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Abstract

This paper proposes a fully implicit numerical scheme for immiscible incompressible two-phase flow in porous media
aking into account gravity, capillary effects, and heterogeneity. The objective is to develop a fully implicit stable discontinuous
alerkin (DG) solver for this system that is accurate, bound-preserving, and locally mass conservative. To achieve this, we

ugment our DG formulation with post-processing flux and slope limiters. The proposed framework is applied to several
enchmark problems and the discrete solutions are shown to be accurate, to satisfy the maximum principle and local mass
onservation.
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1. Introduction

Multiphase flows in porous media appear in a large number of applications in engineering and sciences, for
instance in the environmental clean up of contaminated subsurface or in the energy production of hydrocarbons
from reservoirs. This paper introduces a numerical method for solving the immiscible two-phase flow equations,
that produces bound-preserving discrete saturations. The proposed method utilizes a fully implicit in time stepping
scheme, a discontinuous Galerkin in space discretization and post-processing flux and slope limiters techniques.
The resulting numerical saturation is shown to satisfy a maximum principle theoretically and computationally.

The numerical literature for immiscible two-phase flow problems is vast (see [1–3] and references herein).
Suitable numerical methods should be locally mass conservative and should produce bound-preserving discrete
saturations. Such methods include finite difference methods and finite volume methods, which are popular methods
because of their simplicity and low cost [4–6]. However, finite difference methods are not adapted to unstructured
meshes and cell-centered finite volume methods suffer from grid distortion and do not easily handle full anisotropy.
More recent methods that are locally mass conservative include the mixed finite element methods and multipoint
flux methods [7–11]. The class of interior penalty discontinuous Galerkin methods has been applied to model
multiphase flows in porous media for more than fifteen years [12–18] and they have been combined with other
locally mass conservative methods like mixed finite element methods in [19,20]. DG methods are locally mass
conservative, they do not suffer from grid distortion and they are accurate and robust even in the case of anisotropic
heterogeneous media. However, it is well known that the DG approximation of the saturation does not satisfy a
maximum principle because of local overshoots and undershoots in the neighborhood of the saturation front. While
the amount of overshoot and undershoot can be reduced by the choice of implicit time stepping, mesh refinement
and appropriate penalty parameters, there is no guarantee that they will completely disappear. The literature on post-
processing techniques to reduce or eliminate the amount of overshoots and undershoots for DG methods in general
is significant. Slope limiters adjust the gradient of the linear approximation in a heuristic way [21–26]. Recently,
flux limiters related to flux-corrected transport algorithms, were introduced for DG discretizations of conservation
laws [27,28].

The main contribution of this paper is the formulation of bound-preserving numerical method for the incom-
pressible two-phase flow problems. Upwind fluxes are employed for the interior penalty discontinuous Galerkin
discretization in space. We solve several benchmark problems to investigate the performance of the method and
particularly the impact of the limiting techniques on local mass conservation. The numerical method respects
maximum principle by limiting the saturation profile to physical upper- and lower-bounds. The violation of
maximum principle for the discontinuous approximation of the saturation has been an open problem over the last
decade. Our proposed scheme guarantees that the saturation remains bounded in the physical range. In addition,
we observe that the monotonicity of the saturation is significantly improved compared to the case of no limiters.
Saturation fronts are sharp with minimal numerical diffusion. We present several numerical results that show
overshoots and undershoots have been eliminated. We verify that the local mass conservation property is also
satisfied. We consider cases where flow is driven by boundary conditions and cases where flow is driven by injection
and production wells. In the former case, a theoretical proof of the maximum principle is given.

The content of the paper is as follows. Section 2 describes the mathematical equations. The primary unknowns
are the wetting phase pressure and saturation. Section 3 contains the fully implicit numerical scheme, with the
construction and analysis of the flux limiters, and the review of slope limiters used in this work. Several numerical
results, including benchmark problems and convergence tests, are given in Section 4. Conclusions follow.

2. Governing equations

The incompressible two-phase flow in a porous medium Ω ⊂ R2 over a time interval [0, T ], is modeled by a
ystem of mass balance equations for each phase, coupled with closure relations.

∂

∂t
(φSα)−∇ · (λα K (∇Pα − ραg)) = qα, α = ℓ, w, (2.1)

Sℓ + Sw = 1, (2.2)

Pc = Pℓ − Pw. (2.3)
2
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where Pw (resp. Pℓ) is the wetting phase (resp. non-wetting phase) pressure and Sw (resp. Sℓ) is the wetting phase
resp. non-wetting phase) saturation. The source/sink functions are denoted by qα , the phase mobility coefficient
y λα and the capillary pressure, Pc. The phase mobilities are ratios of the relative permeabilities, krα , to the
hase viscosities, µα . Relative permeabilities and capillary pressure are given functions of the wetting phase
aturations [29].

λα(Sw) =
krα(Sw)

µα

, α = w, ℓ. (2.4)

The relative permeabilities may vanish at one endpoint of the saturation range; the exact expressions for krα are
given for each numerical example in Section 4. We regularize the capillary pressure near the zero saturation by a
linear approximation (see formula (4.8)). The other coefficients are the porosity φ, the absolute permeability K ,
and the gravity vector g. Using (2.2) and (2.3), and choosing for primary unknowns the wetting phase pressure and
saturation (P, S) = (Pw, Sw), the system of equations reduces to:

∂

∂t

(
φ(1− S)

)
−∇ ·

(
λℓ(S)K

(
∇P +∇Pc(S)− ρℓg

))
= qℓ, in Ω × (0, T ), (2.5)

∂

∂t

(
φS

)
−∇ ·

(
λw(S)K

(
∇P − ρwg

))
= qw, in Ω × (0, T ). (2.6)

Let the boundary of the domain be divided into different disjoint sets

∂Ω = ΓD,p
∪ ΓN,p

= ΓD,s
∪ ΓN,s

∪ Γ out,s .

Dirichlet and Neumann boundary conditions are imposed on parts of the boundary:

P = g p, on ΓD,p
× (0, T ), (2.7)

S = gs, on ΓD,s
× (0, T ), (2.8)

λℓ(S)K
(
∇P +∇Pc(S)− ρℓg

)
· n = j p, on ΓN,p

× (0, T ), (2.9)

λw(S)K
(
∇P − ρwg

)
· n = j s, on ΓN,s

× (0, T ). (2.10)

The outflow boundary Γ out,s is a do-nothing boundary used in pressure-driven flow problems. This boundary
is treated as an extension of interior facets in a sense that the surface integrals on this boundary are evaluated in
terms of the unknown saturations. It should be noted that we did not incorporate non-reflecting conditions [30,31]
or infinite edge elements [32] in our DG code and the name “outflow” used here should not be mixed up with the
Lenzinger and Schweizer [33] outflow boundary at the interface of porous media and a free flow media.

In the case of pure homogeneous Neumann boundary conditions (ΓN,s
= ΓN,p

= ∂Ω ) and j p
= j s

= 0), the
flow is driven by injection/production wells (source/sink functions) that depend on the wetting phase saturation as
follows:

qα(S) = fα(sin)q̄ − fα(S)q, α = ℓ, w.

he functions q̄ and q correspond to the injection and production well rates and sin is the prescribed wetting phase
saturation at the injection wells. The fractional flow functions, fα , are the ratios of the phase mobility to the total
mobility, fα = λα/(λℓ + λw).

Finally the model problem is completed by an initial condition on the saturation: S = s0. While our paper focuses
on the numerical discretization of the equations above, existence of a weak solution was first done in [34,35].

3. Numerical method

The domain Ω is decomposed into a non-degenerate partition Eh = {E}E consisting of Nh triangular or
rectangular elements of maximum diameter h. Let Γh denote the set of all edges and Γ i

h denote the set of interior
dges. For any e ∈ Γ i

h , fix a unit normal vector ne and denote by E+ and E− the elements that share the edge e
such that the vector ne is directed from E+ to E−. We define the jump and average of a scalar function ξ on e as
follows:

[ξ ] = ξ |E+ − ξ |E− , {ξ} =
1

(ξ |E+ + ξ |E−) . (3.1)

2
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By convention, if e is adjacent to ∂Ω , then the jump and average of ξ on e coincide with the trace of ξ on e and the
normal vector ne coincides with the outward normal n. Let P1(E) = P1(E) be the space of polynomials of total
egree ≤ 1 if E is a simplex and let P1(E) = Q1(E) be the space of polynomials of degree ≤ 1 in each variable.

The discontinuous finite element space of order one is:

D(Eh) =
{
ξ ∈ L2(Ω ) : ξ |E ∈ P1(E), ∀E ∈ Eh

}
. (3.2)

The time interval T is divided into Nτ equal subintervals of length τ . Let Pn and Sn be the numerical solutions at
time tn . The proposed discontinuous Galerkin scheme for Eqs. (2.5)–(2.10) reads: Given (Pn, Sn) ∈ D(Eh)×D(Eh),
find (Pn+1, Sn+1) ∈ D(Eh)×D(Eh) such that:

1
τ

∫
Ω

φ(1− Sn+1)ξ +
∑
E∈Eh

∫
E

λℓ(Sn+1)K
(
∇Pn+1 +∇Pc(Sn+1)− ρℓg

)
· ∇ξ

−

∑
e∈Γ i

h

∫
e
(λℓ(Sn+1))↑vn

ℓ {K
(
∇Pn+1 +∇Pc(Sn+1)− ρℓg

)
· ne}[ξ ]

−

∑
e∈ΓD,p

∫
e
λℓ(Sn+1)K

(
∇Pn+1 +∇Pc(Sn+1)− ρℓg

)
· ne ξ +

∑
e∈Γ i

h∪Γ
D,p

σ

h

∫
e
[Pn+1] [ξ ]

=

∫
Ω

qℓ(Sn)ξ +
1
τ

∫
Ω

φ(1− Sn)ξ +
σ

h

∫
ΓD,p

g pξ +

∫
ΓN,p

j pξ, ∀ξ ∈ D(Eh), (3.3)

1
τ

∫
Ω

φSn+1ξ +
∑
E∈Eh

∫
E

λw(Sn+1)K
(
∇Pn+1 − ρwg

)
· ∇ξ

−

∑
e∈Γ i

h

∫
e
(λw(Sn+1))↑vn

w {K
(
∇Pn+1 − ρwg

)
· ne}[ξ ]−

∑
e∈ΓD,s

∫
e
λw(gs)K

(
∇Pn+1 − ρwg

)
· n ξ

−

∑
e∈Γout

∫
e
λw(Sn+1)K

(
∇Pn+1 − ρwg

)
· ne ξ +

∑
e∈Γ i

h∪Γ
D,s

σ

h

∫
e
[Sn+1] [ξ ]

=

∫
Ω

qw(Sn)ξ +
1
τ

∫
Ω

φSnξ +
σ

h

∫
ΓD,s

gsξ +

∫
ΓN,s

j sξ, ∀ξ ∈ D(Eh). (3.4)

he penalty parameter σ is constant on the interior edges and its value is chosen 10 times larger on the Dirichlet
oundaries. The quantities (·)↑vn

ℓ and (·)↑vn
w denote the upwind values with respect to the vector functions vn

ℓ and
n
w that are scaled quantities of the phase velocities. They depend on the pressure and saturation evaluated at the
revious time tn:

vn
w = −K

(
∇Pn − ρwg

)
, vn

ℓ = −K
(
∇Pn +∇Pc(Sn)− ρℓg

)
he definition of the upwind operator with respect to a generic discontinuous vector field v is:

∀e = ∂ E+ ∩ ∂ E−, ξ↑v
|e =

{
ξ |E+ , if {v} · ne > 0,

ξ |E− , if {v} · ne ≤ 0.

t the initial time, the discrete saturation is the L2 projection of the initial condition.∫
Ω

S0v =

∫
Ω

s0v, ∀v ∈ D(Eh).

t each time step, we solve (3.3)–(3.4) together with a Newton solver, followed by flux and slope limiters (see
lgorithm 1). Fig. 1 is a schematic that describes the actions of both flux and slope limiters on the discrete saturation.
he convergence analysis of the proposed scheme remains an open problem. The reader might be interested in the
rror analysis of a DG scheme for a different formulation of two-phase flow in [36] and also in the convergence
nalysis of finite volume methods and finite element methods for the PDEs (2.1)–(2.3) in [37–39]. The next two

ections describe these limiters in detail and contain a proof that the resulting saturation is bound-preserving.

4
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Algorithm 1 DG+FL+SL method

Compute initial saturation S0
for n = 0, . . . , (Nτ − 1) do

Solve (3.3)–(3.4) with Newton’s method
Apply flux limiter: SFL

n+1 = Lflux(Sn+1)
Apply slope limiter to Sn+1 = Lslope(SFL

n+1)
end for

Fig. 1. Schematic of flux and slope limiters to achieve a pointwise bound-preserving DG solution: Unlimited DG solution (figure 1⃝)
is found to violate the upper bound s∗ and lower bound s∗. After implementing the flux limiter in a post-processing step, the local average
values shown in broken blue lines are bounded (figure 2⃝). The non-physical fluxes are limited by using the limiting factor α

(k−1)
E (e) ∈ [0, 1]

at the discrete level and performing multiple correction cycles (see Section 3.1). Note that this procedure is mass conservative and we
observe that the decrease of the average value on element E brings about an increase on the average value of neighboring elements E ′.
We subsequently apply a slope limiting procedure to produce pointwise bound-preserving solutions (see Section 3.2). The correction factor
βE ∈ [0, 1] at each element vertex vE,i takes the average values of neighboring elements as local bounds and determines the maximum
admissible slope (figure 3⃝). Note that the local average values are left unchanged during the slope limiting. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

3.1. Flux limiter

The flux limiter will enforce that the element-wise average of the saturation satisfies the desired physical bounds.
The idea of limiting the fluxes by an iterative procedure was introduced by Zalesak in [40] and was further
investigated by Kuzmin and Gorb [28]. The novelty of our flux limiter is in the handling of the source and sink

terms, as well as a different way to update the element-wise average. We assume that the saturation at the previous

5
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time step, tn , satisfies:

s∗ ≤ Sn(x) ≤ s∗, ∀x ∈ Ω . (3.5)

for some constants 0 ≤ s∗ ≤ s∗ ≤ 1. The flux limiting is applied to each element E given the element-wise average
of the saturation at the previous and current time steps and given a flux function defined on each face e ⊂ ∂ E . First
we compute the element-wise average at time tn and tn+1:

Si |E = Si,E , Si,E =
1
|E |

∫
E

Si , ∀E ∈ Eh, i = n, n + 1.

Next, for a fixed element E , let nE be the unit outward normal vector to E . We define the flux function
Hn+1|E = Hn+1,E as follows:

∀e = ∂ E ∩ ∂ E ′, Hn+1,E (e) = −
∫

e
(λw(Sn+1))↑vn

w {K
(
∇Pn+1 − ρwg

)
· nE }

+
σ

h

∫
e
(Sn+1|E − Sn+1|E ′ ) (3.6)

∀e ∈ ∂ E ∩ ΓD,s, Hn+1,E (e) = −
∫

e
λw(gs)K

(
∇Pn+1 − ρwg

)
· nE +

σ

h

∫
e
(Sn+1 − gs), (3.7)

∀e ∈ ∂ E ∩ ΓN,s, Hn+1,E (e) =
∫

e
j s, (3.8)

∀e ∈ ∂ E ∩ Γ out, Hn+1,E (e) =
∫

e
λw(Sn+1)K (∇Pn+1 − ρwg) · nE . (3.9)

For an interior face e of the element E , the quantity Hn+1,E (e) measures the net mass flux across e into the
eighboring element E ′ that also shares the face e. We note that:

Hn+1,E (e) = −Hn+1,E ′ (e).

fter application of the flux limiter operator, the limited saturation has a possibly different cell-average:

SFL
n+1 = Lflux(Sn+1), SFL

n+1(x) = Sn+1(x)− Sn+1,E + S̄FL
n+1|E , ∀x ∈ E . (3.10)

he new cell-average of the saturation is obtained by an iterative process, that takes for input the cell average at
he previous time step and the flux function:

S̄FL
n+1 = Lavg(Sn,Hn+1).

efore showing that the limited saturation satisfies (3.5), we describe the algorithm for the operator Lavg.

3.1.1. The algorithm for Lavg

For a fixed element E , we denote by NE the set of elements that include E and all neighboring elements E ′

that share a face e with E . The algorithm constructs a sequence of flux functions and element-wise averages for E
and its neighbors E ′. While the construction of the element-wise averages are local to E and its neighbors E ′, the
stopping criterion is global to ensure bound-preserving solutions. We first initialize the sequences with the input
arguments:

S̄(0)
Ẽ
= Sn,Ẽ , H(0)

Ẽ
(e) = Hn+1,Ẽ (e), ∀e ∈ ∂ Ẽ, ∀Ẽ ∈ NE .

Next, for k ≥ 1, we have the following steps:

Step 1 Compute inflow and outflow fluxes:

P+
Ẽ
= τ

∑
e∈∂ Ẽ

max(0,−H(k−1)
Ẽ

(e)), P−
Ẽ
= τ

∑
e∈∂ Ẽ

min(0,−H(k−1)
Ẽ

(e)), ∀Ẽ ∈ NE . (3.11)

Step 2 Compute admissible upper and lower bounds for all Ẽ ∈ NE :

Q+ =|Ẽ |
(
φs∗ − φ S̄(k−1)

− γ τ
(

f (s )q̄ ˜ − f (S̄(k−1))q
))

, (3.12)

Ẽ Ẽ 1k w in E w Ẽ Ẽ

6
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Q−
Ẽ
=|Ẽ |

(
φs∗ − φ S̄(k−1)

Ẽ
− γ1kτ

(
fw(sin)q̄Ẽ − fw(S̄(k−1)

Ẽ
)q

Ẽ

)
.
)

(3.13)

The scalar factor γ1k is equal to 1 if k = 1 and 0 otherwise. The injection and production well rates,
restricted to any element Ẽ , are denoted by q̄Ẽ and q

Ẽ
respectively. They are assumed to be piecewise

constant fields; otherwise we take the element-wise average of the flow rates.
Step 3 Compute limiting factors α

(k−1)
E (e) for all faces e ⊂ ∂ E . If e is an interior face such that e = ∂ E ∩ ∂ E ′:

α
(k−1)
E (e) =

{
min

(
min(1, Q+E/P+E ), min(1, Q−E ′/P−E ′ )

)
if H(k−1)

E (e) < 0,

min
(
min(1, Q−E/P−E ), min(1, Q+E ′/P+E ′ )

)
if H(k−1)

E (e) > 0.

If e is a boundary face:

α
(k−1)
E (e) =

{
min(1, Q+E/P+E ) if H(k−1)

E (e) < 0,

min(1, Q−E/P−E ) if H(k−1)
E (e) > 0.

Step 4 Update S̄(k)
E and H(k)

E (e) as follows:

S̄(k)
E = S̄(k−1)

E −
τ

φ|E |

∑
e⊂∂ E

α
(k−1)
E (e)H(k−1)

E (e)+
γ1k τ

φ

(
fw(sin)q̄E − fw(S̄(k−1)

E )q
E

)
, (3.14)

H(k)
E (e) = (1− α

(k−1)
E (e))H(k−1)

E (e), ∀e ⊂ ∂ E . (3.15)

Step 5 Define a global stopping criterion
If
(

maxE∈Eh maxe∈∂ E |H(k)
E (e)| < ϵ1

)
or

(
maxE∈Eh maxe∈∂ E |H(k)

E (e)−H(k−1)
E (e)| < ϵ2

)
return S̄FL

n+1|E = S̄(k)
E .

Else
set k ← k + 1 and go to Step 1.

.1.2. Bound-preserving solutions
In this section, we show that the solution SFL

n+1 obtained in (3.10) has a cell-average that is bound-preserving
or the case where flow is driven by boundary conditions only (no wells). Clearly, it suffices to show that S̄FL

n+1 is
ound-preserving. This is done in two steps. First, we show that each iterate in the flux-limiter algorithm is bound
reserving. Second, we show that the stopping criterion is reached for some value k0.

emma 3.1. Let E be a mesh element and let (S̄(k)
E )k be the sequence obtained in the algorithm Lflux. Assume

hat the iterate S̄(k−1)
E belongs to the interval [s∗, s∗]. Then the next iterate S̄(k)

E also belongs to the interval [s∗, s∗].

roof. Let us check the upper bound: S̄(k)
E ≤ s∗. Since for an interior face e, we have: α

(k−1)
E (e) = α

(k−1)
E ′ (e), it is

asy to check by induction on k that H(k)
E (e) = −H(k)

E ′ (e). Since the iterate S̄(k−1)
E belongs to the interval [s∗, s∗],

it then follows by its definition that α
(k−1)
E (e) ≥ 0 for all e ⊂ ∂ E . We then apply the inequality x ≤ max(0, x) to

(3.14) to obtain:

S̄(k)
E ≤S̄(k−1)

E +
τ

φ|E |

∑
e⊂∂ E

α
(k−1)
E (e) max(0,−H(k−1)

E (e))

≤S̄(k−1)
E +

τ

φ|E |

∑
e⊂∂ E

Q+E
P+E

max(0,−H(k−1)
E (e))

≤S̄(k−1)
E +

1
φ|E |

Q+E . (3.16)

Therefore with the definition of Q+E we have

S̄(k)
E ≤ S̄(k−1)

E + (s∗ − S̄(k−1)
E ) = s∗.

The proof for the lower bound S̄(k)
E ≥ S∗ follows a similar argument, after applying the identity x ≥ min(0, x) to
(3.14). □

7
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Lemma 3.2. Assume that the cell averages Sn,E at time tn belong to the interval [s∗, s∗] for all elements E. Then
e have

s∗ ≤ S̄FL
n+1|E ≤ s∗, ∀E ∈ Eh .

roof. With Lemma 3.1, it suffices to show that the sequence (H(k)
E (e)) converges as k tends to infinity, for all E

in Eh and for all e ∈ ∂ E . With (3.15), and since α
(k−1)
E belongs to [0, 1], it is easy to show by induction on k

that

max
E∈Eh

max
e⊂∂ E
|H(k)

E (e)| ≤ max
E∈Eh

max
e⊂∂ E
|H(k−1)

E (e)|.

This implies convergence of (H(k)
E (e)) for all elements E , so that there exists k0 such that(

max
E∈Eh

max
e∈∂ E
|H(k0)

E (e)| < ϵ1

)
, or

(
max
E∈Eh

max
e∈∂ E
|H(k0)

E (e)−H(k0−1)
E (e)| < ϵ2

)
.

Since S̄FL
n+1|E = S̄k0

E , we conclude the proof. □

3.2. Slope limiter

The slope limiter operator, denoted by Lslope, is applied to the discrete saturation SFL
n+1 at each time step. The

element-wise mean values of the saturation are left unchanged by this procedure. There is a variety of slope limiters
available in the literature. For convenience, we choose a vertex-based slope limiter that is well suited for piecewise
linear polynomials [25] and that consists of two steps.

(i) We first mark the elements in which the maximum principle is not satisfied (i.e., SFL
n+1(x) > s∗ or SFL

n+1(x) <

s∗). We will apply the slope limiter on these marked elements only.
(ii) By a Taylor expansion around the centroid cE of element E , the linear saturation takes the form

SFL
n+1|E (x) = S̄FL

n+1,E +∇SFL
n+1 · (x− cE ), ∀x ∈ E . (3.17)

For the marked elements, a slope limiter replaces the local solution SFL
n+1|E by the following linear constrained

reconstruction

Sn+1(x) = S̄FL
n+1,E + βE∇SFL

n+1 · (x− cE ), ∀x ∈ E . (3.18)

Let vE,i denote the i th vertex of element E . We determine the maximum admissible slope for the constrained
reconstruction by choosing values βE ∈ [0, 1] such that boundedness of Sn+1 is satisfied at all vertices of E :

SE,i
∗
≤ Sn+1(vE,i ) ≤ S∗E,i , (3.19)

where SE,i
∗

and S∗E,i are defined as maximum and minimum means values of the saturation over all the
elements (including E) that contain the vertex vE,i ∈ E .

SE,i
∗
= min

E ′∈Eh |vE,i∈E ′
S̄FL

n+1,E ′ , S∗E,i = max
E ′∈Eh |vE,i∈E ′

S̄FL
n+1,E ′ . (3.20)

The bounds of the saturation at all vertices are guaranteed if the correction factor βE is chosen as:

βE = min
i

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S∗E,i−S̄FL

n+1,E
SFL

n+1(vE,i )−S̄FL
n+1,E

if SFL
n+1(vE,i ) > S∗E,i ,

1 if SE,i
∗
≤ SFL

n+1(vE,i ) ≤ S∗E,i ,

SE,i
∗ −S̄FL

n+1,E
SFL

n+1(vE,i )−S̄FL
n+1,E

if SFL
n+1(vE,i ) < SE,i

∗
.

(3.21)

Using all the previous results, we obtain that the discrete saturation is bound-preserving.

roposition 3.1. Let (Sn+1)n be the sequence of discrete saturations defined by Algorithm 1. Assume that the initial
aturation is bounded below and above by s∗ and s∗ respectively. Then, we have

s ≤ S (x) ≤ s∗, ∀x ∈ Ω . (3.22)
∗ n+1

8
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3.3. Computer implementation and solvers

We implement the proposed computational framework using the finite element capabilities in Firedrake Project
[41–45] with GNU compilers. Firedrake is built upon several scientific packages and can employ various computing
tools across either CPUs or GPUs. Software dependencies can be accessed at [46–52]. The structured meshes are
generated internally on top of DMPlex grid format [53] and unstructured meshes are imported from GMSH [54].

We utilize the MPI-based PETSc library [55–57] as the linear algebra back-end to solve nonlinear equations (3.3)–
(3.4). We use Newton’s method with (damped) step line search technique [58] and set the relative convergence
tolerance to 10−6. For the inner linear solve at each Newton iteration, we rely on the MUMPS direct solver [59,60]
with relative pivoting threshold of 0.01. MUMPS uses several efficient preordering algorithms to permute the
columns of matrix and thereby minimize the fill-in (number of nonzeros in the factorization) in the LU factorization.
At each time step, following the Newton solver convergence, we apply flux and slope limiters. Implementation of
the flux limiter algorithm discussed in Section 3.1 is provided in the module FluxLimiter along with an auxiliary
flux wrapper module named Hsign. Global stopping criteria for all problem sets are taken as ϵ1 = ϵ2 = 10−6.
As for the slope limiter, we use the native VertexBasedLimiter module embedded in the Firedrake project. All
simulations are conducted on a single socket Intel i5-8257U node by utilizing a single MPI process.

Codes used to perform experiments in this paper are publicly available at msarrafj/LimitedDG [61] repository.
Firedrake and its component may be obtained from https://www.firedrakeproject.org/. For reproducibility, we also
cite archives of the exact software versions used to produce results in this paper. All major Firedrake components
have been archived on Zenodo/firedrake [62]. This record collates DOIs for the components and can be installed
following the instructions at https://www.firedrakeproject.org/download.html.

4. Numerical results

In this section, several numerical experiments are carried out in following order: (i) We first validate our proposed
method on two benchmark problems: one-dimensional Buckley–Leverett problem and two-dimensional Buckley–
Leverett problem with gravity. Further, we investigate the convergence rates by using method of manufactured
solutions and verify that the flux limiter preserves accuracy. (ii) We then perform various pressure-driven flow
problems on structured and unstructured meshes, to study the efficacy of limiters on capturing high-accuracy wetting
phase saturation profiles. (iii) The robustness of the scheme in the presence of injection and production wells is
assessed using the quarter five-spot problem, with homogeneous and discontinuous highly varying permeability
fields. For both pressure-driven flow problem and quarter five-spot problems, we examine the element-wise mass
balance property associated with the limiters and highlight the capability of the saturation in satisfying the
maximum-principle. (iv) Finally, we study the influence of gravity on the flows by testing our scheme with three
different gravity numbers.

For all problems, we assume the following parameters unless otherwise specified:

ρw = 1000 kg/m3, ρℓ = 850 kg/m3,

φ = 0.2, srw = 0.2, srℓ = 0.15, s0 = 0.2, P0 = 106 Pa.

The residual saturations imply the physical lower and upper bounds for the saturation:

s∗ = srw = 0.2, s∗ = 1− srℓ = 0.85.

4.1. Verification

4.1.1. One-dimensional Buckley–Leverett problem
The original Buckley–Leverett transport equation introduced in 1942 [63], also known as the frontal-advance

equation, is a well-known non-linear hyperbolic equation for the description of one-dimensional immiscible
displacement in a linear reservoir. Because the problem has a semi-analytical solution, it is widely used to validate
numerical methods for two-phase flows in porous media. Since capillary pressure and gravity are neglected, the
total velocity of the phases ut = (ut , vt )T can be written as:
ut = −(λw + λℓ)K∇P. (4.1)
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By substituting ∇P from (4.1) into Eq. (2.6) and ignoring source/sink terms, we obtain the general form of the
Buckley–Leverett equation.

∂

∂t
(φS)−∇ · fBL = 0, in Ω × (0, T ). (4.2)

The convection flux fBL = (F(S), G(S))T reduces in one-dimension to:

F(S) =
λw(S)ut

λw(S)+ λℓ(S)
, and G(S) = 0. (4.3)

The relative permeabilities are chosen as:

krw(S) = S4, krℓ(S) = (1− S)2(1− S2). (4.4)

We take an interval domain Ω = [0, 300] m with uniform mesh, and we fix the following parameters:

ut = 3× 10−7m/s, µw = µℓ = 1Pa s, s0 = 0.1, h = 12m, τ = 22.2days.

he Dirichlet boundary condition of gs
= 0.85 is weakly prescribed at the left boundary x = 0. We assume outflow

oundary at x = 300. This setup gives rise to the classical Buckley–Leverett profile, which consists of a shock
ave immediately followed by a rarefaction wave. It should be noted that neither higher order nor lower order
G approximation of saturation (without bound-preserving mechanism) can completely suppress violations with

espect to maximum principle [64–66]. Here, we employ the first-order implicit DG formulation with our proposed
imiter scheme to discretize Eqs. (4.2)–(4.3) in space, and backward Euler scheme is utilized in time. The DG
enalty parameter is set to σ = 10−6 and the flux fBL is approximated with a first-order upwind method [66,67]
s it provides good results in conjunction with proposed limiters. To implement the flux limiter, the following flux
unctional HE (e) is adopted on each face e ⊂ ∂ E :

∀e = ∂ E ∩ ∂ E ′, Hn+1,E (e) =
∫

e
{fBL (Sn+1)} · nE +

1
2

∫
e

⏐⏐⏐⏐dfBL (Sn)
d S

· nE

⏐⏐⏐⏐ (Sn+1|E − Sn+1|E ′

)
,

∀e ∈ ∂ E ∩ ΓD,s, Hn+1,E (e) =
∫

e
fBL (gs) · nE ,

∀e ∈ ∂ E ∩ Γ out,s, Hn+1,E (e) =
∫

e
fBL (Sn+1) · nE .

he final simulation time is T = 800 days, and the saturation profile is depicted in Fig. 2 for t = 400 and t = 800
ays. We performed a four-step mesh refinement study and linearly refined τ at each step. We observe that the
ocation of the front obtained from the proposed numerical scheme is in good agreement with the location of the
ront for the analytical solution even for the case of coarse mesh and as we proceed with refinement, the discrete
olution converges to the analytical solution. To calculate the semi-analytical solution of Buckley–Leverett equation
i.e., the position of the saturation front), we resorted to Welge graphical method [68]. Fig. 2 also provides a zoom-in
iew at the location of front for t = 800 days for better visualization. As expected, the numerical saturation remains
ithin physical bounds and no undershoots and overshoots are observed. The choice of implicit time marching

lgorithm is shown to have no erroneous smearing effect on the saturation front.

.1.2. Buckley–Leverett problem with gravity
In this numerical experiment, we study the effect of proposed limiters in the two-dimensional Buckley–Leverett

quation that incorporates gravitational effects along the y-axis [69–71]. Consider equation (4.2) with the following
on-convex flux functions in the x- and y- directions:

F(S) =
λw(S)ut

(λw(S)+ λℓ(S))
, G(S) =

F(S)vt

ut
(1− 5λℓ). (4.5)

This benchmark problem was solved by finite element method combined with operator-splitting method in [72].
For comparison purpose, hence, we take ut = vt = 1 m/s, λw(S) = S2, λℓ(S) = (1 − S2) and φ = 1. We solve
4.2) and (4.5) on the square domain [0, 3]2 m2 with structured triangular mesh of size h = 0.03 m subject to the

initial condition:

s0(x, y) =

{
1, for (x − 1.5)2

+ (y − 1.5)2 < 0.5
(4.6)
0, otherwise.

10
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Fig. 2. One-dimensional Buckley–Leverett problem: This figure shows the saturation profiles obtained from the limited DG scheme at
wo different time-steps t = 400 days and t = 800 days. As we refine the mesh, the approximation converges to the analytical solution. The

numerical solution is satisfactory with respect to maximum principle as no undershoots and overshoots are observed.

Finally, we impose no flow condition ut · n = 0 everywhere on the boundary ∂Ω . Similar to the one-dimensional
roblem, we use backward Euler time marching and discretize the problem with implicit DG formulation (with
= 0.1) augmented with the proposed flux and slope limiters scheme. Herein, the flux limiter functional Hn+1,E (e)

n the interior edges is the same as that of the one-dimensional Buckley–Leverett and on all exterior edges it is
et to 0. The simulation runs to T = 0.5 s with 440 time steps. In Fig. 3, we show the numerical results at
he final time obtained from the implicit DG formulation without limiters (see Fig. 3(a)) and with limiters (see
ig. 3(b)). We compare the results with the reference solution. Evidently, DG scheme with no limiters produces an
scillatory solution that results in strong violations with respect to maximum principle. However, the application of
imiters gives rise to bound-preserving solution (i.e., 0 ≤ Sn+1 ≤ 1); and undershoots and overshoots are eliminated
ompletely. This result does not exhibit extra numerical diffusion and is consistent with the reference solution shown
n Fig. 3(c).

.1.3. Convergence study
In order to verify convergence properties of our limiter scheme, we perform h-convergence study on a problem

onstructed by the method of manufactured solutions and on a Buckley–Leverett problem discussed on Section 4.1.1.
or both problems the convergence properties are computed by using a time step τ = O(h2). First, we carry out

he study on two-dimensional structured triangular meshes. The computational domain Ω is the unit square and the
xact solutions are:

s(x, y, t) = 0.4+ 0.4xy + 0.2 cos(t + x), (4.7a)

p(x, y, t) = 2+ x2 y − y2
+ x2 sin(y + t)−

1
3

cos(t)+
1
3

cos(t + 1)−
11
6

. (4.7b)

Through the method of manufactured solutions, we replace the source/sink terms (i. e., wells flow rates) of
Eqs. (2.5)–(2.6) by body force terms obtained from manufactured solutions. Dirichlet boundary conditions are
11
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Fig. 3. Two-dimensional Buckley–Leverett problem with gravity subject to the initial condition (4.6): This figure shows saturation
approximations and contour plots at t = 0.5 s. Solutions are obtained using the DG scheme without limiter (left) and with the proposed the
flux and slope limiters (middle); and are compared with a benchmark solution on fine mesh (right). DG method without any bound-preserving
mechanism fails to predict the correct profile and non-physical values are generated (i.e., Sn+1 ∈ [−0.52,+1.64]). However, the DG solution
post-processed with limiters is accurate and satisfies the maximum-principle.

applied on ∂Ω on both saturation and pressure fields. The input parameters are:

φ = 0.2, K = 1 m2, µw = µℓ = 1 Pa s, srw = srℓ = 0, krw(S) = S2, krℓ(S) = (1− S)2.

he capillary pressure is based on Brooks–Corey model:

Pc(S) =

{
pd S

−1
θ if S > R

pd R
−1
θ −

pd
θ

R−1− 1
θ (S − R) otherwise,

(4.8)

where the entry pressure is set to pd = 50 Pa, inhomogeneity characterization parameter is set to θ = 2, and
linearization tolerance is set to R = 0.05. This regularization of the capillary pressure is commonly used in
numerical simulations of two-phase flows and it yields a bounded derivative of the capillary pressure [17]. We note
that the admissible global bounds for the flux limiter algorithm are updated throughout the simulation. In other
words, at every time step, s∗ and s∗ bounds are determined by the maximum and minimum of the exact solution
(4.7a), respectively. When using the limiters no upper and lower bound violations are observed in the discrete
solution. Table 1 shows the errors in L2 and H 1 norms evaluated at T = 1 s and the corresponding convergence
ates for saturation and pressure. Similarly, the h-convergence results for the one-dimensional Buckley–Leverett
roblem at t = 800 days are presented in Table 2. We compare rates for four cases: (i) no limiters (DG), (ii) with
oth flux and slope limiters (DG+FL+SL), (iii) with only slope limiter (DG+SL), and (iv) with only flux limiter
DG+FL). For both problems, DG returns expected optimal convergence rates of 2 in the L2 norm and 1 in the H 1

orm. However, we observe that applying both limiters results in suboptimal rates. Cases (iii) and (iv) indicate that
he application of flux limiters only preserves optimal rates whereas the application of slope limiters only yields

decline in the convergence rates. The slope limiter scheme taken from [25] is completely independent of the
roposed flux limiter in Section 3. Designing a slope limiter that produces optimal rates remains a challenge.

We show in Tables 3 and 4 the errors in the L2 norm of the cell average for the saturation and the corresponding
onvergence rates. For both problems optimal rate of 2 is obtained for either DG or DG+FL+SL. This result reiterates
hat the flux limiter does not reduce the accuracy and the slope limiter does not impact the rates since it does not
lter the element-wise averages.

.2. Two-dimensional pressure-driven flow

We take a computational domain of Ω = [0, 100]2 m2 with zero gravity field for all problems in this section.
he wetting phase is injected along the left boundary and the non-wetting phase is pushed out through the right
12
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Table 1
Problem constructed by the method of manufactured solutions: errors in L2 and H1 norms and convergence rates, for τ = h2 and
T = 1 s. Note that flux limiter algorithm preserves the accuracy of the DG discretization. However, slope limiter slightly degrades
the rates of convergence.

h ||Sn − S(T )||L2(Ω) Rate ||Pn − P(T )||L2(Ω) Rate ||Sn − S(T )||H1(Ω) Rate ||Pn − P(T )||H1(Ω) Rate

1/2 9.454× 10−4 – 7.607× 10−3 – 7.480× 10−3 – 7.325× 10−2 –
1/4 5.373× 10−4 0.82 2.999× 10−3 1.34 4.319× 10−3 0.79 4.248× 10−2 0.79
1/8 1.732× 10−4 1.63 8.690× 10−4 1.79 1.836× 10−3 1.23 2.322× 10−2 0.87
1/16 4.633× 10−5 1.90 2.303× 10−4 1.92 8.374× 10−4 1.13 1.245× 10−2 0.90

i. DG

1/32 1.176× 10−5 1.98 5.912× 10−5 1.96 4.103× 10−4 1.03 6.492× 10−3 0.94

1/2 1.720× 10+0 – 3.180× 10−2 – 1.740× 10+0 – 2.110× 10−1 –
1/4 7.620× 10−3 7.82 2.870× 10−3 3.47 1.270× 10−1 3.77 4.210× 10−2 2.32
1/8 2.650× 10−3 1.53 8.130× 10−4 1.82 8.260× 10−2 0.63 2.320× 10−2 0.86
1/16 9.190× 10−4 1.53 2.130× 10−4 1.93 5.540× 10−2 0.58 1.250× 10−2 0.89

ii. DG+FL+SL

1/32 3.260× 10−4 1.50 6.030× 10−5 1.82 3.920× 10−2 0.50 6.550× 10−3 0.93

1/2 2.570× 10−2 – 7.330× 10−3 – 2.300× 10−1 – 7.160× 10−2 –
1/4 7.620× 10−3 1.75 2.870× 10−3 1.35 1.270× 10−1 0.85 4.210× 10−2 0.77
1/8 2.650× 10−3 1.53 8.130× 10−4 1.82 8.260× 10−2 0.63 2.320× 10−2 0.86
1/16 9.190× 10−4 1.53 2.130× 10−4 1.93 5.540× 10−2 0.58 1.250× 10−2 0.89

iii. DG+SL

1/32 3.260× 10−4 1.50 6.030× 10−5 1.82 3.920× 10−2 0.50 6.550× 10−3 0.93

1/2 1.720× 10+0 – 3.210× 10−2 – 1.720× 10+0 – 2.120× 10−1 –
1/4 5.370× 10−4 11.64 3.000× 10−3 3.42 4.320× 10−3 8.64 4.250× 10−2 2.32
1/8 1.730× 10−4 1.63 8.690× 10−4 1.79 1.840× 10−3 1.23 2.320× 10−2 0.87
1/16 4.630× 10−5 1.90 2.300× 10−4 1.92 8.370× 10−4 1.13 1.250× 10−2 0.90

iv. DG+FL

1/32 1.180× 10−5 1.98 5.910× 10−5 1.96 4.100× 10−4 1.03 6.490× 10−3 0.94

Table 2
One-dimensional Buckley–Leverett problem: errors in L2 and H1 norms and convergence rates, for τ = O(h2)
and t = 800 days. Note that flux limiter algorithm preserves the accuracy of the DG discretization. However,
slope limiter slightly degrades the rates of convergence.

h (m) τ (days) ||Sn − S(T )||L2(Ω) Rate ||Sn − S(T )||H1(Ω) Rate

12 22.2 7.10× 10−05 – 8.39× 10−04 –
6 5.05 3.09× 10−05 1.20 3.92× 10−04 1.10
3 1.38 9.51× 10−06 1.70 2.25× 10−04 0.80
1.5 0.345 2.57× 10−06 1.89 1.06× 10−04 1.09

i. DG

0.75 0.086 6.37× 10−07 2.01 5.28× 10−05 1.00

12 22.2 1.63× 10−03 – 1.23× 10−02 –
6 5.05 1.65× 10−04 3.30 1.46× 10−04 6.40
3 1.38 5.31× 10−05 1.64 9.42× 10−05 0.63
1.5 0.345 1.43× 10−05 1.89 5.60× 10−05 0.75

ii. DG+FL+SL

0.75 0.086 3.81× 10−06 1.91 3.24× 10−05 0.79

12 22.2 3.70× 10−04 – 2.31× 10−03 –
6 5.05 1.61× 10−04 1.20 1.08× 10−03 1.10
3 1.38 5.17× 10−05 1.64 6.96× 10−04 0.63
1.5 0.345 1.39× 10−05 1.89 4.14× 10−04 0.75

iii. DG+SL

0.75 0.086 3.71× 10−06 1.91 2.39× 10−04 0.79

12 22.2 1.63× 10−03 – 1.28× 10−02 –
6 5.05 2.18× 10−04 2.90 7.48× 10−04 4.10
3 1.38 7.25× 10−05 1.59 4.51× 10−04 0.73
1.5 0.345 1.89× 10−05 1.87 2.37× 10−04 0.93

iv. DG+FL

0.75 0.086 4.96× 10−06 2.00 1.18× 10−04 1.01

boundary. Dirichlet boundary conditions are: P = 3 × 106 Pa and S = 0.85 on {0} × (0, 100); and P = 106 Pa
on {100} × (0, 100) m. Outflow boundary condition is chosen for saturation on the right boundary and remaining
boundaries are set as no-flow ( j s

= j p
= 0). The pictorial descriptions of the pressure-driven flow problem are
provided in Fig. 4.
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Table 3
Problem constructed by the method of manufactured solution: errors
and rates for the cell average values of saturation S̄. The time step
τ is set to h2 and L2 norms are computed at the final time T = 1.
DG approximation with limiters return optimal convergence rate with
respect to average values.

h ||S̄n − S̄(T )||L2(Ω) Rate

1/2 5.900× 10−4 –
1/4 4.839× 10−4 0.286
1/8 1.661× 10−4 1.543
1/16 4.506× 10−5 1.882

DG

1/32 1.148× 10−5 1.973

1/2 1.721× 10+0 –
1/4 4.861× 10−4 11.790
1/8 1.658× 10−4 1.552
1/16 4.467× 10−5 1.892

DG+FL+SL

1/32 1.142× 10−5 1.967

Table 4
One-dimensional Buckley–Leverett problem: errors and rates for the
cell average values of saturation S̄. L2 norms are computed for
τ = O(h2) at the final time t = 800 days. DG approximation with
limiters return optimal convergence rate with respect to average values.

h (m) ||S̄n − S̄(T )||L2(Ω) Rate

12 6.12× 10−5 –
6 4.02× 10−5 0.601
3 1.315× 10−5 1.606
1.5 3.421× 10−6 1.950

DG

0.75 8.66× 10−7 1.982

12 1.303× 10−3 –
6 2.180× 10−5 5.901
3 6.998× 10−6 1.643
1.5 1.840× 10−6 1.923

DG+FL+SL

0.75 4.659× 10−7 1.987

4.2.1. Homogeneous domain
A homogeneous test problem with constant permeability of K = 10−8 m2 is examined here, with similar setup

and parameters as in the work of Epshteyn and Riviere [13]. Relative permeabilities and capillary pressure are
defined in Eqs. (4.4) and (4.8), respectively, with entry pressure pd = 1000 Pa, θ = 2 and R = 0.05. The viscosities
are µw = 10−3 Pa s and µℓ = 10−2 Pa s. Two quadrilateral meshes are considered: (i) a uniform mesh with size of
h = 1.25 m and (ii) a non-uniform mesh with 256 elements and with size of hbnd = 1.25 m at the left boundary and
h = 6.583 m for the rest of domain (see Fig. 5(a)). It is known that slope limiters by design flatten steep slopes near
discontinuities (e.g., at left-most elements when simulation starts). Using a mesh with increased density at the (left)
boundary reduces the effect of overflattening on the accuracy of solutions [73,74]. The time step is chosen as τ = 0.2
s, the final time is T = 300 s, and the penalty parameter is σ = 100. We compare our numerical solutions with a
reference unlimited solution obtained from the fully implicit DG formulation developed by Epshteyn and Riviere
[13] on a quadrilateral mesh with 256 elements. The saturation and pressure profiles obtained with our proposed
scheme, along the line y = 50 m are illustrated in Figs. 6(a) and 6(b). Numerical solutions, compared to reference
solution, are accurate and in good agreement with respect to front location. As expected, the finer mesh tracks
the saturation front with more accuracy. It is also evident that our limiting scheme successfully yields pointwise
bound-preserving and monotone solutions. However, the reference solution unsurprisingly violates undershoot bound
(about 4% right after the saturation front) and produces an oscillatory saturation profile.

To better understand the efficacy of the proposed limiting algorithm (i.e., DG+SL+FL), and distinguish it from

the vertex-based slope limiter of Kuzmin [25] (i.e., DG+SL), we solve the problem again (with same parameters as
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Fig. 4. Two-dimensional pressure-driven flow problem: This figure provides a pictorial description of the computational domain and
oundary value problem.

Fig. 5. Two-dimensional pressure-driven flow problem: This figure shows the typical meshes employed in our numerical simulations.

Fig. 6. Two-dimensional pressure-driven flow in homogeneous domain: This figure exhibits the saturation and pressure profiles obtained
rom limited DG approximations (with P = 1 and σ = 100). Solutions on uniform and non-uniform meshes are plotted along the line

y = 50 m at t = 300 s and are compared with a reference DG solution. Regardless of the mesh size, limiters completely suppress unphysical
vershoots and undershoots and accurately predict the location of saturation front which is in good agreement with that of the reference
olution. As expected, the uniform finer mesh gives rise to a sharper front. On the other hand, the reference solution is not equipped with
ny bound-preserving mechanism and thus does not enjoy maximum principle and lower bound violations (S < 0.2) and non-monotone

behavior are captured.
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Table 5
This table shows the efficacy of the limiters when applied to the pressure-driven flow problem with homogeneous domain. Simulations are
carried out for the duration of 450 s on crossed mesh (see Fig. 5(b)) for different mesh-sizes. In this table, max M denotes the maximum
magnitude value of local mass balance error observed for all time steps.

Mesh-size
(m)

Algorithm Max
undershoot

Max
undershoot (%)

Max
overshoot

Max
overshoot (%)

Max M Monotonocity

DG −0.109 47.61 0.854 0.56 1.37× 10−15 ✗

DG+SL 0.169 4.79 0.85 0 2.23× 10−9 ✗h = 10
DG+FL+SL 0.2 0 0.85 0 7.66× 10−12 ✓

DG −0.093 45.13 0.852 0.28 5.41× 10−15 ✗

DG+SL 0.169 4.78 0.85 0 3.24× 10−9 ✗h = 5
DG+FL+SL 0.2 0 0.85 0 7.03× 10−11 ✓

DG −0.059 40 0.851 0.136 2.19× 10−14 ✗

DG+SL 0.172 4.29 0.85 0 2.57× 10−8 ✗h = 2.5
DG+FL+SL 0.2 0 0.85 0 2.22× 10−14 ✓

DG 0.010 29.21 0.8502 0.07 9.78× 10−14 ✗

DG+SL 0.178 3.32 0.85 0 2.57× 10−7 ✗h = 1.25
DG+FL+SL 0.2 0 0.85 0 1.08× 10−13 ✓

Table 6
This table shows the range of number of Newton iterations and flux limiter iterations for three different mesh types of crossed triangular,
quadrilateral, and structured triangular with right diagonals. Proposed post-processing limiters (applied after each time step) do not alter the
Newton’s solver performance for all meshes. However, maximum number of flux limiter iterations increases for finer meshes.

h (m) Unlimited DG Limited DG

Newton’s iter. Newton’s iter. Flux limiter’s iter.

Crossed mesh Quad. mesh Trig. mesh Crossed mesh Quad. mesh Trig. mesh Crossed mesh Quad. mesh Trig. mesh

10 3–4 3–4 3–4 3–4 3–4 3–4 1–25 1–9 1–26
5 3–4 3–4 3–4 3–4 3–4 3–4 1–55 1–19 1–46
2.5 3–4 3–4 3–4 3–4 3–4 3–4 1–116 1–38 1–79
1.25 3–4 3–4 3–4 3–4 3–4 3–4 1–238 1–78 1–159

before) on a crossed structured mesh (shown in Fig. 5(b)) for total duration of T = 450 s. The initial size of h = 10
is chosen for this analysis and four-step refinement is performed. Table 5 reports the performance of limiters

nd compare them with respect to bound-preserving properties, local mass balance violations, and monotonocity.
e observe that mesh refinement reduces maximum undershoots of unlimited DG from 47.61% to 29.21% and
aximum overshoots to less than 0.1% but does not eliminate violations. The application of slope limiter to DG

liminates undershoots at all time steps and significantly reduces maximum overshoots to 4.79% for the coarsest
esh and to 3.32% for the finest mesh. It can be seen that DG+SL falls short to satisfy maximum principle even

nder excessive mesh refinement. Further, it should be noted that both DG and DG+SL approximations fail to obtain
onotone solutions near the saturation front. This means that they are susceptible to local spurious oscillations near

he front even when the global bounds are not violated. However, approximations under DG+FL+SL enjoy pointwise
aximum principle and the saturation field remain monotone over the entire domain, independently of the mesh

ize.
As shown in Table 6, a few Newton iterations are needed at each time step for the convergence of either limited

G or unlimited DG approximations for three different mesh types. Results suggest that the limiters do not have a
ignificant effect on the number of solver iterations, regardless of mesh size and type. We also see that the maximum
umber of flux limiter iterations increases as we refine the mesh. It should be noted that the reported number range
s collected throughout all time steps of simulation and we observed that in fact for most time steps (over 85% to
0%), flux limiter iterations remain relatively small (less than 5) regardless of the size and the type of the mesh.

.2.2. Local mass balance
DG methods are known for their local mass conservation properties. [75,76]. In this section, we investigate the
ffect of the proposed limiters on altering local mass conservation properties. Upon applying element-wise averages
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Fig. 7. Local mass balance conservation for pressure-driven flow problem: This figure shows the local mass conservation properties
of the limited and unlimited DG approximations on a homogeneous domain with h = 2.5 m at t = 450 s. DG+SL near the front induces
slight increase in mass balance error but, overall errors remain small for all three cases.

and choosing unit test function in (3.4), we obtain the local mass conservation of an element E ∈ Eh at time tn:

M(E) =
φ(S̄n+1|E − S̄n|E )

τ
+

1
|E |

∑
e⊂∂ E

Hn+1,E (e)−
(

fw(sin)q̄E − fw(Sn|E )q
E

)
. (4.9)

We compute the magnitude of mass balance error for the pressure-driven flow problem discussed in the previous
section. Table 5 contains the value of maximum error observed throughout the simulation. Evidently, DG+SL scheme
is slightly worse than other two schemes with respect to errors, which is consistent for all mesh-sizes. However,
values are all very small and below than the solver tolerance. In Fig. 7, the values of M(E) are displayed at
t = 450 s on a crossed mesh of size h = 2.5 m for three cases of DG, DG+SL, and DG+FL+SL. One can see
that applying slope limiter (without flux limiter) instigates an erroneous patch (shown with dark brown color in
Fig. 7(b)). It is also clear that the proposed numerical scheme (i.e., DG+FL+SL) is locally mass conservative and
slightly outperforms DG+SL scheme.

4.2.3. Domain with thin barrier
In this example, the porous medium contains a thin barrier and it is partitioned into an unstructured triangular

mesh (see Fig. 5(c)). Total time is set to T = 4500 s and the time step is t = 0.5 s. Additionally, noflow boundary
conditions are imposed on the barrier edges. All other parameters are the same as in Section 4.2.1. Fig. 8 exhibits
the saturation profile under limited and unlimited DG at three different time steps. Limited DG, unlike its unlimited
version, generates saturation that remains bounded and neither undershoots (blue-colored cells) nor overshoots (red-
colored cells) are detected during the simulation. Nonetheless, the saturation front, under both unlimited and limited
DG, propagates with the same speed and tends to avoids the barrier as expected. Figs. 9 and 10 show the wetting
phase pressure contour and velocity field at t = 4500 s. Velocities are computed at time tn , using the formula:
un

w = −Kλw(Sn)∇Pn . We can see that pressure drops linearly near the top and bottom edges, which confirms
that fluid steers clear of the central barrier and flows around it. When no limiter is used, spurious oscillations
and erroneous high-velocity regions are visible in velocity solutions. Limited DG, on the other hand, gives very
smooth approximations. From these results we conclude that the proposed numerical scheme is bound-preserving
on unstructured meshes.

4.2.4. Non-homogeneous domain
For this problem, permeability is 10−8 m2 everywhere except inside a square inclusion of length 20 m located at

the center of the domain, where the permeability is 104 times smaller. The domain is discretized with a structured
rectangular mesh of size h = 1.25 m. Time step is set to τ = 0.5 s and the simulation advances up to T = 650
s. The remaining parameters are the same as in Section 4.2.1. The capillary pressure and phase mobilities are
defined by (4.4) and (4.8) with pd = 1000 Pa, θ = 2 and R = 0.05 for the entire domain. The discrete saturation
at different snapshots of t = 350 and t = 650 s is depicted in Fig. 11, where saturation values beyond the physical

bounds (i.e., S > 0.85 and S < 0.2) are clipped away. Evidently, no matter if limiters are used or not, the injected
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Fig. 8. Homogeneous domain with thin barrier: This figure shows the evolution of saturation profile using DG scheme without limiter
(left) and with the proposed limiters (right). The color mapping for S in [0.2, 0.85] is grayscale, while values below and above bounds are
olored blue and red, respectively. As expected, DG approximation with no limiter yields noticeable violations, while limited DG scheme is
apable of providing maximum-principle satisfying results. In spite of this, the front under both unlimited and limited DG, propagates with
he same speed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

etting phase travels from left to right while avoiding the region of lower permeability. Both limited and unlimited
chemes generate sharp and consistent saturation fronts. However, without limiter, the DG scheme presents strong
scillations behind and ahead of the inclusion. When limiters are activated, oscillations are suppressed and solutions
re free of undershoots/overshoots.

Figs. 12 and 13 depict the pressure and velocity solutions, respectively, computed at t = 650 s by the DG
ormulation with limiter and without limiter. Limiting scheme has minimal effect on the pressure but this is not the
18
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Fig. 9. Homogeneous domain with thin barrier: This figure depicts the pressure solutions at final time t = 4500 s using DG scheme
(a) without limiter and (b) with limiters. The color contours represent the wetting phase pressure and the red arrows represent the velocity
field. The length of the arrows scales with the magnitude of velocity. For both cases, flow goes around the impassible barrier and pressure
linearly drops near top and bottom channels. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 10. Homogeneous domain with thin barrier: This figure shows the magnitude of wetting phase velocity at final time t = 4500 s
using DG scheme (a) without limiter and (b) with limiters. The main inference from this figure is that when no limiter is used (a), DG
approximation induces overestimation and spurious oscillations in velocity field. The proposed limiting scheme mitigates this issue and yields
smooth solutions (b).

case for the velocity. Velocities obtained under DG with no limiter exhibit spurious oscillations, which resemble
those in saturation profile. On the other hand, the limiting scheme eliminates oscillations in the velocity field.

4.3. Quarter five-spot problem

In this section, the performance and robustness of the limiters are assessed in the presence of wells, for both
homogeneous and heterogeneous permeabilities. We employ no flow boundary condition on the entire boundary, as
shown in Fig. 14; and assume zero capillary pressure. The flow is driven from an injection well at the bottom left
corner to a production well at the top right corner. The wells are defined by source/sink terms, which are piecewise
constant with compact support. That is, q̄ is nonzero at injection well and q is nonzero at production well. The DG
penalty parameters for test problems are taken as σ = 10.

4.3.1. Homogeneous domain
The domain Ω = [0, 100]2 m2 is partitioned into a crossed structured mesh of size h = 2.5 m, as depicted

−13 2
in Fig. 5(b). The medium is homogeneous with K = 10 m everywhere. We choose Brooks–Corey relative
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Fig. 11. Non-homogeneous pressure-driven flow problem: This figure shows saturation fields obtained with DG (left) and with
G+FL+SL (right). Values beyond the physical bounds (i.e., S > 0.85 and S < 0.2) are clipped away using tolerance 10−5. Using

ither scheme, the wetting phase does not flood the inclusion and saturation fronts remain sharp and propagate similarly. Notice that spurious
scillations and violations of the physical constraints occur under the DG formulation but not under the limited DG.

Fig. 12. Non-homogeneous pressure-driven flow problem: This figure shows pressure at final time t = 650 s using DG scheme (a)
without limiter and (b) with limiter.

permeabilities as follows:

krw(se) = s2
e , krℓ(se) = (1− se)2, se =

S − srw
. (4.10)
1− srw − srℓ
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Fig. 13. Two-dimensional pressure-driven flow problem: This figure shows the magnitude of wetting phase velocity at final time t = 650
s using DG scheme (a) without limiter and (b) with limiter. In the unlimited case, oscillations earlier observed in saturation are reflected in
the velocity field. However, with limiters, oscillations are eliminated.

Fig. 14. Quarter five-spot problem: This figure provides a pictorial description and the boundary value problem. No flow boundary
conditions are prescribed on the entire boundary.

The injection and production flow rates of wells are determined by the following constraint:∫
Ω

q̄ =
∫
Ω

q = 7.03125× 10−4, (4.11)

where q̄ is piecewise constant on [2.5, 10]2 m2 and q̄ = 0 elsewhere and q is piecewise constant on [90, 97.5]2 m2

and q = 0 elsewhere. The final time is T = 21 days and time step is τ = 0.057 days.
Fig. 15 shows the wetting phase saturations at two different times (t = 10 and t = 21 days), for three schemes:

G, DG+SL, DG+FL+SL. The figure shows that violations of the maximum principle for the unlimited DG solution
ccur in the neighborhood of the injection well and after the front; in addition the DG solution is not monotone

efore the front. Adding a slope limiter helps with the monotonicity of the solution and with decreasing the number
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Fig. 15. Quarter five-spot problem with homogeneous permeability: This figure shows the saturation solutions obtained with DG (left),
G+SL (middle), and DG+FL+SL (right) at two different time steps. Values beyond the physical bounds (i.e., S > 0.85 and S < 0.2)

re clipped away using tolerance 10−5. This figure suggests that DG+FL+SL, unlike the two other schemes, provides maximum-principle
atisfying results at all time steps.

Fig. 16. Quarter five-spot problem with homogeneous permeability: This figure shows the wetting phase pressure at final time t = 10
ays using DG, DG+SL, and DG+FL+SL schemes. All three cases yield similar approximations.

f elements where the maximum principle is not satisfied. The proposed numerical scheme, DG+FL+SL, completely
liminates violation of maximum principle: the solution is monotone and bound-preserving. Figs. 16 and 17 show
he wetting phase pressure contours and velocity fields at t = 10 days for all three cases. Differences are minimal
or the pressure and velocity fields. Finally we display the local mass balance error in Fig. 18 for all three cases; the
ocal mass balance error is a piecewise constant field M defined by (4.9). We observe that the error is negligible
of the order of 10−11) for the DG scheme with or without limiters.

.3.2. Quarter five-spot problem with heterogeneous domain
We repeat the experiments in Section 4.3.1 with heterogeneous medium of Ω = [0, 1000]2 m2. The permeability

elds are discontinuous and values vary over seven orders of magnitude. The permeability data is taken from two
ayers of the SPE 10 data-set [77]; and are scaled to a crossed structured mesh of size h = 20 m (see permeability
elds in log-scale in Fig. 19). We note that layer 13 varies relatively smoothly, whereas layer 73 contains well-
efined channels, which form an additional challenge for any numerical method. We set viscosities to µw = 5×10−4

a s and µℓ = 2× 10−3 Pa s and invoke Brooks–Corey relative permeabilities as follows:

krw(se) = s5
e , krℓ(se) = (1− se)2(1− s5

e ), se =
S − srw

. (4.12)

1− srw − srℓ
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Fig. 17. Quarter five-spot problem with homogeneous permeability: This figure depicts the wetting phase velocity at time t = 10 days
using DG, DG+SL, and DG+FL+SL schemes. All three cases yield similar approximations.

Fig. 18. Local mass balance conservation for quarter five-spot problem: This figure illustrates the local mass balance error at time
t = 10 days. No matter what scheme is used the errors always remain small (in the order of 10−11).

Fig. 19. Quarter five-spot problem with heterogeneous permeability: This figure illustrates the permeability fields adopted from two
orizontal layers of SPE10 model 2 data-set. Layer 13 is taken from relatively smooth Tarbert formation, whereas layer 73 is taken from a
ighly varying Upper-Ness formation. Values are presented in logarithmic scale.

he production and injection wells of size Lw = 100 m with q̄ = q = 2.8×10−5 are positioned at opposite corners
such that dw = 70 m (see Fig. 14). The time step is τ = 4.17× 10−3 days and the final time is T = 1.375 days.

We apply our proposed DG scheme with both flux and slope limiters to these porous media. Fig. 20 displays
the wetting phase saturation contours at different times (t = 0.417, 0.83, 1.375 days) for both layers. As expected
the wetting phase floods the domain from the injection well to the production well while avoiding low permeable
regions. Because of the location of channels in layer 73, the wetting phase has reached the production well at
23
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Fig. 20. Quarter five-spot problem with heterogeneous permeability: This figure shows the evolution of the saturation obtained using
DG+FL+SL scheme for layer 13 (left) and layer 73 (right). For both cases, the wetting phase moves toward the production well by sweeping
the regions with highest permeability values. Another inference is that proposed limiters yield physical values of saturation, without any
overshoots and undershoots, even for domains with permeabilities that vary over several orders of magnitudes.

time t = 1.375 days whereas this is not the case for layer 13. We also observe that the saturation satisfies the
maximum principle. Fig. 21 shows the magnitude of the wetting phase velocity at the same times. The effect of the
heterogeneities can be seen in the velocity fields.

4.4. Effect of gravity

In this section, we examine the success of our limiting scheme in the presence of gravity field and then study the
impact of gravity on the pressure-driven flows and quarter five-spot problems. The ratio of gravitational to viscous

forces can be represented as a gravity number, Gr. This dimensionless parameter depends on the difference between
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Fig. 21. Quarter five-spot problem with heterogeneous permeability: This figure shows the magnitude of wetting phase velocities
btained using DG+FL+SL for layer 13 (left) and layer 73 (right). The effect of heterogeneities is reflected in the velocity fields.

hase densities; and following the work of [78–80], can be defined as follows:

Gr =
K (ρw − ρℓ)g

µwU
, (4.13)

here U is the characteristic magnitude of velocity.

.4.1. Pressure-driven flows
The domain Ω = [0, 200] × [0, 100] m2 is partitioned into a crossed mesh with 7200 triangular elements. The

iscosities are µw = 2.5 × 10−4 Pa s and µℓ = 5 × 10−3 Pa s. Here, the characteristic velocity is estimated to be
≈ 0.1 m/s (using U ≈ −K (P|x=200 − P|x=0)/µw L). The wetting phase density is ρw = 1000 kg/m3 and the

3
non-wetting phase density takes three different values ρℓ = 925, 850, 600 kg/m , which yields three values for the
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Fig. 22. Two-dimensional pressure-driven flow problem with gravity field: This figure shows the wetting phase saturation solutions at
t = 600 s for different gravity numbers. Both flux and slope limiters are used. As the gravity number increases, more wetting phase
accumulates at the bottom of the domain. For all three cases, no violation of maximum principle is observed.

Fig. 23. Two-dimensional pressure-driven flow problem with gravity field: This figure shows the wetting phase pressure solutions at
t = 600 s for different gravity numbers.

gravity number Gr= 0.3, 0.6 and 1.6 respectively. Other parameters and Dirichlet boundary conditions are the same
as in Section 4.2.1. The time step is τ = 0.6 s and the final time is T = 600 s. The proposed DG scheme with flux
nd slope limiters is applied and the penalty parameter is set to σ = 1000. Fig. 22 shows the saturation contours at
he time t = 600 s. As the gravity number increases, the wetting phase saturation, which is the heaviest, deposits
ore and more at the bottom of the domain; and the narrow gravity tongue along the bottom edge becomes more

ronounced. It should be also noted that similar to earlier problems, the limiting scheme exhibits satisfactory results
ith respect to the maximum principle. This means that for all three cases, solutions always remain between 0.2

nd 0.85. Pressure contours and velocity fields are displayed in Figs. 23 and 24. Both show the impact of gravity
n the solutions.
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Fig. 24. Two-dimensional pressure-driven flow problem with gravity field: This figure depicts the magnitude and direction of the wetting
phase velocity at t = 600 s for different gravity numbers.

Fig. 25. Quarter five-spot problem with gravity field: This figure depicts saturation contours at t = 11 days for different gravity numbers.
DG+FL+SL scheme is applied that leads to satisfactory results with respect to maximum principle. By increasing the difference in phases
density, gravitational force dominates the viscous force (from left to right). This results in more wetting phase saturation to be deposited at
the bottom of domain and hence less non-wetting phase is recovered at the production well.

4.4.2. Quarter five-spot problem
The domain is Ω = [0, 1000]2 m2 with permeability of K = 3 × 10−11 everywhere. Capillary pressure and

relative permeabilities are defined in Eqs. (4.8) and (4.10), respectively, with entry pressure Pd = 1000 Pa, θ = 2
and R = 0.05. To address wells, we fix the following parameters: Lw = 80 m, dw = 80 m, q̄ = q = 9.33× 10−6.
The wetting phase density is set to ρw = 1000 kg/m3 and the non-wetting phase density takes three different values
ρℓ = 925, 850, 600 kg/m3, which yields three values for the gravity number Gr= 0.8, 1.6 and 4.3 respectively. The
characteristic velocity in Gr estimation is taken as U ≈ 5.5× 10−5 m/s (or 4.8 m/day). Other parameters are the
same as in Section 4.3.2. The simulation runs to T = 11 days with 750 time steps. Wetting phase saturation contours,
wetting phase pressure contours and wetting phase velocity fields are shown in Figs. 25, 26, and 27 respectively.

e observe that as the gravity number increases, the inertial forces prevent the saturation to reach the production
ell. As in the previous section, the discrete solution satisfies the maximum principle. The numerical examples in

his section confirm that our proposed numerical method is accurate and robust when gravity dominates.

. Conclusions

A fully implicit discontinuous Galerkin method is formulated for solving the incompressible two-phase flow
quations in porous media. Primary unknowns are the wetting phase pressure and saturation. Nonlinear systems are
olved by Newton’s method. Post-processing flux is developed and combined with slope limiters to ensure a bound-
reserving saturation at each time step. The numerical method is validated on several benchmark problems and it
27
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Fig. 26. Quarter five-spot problem with gravity field: This figure shows pressure contours at t = 11 days for different gravity numbers.
As gravity number increases (from left to right), pressure difference between the injection and the production wells reduces. This is because
as the gravitational force dominates, it hinders the wetting phase flow from reaching the production well.

Fig. 27. Quarter five-spot problem with gravity field: This figure shows velocity field at t = 11 days for different gravity numbers. Increase
in gravity number pushes the wetting phase toward the bottom edge and less recovery at the production well, which is also reflected in the
decrease in the magnitude of velocities.

is applied to problems where permeability fields are highly varying or where gravitational forces are significant.
Flooding of the medium is driven by either pressure boundary conditions or by injection and production wells. The
various numerical examples show that the scheme is robust and locally mass conservative. The approximation of
the saturation is shown to satisfy the maximum principle both theoretically and computationally.
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