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Abstract

We formulate a numerical method for solving the two-phase flow poroelasticity equations. The scheme employs the interior
enalty discontinuous Galerkin method and a sequential time-stepping method. The unknowns are the phase pressures and the
isplacement. Existence of the solution is proved. Three-dimensional numerical results show the accuracy and robustness of
he proposed method.

2022 Elsevier B.V. All rights reserved.
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1. Introduction

The field of poromechanics pertains to the study of coupled fluid flows and mechanical deformations in porous
edia. Applications include the prediction of land subsidence due to extraction of water and/or hydrocarbons from

ubsurface [1]. Mathematical models of the poroelastic two-phase flow problem can be found in [2] and were derived
y Biot [3,4] using a phenomenological approach. In the case of single phase flow, the poroelasticity equations have
een extensively studied by applied mathematicians and engineers in the scientific literature [5–10]. In contrast, there
re very few works on the design of efficient numerical methods for multiphase flows in deformable porous media.
he main contribution of this work is the formulation of a numerical method that employs discontinuous piecewise
olynomial approximations for the wetting and non-wetting phase pressures and the displacement of the medium.
iscontinuous Galerkin methods (DG) have been successfully applied to multiphase flows in rigid porous media
ecause of their flexibility resulting from the lack of continuity constraint between mesh elements. DG methods are
ocally mass conservative, they easily handle local mesh refinement and local high order of approximation; and they
re well suited for the solution of convection-dominated problems because they exhibit little numerical diffusion. At
ach time step, we propose to solve the mass balance equations and the momentum equation sequentially by a DG
ethod. Because of the decoupling of the equations, a first order term is added to the discrete momentum equation

o stabilize the method. The idea of decoupling flow and displacement equation and using a stabilization term was
ntroduced in [11] for single phase flow in deformable porous media. The term is needed to prove convergence of
he method for single phase Biot problem, in particular the term helps control the time derivative of the divergence
f the displacement in the flow equations.
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Fig. 1. McWhorter problem: wetting phase saturation profiles at five selected time steps.

Fig. 2. McWhorter problem: displacement at t = 1000 s.

In this work, we focus on isothermal flows where inertial forces are neglected. The resulting coupled partial
ifferential equations can be solved fully implicit, iteratively or sequentially [12]. Fully implicit finite element
ethods are the most stable ones but also the most computationally expensive. In [13], finite element methods in

pace are combined with the theta method in time and the resulting system is solved by Newton–Raphson’s method
t each time step. The method is applied to one-dimensional and two-dimensional problems. In [14], fully implicit
ixed finite element methods combined with standard finite element methods are applied to solve for pressure,

aturation, displacement and their gradients in two-dimensional problems. The iterative approach (fixed-stress split)
s combined with finite volume methods in [15] for different choices of primary unknowns and for one-dimensional
roblems. Our approach for solving the two-phase Biot problem is novel in the sense that no iterations are needed
or stability. At each time step, each equation is solved separately and the computational cost is smaller than the
ne for fully implicit methods. We apply the proposed method to three-dimensional problems and we study the
mpact of heterogeneities (regions with different capillary pressures) and loading on the propagation of the fluid
hases in the medium. Finally, we point out that the fully implicit finite element method has been applied to more
omplex dynamic and non-isothermal flows in [16–19].

An outline of the paper follows. Section 2 introduces the mathematical model and the assumptions on the input
data. The numerical algorithm is described and analyzed in Section 3. Numerical results, including convergence
rates and validation of the method by benchmark problems, can be found in Section 4. Conclusions follow.
2
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Fig. 3. Domain with two inclusions: top view and set-up of boundary conditions for flow and geomechanics.

Fig. 4. Heterogeneous inclusions problem for Case 1: wetting phase saturation contours at t = 50, 125, 250, 375, 500 and 1000 days.

2. Model problem

Mathematical models for compressible two-phase flow poroelasticity are described by two mass conservation
equations coupled by a momentum conservation equation [2]. Let pw, sw (resp. po, so) denote the wetting (resp.
non-wetting) phase pressure and saturation respectively and let u denote the displacement of the porous medium
Ω ⊂ R3. By definition, so = 1 − sw, and we use this relation to eliminate the non-wetting phase saturation from
the system of equations. The difference between phase pressures is the capillary pressure, pc, which is an invertible
mapping and a nonlinear function of sw. Using the inverse function p−1

c , we can write

sw = p−1
c (po − pw).

n this work, we use the Brooks–Corey model [20], which yields

sw =

(
pd

)2

, (1)

po − pw

3
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where pd > 0 is a given constant, known as entry pressure. We choose for primary unknowns the phase pressures and
the displacement. The nonlinear model coupling flow and deformation can be described by the following equations:

C1(po, pw)
∂pw

∂t
+ C2(po, pw)

∂po

∂t
−∇ · (λw(sw)K∇ pw) + αsw

∂(∇ · u)
∂t

= fw, (2)

C3(po, pw)
∂po

∂t
+ C4(po, pw)

∂pw

∂t
−∇ · (λo(sw)K∇ po) + α(1 − sw)

∂(∇ · u)
∂t

= fo, (3)

− µ∆u − (λ + µ)∇(∇ · u) +∇(sw pw + (1 − sw)po) = fu. (4)

he mass balance equations for the wetting and non-wetting phase are (2) and (3) respectively whereas (4) represents
he momentum equation for quasi-static elastic deformation of the medium. The coefficients Ci are nonlinear
unctions of the phase pressures (see (1)):

C1(po, pw) =
α − φ

Ks
s2
w +

φsw

Kw

+

(
α − φ

Ks
sw pc − φ

)
dsw

dpc
, (5)

C2(po, pw) =
α − φ

Ks
sw(1 − sw) −

(
α − φ

Ks
sw pc − φ

)
dsw

dpc
, (6)

C3(po, pw) =
α − φ

Ks
(1 − sw)2

+
φ(1 − sw)

Ko
−

(
α − φ

Ks
(1 − sw)pc + φ

)
dsw

dpc
, (7)

C4(po, pw) =
α − φ

Ks
sw(1 − sw) +

(
α − φ

Ks
(1 − sw)pc + φ

)
dsw

dpc
. (8)

e describe briefly the different coefficients in the equations above. The absolute permeability field K and the
orosity field φ are given positive scalar functions; K may be discontinuous and vary in space over several orders
f magnitude. The following input data are known constants: the Biot–Willis constant α; the bulk moduli for the
olid structure and the fluid phases, Ks, Kw, Ko; the Lamé parameters λ, µ; and the phase viscosities µw and µo.
he phase mobilities, λw, λo, are the ratios of the phase relative permeability kri to the phase viscosity µi and they
re given functions of the saturation:

λi (sw) =
kri (sw)

µi
, i = w, o, krw(sw) = s4

w, kro(sw) = (1 − sw)2(1 − s2
w). (9)

he Biot–Willis constant α is close to 1. For realistic porous media with porosity less than 0.5, this implies that the
uantity (α − φ) is non-negative. In regions with fractures and fissures, this assumption may not be valid, which
eans that different mathematical models should be used to characterize flows in the fractures. The porous medium

s such that the bulk modulus for the solid is much larger than the capillary pressure, and thus we assume that
pc

Ks
≪ 1.

This implies that
α − φ

Ks
sw pc − φ ≤ 0.

rom (1), we see that the derivative of sw with respect to pc is negative (dsw/dpc ≤ 0). Therefore, with the
assumptions above, we can determine the sign of two of the scalar functions Ci (po, pw).

C1(po, pw) ≥ 0, C3(po, pw) ≥ 0. (10)

This motivates the use of a sequential scheme where (2) is solved for pw and (3) is solved for po. The Eqs. (2)–(4)
are completed by initial and boundary conditions.

pw = p0
w, in Ω × {0}, (11)

po = p0
o, in Ω × {0}, (12)

u = u0, in Ω × {0}. (13)

The boundary of the medium is decomposed into Dirichlet and Neumann parts for pressures and displacement:
∂Ω = ΓpD ∪ ΓpN = ΓuD ∪ ΓuN.

4
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Fig. 5. Heterogeneous inclusions problem for Case 1: wetting phase saturation profiles along y = 35 m (left) and y = 60 m (right) at
elected times.

Fig. 6. Heterogeneous inclusions problem for Case 1: capillary pressure functions for the two rocks.

oundary data are prescribed by the following conditions:

pw =pwD, po = poD, on ΓpD × (0, T ), (14)

λw(sw)K∇ pw · n =gw, λo(sw)K∇ po · n = go, on ΓpD × (0, T ), (15)

u =uD, on ΓuD × (0, T ), (16)

µ∇u n + (λ + µ)(∇ · u)n − (sw pw + (1 − sw)po)n = gu, on ΓuN × (0, T ). (17)

. Discontinuous Galerkin scheme

The equations are discretized by the interior penalty discontinuous Galerkin method. Let Eh be a partition of
he domain made of tetrahedral elements of maximum diameter h. Let Γh denote the set of interior faces. For any
nterior face e, we fix a unit normal vector ne and we denote by E1

e and E2
e the two tetrahedra that share the face

such that the vector ne points from E1
e into E2

e . The jump and average of a function q across an interior face e
re denoted by [q] and {q} respectively:

[q] = q| 1 − q| 2 , {q} =
1 (

q| 1 + q| 2

)
, ∀e = ∂ E1

∩ ∂ E2.
Ee Ee 2 Ee Ee e e

5
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Fig. 7. Heterogeneous inclusions problem for Case 1: wetting phase pressure contours at t = 50, 125, 250, 375, 500 and 1000 days.

Fig. 8. Heterogeneous inclusions problem for Case 1: magnitude of displacement at t = 50, 125, 250, 375, 500 and 1000 days.

he jump and average of q on a boundary face are, by convention, equal to the trace of q:

[q] = q|e, {q} = q|e, ∀e ⊂ ∂Ω .

he DG spaces, denoted by Qh and Vh , consist of discontinuous piecewise linears:
2
Qh = {q ∈ L (Ω ) : q|E ∈ P1(E), ∀E ∈ Eh}, Vh = Qh × Qh × Qh .

6
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S

Fig. 9. Heterogeneous inclusions problem for Case 2 with switched rock types: wetting phase saturation contours at t = 50, 125, 250, 375, 500
and 1000 days.

We denote by Π the cut-off operator that restricts any function q to the interval [0, 1] and that is defined for any
ϵ > 0. In our numerical examples the parameter is fixed: ϵ = 10−8.

Π (q)(x) =

⎧⎨⎩1 − ϵ if q(x) > 1 − ϵ,

q(x) if 0 ≤ q(x) ≤ 1,

ϵ if q(x) < ϵ.

We propose an algorithm that requires the knowledge of the solutions at the initial time t0 and at the first time step
t1. To minimize the numerical error in obtaining the solution at t1, we choose t1 = t0 + τ1 where τ1 > 0 is much
smaller than the time step size used for all the other time steps. Let τ > 0 denote the time step size; we have

tn = t1 + (n − 1)τ, ∀n ≥ 2,

so that 0 = t0 < t1 < · · · < tN = T is a partition of the time interval (0, T ). Let Pn
w, Pn

o and Un denote the DG
approximations of pw, po and u evaluated at time tn . We define

Sn
w = Π (p−1

c (Pn
o − Pn

w)), ∀n ≥ 1. (18)

We first present the method to compute the solutions at tn , assuming that the starting values at t0 and t1 are known.
The scheme consists of three sequential steps for n ≥ 1:
Step 1: Given Pn

w ∈ Qh , Pn
o , Pn−1

o ∈ Qh and Un, Un−1
∈ Vh , find Pn+1

w ∈ Qh such that(
C1(Pn

o , Pn
w)

Pn+1
w − Pn

w

τ
+ C2(Pn

o , Pn
w)

Pn
o − Pn−1

o

τ
, qh

)
Ω

+ a(λn
w K ; Pn+1

w , qh)

+ αbu(Sn
w;

Un
− Un−1

τ
, qh) = ℓw(tn+1; qh), ∀qh ∈ Qh . (19)

tep 2: Given Pn
o ∈ Qh , Pn

w, Pn+1
w ∈ Qh and Un, Un−1

∈ Vh , find Pn+1
o ∈ Qh such that(

C3(Pn
o , Pn

w)
Pn+1

o − Pn
o

τ
+ C4(Pn

o , Pn
w)

Pn+1
w − Pn

w

τ
, qh

)
Ω

+ a(λn
o K ; Pn+1

o , qh)

+ αbu(1 − Sn
;

Un
− Un−1

, qh) = ℓo(tn+1; qh), ∀qh ∈ Qh . (20)
w τ
7
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Fig. 10. Heterogeneous inclusions problem for Case 2: wetting phase saturation profiles along y = 35 m (left) and y = 60 m (right) at
elected times.

Fig. 11. Heterogeneous inclusions problem for Case 2: capillary pressure functions for two rocks.

Step 3: Given Pn+1
o , Pn+1

w ∈ Qh and Un, Un−1
∈ Vh , find Un+1

∈ Vh such that

c(Un+1, vh) + bp(Sn+1
w Pn+1

w + (1 − Sn+1
w )Pn+1

o , vh) + γ

(
Un+1

− Un

τ
, v

)
Ω

− γ

(
Un

− Un−1

τ
, v

)
Ω

= ℓu(tn+1; vh), ∀vh ∈ Vh . (21)

n (19), (20), the coefficients λn
w, λn

o are the functions λw and λo evaluated at Sn
w. In (21), the parameter γ is a positive

constant that is user-specified and that multiplies a stabilization term involving the discrete displacements. The
numerical scheme (19)–(21) is sequential as the flow and displacement equations are solved separately. However,
ach equation is solved implicitly with respect to its primary unknown (Pn+1

w for (19), Pn+1
o for (20) and Un+1 for

21)). On one hand, there is no need for an inf-sup condition to be satisfied. On the other hand, the scheme requires
he use of the stabilization term that multiplies the parameter γ . For single-phase flow in deformable porous media,
tability and convergence of the scheme are proved if γ is sufficiently large [11]. The convergence proof for the
ase of two-phase flow in deformable porous media remains an open question.

The L2 inner-product over Ω is denoted by (·, ·)Ω . Similarly, we use the notation (·, ·)E and (·, ·)e for the L2
nner-product over an element E and a face e. We now describe the forms a(·; ·, ·), bu(·; ·, ·), c(·, ·), bp(·, ·) that

8
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Fig. 12. Heterogeneous inclusions problem for Case 2: wetting phase pressure contours at t = 50, 125, 250, 375, 500 and 1000 days.

orrespond to the discretizations of the differential operators in the mathematical model. For the operator of the
orm χ∇ · u with χ being a scalar-valued function, we propose the following discretization:

bu(χ;u, q) = −

∑
E∈Eh

(u,∇(χq))E +

∑
e∈Γh∪∂Ω

({u · ne}, [χq])e.

For the operator of the form ∇q , we apply the following discretization:

bp(q, v) =
∑
E∈Eh

(∇q, v)E −

∑
e∈Γh

([q], {v · ne})e.

or the operator of the form −∇ · (χ∇ p) with χ being a scalar-valued function, we utilize the standard interior
enalty DG form:

a(χ; p, q) =
∑
E∈Eh

(χ∇ p,∇q)E +

∑
e∈Γh∪ΓpD

σph−1
e ([p], [q])e

−

∑
e∈Γh∪ΓpD

({χ∇ p} · ne, [q])e + ϵp

∑
e∈Γh∪ΓpD

({χ∇q} · ne, [p])e.

The scalar ϵp is either equal to −1 or to +1 to yield a symmetric or non-symmetric bilinear form. The penalty
parameter σp is a positive constant: it has to be sufficiently large if ϵp = −1 [21]. The discretization of the operator
−µ∆u − (λ + µ)∇(∇ · u) is also recalled:

c(u, v) = µ
∑
E∈Eh

(∇u,∇v)E + µ
∑

e∈Γh∪ΓuD

σuh−1
e ([u], [v])e

−µ
∑

e∈Γh∪ΓuD

({∇u}ne, [v])e + ϵuµ
∑

e∈Γh∪ΓuD

({∇v}ne, [u])e

+ (λ + µ)
∑

(∇ · u,∇ · v)e − (λ + µ)
∑

({∇ · u}, [v · ne])e.
E∈Eh e∈Γh∪ΓuD

9
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The forms ℓw, ℓo and ℓu handle the source/sink functions, external forces and boundary conditions.

ℓw(tn+1; qh) = ( fw(tn+1), qh)Ω + ϵp

∑
e∈ΓpD

(λn
w K∇qh · ne, pwD(tn+1))e

+

∑
e∈ΓpN

(gw(tn+1), qh)e +
∑

e∈ΓpD

σph−1
e (pwD(tn+1), qh)e,

ℓo(tn+1; qh) = ( fo(tn+1), qh)Ω + ϵp

∑
e∈ΓpD

(λn
o K∇qh · ne, poD(tn+1))e

+

∑
e∈ΓpN

(go(tn+1), qh)e +
∑

e∈ΓpD

σph−1
e (poD(tn+1), qh)e,

ℓu(tn+1; vh) = (fu(tn+1), vh)Ω + ϵuµ
∑

e∈ΓuD

(∇vh ne, uD(tn+1))e

+

∑
e∈ΓuN

(gu(tn+1), vh)e +
∑

e∈ΓuD

σuh−1
e (uD(tn+1), vh)e.

Next, we describe how to compute the solutions at times t0 and t1, which are needed for starting the algorithm. The
initial values are chosen to be the L2 projections of the initial data.

(P0
w, qh)Ω = (p0

w, qh)Ω , (P0
o , qh)Ω = (p0

o, qh)Ω , (U0, vh)Ω = (u0, vh)Ω , ∀qh ∈ Qh, ∀vh ∈ Vh .

he solutions at time step t1 are obtained by solving modified equations. To obtain P1
w we solve:

(C1(P0
o , P0

w)
P1

w − P0
w

τ0
, qh)Ω + a(λ0

w K ; P1
w, qh) = ℓw(t1; qh). ∀qh ∈ Qh . (22)

nce P1
w is computed, we can solve for P1

o satisfying

(C3(P0
o , P0

w)
P1

o − P0
o

τ0
, qh)Ω + a(λ0

o K ; P1
o , qh) = ℓo(t1; qh) − (C4(P0

o , P0
w)

P1
w − P0

w

τ0
, qh)Ω , ∀qh ∈ Qh . (23)

e remark that (22) and (23) are not the discretization of the original mathematical model, but they are simplified
problems. For instance, the terms involving the displacement and non-wetting phase pressure are neglected in (22).
Since the exact solutions do not satisfy (22) and (23), we need to control the resulting consistency error. Choosing
τ0 to be much smaller than τ helps reduce the numerical errors occurred at time step t1 so that they are negligible
compared to the numerical errors for all time steps n ≥ 2. Finally, to compute the displacement U1, Eq. (21) is
used without the stabilization terms. This yields a consistent discretization for the displacement at time step t1.

c(U1, vh) = ℓu(t1; vh) − bp(S1
w P1

w + (1 − S1
w)P1

o , vh), ∀vh ∈ Vh . (24)

Define the DG norm for discrete pressures:

∥qh∥DG =

⎛⎝ ∑
E∈Eh

∥∇qh∥
2
L2(E) +

∑
e∈Γh∪ΓpD

h−1
e ∥[qh]∥2

L2(e)

⎞⎠1/2

, ∀qh ∈ Qh .

A similar norm is defined for vector-valued functions vh ∈ Vh ; it differs by the boundary terms.

∥vh∥DG =

⎛⎝ ∑
E∈Eh

∥∇vh∥
2
L2(E) +

∑
e∈Γh∪ΓuD

h−1
e ∥[vh]∥2

L2(e)

⎞⎠1/2

, ∀vh ∈ Vh .

We now recall the coercivity properties for the bilinear forms a and c.

Lemma 1. Let χ be a scalar-valued function bounded below and above by positive constants Cχ and Cχ . If
ϵp = −1, assume that σp is sufficiently large. The following holds:

1
∥qh∥

2
≤ a(χ; qh, qh), ∀qh ∈ Qh . (25)
2 DG

10
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Fig. 13. Heterogeneous inclusions problem for Case 2: magnitude of displacement at t = 50, 125, 250, 375, 500 and 1000 days.

In addition, assume the penalty parameter σu is sufficiently large. Then we have
1
2
∥vh∥

2
DG ≤ c(vh, vh), ∀vh ∈ Vh . (26)

The proof of Lemma 1 is classical and is therefore skipped [21]. If ϵp = −1, the constant σp depends on trace
constants and the constants Cχ and Cχ . Similarly, the penalty parameter σu depends on trace constants and on the
Lamé parameters.

Next we show that the discrete equations are solvable under some conditions on the phase mobilities.

Proposition 1. Assume that the functions λw and λo are bounded below by positive constants. For any n ≥ 0, the
solutions (Pn

w, Pn
o , Un) exist and are unique.

Proof. Existence and uniqueness of the initial solutions (P0
w, P0

o , U0) is immediate because of the L2 projection
operator. Regarding the solutions at time t1, since (22), (23), (24) are linear problems in finite dimension, it suffices
o show uniqueness. The proof is an immediate consequence of the coercivity Lemma 1 and the non-negative signs
f the coefficients C1 and C3 (see (10)). Next we prove existence of solutions to (19)–(21) by also utilizing the fact
hat these equations are linear with respect to their unknowns. It is thus equivalent to show uniqueness. Fix n ≥ 1
nd assume that P̃w is the difference of two solutions to (19). We have

(C1(Pn
o , Pn

w)
P̃w

τ
, qh)Ω + a(λn

w K ; P̃w, qh) = 0, ∀qh ∈ Qh .

Choosing qh = P̃w in the equation above and using (25) and (10), we have that P̃w = 0. Next, we denote by P̃o
he difference of two solutions to (20); it satisfies

(C3(Pn
o , Pn

w)
P̃o

τ
, qh)Ω + a(λn

o K ; P̃o, qh) = 0, ∀qh ∈ Qh .

Again, by choosing qh = P̃o and using (25) and (10), we have that P̃o = 0. Finally, let Ũ be the difference of two
solutions to (21). It satisfies

c(Ũ, vh) +
γ

(Ũ, v)Ω = 0, ∀vh ∈ Vh .

τ

11
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Fig. 14. Heterogeneous inclusions problem for Case 3: wetting phase saturation contours at t = 50, 125, 250, 375, 500 and 1000 days.

Fig. 15. Heterogeneous inclusions problem for Case 3: wetting phase saturation profiles along y = 35 m (left) and y = 60 m (right) at
elected times.

hoosing vh = Ũ and using (26), yields

1
2
∥Ũ∥

2
DG + γ ∥Ũ∥

2
L2(Ω) = 0,

which gives the desired result. □

4. Numerical results

We first verify the optimal rate of convergence of our proposed numerical method for smooth solutions and then
we apply our scheme to various porous media problems: the McWorther problem, a non-homogeneous medium

with different capillary pressures, a medium subjected to load, and a medium with highly varying permeability and

12
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p

p

Fig. 16. Heterogeneous inclusions problem for Case 3: capillary pressure functions for two rocks.

Fig. 17. Heterogeneous inclusions problem for Case 3: wetting phase pressure contours at t = 50, 125, 250, 375, 500 and 1000 days.

orosity. Unless explicitly stated in the text, all examples use the following physical parameters.

µw = µo = 0.001 Pa s, Kw = Ko = 1010 Pa,

λ = 7142857 Pa, µ = 1785714 Pa, Ks = 8333333 Pa,

φ = 0.3, α = 0.8, ϵp = ϵu = −1.

The linear systems are solved by LU preconditioned GMRES with absolute stopping criteria 10−12. Most of the

roblems converged with desired accuracy in 1 or 2 iterations.
13
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Fig. 18. Heterogeneous inclusions problem for Case 3: magnitude of displacement at t = 50, 125, 250, 375, 500 and 1000 days.

Fig. 19. Heterogeneous inclusions problem: 3D views of a cross-section of the domain along the line y = 35 m. Contours correspond to
the wetting phase saturation at t = 500 days.
14
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Table 1
Numerical errors and rates for the numerical approximations of smooth solutions.

h ∥ew∥ Rate ∥∇hew∥ Rate ∥eo∥ Rate ∥∇heo∥ Rate ∥eu∥ Rate

1/2 1.22e−01 1.38e+00 8.69e−02 1.13e+00 8.99e−03
1/4 3.14e−02 1.96 7.13e−01 0.95 2.36e−02 1.88 5.88e−01 0.94 2.24e−03, 2.00
1/8 7.89e−03 1.99 3.60e−01 0.99 6.21e−03 1.93 2.98e−01 0.98 5.60e−04 2.00
1/16 1.98e−03 2.00 1.81e−01 0.99 1.03e−03 2.60 1.25e−01 1.25 1.34e−04 2.06

4.1. Convergence rates

We employ the method of manufactured solutions to test the convergence rates of our scheme. The exact solution
s smooth and defined by

pw(x, y, z) = exp(x + y), po(x, y, z) = exp(y + z) + 8, u(x, y, z) = (cos(x), sin(y), cos(z))T .

he following physical parameters are chosen: φ = 0.3, K = 1, λ = 1, µ = 0.6, Kw = Ko = Ks = 10, α =

0.9, λw(sw) = sw, λo(sw) = 1 − sw and pd = 1. The computational parameters are τ = 0.1, τ0 = 10−2, σp =

14, σu = 14 and γ = 16. The domain is the unit cube partitioned into tetrahedra. No cut-off operator is applied in
his example. We compute the numerical errors at the final time T = 1 on a series of uniformly refined meshes.

ew = pw(T ) − P N
w , eo = po(T ) − P N

o , eu = u(T ) − UN .

Table 1 displays the errors for the phase pressures in the broken gradient norm and the L2 norm, and the errors for
the displacement in the L2 norm. The rates are optimal.

.2. Mcwhorter problem

The original McWhorter problem simulates counter-current flow in a homogeneous one-dimensional domain.
ecause of the quasi-analytical solution developed in [22], this benchmark problem is ideal for evaluating the
ccuracy of a numerical scheme. The fluid phases are incompressible, which means that the inverse of the bulk
odulus for each phase is set to zero. The entry pressure (see (1)) is pd = 5000 Pa. For this problem, the

Biot–Willis constant is set equal to 1 and the permeability is K = 10−10. We solve this problem in a thin slab
[0, 2.6] × [0, 0.065] × [0, 0.0325] partitioned into 160 cubes of side h = 0.0325, each cube is then divided into 6
etrahedra. The computational parameters are:

τ = 1 s, τ0 = 0.01 s, σp = 400, σu = 1000, γ = 105, T = 5000 s.

nitially, the pressures are p0
w = 184000 Pa and p0

o = 234000 Pa, which implies the initial saturation in the domain
s s0

w = 0.01. The Dirichlet boundary is the left vertical boundary {0} × [0, 0.065] × [0, 0.0325]. Dirichlet data are
elected such that the wetting phase saturation is equal to 0.99 on that boundary. This means that pwD = 194970
a and poD = 200000 Pa. No flow is imposed on the remainder of the boundary: gw = go = 0. Zero displacement

s prescribed on both left and right vertical boundaries and no traction (gu = 0) is prescribed on the remainder of
he boundary.

uD = 0 on {0} × [0, 0.065] × [0, 0.0325] ∪ {2.6} × [0, 0.065] × [0, 0.0325].

he saturation profiles at different times are plotted in Fig. 1. We observe that the numerical solution coincides
ith the analytical solution.
In Fig. 2, we compare the numerical displacement obtained with our method with the numerical displacement

btained by a finite volume discretization in [15] at t = 1000 s. Because there are no external forces, changes in
he displacement are caused by changes in the pressures. We observe a good agreement between the two solutions.

.3. Porous medium with heterogeneous inclusions

This example considers a porous medium with two rock types with different permeability and entry pressure
n each rock. The domain Ω = [0, 100] × [0, 100] × [0, 2.5] (m3) contains two box-shape inclusions [20, 40]
15
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Fig. 20. Set-up of boundary conditions for flow and geomechanics.

Fig. 21. Case of x-load: wetting phase saturation and pressure contours at different times.

× [50, 70] × [0, 2.5] (m3) and [50, 90] × [20, 50] × [0, 2.5] (m3) (see Fig. 3). The permeability and entry pressure
for rock type 1 (resp. type 2) are denoted by K1 and pd1 (resp. K2 and pd2). We consider three cases, where the
ratios between entry pressures are similar to those used in [23]:

Case 1: K1 = 4.2 × 10−11, pd1 =
√

2pd2, K2 = 2K1, pd2 = 5000,

Case 2: K1 = 8.4 × 10−11, pd1 = 5000, K2 = K1/2, pd2 =
√

2pd1,

Case 3: K1 = 8.4 × 10−11, pd1 = 5000, K2 = K1/4, pd2 = 2pd1.

The fluid viscosities are µw = 0.0005 Pa s and µo = 0.002 Pa s. The initial non-wetting phase pressure is
p0

o = 200000 Pa and the initial wetting phase pressure is chosen so that the initial wetting phase saturation in
the areas of rock type 1 and rock type 2 are 0.1 and 0.05 respectively. Dirichlet data are selected such that the
16
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Fig. 22. Case of y-load: wetting phase saturation profiles along y = 0, 50 and 100 m at t = 250, 375 and 500 days.

etting phase saturation is equal to 1.0 on the left side {0} × [0, 100] × [0, 2.5], this means that pwD = 195000
a and poD = 200000 Pa on that side. No flow is imposed on the remainder of the boundary: gw = go = 0. Zero

displacement is prescribed on both left and right sides and no traction (gu = 0) is prescribed on the remainder of
the boundary. The domain is partitioned into 9600 tetrahedra. The computational parameters are:

τ = 5 days, τ0 = 0.05 days, σp = 800, σu = 800, γ = 105, T = 1000 days. (27)

First, we simulate flow for Case 1. Fig. 4 shows the wetting phase saturation contours at 50, 125, 250, 375, 500
nd 1000 days. The saturation front avoids the inclusions that have lower permeability, as expected. As the wetting
hase floods the medium, deformations occur; for better visualization the displacement components are scaled by
00.

Profiles of the saturation front are plotted along two horizontal lines y = 35 m and y = 60 m in the plane
z = 2.5 m for different times in Fig. 5. We observe that the saturation is discontinuous at the interface between
he two types of rocks. The discontinuity is due to the capillary pressure function that switches to another curve as
hown in Fig. 6. This is attributed to the fact that the entry pressures are discontinuous, the entry pressure in rock
f type 2 is smaller than the entry pressure in rock of type 1. We note that the threshold saturation S∗

w ≈ 0.84,
hich is defined as pc1(S∗

w) = pc2(1), is larger than the saturation in rock 2, Sw2, and less than the saturation in
ock 1, Sw1, therefore the phase pressure is continuous across the interface. Fig. 7 shows the wetting phase pressure
olutions at different times. The inclusions impact the pressure contours: even though the permeability in rock 2 is
wice the permeability in rock 1, the wetting phase saturation is smaller in rock 2, which yields a smaller wetting
hase relative permeability.

Since rock type 2 has a lower entry pressure, less non-wetting phase is displaced by the wetting phase and the
etting phase saturation value lags behind in the region of rock type 2. Overall, the magnitude of displacement in

he area of rock type 2 is smaller than in surrounding areas. Fig. 8 shows the magnitude of the displacement at
ifferent times.

Before the wetting phase front reaches the right boundary, we first observe a significant displacement in the
x-axis direction compared to the y- and z-axis directions. More wetting phase passes through the area of rock
ype 1 where the medium is being stretched in the x-axis positive direction along with the flow. Meanwhile, the
isplacements in both the y-axis and z-axis increase in the direction that is perpendicular to the flow’s direction.
his can be identified when the medium contracts in the y-axis when the wetting phase entered the domain. The
ame phenomenon can be observed when the region between two blocks is being stretched. The area that is close to
he right boundary is being squeezed in the x-axis which leads to the increase of displacement in y- and z-direction
ntil it bounces back due to the zero displacement boundary condition on the right side.

In the next experiments, we consider Case 2 where the rock properties are switched compared to Case 1. Initially,
0
he wetting and non-wetting phase pressures are constant (po = 200000 Pa) and the initial wetting phase saturation

17



B. Shen and B. Riviere Computer Methods in Applied Mechanics and Engineering 399 (2022) 115266
Fig. 23. Case of x-load: wetting phase saturation and pressure contours at different times.

in the areas of rock type 1 and rock type 2 are 0.1 and 0.2 respectively. The saturation contours and profiles are shown
in Figs. 9 and 10 respectively. Since the saturation in the area of rock type 1, Sw1, is less than threshold saturation
S∗

w (see Fig. 11), the phase pressure is continuous across the interface. Wetting phase pressure and magnitude of
displacement are presented in Figs. 12 and 13 respectively.

As seen in Fig. 12, the wetting phase pressure propagates in the area of rock type 2 faster than in the area of
rock type 1 due to higher initial wetting phase saturation. Higher wetting phase saturation indicates that there is
more wetting phase that goes into the rock type 2 region (see Fig. 9). This leads to a significant displacement of
the rock type 2 in the x-axis and y-axis directions.

In the last experiments, we consider Case 3 where we further increase the permeability and capillary pressure
contrast between the two rock types compared to Case 2. Our numerical scheme naturally handles this scenario
where the capillary pressure is discontinuous. Initially, the wetting and non-wetting phase pressures are constant
(p0

o = 200000 Pa) and they have the same values as in Case 2. Because of the different rock types, this means that
the initial wetting phase saturation in the areas of rock type 1 and rock type 2 are 0.1 and 0.4 respectively. The
saturation contours and profiles are shown in Figs. 14 and 15 respectively. Since the saturations in both regions
of rock type 1, Sw1, and rock type 2, Sw2 are greater than the threshold saturation S∗

w (see Fig. 16), the capillary
pressure is discontinuous across the interface. Wetting phase pressure and magnitude of displacement are presented
in Figs. 17 and 18 respectively.

Compared to Case 2, there is more deformation in Case 3 at the time when the wetting phase penetrates the
region of rock type 2, see time snapshot t = 250 days in Fig. 18. We also notice that at a given time, the saturation
value is higher in rock type 2 in Case 3 than in Case 2; this is due to a larger entry pressure in rock type 2 in Case
3. Finally we remark that in the z-direction, the regions of rock 2 contract for Case 1 whereas they expand for Case
2 and Case 3 (see Fig. 19).

4.4. Porous medium subjected to load

The numerical examples in this section show the impact of loading on the wetting phase propagation in the
3
medium as it undergoes deformations. The domain Ω = [0, 100] × [0, 100] × [0, 5] m is partitioned into 2400
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Fig. 24. Case of x-load: wetting phase saturation profiles along y = 0, 50 and 100 m at t = 250, 375 and 500 days.

etrahedra. Boundary conditions for flow and displacement are described in Fig. 20. Dirichlet data is prescribed for
he pressures (pwD = 195000 Pa and poD = 200000 Pa) on the left side of the boundary and no flow is imposed on
he remainder of the boundary. Two different loading scenarios are considered: first a non-zero traction boundary
ondition in the y-direction is imposed on the top side (gu = (0,−r, 0)); this case is referred to as y−load. Second

a load is imposed in the x-direction on the left side of the domain (gu = (r, 0, 0)); this case is referred to as x−load.
In both cases, the bottom side is fixed, with zero Dirichlet boundary condition for the displacement. Zero traction
is imposed on the remainding of the boundary. The load increases linearly in time:

r (t) = 50000
t
T

.

The following physical parameters are used:

Kw = Ko = 104, K = 8.0 × 10−11 m2, λ = µ = 4 × 105 Pa, Ks = 666666 Pa.

e choose smaller values for the bulk moduli to show the impact of the loading on fluid and solid phases. The
nal time is T = 500 days and the other computational parameters are as in (27).

We first show the contours for wetting phase saturation and pressure at 250, 375 and 500 days in Fig. 21 for the
ase of vertical load. As the load increases, the domain is compressed in the y−direction as expected and slightly
xpanded in the x−direction. Even though the pressure gradient is mostly in the x−direction, the deformation of
he medium creates a small pressure gradient in the y−direction near the load boundary. The wetting phase floods
he top part of the domain slower than the bottom part.

To better see this, we extract the saturation profiles at 250, 375 and 500 days along three horizontal lines (see
ig. 22). The location of the front is also indicated in the figure. Near the top side of the domain, the saturation
ront is lagging behind by ten meters.

Next, we show the saturation and pressure contours for the case of x−load in Fig. 23.
In this loading scenario, the deformation of the medium is mostly in the x−direction, with the top part of the

omain deforming the most because of the constraint of zero displacement at the bottom side. We also observe
hat the displacement of the domain is in the same direction than the propagation of the wetting phase saturation.
his yields a faster saturation front in the top part of the domain. Fig. 24 shows the saturation profiles along three
orizontal lines. After 500 days, the saturation front at the top side reaches about 97 meters which is 3 and 8 meters
urther than other two locations.

For a better comparison between these two types of loading, we show the contours of the x− and y− components
of the displacement at the final time in Fig. 25. Under the y−load, the medium is compressed vertically and stretched
horizontally whereas under the x−load, the medium deforms mostly along the direction of the flow except for the
fixed bottom boundary.
19
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Fig. 25. Contours of x and y components of displacement at 500 days.

Fig. 26. Wetting phase saturation profiles extracted along y = 100 m and y = 0 m at three different times: 250, 375 and 500 days and for
different loading scenarios.
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Fig. 27. Heterogeneous medium: porosity field for bottom layer (left), middle layer (center) and top layer (right).

Fig. 28. Heterogeneous medium: permeability field in log scale for bottom layer (left), middle layer (center) and top layer (right).

Fig. 29. Two-phase flow in highly heterogeneous medium. Threshold plot of wetting phase saturation where the value is greater than 0.21
t t = 1000 days, displacement scaled up by 100 for visualization.

Finally, we now compare the effect of no loading versus loading for both y− and x− loads. To be precise,
o loading means that zero traction boundary condition (gu = 0) is prescribed on the boundary except for the

bottom boundary where zero displacement is imposed. Fig. 26 shows the wetting phase saturation profiles extracted
along the top and bottom sides at 250, 375 and 500 days. On the top boundary, we observe that the saturation
front advances faster in the x−load than in the zero traction case and the y−load yields the slowest saturation
front. This is expected since the loading direction for the x−load is the same as the flow direction. On the bottom
oundary, overall there are less differences between the profiles for the three loading scenarios because of the zero
isplacement constraint. This figure shows the impact of the nonlinearities in the problem on the fluid propagation.

.5. Highly heterogeneous medium

We apply the method to a porous medium where both porosity and permeability vary in space. The medium
xhibits regions of high permeability (channels) surrounded by regions of low permeability and lower porosity.
his example demonstrates the capability of the proposed method to handle large variations in permeability. The
omain [0, 80] × [0, 80] × [0, 7.5] consists of three stacked horizontal layers of height 2.5 m. The mesh contains
21
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Fig. 30. Two-phase flow in highly heterogeneous medium. Left column: wetting phase saturation in the three layers. Right column: wetting
phase pressure, at t = 4000 days.

18432 tetrahedra. The porosity field for the three layers is shown in Fig. 27 and the permeability field in logarithmic
scale is shown in Fig. 28. The data are extracted from the SPE10 porosity and permeability fields; they correspond
to a section of layer 43, 44 and 45 in the SPE10 model [24]. Dirichlet data is prescribed for the pressures
(pwD = 1950000 Pa and poD = 2000000 Pa) on the left side of the boundary and no flow is imposed on the
remainder of the boundary. The entry pressure is pd = 50000 Pa. The computational parameters are:

τ = 20 days, τ0 = 0.2 days, σp = 800, σu = 800, γ = 105, T = 4000 days. (28)

Fig. 29 shows the wetting phase saturation in the three-dimensional domain at time t = 1000 days; values of the
aturation above 0.21 are shown only. We observe a non-uniform saturation front. The deformation of the domain

s magnified by a scaling factor of 100 for visualization.
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Fig. 31. Two-phase flow in highly heterogeneous medium. Contours of displacement components in top layer at different times: x-component
(left column), y-component (center column) and z-component (right column).

The wetting phase saturation and pressure at 4000 days are shown in each of the three layers in Fig. 30. For
visualization purposes, each component of the numerical approximation of the displacement has been scaled by
100. Due to the heterogeneous permeability and porosity, we observe differences in the pressure and saturation
contours at each layer. This simulation shows the effect of three-dimensional heterogeneities in the propagation of
the wetting phase through the medium.

The contours for the x-, y-, and z-components of the displacement are shown in Fig. 31. The displacement is
five times larger in the flow direction, which is consistent with the choice of the boundary conditions. Because of
the coupling between flow and geomechanics, the displacement components vary in time as the medium is flooded
by the wetting phase.

5. Conclusions

We have presented an accurate and robust numerical method for solving the coupled two-phase flow and

geomechanics equations in porous media. The method is sequentially implicit, therefore computationally less
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expensive than a fully implicit scheme. The sequential scheme is stable due to stabilization terms added to the
displacement equation. The method is validated on three-dimensional benchmark problems and the numerical results
confirm the stability, robustness and accuracy of the proposed scheme for various heterogeneous porous media, with
different rock types and loading scenarios.
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