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ABSTRACT This paper presents a novel methodology to control HVAC system and minimize energy cost
on the premise of satisfying power system constraints. A multi-agent architecture based on game theory and
reinforcement learning is developed so as to reduce the cost and computational complexity of the microgrid.
The multi-agent architecture comprising agents, state variables, action variables, reward function and cost
game is formulated. The paper fills the gap between multi-agent HVAC systems control and power system
optimization and planning. The results and analysis indicate that the proposed algorithm is beneficial to deal
with the problem of “curse of dimensionality’” for multi-agent microgrid HVAC system control and speed
up learning of unknown power system conditions.

INDEX TERMS  Game theory, reinforcement learning, multi-agent system, HVAC control, cost minimiza-

tion.

. INTRODUCTION

BOUT 30% — 40% of global energy is used by build-

ings [1]. Within this sector, academic and commercial
buildings are accounted for the highest energy consump-
tion [2], [3]. Heating, ventilation, and air conditioning sys-
tems (HVAC) are considerably equipped in those facilities
and use tremendous amount of electricity [4]. Meanwhile,
HVAC system can also impact the indoor working perfor-
mance. Thus, the control and management of HVAC will be
one of the crucial elements of future microgrid [5], [6]. From
management perspective, the inspection and maintenance
work for central HVAC system will be scheduled at owner’s
decision-making. From power system aspects, future distri-
bution power grid will be incorporated with more variable
renewable energy. As a result, the uncertainties and complex-
ities of power grid condition will be increased, making the tra-
ditional centralized optimization and management algorithms
computationally expensive and infeasible. The existing mutil-
agent HVAC systems control methodologies focus mainly

on the building side [7]. This paper fills the gap between
optimizing of HVAC systems and planning of distribution
power system by proposing an advanced algorithm based on
game theory and multi-agent reinforcement learning.

In recent years, the applications of artificial intelligence
and multi-agent system to HVAC system and power sys-
tems have been investigated. A review about the framework,
approaches, concepts and potential value of MAS technology
to power industry was presented in [8], [9]. It should be noted
that multi-agent system (MAS) is a good solution to deal
with super complex, diverse and scattered problem that may
occur in the scenarios of HVAC system control and man-
agement. Various multi-agent methodologies have already
been developed in the literature to enhance the control and
autonomous operations of microgrids [9]-[11]. Among the
existing multi-agent solutions for microgrids, two aspects are
neglected so that the HVAC system’s optimization and man-
agement become inaccurate and less efficient. The first aspect
is that the current methodologies are not compatible with
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individually and separately controlled HVAC systems taking
influences of power systems into consideration [7]. Also most
of the approaches are based on centralized framework and
require the exchange of all kinds of information through local
network [12]. In this scenario, the communication network
would require large investment and become complex. There-
fore, a multi-agent approach with less communication among
agents will be needed for power system planning and HVAC
system control and management. The second aspect is the
efficiency of the policy exploration. As illustrated in other
articles [13], agents’ actions are based on the negotiation and
communication within the same microgrid. While in reality,
the agents are in a dynamic and ever-changing power grid.
Take the building manager choosing HVAC system setting as
an example, the aftereffect of the action may be unpredictable
due to the chain effect of distributional locational marginal
pricing (DLMP) and other players’ decisions. Therefore,
an effective and efficient policy exploration approach is vital
for agents in a microgrid.

Implementing machine learning or artificial intelligence
into HVAC control system is an effective way to enable
the controllers with the ability to learn and improve their
decision-making. Reinforcement Learning (RL) was imple-
mented in a wide range of power system economic problems
[14]-[16], which proves the capability and potential of RL.
In this paper, we propose a novel multi-agent reinforcement
learning algorithm to optimize the control of HVAC and
planning of power system. Each agent controls one central
HVAC system in one of the buildings. Our proposed learning
mechanism can study and analyze the relationship between
independent HVAC controlling systems. Agents are greedy
and tend to maximize their profits within the power sys-
tem constrains. The proposed approach allows to update and
enhance the knowledge about the best actions for HVAC
system control and scheduling under different weather con-
ditions. The proposed framework enables the system to learn
from the stochastic power grid, weather and human activity
data and the approach can also exploit the historical experi-
ences to suggest the optimal HVAC system settings.

The development and testing of our proposed methodology
relies on models of the energy system that properly account
for multi-level dynamic behavior. The aim for our research
is to establish a useful and cost-saving mechanism of HVAC
scheduling in ever-changing distribution power grid and envi-
ronments. This paper is the extension and further research
of [17]. The paper is organized as the following: the analyt-
ical models that simulate the environment and the objective
function are introduced in Sec II. In Sec III, a multi-agent
game is defined to find the optimal control strategy for each
player. Sec IV demonstrates our proposed multi-agent RL to
simplify the multi-agent game’s computational complexity.
Experimental results are presented in Sec V to compare the
systems with or without multi-agent RL. The conclusion
is made in Sec VI. In this paper, the term “‘reward” and
“payoff”” will be used interchangeably.

VOLUME 7, 2020

Il. ESTABLISHMENT OF COMPUTING SYSTEM

In this section, we introduce several analytical models to
create and simulate the learning environment for the proposed
multi-agent game and multi-agent RL. Those models will
help us to measure the loss of working efficiency, and the cost
of energy in monetary values.

A. HUMAN WORK PERFORMANCE MODEL

Through controlling the temperature, HVAC system can
affect the indoor personnels’ working efficiency [18], [19].
Temperature is the crucial feature of indoor environment.
Unsuccessful control of temperature can result in low effi-
ciency, sick building symptoms, etc. In this paper, the work-
ing productivity & is referred to express the correlations
between working efficiency and monetary value [20], and the
model can be expressed as

& = g(Tin)
= 0.1647524 - (g - (T, — 32))

5
—0.0058274 - (6 (T — 32))?

5
+0.0000623 - (6 (Tin — 32))° — 0.4685328 (1)

where & denotes the working efficiency which is determined
by inside temperature 7},. The temperature setting should be
among the bracket 7; < T, < Ty, where T; and T, are
the lower and upper limits, respectively. It should be pointed
out that, although according to [21], the ideal temperature
range for university buildings is between 68° F and 74° F,
the temperature settings in our study is relaxed to 64° F and
79° F for research purposes.

For simplicity representation, & ; and xi, are the work
efficiency and indoor temperature in building k at time z,
respectively, (1) can be formulated as

Skt = 8(Xk,1)- (2)

X; is the control variable in this paper.

B. THE NEURAL NETWORK BASED ENERGY
CONSUMPTION PROFILE MODELS

To build the learning environment for RL, the other crucial
model is to simulate the HVAC system’s energy consump-
tion corresponding to buildings’ indoor temperatures. In this
manuscript, eQUEST is used [22] to generate the dataset
to train the neural network models that predict the HVAC
systems’ consumption. eQUEST can provide all-inclusive
simulations about central HVAC systems and appropriate
assumptions for lighting and plug-in loads according to the
size and type of the simulated buildings. The energy con-
sumption calculated by eQUEST is based on various factors
including outdoor temperature, story, architecture, etc. Those
various factors can be used as key features to train the neural
network models. The hourly report from eQUEST can pro-
vide enough data for training and testing the neural network
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TABLE 1. Partial simulation results of Ritchie center on July 1st
from 15 : 00 to 20 : 00.

Hour | T;, (°F) | Tous (°F) | Energy (BTU)
15 64 94 1.08 x 107
16 64 92 1.31 x 107
17 64 92 1.70 x 107
18 64 93 2.03 x 107
19 64 89 2.22 x 107
20 64 85 2.19 x 107

models (NNM). And those NNMs will be used to forecast
the power consumption for each building in same distribution
power grid. Table 1 shows selected simulation results of the
hourly energy consumption on July 1st 2016 at the Ritchie
center, the recreation center at University of Denver (DU).
Hour column indicates the time of one day, T;, and T,y
are the building temperature setting and the outside dry-
bulb temperature, respectively. Energy indicates the energy
consumed by the building corresponding to the temperature
setting. Apparently, the increase and decrease of power usage
would influence the utility cost.

One year simulated data corresponding to every indoor
temperature setting within the control bracket 7} < Tj, <
T, is generated for those buildings in our tested campus
power grid. A three-layer feed-forward neutral network with
sigmoid activation function is trained for every bus in the
power grid. There are 10 neurons in hidden layer. Levenberg-
Marquardt backpropagation algorithm [23] is implemented to
train those models. Neural network can be easily generalized
to train energy prediction models for buildings with different
sizes. Neural network can also handle unbalanced weather
data compared with other machine learning techniques like
SVM. The inputs are time, indoor temperature, and outdoor
temperature, and the output is energy consumption. In this
paper, the dataset are randomly divided into three sections
for training, validation and testing purposes. Each section
takes up 75%, 10% and 15% of dataset, respectively. After
testing, the prediction models’ R-values are all above 0.92,
which are good enough to build the learning environment for
our proposed RL algorithm. We denote e ; as the energy
consumptions of building k at time ¢ and can be expressed
as,

et = hCere, t, Tour,t)
e = HX, t, Tour,r) 3)

where ey ; is a function of indoor temperature x; ;, time ¢ and
outdoor temperature Ty, 1, € = [€1; €21+ € f]T.

C. DISTRIBUTION LOCATIONAL MARGINAL PRICING
FOR DU CAMPUS GRID

In the previous sections, we have already introduced two
kinds of analytical models that help to build the learning envi-
ronment. In this section, the last component of the learning
environment will be addressed.
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We implement the distribution locational marginal pricing
model [24], [25] within the University of Denver campus
power grid to not only calculate the energy cost but also to
reflect the state transitions and the corresponding rewards
when HVAC setting is changed.

N
arg maxs = » (¢j — p}) - 4.
.p =
M
- Z(p(lg - Mi) *qu;
=1
M N
SL Y qu— Y g, —Lp(V.0)=0 )
i=1 j=1
M N
D 0= 05— Lo(V,0)=0 )
i=1 j=1
f(V,0) <M (6)
q%]N < qu; < u,.AX @)
O™ < Qu < 0t ®)
VI < v < v ©)

where s denotes system social surplus that is obtained from
our DLMP calculation, N is the number of buildings in smart
grid and j is the building index; M is the total number of
electricity suppliers and i is the generator index; c¢; stands
for the building bid price for each power generation and u;
represents the offer price from each power generation; pj’? is
the distribution locational marginal price at each building j,
and pf stands for the distribution locational marginal price at
supply bus #; g.; is the power demand at building j; gy, is the
power supply from bus i; V and 6 are voltage magnitude and
angle at each bus, respectively; f; stands for the power flow
at jth line, which is limited by ]S.m”x A; g, is the active power
output from each power source and the maximum capacity

uiAX MW, while Q,, is the reactive power output from the
corresponding energy generation and the maximum capacity
OYAX MVar; V; stands for the voltage magnitude of the ith bus
with power injection, in this case study ViMIN pu and VI-MAX
pu; and Lp(V,0) and Lo(V, 0) are the total active power
loss and reactive power loss in the smart gird, respectively.
To simplify the formulation, we denote the DLMPs p, =
[p1.: P2.:-..Pn:]T as a nonlinear function I'(-) of energy
consumption e; as

p: =I(e) (10)

And according to (3), I'(-) can be expanded as a function of
the control variable x;

pr =THs, 1, Tour,r))- (11)

D. OVERALL MULTI-AGENT PAYOFF
With all the analytical models that have been discussed in
this paper, the learning environment can finally be modeled
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for the proposed MARL algorithm. After taking an action,
the rewards that agents receive at the state transition comprise
two parts: the energy cost, calculated by the production of the
end-use energy and the corresponding DLMP; the reduction
of work productivity, calculated by the production of the
amount of occupants and the cost of efficiency reduction per
person [17]. The state is under the influence of the condition
of the power system, the working efficiency, the amount of
indoor personnels and the energy consumption. Taking an
action would definitely transit into a new state. However,
agent’s state may be affected by other agents’ actions through
chain effects in power systems such as DLMP fluctuation,
line congestion, etc.

(12) defines the rewards v, at time ¢ of the agent in dis-
tribution power grid. Because of the DLMPs, occupants, and
energy usages, every agent has its own reward function and
the state is different though the formulation for every single
agent looks the same.

n
Vi= Ipki-ens+w-all—& )0  (12)
k=1
=p-e+w-al—E&)- o
=T[H&:, t, Tour,:)l - HX¢, 8, Tour 1)
+w-all — g(x)] - o
= \Ij(xl‘vta T()ul‘,l‘vol) (13)

where v, is the overall cost at time ¢, w is the weight for
the efficiency component which is set to be 0.1 in this paper,
« is the hourly saving for each personnel when the working
productivity is 1, and o, = [01; 02 - - 0,¢]T Where o ; is
the number of occupants in building k at time ¢.

It should be noted that, T, ; can be acquired from weather
predictions and the number of occupants o, is estimated by
the schedules of buildings. Therefore, ¢, Ty, ; and o, are
not unknown variables at a give time. The overall payoff is
decided by the indoor temperature settings x;. The objective
is to optimize indoor temperature setting X; at time t. t is a
vector of 24 hours. Therefore, the problem can be expressed
as

X; = arg min W(x;)
X

st.Tp <xx: <Ty (14)

lll. MULTI-AGENT COST GAME
Based on the analytical models in Sec.Il, the payoff for each
indoor HVAC system setting can easily be calculated at any
time step. The cost game solves a finite N person game. The
multi-agent game is designated to select the optimal strategy
in order to maximize the payoff within a certain smart grid.
The players are the buildings’ managers that represent their
own benefits. The number of strategies for each player is
finite, which is 16 in our paper.

A N person, finite non co-operative multi-agent game can
be formulated as the following [17]:

Y(xi) = (N, (S }ien, (8" ien) (15)
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where N is the number of players at time ¢, S' is the iy,
players’ finite pure strategy set at time 7 and &' is the payoff set
corresponding to various pure strategies at time ¢. If the game
has an optimal solution, there is at least one Nash equilibrium
(NE), which means that one player could not get a better
payoff than the optimal strategy at NE if the game reaches a
Nash equilibrium and the other players are playing according
to their Nash equilibrium strategies.

§H(a*) > 8 (@' '), VYieN,VYa'eZ' (16)
where * means the best response strategy at NE, —i denotes
the players other than iy, player, and X/ is the mixed strategy
space for player i. By assuming ' is the optimal HVAC
system setting for player i, then we can transfer the game
problem into an nonlinear optimization problem for the each
player in smart grid.

W'
min y»" — 8% (a) (17)
s.t. yﬁ’(a*fvf,sj’i’)—yfﬁf<0, Vj=1,...,m! (18)
i
et =1 (19)
j=1
a]i’tQO Vi=1,...,m (20)

where y*! is assumed as the optimal payoff corresponding
to the best response strategy, m' is the number of strategies,
(@™, s/’.’[) denotes the player i’s strategies set while the oth-
ers’ strategy sets are expressed as o ~>! at time 7. According
to [26], after applying KKT condition, we can obtain that
a Nash equilibrium of game (15) can be transformed into a
problem of equalities and inequalities.

Lemma 1: A necessary and sufficient condition for game
Y to have a Nash equilibrium strategy set o is

Yy —8M@)=0 VieN (21)

51‘,;(“—1‘,1’ s]l:’t) _ yi,t <0, (22)
Vi=1,...,m, VYieN

o

Y ait=1, VieN (23)

j=1

(x;’t}O Vi=1,...,m, VieN (24)

Form (21), we can obtain that for every player in the same
smart grid their best response strategy is at Nash equilibrium.
(22),(23),(24) are the equality and inequality constraints for
optimization and (22) means that no mix strategy combina-
tion would result in better results than best response. There-
fore, we can obtain that the optimal solution of nonlinear
HVAC controlling problem is the strategy at Nash equilibrium
o.

Theorem 1: A necessary and sufficient condition for a* to
a Nash equilibrium of game WV is that it is an optimal solution
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of the following minimization problem
(W)
min " y"t — 87 (@)
ieN
st 84 (™, s]l-’[) -y <o,
Vi=1,....,m, VieN

mi
Saf =1
J=1

a'>0 Vi=1,....m, VieN
The optimal value of min}_,_y ¥’ — §*'(cr) should be
0. The value of y*' at the optimal point gives the expected
payoff of the player i at time 7.

Vie N

IV. MULTI-AGENT REINFORCEMENT LEARNING

FOR ENERGY COST GAME

The multi-agent game depicted in Sec. III is constrained by
the computational complexity. When the number of indoor
temperature control strategy or the number of player increase,
the computational complexity increases exponentially. This
shortcoming makes the multi-agent game consume long time
though modern computational capability of CPU or GPU is
much better than the past. Hence, there is a need to implement
another algorithm to simplify the game strategy set and adapt
to the constantly changing environment. Even if the number
of strategies or the number of players increase, the computa-
tional time should increase linearly. Therefore, we implement
the Multi-Agent Reinforcement Learning into the multi-agent
game to simplify the strategy set.

In our study, discounted reward is implemented to calculate
the rewards when the actions (strategy) are taken by players.
xg denote the state of the system before the s transition. The
discounted reward from state i can be defined as:

k— o0

k
G=lim EDY o, w), 5 [ =il (29)
s=1

where t denotes the discount factor, and 0 < 7 < 1,
an alternative expression of (25) is:
¢i = Elr(xr, w(x1), x2) + tr(x2, m(x2), x3)
(a3, w(3), x4) + -] (26)

In (25) and (26), 7t is used to discount the rewards for later
actions, and 7 can be expressed as a function of u:

r= () 27
I+ pun
where w denotes the rate of interest. When u > 0, we can
ensure that 0 < t < 1. When p approaches 400, T
approximately equals to 0. If u equals 0, T is 1. (25) can be
formulated as:

k

_ 1 .

= Jim ELY (o™ o, ws),xo) Lo =
s=1

(28)
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FIGURE 1. The network topology of DU campus grid.

With the definition of discounted rewards, we can calculate
the reward of every action and implement a multi-agent
RL algorithm that can help to reduce the computational
complexity for the proposed game. The learning process
of RL algorithm requires the updating of rewards every
time the system transitions into a new state [27]. Like in
other research that relates to RL algorithm, we define the
constantly updating quantities as Q factors as well [28].
So QO(i, a) is used to denote the reward quantity for state i and
action a.

The reward that is calculated in the transition is denoted
as feedback. The feedback is used is to update the Q-factors
for the evaluation of actions (strategies) in the former state.
Generally speaking if the value of a feedback is good, the Q-
factor of that action is increased, otherwise, the the Q-factor
of that action is decreased. Therefore, the system is analyzed
and controlled in real time. In each state visited, some action
is opted out and the system is ready to proceed to next state.
The “‘state” in our context is the power system condition
at the specific time when all the agents have decided their
actions and start to consume new amount of energy. Since
at a specific time point, the number of indoor occupant is
fixed, the factors that affect the choice of HVAC setting are
the energy consumption and the utility price. When the action
is selected or changed, the DLMP will be influenced. Then,
the system enters a new state.

In our study, we choose the discounted reward multi-agent
RL for the proposed multi-agent game to reduce computa-
tional complexity [29]. The generalized steps for discounted
reward multi-agent RL can be expressed as follows:

o Step 1 (Input and Initiation): Set the Q-factors to O:
Q(i,a) < 0, Vi,and, VYa € A(i) (29)

VOLUME 7, 2020
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Bus 2 Optimal Hourly Cost

o o
T

Bus 13 Optimal Hourly Cost

Houry Cost/§
G avwsaD N

FIGURE 2. The summer day results comparison.

A(i) denotes the set of actions in state i. In our case,
the number of action equals to the number of strategy
in the multi-agent energy game.

o Step 2 (Q-factor Update): Let | A(i) | denote the number
of actions in set A(7). Hlence, the probability of action a is

selected in state i as G r(i, a, j) denotes the transition

reward. The algorithm for updating Q(i, a) is defined as:

0G, a) < (1 — &*)Q(, a) + o*[r(i, a, )
+7 gggé) oG, b1, (30)

o defines the learning rate in the k* iteration. Set
k = 1 when transition to a new state. /tmax denotes the
maximum number of iteration, and should be set to a
large number. The computation of o* will be discussed
later. T denotes the discount factor in multi-agent RL.

o Step 3 (Termination Check): Increase k by 1. Set i «
J» when k < Itmax, return to Step 1 if Q(i, a) can be
updated. Otherwise, proceed to Step 4.

o Step 4 (Outputs): For each state i, select the action a*
so that the corresponding Q(i, a*) achieves the optimal
value.

The learning rate of should be positive value and satisfy
af < 1. Otherwise, the system would not converge or may
even diverge. The learning rate for the discounted reward
reinforcement learning is a function of k and have to meet
the condition in [30]. In our research, the learning rate step
size is expressed as:

i C
" D+k
where C = 90 and D = 100 in our tests to ensure the system
is stable.

Therefore, we can formulate our discounted reward multi-
agent RL for multi-agent game as follows:

o Step 1 (Input and Initiation): According to (15) and (29),

set the Q-factors to 0:

Q(i, s) < 0,Vi,and, Vs (32)

€1y
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Bus 59 Optimal Hourly Cost

S(i) denotes the set of strategy in game W. For each
agent, the number of action equals to the number of
strategy in the proposed multi-agent game. o* defines
the learning rate in the k™ iteration. Set k = 1 when
transition to a new state. Itmax denotes the maximum
number of iteration, and should be set to a large number.
In our research, the Itmax = 10000.

o Step 2 (Q-factor Update): Let | S(i) | denotes the
number of actions in set S(i). Hence, the probability of
strategy s is selected in state i as IS}_t)I 8(i, a, j) denotes
the transition reward of the corresponding strategy. The
algorithm for updating Q(i, a) is defined as:

0G, a) < (1 — )0, a) + o*[8(, s, )
+7 52?(’,‘-) oG, b, (33)

It should be noted that gng()lg) Q(, b) equals the optimal
€

social cost yi” in game W. Therefore, we can transform
(33) into:

0, a) < (1—d)0G, a) + o* [5G, s, ) + Ty ()],  (34)

where y (i) denotes the optimal payoff for the multi-
agent energy game.

o Step 3 (Termination Check): Increase k by 1. Set i <«
J» when k < Itmax, then return to Step 1. Otherwise,
proceed to Step 4.

o Step 4 (Outputs): For each state i, select the strategy s*
so that the corresponding Q(i, a*) achieves the optimal
value.

o Pop up the best two strategy according to the optimal
0(i, a*) to play the energy game and get rewards from
the game.

Reward function is individual to each agent. Different
agents can receive different rewards for the same state tran-
sition. Instead,it keeps a vector of estimates, which give the
future reward of action ai, depending on the joint action a_g
played by the other agents. During learning, the agent selects
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FIGURE 3. The winter day results comparison.
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FIGURE 4. The computational time comparison.

an action and then needs to observe the actions taken by other
agents, in order to update the appropriate Q(s,a)value.

The multi-agent reinforcement learning help to refine the
strategy set in (15), and transform it as following:

Y (xi) = (N, {A" Yien, (8" }ien) (35)

where A is the set of two strategies selected by multi-agent
reinforcement learning.

V. RESULTS

In this section, bus 2, bus 59, bus 41, bus 24, and bus 13
are selected to demonstrate the proposed methodology and
are highlighted in Fig.1. The results in Fig. 2 and Fig. 3
show that the proposed hybrid architecture can minimize the
operational cost of each building. No other control strategy
can realize a better operational cost which means that the
novel multi-agent system can reach the global optimal point
as the original game depicted in Sec III. And the algorithm is
capable of optimizing under different weather conditions.

326

Number of players

3
Number of players

Fig. 4 shows the computational complexity comparison
between the two proposed methodologies. It shows that when
the number of players in a game increases, the time com-
plexity of the reinforcement learning based game can be
approximated as a linear function, while the time complexity
of the game theory can be approximated as an exponen-
tial function. When there are just two or three players in
a game, the computation time for the proposed methodol-
ogy in Sec III is smaller than the methodology described
in Sec IV. As the number of players increases, the rein-
forcement learning based algorithm shows its undefeatable
advantage compared with the algorithm based on game theory
solely.

VI. CONCLUSION

In this paper, we propose a multi-agent energy cost game
and multi-agent reinforcement learning with discounted Q
factor hybrid architecture. To achieve our goal, several ana-
lytical models are introduced and investigated in this paper.
In terms of optimization results, the proposed hybrid system
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can achieve the same optimal results as the original energy
cost game algorithm. However, from computational com-
plexity perspective, the hybrid methodology can deal with
the “‘curse of dimensionality” and make the computational
load decrease dramatically. The simulation results prove the
performance of our proposed architecture.

APPENDIX I. PROOF OF THEOREM 1

In light of Lemma 1, the feasible set of (V) is nonempty as for
every finite non co-operative game a Nash equilibrium exists.
Further let S be the feasible region for (W), then we have:

mi
ming 1 mes D (¥ =D 8™ sh) = 0. (36)
ieN j=1

Thus, if o* is a Nash equilibrium it is feasible for (¥), and
from (1),

Y * =@ =0

ieN

37

yielding that o* is an optimal solution of ().

Conversely, suppose (o, ¥ *, ..., y™) is an optimal solu-
tion of (W) then it satisfies (22) to (24).

By virtue of (22), Y,y (8'( ™, s/i.)).

But according to the existence theorem of Nash equilib-
rium, there must exist at least one (c, yl, ..., y") feasible

for (W) with ",y (¥’ — 8/(@)) = 0. So for (a, y1*, ..., y"™)
to be a global minimum for (W),
Y @) —y*) =0 (38)

ieN
Consequently y* is an Nash equilibrium of game 1,
on account of Lemma 1. The payoff 8 is obviously the
optimal expected payoff to player i.
We see that the problem of computing a Nash equilibrium
of ¢ reduces to that of solving the optimization problem ()
with optimal value zero.
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