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Abstract—The current dominant paradigm for robotic manip-
ulation involves two separate stages: manipulator design and
control. Because the robot’s morphology and how it can be
controlled are intimately linked, joint optimization of design and
control can significantly improve performance. Existing methods
for co-optimization are limited and fail to explore a rich space
of designs. The primary reason is the trade-off between the
complexity of designs that is necessary for contact-rich tasks
against the practical constraints of manufacturing, optimization,
contact handling, etc. We overcome several of these challenges
by building an end-to-end differentiable framework for contact-
aware robot design. The two key components of this framework
are: a novel deformation-based parameterization that allows for
the design of articulated rigid robots with arbitrary, complex
geometry, and a differentiable rigid body simulator that can
handle contact-rich scenarios and computes analytical gradients
for a full spectrum of kinematic and dynamic parameters. On
multiple manipulation tasks, our framework outperforms existing
methods that either only optimize for control or for design
using alternate representations or co-optimize using gradient-free
methods.

I. INTRODUCTION

The design, control, and construction of manipulators is the
cornerstone of robotics. Today this process is manual and time-
consuming as concurrent design of many different components
is required. For example, hardware components and control
algorithms are typically constructed sequentially making the
integration of different modules difficult which necessitates
many design iterations. Ensuring that the designed manipulator
meets the desired specifications is challenging since there is
a complex interplay between the robot design, manufacturing
constraints, and the control algorithm.

Due to the long iteration cycle, in practice, roboticists either
(i) explore a rich design space, but make use of simple control
algorithms [13, 45] or (ii) develop complex algorithms to
control existing robots [, 4, 38]. The end result is a sub-
optimal system for the given task. Co-optimizing both the
design and the control scheme can significantly improve the
performance of today’s robotic systems. One challenge in
co-optimization is the substantial increase in the number of
parameters to be optimized. The other and arguably more
significant challenge is in defining a representation of the robot
design that is amenable to optimization. A good representation
should: (a) result in designs that can be manufactured; (b)

The video, appendix, supplementary document for simulation, and the code
can be found in the project website: http://diffhand.csail.mit.edu
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Fig. 1. Left column: only optimizing the control algorithm using a nominal
robot design fails to complete the task; Middle: co-optimization of morphology
and control results in success; Right: pictures of 3D-printed manipulators. Our
method outputs designs that are easy to print and assemble.

enable design of articulated robots with complex geometric
shapes; and (c) allow the use of powerful optimization methods
such as gradient descent.

Several recent works have studied the design representation
problem [17, , ) , 54]. One strategy is to represent
the design as a graph, where each edge denotes connection
between two components of the robot [17, 54]. However, just
defining the topology is insufficient: it is also necessary to
parameterize the shape of each component. While there are
many ways to represent the shape of a single object, the
shape representation of an articulated system is a challenge.
It is because the shape representation must span a rich
space of geometric designs while simultaneously satisfying
connectivity constraints between components and the man-
ufacturing limitations. A popular strategy is to model each
component by a simple primitive shape (i.e., cylinder, cuboids,
etc.) [17, 24, 34, 41, 46]. However, while easy to optimize,
these primitives are often an over-simplification of the desired
shape and are insufficient to model complex gripper designs
as shown in Figure 1.

An alternative to basic shape primitives is the CAD pa-
rameterization. However, this approach has several downsides:
generating models from CAD parameterization is slow [47],
and updates in CAD model parameters often results in failures
such as the model being disconnected or even failure in gener-
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ating the model. Other options for rich shape representations
are voxel grid, point cloud, signed distance functions [I8],
etc. Unfortunately, these are not suitable for articulated robot
design because it is hard to impose connectivity constraints
between individual components. A drastic alternative to over-
coming the connectivity problem without compromising rich
shape parameterization is to directly optimize the shape of
the entire robot instead of individual components. But this
does not solve the problem either because now identifying
individual joints and components, which is necessary for
simulation and manufacturing, becomes a problem. Another
consideration worth discussing is that for learning to control
one must first import the shape into the simulator. While CAD
designs can be easily imported they do not provide analytical
gradients. Other representations discussed above must be first
converted to a mesh, a step that is non-differentiable. Without
analytical gradients one must rely on data inefficient gradient
free methods for solving the shape optimization problem.

In this paper, we study the effective parameterization for
the continuous shape morphology assuming a fixed robot
topology. We propose a general morphology representation
for articulated robot designs based on cage-based deformation
(CBD) models. Cage-based deformations [29, 31] have been
widely used in computer graphics to deform a mesh through a
few number of cage “handles” (i.e., cage vertices) in real-time
while preserving local geometric features, as shown in Figures
2 and 4. Instead of specifying a large number of optimization
parameters for modelling complex shapes, CBD maintains an
expressive shape design space with only a few parameters.
Furthermore, as we will describe in Section III-A the cage
representation allows imposition of a rich set of manufacturing
and connectivity constraints. Most importantly, CBD is not tied
to a specific shape representation and can be easily used with
different representations such as meshes, point clouds etc. It is
computationally inexpensive for inference, flexible (i.e., user
can easily control the degrees of freedom describing the shape
by changing the number of cage handles), and differentiable.

To exploit the differentiability of the proposed deformation-
based parameterization, we develop a differentiable articulated
rigid body simulator for contact-rich tasks, that makes three
key improvements over prior work. First, we generalize the
frictional contact model proposed by Geilinger et al. [16] that
only supports contact between a single dynamic body (e.g., the
manipulator) and a static object (e.g., wall) to support contact
between multiple dynamic bodies, a key requirement for object
manipulation. Second, we propose a modified contact damping
force that is free of discontinuities. Third, we derive the ana-
Iytical gradients for a full spectrum of simulation parameters
shown in Table II, including the positions of contact points.

The combination of the proposed deformation-based pa-
rameterization and the differentiable simulator allows us to
build an end-to-end differentiable framework (Figure 2) for
co-optimizing robot morphology and control for contact-
rich manipulation tasks using analytical gradients. We test
our framework on multiple manipulation problems, some of
which are shown in Figure 1. The experiments show that our

deformation-based parameterization provides us an expressive
design space and the optimized designs can be easily manufac-
tured (Figure 1 right). Furthermore, due to the key feature of
end-to-end differentiability, the proposed method outperforms
several state-of-the-art gradient-free approaches and model-
free reinforcement learning methods at jointly optimizing the
control scheme and the robot morphology.

II. RELATED WORK

A. Differentiable Physics-Based Simulation

Physics-based simulation has been widely used for various
robotic applications [7, 10, 49]. Among them, differentiable
physics-based simulators have gained increasing popularity re-
cently since their differentiability facilitates efficient gradient-
based optimization for robotic control. Due to their inher-
ent differentiability, neural network based simulators have
also been proposed to approximate physics [0, 8, 32, 37].
However, these works sacrifice generality and accuracy of
physics for differentiability of the neural network. Differ-
entiable simulators have been developed for rigid bodies
[3, 11, 12, 16, 25, 52], soft bodies [15, 22, 26, 27, 28, 30],
and cloth [33, 42]. Our simulator lies in the rigid body
category, with some key modifications and improvements that
enable contact-rich tasks through differentiability of frictional
contact between multiple dynamic bodies. Several approaches
have been proposed for making the frictional contact response
differentiable such as differentiation of the coefficient matrices
and vectors of the linear complementarity problem arising
from collisions [3, | 1] or those that use impulse-based velocity
stepping methods [12]. However, the discontinuity stemming
from such approaches can cause difficulties for contact-rich
tasks such as ours. Recently, Geilinger et al. [16] proposed a
differentiable penalty-based frictional contact model. However,
their contact model was only demonstrated to work for contact
between the robot and a stationary surface (e.g., ground and
walls), and the simulation uses stiff springs to approximate
articulation. We extend the frictional contact model to support
a more general inter-object contact and develop a differentiable
simulator based on the reduced coordinate formulation of
RedMax [52], which allows a more compact representation
and a more accurate articulated dynamics. More importantly,
all the previous differentiable rigid body simulators only have
gradient information for control variables and a small set
of material parameters. In contrast, we derive the analytical
gradients for a full spectrum of parameters, including the
kinematic and dynamic parameters listed in Table II.

B. Computational Robot Co-Design and Morphology Param-
eterization

Co-design of robots typically involves optimizing geometry,
mass properties, and control parameters. For articulated robot
co-design, one must consider extra variables for kinematics
and dynamics relationships among links, such as joint and
body translations/orientations. Most existing works on rigid
robot co-design use simple primitive shapes to approximate



TABLE I
SUMMARY OF DIFFERENT MORPHOLOGY PARAMETERIZATION METHODS

Parameterization Method | Mesh Inference Complex Shape Differentiability — Dimension  Feature-preserving  Articulated Design
Primitive Shapes [19, 24, 41, 48, 50] Fast No Support Low No Support
CAD Parameterization [21, 47] Slow Support No Controllable Yes No
TSDF [18] Slow Support No High No No
Mesh-based Fast Support Support High No No
Deformation-based (ours) Fast Support Support Controllable Yes Support

the geometry of each robot link with gradient-based optimiza-
tions [19, 24], gradient-free approaches [14, 36, 41, 50], or
reinforcement learning (RL) based methods [9, 34, 46]. How-
ever, such over-simplified morphology parameterization based
on primitive shapes precludes the possibility of generating
complex geometric morphology for the robot. It is inadequate
especially when the geometry does affect the task dynamics
with a rich amount of contact, such as in in-hand manipulation
tasks. In contrast, our deformation-based parameterization
works for a wide range of complex shapes while preserving
the geometric features, narrowing down the robot morphology
representation gap between the simulation environment and
real fabricated scenarios. CAD-based parameterization can
also support natural organic shapes, but it typically suffers
from its slow inference speed and non-differentiability. Schulz
et al. [47] proposed an interactive system for CAD models
with an expensive precomputation cost. Hafner et al. [2]]
developed a differentiable parameterization of CAD models
for FEM simulation, but the differentiability is not preserved
in our rigid, multi-body simulation setting. Furthermore, CAD-
based parameterization requires extra expertise to select and
constrain each parameter in order to preserve model manufac-
turability throughout the optimization. It is also non-trivial to
support the connectivity constraints required in an articulated
robot structure. Truncated Signed Distance Functions (TSDF)
and mesh-based parameterization are used by Ha et al. [18]
to optimize the shape of a free-form gripper. These methods
only work for a single body system, introduce a large number
of parameters, and usually do not result in natural organic
shapes. Compared to these, our deformation-based parameter-
ization allows us to have a constrained but expressive design
space for natural shapes and seamlessly works for articulated
robot designs. We summarize the comparison among different
morphology parameterization methods in Table I.

III. METHOD

We now describe our end-to-end differentiable framework
for contact-aware robot design. In Section III-A, we describe
our novel deformation-based design space for articulated robot
morphology. A key insight of our morphology design space
is the use of cage-based deformation, which allows us to
morph the underlying mesh using a small number of cage
“handles”. More specifically, as shown in the top-left block
of Figure 2, we use a two-level hierarchy to parameterize
the shape. The high-level morphology parameters (shown in
red, green, blue, and yellow arrows) controls the positions
of the cage vertices (handles), and the cage handles in turn
deform the underlying mesh. In Section III-B, we describe

our differentiable articulated rigid body dynamics simulation.
As shown in the right block of Figure 2, the simulation
takes the deformed meshes and a control sequence as input,
executes the forward steps, and computes the objective loss
L. By combining the two key techniques above, in Section
III-C, we describe our end-to-end framework for robot design.
Since each step is differentiable, the overall framework is
differentiable, allowing us to use a gradient-based optimization
method to search for the design parameters and the controls.

A. Hierarchical Morphology Parameterization

Morphology optimization relies on an effective morphology
design space, which further depends on an effective morphol-
ogy shape parameterization. In this section, we describe our
approach to leverage the cage-based deformation as the mor-
phology parameterization for articulated robots with complex
component shapes. As shown in the top-left block in Figure
2, we use a two-level hierarchy to parameterize the shape
of the robot: the cage-based deformation M and high-level
morphology parameterization .

Cage-based Deformation (M) Cage-based deformation
(CBD) is a classic geometry processing technique in computer
graphics used to deform a high-resolution mesh in a real-
time and feature-preserving manner. With a coarse, closed
cage, CBD controls the enclosed space’s deformation by
moving the cage vertices, or cage handles around. Let C
denote the cage and H denote the cage vertices (i.e., handles)
of C with 1/~Jh being the positions of the handles in H in
the rest configuration, and let S be the space enclosed by
cage C. For any arbitrary point § € S, CBD computes a
normalized barycentric coordinate w € RI| for the point,
called deformation weights, which satisfies:

L L
E:ij¢h(j) and ij =1
j j

These deformation weights then define a linear function to
transfer the translation of handle vertices to the movement of
the associated point at run time through:

)

|H|
s =y win(j), 2
J
where v, is the new positions of the cage handles, and s
is the new position of s under deformation. The deformation
weights are precomputed for each particular point in the space
S and kept constant at run time. CBD methods preserve
various features of the underlying, high-resolution mesh after
deformation by carefully designing the weight construction
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End-to-end differentiable framework for morphology and control co-optimization. Blue arrows labeled as #, M, P, and L are hierarchical

functions that evaluate the loss function given the high-level morphology parameters, . and controls, w. The corresponding green arrows are the derivatives.

Fig. 3.  Our component database for our manipulators. From left to right:
finger base, phalanx segment, finger tip, knuckle, and joint. Each component
comes with its own deformation cage. (a) The components in the yellow cages
can be deformed arbitrarily with the cage, whereas (b) the components in the
green cages can only be expanded along the axis of rotation.

algorithms. Among various CBD methods, we choose the
mean value coordinates method [3 1] for its simplicity, stability,
and capability to be extended to deform articulated structures.

Inspired by its power, we apply cage-based deformation
to parameterize the shape of each robot component by the
positions of a set of cage handles around the shape mesh. In
practice, the cage handles of each component can be defined
by the users based on their demands. For our purpose in this
work, we construct a component database for manipulator con-
struction as shown in Figure 3. Each component is represented
by a mesh M? and is associated with a predefined cage C°
around it. We then use the mean value coordinates method
to precompute the deformation weight matrix D* for each
component mesh M?, and reuse those weights afterwards. Let
V' be the set of vertices of mesh M? and H’ be the set of
handles in cage C'. Then D® is a |V¢|-by-| H’| matrix storing
the deformation weight for each vertex on the mesh with
respect to each handle on the cage. The deformation weights
precomputation by mean value coordinates method is cheap,
with a computational cost O(|V?| - |H?|). Such precomputa-
tion and the run-time linear combination enable a fast mesh
inference given the new cage handle positions. Moreover, by
controlling the high-resolution mesh’s morphology through a
coarse cage, we effectively reduce the morphology space into a
relatively low-dimensional space for natural deformed shapes.
This provides us a constrained yet expressive morphology
design space. Furthermore, the dimension of the deformation

is still fully controllable. By adding more handle points,
one can deform the underlining mesh with more degrees of
freedom, which makes it possible to find a good trade-off be-
tween low-dimensional morphology parameter space and fine-
grained morphology deformation for different applications.
Most importantly, this linear combination gives us a fully
differentiable function M mapping from handle positions g
to the positions of mesh vertices ;.

High-level Morphology Parameterization (%) The CBD
method described above works for any single mesh with
an arbitrary shape. However, parameterizing an articulated
robot poses extra challenges, since independently manipulating
the cage handles arbitrarily for different robot components
will easily lead to a design that is not connected and not
manufacturable, as shown in Figure 4(c). In order to handle
proper articulation, we need to take two extra constraints into
consideration: the fabrication constraint and the connectivity
constraint.

The fabrication constraint requires us to have different
deformation constraints for different components based on
their manufacturing methods. For instance, the finger body
part can be manufactured using a 3D printer, so it can undergo
free-form deformation. In contrast, the joint component is
usually composed of some commercially-sourced products
(e.g., screws, spring pins, etc.), which come in predefined,
standard sizes. Thus, components such as joints can only be
expanded in directions that maintain the geometric integrity of
the model where it interfaces with these standard-sized parts.
We achieve this through further parameterizing the cage with
a few extra parameters to control the allowed deformation for
each component.

Connectivity constraint is a more challenging problem for
articulated designs, requiring components to remain connected
after deforming each underlying mesh. It is non-trivial for
CAD-based and mesh-based parameterizations to satisfy this
constraint since they are unable to track the connectedness
of the interface surfaces between components while varying
the parameters. We instead leverage a special property of
mean value coordinates to resolve the connectivity issue. Let



Fig. 4. A joint component and a body phalanx segment component are
shown in the figures. We parameterize the articulated components into lower-
dimensional parameters . by posing different deformation constraints on
each component and merging their handle points on the connection surface
(highlighted in blue in (a) and (b)). We can then freely explore the ). space
to change the underlining articulated robot shape (d). The two components
come apart from each other and become to be not manufacturable if they are
deformed individually and arbitrarily by their associated cages (c).

(Hy, Hy, H3) be three handles of a triangle on the cage mesh
C, and s be a point in the enclosed space. With mean value
coordinates, if s and (Hy, Ho, H3) are coplanar, and s is inside
the triangle (H, Ho, H3), then the deformation weights for s
have the following property:

._Jo
Wi { >0,
In other words, s is fully controlled by the triangle that
contains it.

With this property in mind, we construct the cage for
each component so that, for each component’s connection
surface (i.e., interface to a neighboring component), we always
construct a cage that is coplanar with and fully contains the
connection surface as shown by the blue faces in Figure
4(a). We call the handles on the connection surface plane
connection handles. For two components that can be poten-
tially connected, their connection handles are constructed to
be identical, which ensures that the connection surfaces on
two components share the same connection handle layout.
While connecting two components, we merge their overlapped
connection handles (Figure 4(b)). Such merge operation is
equivalent to adding a constraint on the handles on the connec-
tion surface so that their connection handles always have the
same motion. Due to the property of mean value coordinates
in Eq. 3, this placement of connection handles ensures that the
connectivity constraint is automatically satisfied.

By considering both the fabrication constraint and the
connectivity constraint, we parameterize the whole cage via
a small number of high-level morphology cage parameters
1.. This extra layer of parameters implicitly imposes con-
straints on all cage handle positions to move around in a
unified fashion. Specifically, 1. consists of: (a) the scale
information of the cages (e.g., length of each cage, and
width/height of each connection cage, shown as red, blue,
and green arrows in Figure 2); and (b) any other auxiliary

ifi ¢ {Hy, Ho, H3} 3)
if 1 € {Hl,HQ,Hg}.

cage points (e.g., yellow vertical arrow in Figure 2). The scale
parameters are component-dependent and are based on their
fabrication constraint. For example, the joint cage can only
be scaled along the joint axis direction. Through such cage
parameterization, we can map the high-level cage parameters
1. to the cage handle positions oy, by v, = H(¢p), and
effectively construct a high-level morphology design space
with only bound constraints. Note that this high-level cage
parameterization is not a fixed choice; the parameterization can
be modified based on the application and user’s demand. We
show a more free-form cage parameterzation in the experiment
section to show such flexibility.

Although different combinations of the components results
in a large amount of different design topologies (e.g., different
number of fingers, different number of links, etc.) and thus
different final deformation cages (i.e., merged cages), we
construct a simple stochastic graph grammar, following the
work by Zhao et al. [54], to generate different topologies
and automatically construct the merged deformation cage
and the high-level cage parameterization. Since we focus on
the continuous morphology optimization for a fixed design
topology in this work, we leave the details of the grammar in
Appendix I.

B. Differentiable Articulated Rigid Body Simulation

From the deformation-based parameterization, we obtain
the mesh vertices ¢5;. In order to simulate the constructed
morphology, we further convert 15, into the simulation param-
eters 1, through an analytical function P. As shown in Table
II, the simulation parameters 1, include both kinematics-
and dynamics-related parameters. Specifically, the kinematic
parameters are the relative transformations of the joints with
respect to their parent joints, F;, and the relative transfor-
mations of the bodies with respect to their parent joint, Ej;
and the dynamic parameters are the generalized inertia, I,
contact point positions with respect to the bodies, Cj, and
surface area for each contact point, a. For the generalized
inertia, we use cuboids for ease of differentiability, but it is
also possible to use mesh-based inertia. (Note, however, that
the 3D printed parts may not necessarily match the mesh-based
inertia, depending on the in-fill.) In order to acquire the contact
points Cj in the deformed mesh, we presample a uniformly
distributed set of contact points on the surface of each mesh
in the rest configuration. We then track the positions of
these presampled contact points through the same cage-based
deformation as the mesh vertices. Thus, the deformation-
based parameterization provides us with differentiability not
only for the mesh but also for the contact point positions.
The approximate contact point area, a, is used to scale the
magnitude of the frictional contact forces. To compute this
parameter, we use the change in the total surface area of the
cage before and after deformation.

Unlike the previous methods which typically compute the
gradients of the simulation only with respect to control pa-
rameters 0L/Ou or a small set of material parameters, our
simulator also provides the analytical gradients dL/0v, for



TABLE II
LIST OF SIMULATION PARAMETERS

Type Notation = Parameter Description Dimension
. ) E; Joint transformation SE(3) X ny
Kinematics
E, Body transformation SE(3) x ny
I Generalized inertia NDOF
Dynamics Cy Contact points on body 3 X ne
a Contact area Ne

a full spectrum of simulation parameters described above.
Such extension is non-trivial and is essential for allowing
gradient-based morphology optimization. We provide detailed
mathematical formulation of our differentiable simulation in
the supplementary document associated with the released code,
and briefly introduce the key ideas of our simulation below.

Simulation Dynamics The simulation parameters v, and
the control sequence wu, are the input to the differentiable
articulated rigid body simulator. Our simulator uses reduced
coordinates so that the equations of motion are expressed
compactly using a minimal set of degrees of freedom [52].
The dynamics equations are implicitly integrated in time with
the BDF2 scheme, with SDIRK2 for the initial step [39].
We analytically derive all the derivatives required by these
implicit time integration schemes, and we solve the resulting
non-linear equations using Newton’s Method with line search.
To compute the simulation derivatives, 0L/0v¢, and 0L/0u,
we use the adjoint sensitivity method [16, 35], which requires
a forward pass and a backward pass of the simulation. During
the forward pass, we store some auxiliary variables, such as the
matrix factors of the final Newton iteration of each time step
and the partial derivatives of the loss function. Then during the
backward pass, we compute the final derivative with a block
banded triangular solver using these auxiliary variables stored
during the forward pass.

Inter-Object Frictional Contact Model For frictional
contact, we extend the differentiable penalty-based approach
of Geilinger et al. [16], adapted to our reduced coordinate
approach. We make two critical changes to make their penalty-
based approach work in our manipulation settings.

First, we add support for frictional contact between two
dynamic bodies, rather than between a single dynamic body
and a stationary surface (e.g., floor and walls). With our
approach, as we change the cage parameters, the contact point
positions change, and so to allow end-to-end differentiability,
we require the gradients of the normal contact force, the
dynamic friction force, and the static friction force with respect
to these contact point positions as well as with respect to
the generalized coordinates of the robot (i.e., joint angles).
To solve this, we use a signed distance field augmented
with derivative information. This distance field is attached
to the manipulated object, which we assume is rigid. Let
the generalized coordinates of the robot and the manipulated
object be g, and q,, respectively, and the generalized velocity
be ¢ and ¢,, respectively. Then the world position and velocity
of the contact point Cj, on the robot body are computed

as x(qp, Cp) and x(gp,qp, Cp). Using this world point, we
query the signed distance function attached to the manipulated
object, which gives us the following quantities:

d, d penetration distance and speed
n contact normal
t tangential velocity

as well as the derivatives of these quantities with respect to g,
G0, and C. The frictional contact forces are computed from
these quantities and then scaled by the approximate contact
area, a. The derivatives of the frictional contact forces with
respect to ¢ and q, are used to step the simulation forward
in time with the implicit integrator, and the derivatives with
respect to (', and a are used to calculate the sensitivities during
the backward pass of the simulation.

Second, we modify the contact damping force so that it is
continuous. The original formulation by Geilinger et al. [16]
has a discontinuity, which we found can cause convergence
problems when there are collisions between two moving dy-
namic objects. In their formulation, the contact damping force
is proportional to the penetration speed, dn, which means that
there will be a sudden change in the magnitude of this damping
force at d = 0, since d is not necessarily zero when d is zero.
To fix this, we instead make the damping force be proportional
to both the penetration distance and speed, ddn, which ensures
that the force remains continuous at the moment of collision.
If needed, we can also use a sigmoid function around d to
make the damping force match the original formulation when
d becomes large.

C. End-to-End Differentiable Co-Design Framework

By combining the proposed deformation-based parameter-
ization and the differentiable simulator, we build an end-to-
end differentiable framework for robot co-design as shown in
Figure 2.

Mathematically speaking, our co-design framework starts
with a three-layer morphology parameterization F = Po Mo
H:R™ — RIEIX3 5 RIVIX3 5 RP where m is the number
of high-level morphology parameters, |H| is the total number
of cage handles, |V| is the total number of mesh vertices,
and p is the number of low-level kinematic and dynamic
parameters in the simulation. This hierachical parameterization
converts high-level morphology parameters 1. into low-level
simulation parameters 1), going through three analytically dif-
ferentiable steps including the morphology parameterizations
H and M in Section III-A, and the simulation parameter
computation P in Section III-B:

Yy =P(Wrr), v = M(WUn), b = H(tbe). €]

The differentiability of each step allows us to efficiently
compute the derivatives from the simulation parameters v, all
the way to the high-level morphology parameters v, through
the chain rule:

awp a"/}p awM adjh
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Fig. 5. Morphology design space. The initial morphology of the single
finger and the two-finger gripper designs are shown on the left. We randomly
sample different parameters for each configuration and show the deformed
morphology on the right.

The framework then proceeds with the simulation described in
Section III-B with the simulation parameters ), and a control
sequence v as input, and computes the task-specific objective
loss L. As our simulator is differentiable with respect to both
the kinematic/dynamic parameters and control variables, we

oL oL Oy

are able to compute the analytical derivatives Do = B, 90

and % for the full framework efficiently.

IV. EXPERIMENTS
A. Implementation

We implemented our differentiable rigid body simulation
in C++ and the deformation-based design parameterization
in Python. The two components of the code are connected
through Python bindings. The control sequence input to the
simulation consists of the torques applied to the joints at each
simulation time step. In all the tasks shown in below, we
use L-BFGS-B [40] for co-optimization with our analytical
derivatives, OL/0. and 9L/0u.

B. Quality of Morphology Design Space

To demonstrate the quality of the morphology design space
represented by our deformation-based parameterization, we
randomly sample the high-level morphology parameters .
for two manipulator topologies: single-finger and two-finger
gripper configurations (Figure 5). Our deformation-based pa-
rameterization method has a compact, yet expressive and rich
design space. As shown in Figure 5, using only 9 and 17
design parameters respectively for the two configurations, our
method is able to generate various natural and fabricable
morphology designs of articulated robots while maintaining
the connectivity of the articulated manipulators.

TABLE III
LIST OF HYPER-PARAMETERS FOR EACH EXAMPLE.
Task Aty ng  Netrl lul e |¥pl
Finger Reach 0.005 600 20 120 9 376
Flip Box 0.005 150 5 180 9 1478
Rotate Rubik’s Cube  0.005 200 5 240 9 1478
Assemble 0.001 500 5 800 17 1226
Free-form Gripper 0.005 400 1 - 396 9228

C. Morphology and Control Co-Optimization

Tasks In order to test the performance of our differentiable
contact-aware co-optimization framework, we designed four
manipulation tasks as shown in Figure 7, consisting of three
single-finger tasks and one two-finger task:

1) Finger Reach: In this task, the base of the finger is
mounted on the wall, and the finger is required to reach
four scattered target points in the space sequentially.

2) Flip Box: This task requires the finger to flip a heavy
box by 90° and be as energy-efficient as possible.

3) Rotate Rubik’s Cube: A finger is required to rotate the
top layer of a Rubik’s cube by 90°. The bottom of the
Rubik’s cube is fixed on the ground.

4) Assemble: Two fingers need to collaborate to push and
insert a small cube into its movable mount. The cube
and the hole on the mount have similar sizes, making the
task much more challenging and requiring high-accuracy
manipulation.

The detailed description and loss function £ of each task
is provided in the Appendix II-A. The hyper-parameters of
each task are listed in Table III, where At, is the simulation
time steps size, n; is the total number of simulation steps of
the task, |u| and |¢.| are the total numbers of control and
morphology variables in optimization respectively, and [1,|
is the number of simulation parameters. We optimize for the
control signals not every simulation step but every n.,; steps,
giving us |u| = (n¢/neert) - |u;| where |u;| is the number of
control degrees of freedom of the robot.

Baselines We adopted the following three baseline algo-
rithms for comparison.

1) ES: Evolutionary strategy is widely used to search for

optimal design and control parameters for robots [14,

]. We tried various ES algorithms in the open-sourced
Nevergrad library [43] and found that the (1 + 1)-
ES [5, 44] algorithm and CMA-ES [23] work best on
the proposed tasks.

2) RL: Luck et al. [34] is one of the state-of-the-art mor-
phology and control co-optimization approaches using
sample-efficient reinforcement learning (soft actor critic,
SAC) algorithm and particle swarm optimization. We
used their released implementation as a baseline.

3) Control Only: In this algorithm, we freeze the morphol-
ogy parameters and only optimize the control sequence
with L-BFGS-B.

Experiment Setup We use the same morphology parame-
terization for baselines and our method. The control parameter
for the RL baseline is a neural network controller (a policy
network) as proposed by Luck et al. [34], and is an open-
loop control sequence for all other methods. We try both ES
algorithms due to their different performances on different
tasks. For fair comparison, we finetune the parameters of
ES and RL baselines and run the experiments with the best-
performing parameters. For the Control Only baseline and
our method, we use the default parameters provided in the
Scipy’s L-BFGS-B optimizer. While our method can solve the



TABLE IV
NORMALIZED METRIC COMPARISON. We design the task-related metrics to measure how successful each method performs on the tasks. For Finger Reach
task, the metric is the time-averaged distance to the target tracking points. For Flip Box and Rotate Rubik’s Cube, the metrics are the flipping/rotating angle
error at the end of the task. For Assemble, we measure the distance between the center of the small box and the center of the hole on the movable mount.
All the metrics are normalized.

Task Finger Reach Flip Box Rotate Rubik’s Cube Assemble
CMA-ES 0.39 +£0.02 0.00 £ 0.00 0.02 + 0.01 0.28 £0.03
(1+1)-ES 0.35 +£0.04 0.69 £ 0.39 0.87+£0.15 0.39 £ 0.09
RL 0.61 +£0.05 0.41+£0.48 0.79 £0.31 0.91+0.11
L-BFGS-B (Control Only) 0.41 +0.00 1.00 £ 0.00 0.42 +0.39 0.77 £ 0.03
L-BFGS-B (Ours) 0.17+0.01 0.00 £ 0.00 0.07 £0.09 0.12+0.11
Finger Reach Flip Box .. . .
nd L8655 (Ours) 6000 . random seeds and plot the average training curves in Figure
6000 T LBres s (ControlOnly) 6. We further measure the successfulness of the tasks for each
5000 — s 5000 method by task-related metrics, and report in the Table IV.
< 4000 « 4000 Results The results show that our differentiable co-
a a optimization framework is able to find better morphology
—i 3000 13000 and control solutions with significant better sample efficiency
2000 2000 (10-30 times fewer simulated episode data) compared to the
1000 gradient-free ES baselines and model-free RL baseline. On
000| “ommemssssss s . .
! Finger Reach task, while most methods (except Control Only)
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 . .
Episodes Episodes find a finger configuration that can reach the four target points,
Rotate Rubik's Cube Assemble our method can find a mo'rphology and a control sequence
10000 that can track the target points most accurately. On the most
7000 challenging and contact-rich task, Assemble, our method is the
6000 60000 only one that is able to solve the task successfully.
3000 < 50000 We also performed an ablation study on the importance
3 4000 & 40000 of morphology design by comparing the performance of our
3000 30000 method and a Control Only baseline. The significant perfor-
2000 20000 mance gain of our method over Control Only baseline reveals
1000 0000 that incorporating the optimization of morphology design leads
1 . « e . .
05600 2600 3000 4500 5000 61000 3000 3000 4000 Sooo  LO easier optimization and better solutions. We show some of
Episodes Episodes the optimized morphology designs from our method in Figure
Fig. 6. Optimization curves comparison. We run all the methods on all 7. On the Flip Box task, the optimized morphology has a hook-

tasks 5 times with different random seeds. Mean and standard deviation in the
loss objective are reported. The horizontal axis of each plot is the number of
simulation episodes, and vertical axis is the objective loss value. L-BFGS-B
optimization can terminate early once it satisfies the termination criterion. For
better visualization, we extend the actual learning curves that use L-BFGS-B
horizontally using dotted lines. We also smooth out the curves with a window
size of 10.

Assemble task with a high success rate, we found that the loss
objective can be further decreased by using a continuation
method [2, 16]. Specifically, on the Assemble task, we scale
down the contact forces at the beginning of the optimization
to provide a smoother objective function space, and scale it
up as the optimization proceeds. We set three stages with
contact force scale equal to 0.01, 0.1 and 1, and start the next
optimization stage once the previous stage converges. To apply
the continuation method on the baseline algorithms, we fix the
number of simulations in each stage and proceed to the next
stage after the previous stage uses up the budget. We run all
the baseline algorithms with and without continuation method
on Assemble task, and plot the best performing one. We run
all the methods on each task for five times with different

like structure at the finger tip, so that it is able to hook on
the back surface of the box to flip over the box more easily.
For the Assemble task, the optimized morphology has fingers
of different lengths, so that the long right finger is able to
push the smaller cube while the short left finger can hold the
mount. Moreover, the design has flat and larger fingers, which
allows the manipulator to push the object much more stably
than a thin finger. More visual results can be found in our
supplementary video.

D. Flexibility of the Morphology Parameterization

By adding more cage handles, we can easily increase the
degrees of freedom for the morphology design. We show such
flexibility of our deformation-based morphology parameteri-
zation in this section using a free-form gripper task motivated
by Ha et al. [18]. As shown in Figure 8, the algorithm needs
to optimize the shape of a pair of gripper fingers such that the
gripper can grasp a diamond-like object using a predefined
control sequence. Each finger starts with a cube-like shape
and is optimized with free-form deformation.

To support deformation in higher degrees of freedom (DoF),
we add more handles on the cage around each gripper finger.



Fig. 7.
results are provided in the supplementary video.

Fig. 8. Free-form Gripper: The task is to pick up the object, as shown in the
top row. We compare deformation-based parameterization (ours) and mesh-
based parameterization. The optimization variables and optimized gripper
morphology for the left gripper finger using both methods are shown in the
bottom row. (a) our parameterization method: all the cage handles are shown
on the left sub-figure and the ones used as optimization variables are high-
lighted in red. (b) mesh-based parameterization: we allow the optimization to
directly optimize all the mesh vertices highlighted in red in the left sub-figure.
In both cases, we do not modify the areas near the top of the gripper. The
gripper morphology generated by our method is much smoother.

To show the advantage of using a deformation cage based
parameterization, we compare it to a differentiable mesh-based
parameterization (similar to the Truncated Signed Distance
Function (TSDF) parameterization used in Ha et al. [18])
which directly optimize over the vertex positions of the mesh.
For both parameterization methods, we only optimize the
handles/mesh vertices on the inner side for each gripper
finger as shown in Figure 8 (bottom row). We test both
parameterization methods in our differentiable framework, and
conduct 30 independent experiments for each method with
different initial parameters.

Even though our deformation cage based parameteriza-
tion has a much smaller optimization space and DoFs (396
optimization variables in the grasping task) than the mesh-
based parameterization (8946 variables), our method is able to
generate comparable success rates on the grasping task than

Optimized designs and controls for four manipulator tasks. (1) Finger Reach. (2) Flip Box. (3) Rotate Rubik’s Cube. (4) Assemble. More visual

the mesh-based parameterization (ours: 97%, mesh: 100%),
and achieves better average loss (plot shown in Appendix
II-B). Moreover, as shown in the Figure 8, our method is
able to generate much smoother morphologies than the mesh
parameterization which creates many reverted triangles on the
mesh. Such advantage comes from the smoothness and feature-
preserving properties of the cage-based deformation method.

E. Manufacturing of Optimized Designs

We manufactured two optimized finger models from our
method, one generated by the Flip Box task and the other
generated by the Assemble task, as shown in Figure 1. The
finger components were 3D printed on a Markforged printer
using Onyx, a micro carbon fiber filled nylon, and assembled
together after print. Minimal modification was required to
prepare the program-generated models for printing, demon-
strating a streamlined design process. This shows that our
deformation-based morphology paramterization successfully
maintains design manufacturability.

We further tested the functionality of the manufactured fin-
ger for the Flip Box task. Vectran cables were routed through
the 3D printed finger and controlled by dynamixel DC servos
at the base of the finger. The tendon-driven finger system was
then mounted on a URS arm. We manually programmed a
control sequence on the dynamixel motors and the URS5 arm
to follow a series of waypoints from the trajectory optimized
by the algorithm. The experiment shows that the manufactured
finger can effectively flip the cube in real world. We also
test the robustness of the optimized design on the cubes of
various sizes and the experiment demonstrates that the finger
can also perform the flipping tasks successfully. Please see the
supplementary video for this real-world experiment.

V. DISCUSSION

In this work, we present an end-to-end differentiable frame-
work for contact-aware robot designs. At the core of our
contribution is a novel deformation-based morphology pa-
rameterization for articulated robot designs, and a differen-
tiable rigid body simulation carefully developed for contact-



rich manipulation tasks. The experiments show that our in-
novative morphology parameterization approach provides us
with an effective and expressive morphology design space.
We also demonstrate that for a given manipulation task, by
applying gradient-based optimization algorithm in our fully
differentiable framework, our method is able to find a better
morphology and control combination with significantly fewer
number of simulation episodes than the state-of-the-art ap-
proaches. Furthermore, the optimized designs can be easily
manufactured and are functional in real world. We release our
implementation for reproducibility.

Note that although in this work we focus on optimizing the
continuous component shape given a fixed design topology, the
database we constructed can actually produce a large amount
of different design topologies (e.g., different number of fingers,
different number of links, etc.) via different combinations of
the components through our constructed grammar in Appendix
I. Furthermore, our deformation-based parameterization allows
us to reuse the cages and the precomputed deformation weights
for each individual component across different manipulator
structures. Such automatic and repeatable process enables
the potential research on manipulator structure optimization
in the future. It is also worth mentioning that while our
examples only show the components with identical connection
surfaces, it is not a limitation of our proposed deformation-
based parameterization. One can easily applies our method
for components with connection surfaces of different sizes by
constructing proper cages for them.

There are several directions which can be explored in
the future. First, though analytical derivatives allows for an
efficient gradient-based optimization algorithm, the local min-
imum issue of the gradient-based optimization is a known
problem. Combining the exploration ability from model-free
(gradient-free) methods and the gradient-based optimization
can be an interesting direction to better leverage the advantages
from both worlds. Second, our proposed method is applicable
to optimize the continuous morphology parameters given the
fixed robot topology. There is another category of morphology
optimization that focuses on searching the discrete topology
of the robot designs [20, 51, 53, 54]. It is desirable to develop
an advanced optimization algorithm to effectively search over
both the discrete robot topology space and the continuous
morphology space. Finally, narrowing down the gap between
the reality and our simulation-based framework can be another
important task in the future in order to seamlessly transfer the
optimized morphology and control from simulation directly in
to real world.
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