
method proposed in this paper is summarized as follows: It
minimizes the total route assignment cost by balancing the
load in each route based on the information generated by
the dynamic traffic simulator. We demonstrate the benefits of
the proposed method by comparing it with the following two
methods. In method one we simply use the simulator to carry
out the assignment of routes as follows: we assume that for
each pair of O/Ds we use the traffic simulator to determine
the minimum cost route to be followed by each diesel/electric
truck without performing any load balancing optimization. In
the second method we do not use the traffic simulator to
provide traffic information but instead use historical traffic
data to provide traffic information along the routes. The
historical information is used to carry out the load balancing
optimization. In all cases we assume that the percentage of
electric trucks changes from 0 to 100%. The results are shown
in Figure 3. In method one, due to the lack of optimized load
balancing, all trucks are routed along the same route which
appears to be the minimum cost one initially however it gets
congested due to the added loads. The lack of optimized load
balancing does not provided any anticipation and correction
that if all trucks are routed along any minimum cost route the
route may no longer be the minimum cost route due to the
added loads. According to Figure 3, method one increases the
cost by 24.8% when compared with the cost of the proposed
optimized load balancing with co-simulation. In method two
the optimized load balancing uses historical traffic information
rather than the dynamic ones generated by the traffic simulator.
Since historical data do not capture the effects of added
loads to the routes, method two increases the cost by 15%
when compared with the proposed approach of optimized load
balancing with co simulation. In the case of optimized load
balancing co-simulation method, the changes in traffic flow
characteristics on a certain route as well as the reactions of
background traffic are reflected in the marginal cost so that
the freight vehicles assigned on one route may be shifted to
another route with lower marginal cost. In this way, the total
cost of the assignment of mixed freight is reduced.
We next test the system under different scenarios of various
percentages of electric vehicles. The experimental scenarios
are constructed in the following manner: under each traffic

Fig. 3. Total cost comparison between assignment with/without optimized
load balancing and with/without co-simulation

condition, the percentage of electric vehicles in the fleet is
varied from 0% to 100% in increments of 10%. To ob-
tain the accurate energy consumption of both types under
various working conditions, we implement analytical models
of diesel/electric engines, which give the power consumed
under the different traffic situations. The diesel truck engine
model used is based on [62] and the electric truck engine
model is based on the work of [63]. Table II summarizes the
vehicle characteristics and parameters used in these models.
The energy consumption coefficient function h(v) in units of
US dollar per mile per ton is obtained using the following
procedure:

1: Test the engine models under different drive cycles.
2: Average the total energy consumption for each drive
cycle by the length. We use EC as energy consumption
per mile.

3: For each drive cycle, transfer the energy consumption
per mile to US dollars based on [64]. A sequence of
feature pair (v, C) is obtained for every drive cycle. v is
the average speed and C is the US dollar per mile per
ton.

4: Use regression to to calculate the polynomial coeffi-
cients of h(v) given by equation (29) based on the (v, C)
sequence.

To test the engine models, we use the following drive cycles
provided by NREL [65]:
• California Air Resources Board (CARB) Heavy Heavy-

Duty Diesel Truck (HHDDT) Composite Cycle
• CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Creep

Segment
• CARB Heavy Heavy-Duty Diesel Truck (HHDDT)

Cruise Segment
• CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Tran-

sient Segment
• City Suburban Heavy Vehicle Cycle (CSHVC)

The energy consumption for each drive cycle by diesel/electric
trucks is obtained and shown in Table III. The energy cost
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TABLE I
DEMAND MATRIX BY ORIGINS (1st COLUMN) AND DESTINATIONS (1st ROW) (UNIT: NUMBER OF CONTAINERS)

Node 32 Node 37 Node 26 Node 36 Node 25 Node 27 Node 33 Node 34

Node 31 0 12 29 42 16 10 21 14

Node 14 39 0 10 16 43 16 15 50

Node 24 29 27 0 11 17 37 31 24

Node 12 29 36 22 0 26 30 38 39

Node 20 27 31 23 49 0 40 23 35

Node 16 12 26 37 35 26 0 41 22

Node 18 37 49 44 12 35 21 0 42

Node 10 16 32 29 17 31 11 39 0

TABLE II
PREDETERMINED PARAMETERS

Truck weight 80,000 lbs

Frontal area 107.639 ft2

Air density 0.076512 lb/ft2

Los Angeles elevation 285 ft

Drag coefficient 0.78

Road grade 0

TABLE III
AMOUNT OF ENERGY CONSUMED (KWH)

Drive Cycle suburban transient cruise creep composite

Diesel Engine 650.71 277.50 2257.19 15.14 2558.53

Electric Engine 500.04 187.09 574.10 79.18 840.38

coefficient function for diesel trucks is found to be:

hd(v) = 11.327 − 0.649v + 0.045v2 − 0.001v3 (20)

For electric trucks, it is found to be:

he(v) = 66.552 − 7.670v + 0.291v2 − 0.004v3 (21)

According to [66], the hourly value of time ranges from
$14.5 to $70 in 1998 US dollar value. The equivalent rate in
terms of 2020 US dollars is calculated to be $23.1 to $111.3
using the ratio provided by [67]. In this paper, we chose the
hourly time value to be $60 in terms of year 2020 US Dollar
value which is between the calculated range. With respect to
charging cost we assume the cost of $60 per hour which is the
same as the assumed time cost. In our simulation we assume
that it takes 4 hours for a full charge which is equivalent to
$240. Using the demand, diesel/electric consumption models
and cost measurements, the mixed freight dynamic routing is
performed under three states of background traffic conditions.
The computational time varies from 6 to 15 CPU hours
running on a desktop computer with 4.2GHz CPU and 16G
memory. The results include total costs in unit of dollar of
the assignment (with and with out charging time cost), the
weight in unit of gram of several emissions (CO, NOX, CO2,
PM25) as well as fuel consumed in unit of kg. The emissions
are calculated by the modified EPA model MOVES [68] with
speed as input and emissions in units of g/mile as output.
We present the results under light, medium and heavy traffic

condition in Table IV, V and VI. Similar result patterns are
observed under light, medium and heavy traffic conditions. We
can see that by increasing the % of electric trucks, all types
of emissions are decreasing. Another observation is that by
increasing the % of electric trucks the overall cost does not
decrease. The cost of charging time becomes more and more
dominant as the % of electric trucks increases.
In summary, the following observations can be made from the
experiments:

• The proposed system provides an improvement on aver-
age of 24% reduction in total cost when compared with
one without optimized load balancing and on average of
15% reduction with one without co-simulation.

• The computational time of the system increases with the
number of service nodes in the service network.

• The total cost without including charging cost decreases
as the % of electric vehicles increases. However, this does
not imply that for a specific route the use of an electric
truck is less costly than that of a diesel truck due to the
complex influence from the surrounding traffic flow.

• The total cost that also includes the charging cost tends
to increase in general with increasing % of electric
trucks in the fleet. The assumption made is that the
charging cost includes the labor cost of the driver waiting
for the truck to charge. By comparing the total cost
including/excluding charging time in the results, we can
observe that if charging is done off-duty the total cost
can be reduced considerably.

• As expected the emissions go down as the number of
electric vehicles increases in the fleet.

• With the background traffic becoming denser, the total
cost of the mixed freight load balancing assignment in-
creases in both with and without charging time cases. The
emissions also increase when more background traffic
volumes are introduced.

IV. CONCLUSION

In this paper, we have proposed a mixed fleet freight cen-
trally coordinated dynamic routing system based on a multi-
layer co-simulation optimization method to achieve freight
load balance across the road network. The interactions with
background traffic have been considered in the problem and
as well as inclusions of electric trucks with their penetration
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TABLE IV
SYSTEM PERFORMANCE UNDER LIGHT TRAFFIC CONDITION

% of
electric
trucks

Total Cost
excluding
Charging
Time ($)

Total Cost
including
Charging
Time ($)

Fuel Con-
sumption
(kg)

HC (g) CO (g) NOX (g) CO2 (g) PM25 (g)

0 172328 172328 48795 326285 1774270 4.44E+08 6.029E+09 108206

10 169626 187518 40152 271275 1486175 3.67E+08 4.939E+09 89007

20 157701 198185 35268 236125 1294190 3.16E+08 4.348E+09 77997

30 139126 189146 34524 230265 1262089 3.01E+08 4.192E+09 75352

40 132025 193674 32126 212654 1167681 2.94E+08 3.905E+09 69635

50 109351 184795 23027 150165 798596 2.04E+08 2.712E+09 50062

60 96514 187232 18709 122467 668709 1.66E+08 2.2E+09 38363

70 82749 201714 13627 87953 474061 1.23E+08 1.635E+09 29916

80 70336 206551 12803 86910 461329 1.13E+08 1.586E+09 27562

90 53944 212140 5535 36557 202138 5.04E+07 6.69E+08 12184

100 51405 230165 0 0 0 0 0 0

TABLE V
SYSTEM PERFORMANCE UNDER MEDIUM TRAFFIC CONDITION

% of
electric
trucks

Total Cost
excluding
Charging
Time ($)

Total Cost
including
Charging
Time ($)

Fuel Con-
sumption
(kg)

HC (g) CO (g) NOX (g) CO2 (g) PM25 (g)

0 202314 202314 54463 366287 1956335 5.02E+08 6.84E+09 120242

10 202257 224713 45569 306923 1661841 4.1E+08 5.66E+09 98088

20 185173 237215 38827 260615 1453709 3.63E+08 4.83E+09 88390

30 172387 236043 38419 254809 1409051 3.51E+08 4.7E+09 85270

40 158458 237497 38221 245926 1363944 3.34E+08 4.64E+09 80821

50 135261 230954 27039 176205 958313 2.37E+08 3.21E+09 59813

60 117093 232410 22068 143238 801409 1.98E+08 2.58E+09 45688

70 99657 250769 16198 105238 551661 1.42E+08 1.94E+09 35764

80 91432 264854 15530 103339 536964 1.35E+08 1.92E+09 33910

90 69514 272969 6841 44689 248909 6.24E+07 8.2E+08 14642

100 69351 301123 0 0 0 0 0 0

TABLE VI
SYSTEM PERFORMANCE UNDER HEAVY TRAFFIC CONDITION

% of
electric
trucks

Total Cost
excluding
Charging
Time ($)

Total Cost
including
Charging
Time ($)

Fuel Con-
sumption
(kg)

HC (g) CO (g) NOX (g) CO2 (g) PM25 (g)

0 337883 328357 92368 662831 3084400 8.28E+08 1.07E+10 203417

10 365334 362831 68173 574148 2641681 7.08E+08 8.85E+09 180032

20 281215 410149 67346 461815 2471731 6E+08 8.13E+09 154795

30 293060 447340 72393 443857 2409706 5.89E+08 7.32E+09 152612

40 273118 341798 60493 378233 2088242 5.37E+08 7.02E+09 131985

50 209046 342228 50254 268813 1494408 3.65E+08 4.85E+09 98162

60 201568 357070 33464 267528 1380235 3.62E+08 4.63E+09 72735

70 151413 473325 27546 184257 888319 2.6E+08 3.34E+09 64057

80 138993 399298 22313 178121 777054 2E+08 2.8E+09 48933

90 127869 461474 11457 64982 462265 1.07E+08 1.48E+09 24746

100 106205 533655 0 0 0 0 0 0
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varying from 0% to 100%. The electric trucks have addi-
tional constraints that include limited range, longer refueling
(charging) times and in addition the depletion rate of the
battery life depends on traffic conditions. These characteristics
introduce additional constraints that need to be taken into
account in finding optimum routes that lead to freight load
balance across the road network. We have solved the problem
by using a multi-layer optimization method; one layer for
the traffic simulator to accurately predict the states of the
transportation system and another layer of service network
to generate the optimum routes. A realistic traffic network
in the Los Angeles/Long Beach area that includes the two
ports has been used to evaluate the approach and the impact
of electric trucks in a mixed fleet. The proposed optimized
load balancing with co-simulation leads to an average 24%
reduction in total cost when compared with the method of
no load balancing optimization and using co-simulation in the
assignment of routes. In addition the proposed method leads
to an average 15% reduction in total cost when compared
with a method of optimized load balancing based on historical
traffic data instead of those generated by the co-simulator.
Another result reveals that although the use of electric trucks
can notably reduce the emissions, the charging time cost
makes the operational cost of electric trucks comparable or
higher than diesel trucks. It is assumed that charging is done
during working hours and includes the driver cost. One future
direction to make the operational cost of electric trucks lower
than those of diesel trucks is to schedule charging during
driver off hours or during times that the driver is idle for job
purposes.
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APPENDIX
DERIVATION OF MARGINAL COST

The marginal cost represents the change in the total cost if
one unit of demand/container is changed on the path and is
formulated as following:

MCP p
′
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l′ ,k′
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′ ,u′

l′ ,k′

(22)

where the first two terms are the cost of the path and the
third term describes the travel time cost change due to the
impact on the link travel time based on the dynamics of the
traffic system. The fourth term accounts for the change of
energy cost associated with the changes in link volume and can
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be calculated approximately using the traffic network states
from the simulator. According to the derivative chain rule and
equation (7),
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Np∑
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′ ,u′
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(23)

where ẑp,np,k is the traffic volume of the link ep,np
on path p

with the path departure time being ξk,ep,np
. The term

∂ŵp,np,k

∂ẑp,np,k

represents the travel time change in link ep,np
at time ξk,ep,np

caused by changing the link volume by one unit. One of the
most commonly used relationships between link volume and
travel time is the Bureau of Public Roads (BPR) function [69]:

we = tf (1 + αe(
ze

cape
)βe) (24)

where we is the link travel time, tf is the link free-flow travel
time, ze is the vehicle volume on link e and cape is the road
link capacity. αe and βe are parameters for the model and
can be estimated through historical traffic data. Then the link
travel time derivative

∂ŵp,np,k

∂ẑp,np,k
based on equation (24) can be

written as follows:

∂ŵp,np,k
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The calculation of the term

∂ẑp,np,k

∂yp
′
,u

′

l
′
,k

′

, in the view of the service

network level, can be estimated in an aggregated way. We
introduce 1e′ ,t′ (e, t) be the indicator equal to 1 when e = e

′

and t = t
′
, and 0 otherwise. Using vp,np,k to represent the

speed of the np-th link in path p at time ξk,ep,np
, we get
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where e
′

p,np
≡ ep′ ,n

p
′ . With equations (23)-(26) we get
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The term
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is obtained by applying the chain rule as:
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where hu(v) is the energy consumption coefficient function for
the trucks of type u and dp,np

is the length of link ep,np
. In

this paper, we assume that the energy consumption coefficient
hu(v) satisfies a cubic polynomial function of the speed v:

hu(v) = bu0 + bu1v + bu2v
2 + bu3v

3 (29)

where the parameters of the polynomial are estimated for both
electric and diesel trucks using off-line experiments demon-
strated in the numerical evaluation section . The relationship

between speed v and its travel time w is simply v = d
w , where

d is the length of a road link. Then we obtain
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∂ŵp,np,k
=
∂hu(vp,np,k)

∂vp,np,k

∂vp,np,k
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By combining equations (22) - (30), the marginal cost of a
path in a segment can be approximately calculated by,
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βep,np

−1
p,np,k

∀l
′
∈ L, p

′
∈ Pl′ , k

′
∈ K,u

′
∈ U

(31)

Pengfei Chen received his B.Eng degree in Elec-
tronic and Electrical Engineering from Fudan Uni-
versity, Shanghai, China and University of Birm-
ingham with First Class Honors, UK in 2015. He
received his Master degree in Electrical Engineering
from University of Southern California, Los Angeles
in 2017. He is currently working towards his Ph.D
degree with the Center of Advance Transportation
Technologies, University of Southern California. His
research interests lie in the intersection of complex
system modeling, routing algorithms and optimiza-

tion with an emphasis on Intelligent Transportation Systems. He is also
interested in Machine Learning, deep Learning and their applications.

Petros Ioannou (M ‘83-SM ‘89-F ‘94) received the
B.Sc. degree with First Class Honors from Univer-
sity College, London, England, in 1978 and the M.S.
and Ph.D. degrees from the University of Illinois,
Urbana, Illinois, in 1980 and 1982, respectively. In
1982, Dr. Ioannou joined the Department of Elec-
trical Engineering-Systems, University of Southern
California, Los Angeles, California. He is currently
a Professor and holder of the AV ‘Bal’ Balakrishnan
chair in the same Department and the Director of
the Center of Advanced Transportation Technologies

and Associate Director for Research of METRANS. He also holds a courtesy
appointment with the Department of Aerospace and Mechanical Engineering
and Department of Industrial Engineering. His research interests are in the
areas of adaptive control, neural networks, nonlinear systems, vehicle dynam-
ics and control, intelligent transportation systems and marine transportation.
He is Fellow of IEEE, IFAC, AAAS and IET and author/coauthor of 8
books and over 400 papers in the areas of control, dynamics and Intelligent
Transportation Systems. He was awarded the 2017 Transition to Practice
Award by IEEE Control System Society; the 2016 IEEE Transportation
Technologies Award; the 2012 IEEE ITSS Outstanding Research Award; the
2008 IEEE ITSS Outstanding ITS Application Award and the 2009 IET
Heaviside Medal for Achievement in Control.

Maged Dessouky is Professor and Chair in In-
dustrial and Systems Engineering at the Univer-
sity of Southern California. He received B.S. and
M.S. degrees from Purdue University and a Ph.D.
in Industrial Engineering from the University of
California, Berkeley. He is area/associate editor of
Transportation Research Part B: Methodological, IIE
Transactions, and Computers and Industrial Engi-
neering, and previously served as area editor of the
ACM Transactions of Modeling and Computer Sim-
ulation and associate editor of IEEE Transactions on

Intelligent Transportation Systems. He is a fellow of IIE and was awarded the
2007 Transportation Science and Logistics Best Paper Prize.


