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Abstract: In the AdS/CFT correspondence, amplitudes associated to connected bulk

manifolds with disconnected boundaries have presented a longstanding mystery. A possible

interpretation is that they reflect the effects of averaging over an ensemble of boundary

theories. But in examples in dimension D ≥ 3, an appropriate ensemble of boundary

theories does not exist. Here we sharpen the puzzle by identifying a class of “fixed energy”

or “sub-threshold” observables that we claim do not show effects of ensemble averaging.

These are amplitudes that involve states that are above the ground state by only a fixed

amount in the large N limit, and in particular are far from being black hole states. To

support our claim, we explore the example of D = 3, and show that connected solutions of

Einstein’s equations with disconnected boundary never contribute to these observables. To

demonstrate this requires some novel results about the renormalized volume of a hyperbolic

three-manifold, which we prove using modern methods in hyperbolic geometry. Why then

do any observables show apparent ensemble averaging? We propose that this reflects the

chaotic nature of black hole physics and the fact that the Hilbert space describing a black

hole does not have a large N limit.
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1 Introduction

Since early days of the AdS/CFT correspondence [1], there has been a puzzle of how to

interpret Euclidean amplitudes computed on a connected bulk manifold X whose confor-

mal boundary M is not connected [2, 3]. If M is connected, the sum over all choices of X

is interpreted in the AdS/CFT correspondence as computing what we will call Z(M), the

conformal field theory (CFT) partition function on M . What if M has, say, two connected

components M1,M2? The sum over all choices of X whose conformal boundary is the

disjoint union M = M1 tM2 appears to compute, in some sense, a connected correlation

function 〈Z(M1)Z(M2)〉c = 〈Z(M1)Z(M2)〉− 〈Z(M1)〉〈Z(M2)〉 between the two CFT par-

tition functions Z(M1) and Z(M2). We will refer to such connected correlation functions
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between different boundaries (possibly with operator insertions on the boundaries) as “con-

nected amplitudes with disconnected boundaries” or CADB amplitudes for short. CADB

amplitudes are not a standard concept in CFT or indeed in any Euclidean quantum field

theory, so the fact that AdS/CFT duality seems to give a way to calculate them has been

puzzling.

A new perspective came from the discovery that a simple, soluble model, namely JT

gravity in two dimensions, computes an ensemble average in a random matrix theory [4]. A

two-dimensional gravitational theory is expected to have a dual description by an ordinary

quantum theory on the 1-dimensional boundary of a 2-dimensional world. A compact

connected 1-manifold is a circle S, say of circumference β, and the partition function is then

Z(β) = Tr exp(−βH), where H is the Hamiltonian of the boundary theory. However, it

turns out that the theory dual to JT gravity does not have a unique Hamiltonian H; rather,

H is drawn from a random matrix ensemble. This provides a rationale for the existence

of connected correlation functions between observables associated to different boundary

circles. Such amplitudes can be generated in the boundary description by averaging over the

random matrix H. This discovery revived interest in much older ideas about gravitational

wormholes and ensemble averages [5–7].

But the interpretation of CADB amplitudes in terms of ensemble averages raises an

immediate paradox. In many basic examples of AdS/CFT duality, it is believed that the

parameters on which the boundary theory depends are all known and all have a known

interpretation in terms of the bulk theory. The duality seems to say that a specific boundary

theory, with specific values of the parameters, is dual to a specific bulk theory with the

same parameters. For instance, two of the original examples of AdS/CFT duality are the

maximally supersymmetric models based on AdS4× S7 and AdS7× S4. In these examples,

the only parameter that the boundary CFT depends on is a single positive integer N . The

bulk theory also depends on N ; in fact, Newton’s constant G varies as a negative power of

N , and N can be measured as the integral of a certain seven-form or four-form on S7 or

S4. The duality claims an equivalence between bulk and boundary theories for each choice

of N ; and for given N , there appears to be nothing else one could be averaging over in

an ensemble. So how can CADB amplitudes in these theories be interpreted in terms of

averaging over an ensemble?

We will try to shed some light on this question by arguing that when the Anti de

Sitter dimension D is at least 3, and therefore the boundary dimension d = D − 1 is at

least 2, certain important observables, which we will call fixed energy observables, are not

affected by ensemble averaging; if one considers only these observables, one will see no

sign of ensemble averaging. These are observables that can be defined just in terms of the

energy and couplings of states whose energy remains above the ground state by only a

finite amount as N becomes large. In particular these observables involve states that are

far below the black hole threshold, which in the AdS/CFT correspondence is the energy of

the Hawking-Page transition [8] from a thermal gas in Anti de Sitter space to a black hole;

in gauge theory examples, this can also be interpreted as a deconfining transition [9]. The

fixed energy observables are described more precisely in section 2.1. Another formulation

of our proposal involves integrability. Some important examples of AdS/CFT duality are
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integrable in the large N limit, and apparently also in an asymptotic expansion around that

limit; for an extensive review, see [10]. Our proposal is that precisely the observables that

are accessible via integrability are not affected by ensemble averaging. This is consistent

with the fact that calculations based on integrability do appear to describe a definite CFT,

not an ensemble average.

In the case D = 3, d = 2, our proposal has implications for hyperbolic geometry that

are explained in section 2.3, so we can test the proposal by verifying those predictions.

Thus, we consider examples of AdS/CFT duality in which the bulk spacetime is asymp-

totic to AdS3 × B for some compact manifold B. The choice of B will play no role in

our discussion; various examples have been much studied, including S3 ×T4, S3 ×K3, and

S3 × S3 × S1 (Sn is an n-sphere, Tn is an n-torus, and K3 is the complex surface of that

name). Let M1,M2, · · · ,Mn be a collection of Riemann surfaces. If X is a hyperbolic

three-manifold whose conformal boundary is a disjoint union M1 tM2 t · · · tMn, then a

path integral on X × B contributes to a connected amplitude 〈Z(M1)Z(M2) · · ·Z(Mn)〉c.
For small G or equivalently large N , the contribution is proportional asymptotically to

exp(−VR(X)/4πG`2), where VR(X) is the renormalized volume of X, and `, which we

assume much larger than G, is the AdS radius of curvature. We will deduce the statement

that fixed energy amplitudes do not receive contributions from manifolds with disconnected

boundary from properties of renormalized volumes. Specifically, we will show that a hy-

perbolic three-manifold X contributes to a fixed energy amplitude on a Riemann surface

M only if the boundary of X is connected and consists only of M . An overview of the

mathematical arguments is given in section 3; details appear in appendix A.

Even if X has connected boundary M , it is not necessarily true that X contributes

to fixed energy amplitudes on M . To contribute to such amplitudes, X must be a “han-

dlebody” or Schottky manifold. This means that for some embedding of M in R3, X is

topologically equivalent to the interior of M . In other words, we will find that only the sim-

plest hyperbolic three-manifolds with boundary M contribute to fixed energy amplitudes

on M .

We hope that these statements about hyperbolic three-manifolds are illustrating a

general lesson that fixed energy observables are not subject to ensemble averaging, but a

number of caveats are necessary. First, we consider only the case D = 3, d = 2. Though we

suspect that a similar picture holds for larger values of D, to show this will require more

work with both the physics and the classical geometry. Second, our main arguments concern

the case that X is a classical solution of Einstein’s equations, that is, a hyperbolic three-

manifold. However, it is believed that in some cases, non-solutions must be considered.1

Since little is known about what non-solutions are relevant in general, we cannot make a

systematic analysis. However, we will consider the few examples that have been analyzed

in the literature, namely R× T2, studied in [12], and Seifert fibered manifolds, studied in

1In at least some cases, these non-solutions can be interpreted as critical points of the action at infinity

(see section 4.2 of [11] for discussion), as opposed to classical solutions, which are ordinary critical points.

They can also possibly be interpreted, at least in some cases, as complex critical points (critical points

of the analytic continuation of the Einstein action to a holomorphic function of a complex-valued metric

tensor on X).
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[13]. The known and conjectured results are consistent with the claim that fixed energy

observables do not show apparent ensemble averaging. Finally, even if one restricts to

classical solutions, there is no need to consider only spacetimes of the product form X×B;

one could consider a more general ten-manifold with the same asymptotic behavior. Little

is known about possible solutions of this more general form, and we are not in a position

to prove that they do not contribute to fixed energy CADB amplitudes.

Assuming that fixed energy observables indeed do not have CADB contributions, this

is a strong indication that in AdS/CFT duality, there is no ensemble average over unknown

parameters. It would be very hard for such an average not to affect fixed energy observables.

Given this, why do amplitudes that involve black hole states have CADB contributions?

This question will be discussed in section 4. We propose that this phenomenon reflects the

following two points: (1) black hole physics is highly chaotic [14]; (2) the Hamiltonian and

Hilbert space that describe a single black hole apparently do not have a large N or small

G limit. The first of these assertions is well-known in the present context and was a large

part of the motivation for the work that eventually led to the interpretation of JT gravity

in terms of an ensemble average [4]. The second assertion, which has not been considered

in the present context, is a negative one; since the entropy of a black hole grows as a

power of N (as N2 in the case of N = 4 super Yang-Mills in four dimensions), it is hard

to see in what sense the Hilbert space describing a black hole could have a large N limit,

and the literature certainly does not contain any proposal for such a limit. See [15] for

more discussion. (By contrast, the thermofield double, which is dual to an entangled pair of

black holes [16], does have a large N limit.) Point (1) means that the Hamiltonian HN that

describes black holes of a given energy for a given value of N can be viewed as a very large

pseudorandom matrix, which will look like a random matrix in any standard calculation.

Point (2) suggests that for N 6= N ′, even if |N ′ −N | � N , HN and HN ′ can be viewed to

a good approximation as independent draws from a random matrix ensemble. If so, then

quantities that depend on HN , such as the partition function, will be smooth functions of

N only to the extent that they are self-averaging in random matrix theory. (In random

matrix theory, a quantity is called self-averaging if it has almost the same value for almost

any draw from a given random matrix ensemble.) Quantities that are not self-averaging in

random matrix theory will depend erratically on N or G. With present techniques, what

we know how to calculate from the gravitational path integral are smooth functions of N

or G, and given the facts just stated, above the Hawking-Page transition, we can only

calculate quantities that are self-averaging in random matrix theory.2 If it is possible to

compute erratically varying quantities from a gravitational path integral, this will involve

an unfamiliar type of path integral that is not dominated by a simple sum over critical

points, not even critical points at infinity. In random matrix theory, CADB amplitudes

make sense and are sometimes self-averaging; when that is the case, there can be a simple

way to calculate them from the gravitational path integral. A shorthand way to summarize

the proposal made here is that the ensemble averaging that is seen in gravitational path

2If a quantity is not self-averaging but does have a nonzero average in random matrix theory, it may be

possible to compute this average. Examples are discussed in [17].
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integral calculations is simply an averaging over nearby values of N to eliminate erratic

fluctuations. This makes sense as a general proposal because in all known examples of

AdS/CFT duality for D ≥ 3, G varies inversely with one or more integers N .

We should stress again that we unfortunately do not know for sure how to extrapolate

from the specific results we will prove about hyperbolic three-manifolds to a general lesson

about AdS/CFT duality. As noted previously, in some important examples of AdS/CFT

duality, states whose energy above the ground state is fixed for N → ∞ are described by

an integrable system.3 Given this, and since integrability is the antithesis of chaos, and

given also the close relation of apparent ensemble averaging to chaos, the safest conjecture

in the context of the present article is that energies and couplings of fixed energy states

are not affected by apparent ensemble averaging. Thus a conservative title for this article

would be “No Ensemble Averaging at Fixed Energy Above the Ground State.” However,

in practice, in a theory that can be well approximated by pure gravity up to the black hole

threshold, the detailed results we obtain in section 3 are valid for any state that is below

that threshold; therefore, especially in section 3, when discussing classical solutions of pure

gravity, we use the language of sub-threshold states, rather than fixed energy states. We

should note, though, that in a theory that can be approximated by pure gravity up to the

black hole threshold, the sub-threshold states are all Virasoro descendants of the identity,

which explains why their couplings behave similarly to those of the fixed energy states.

After v1 of this paper was submitted to the arXiv, there appeared a very interesting

article [18] on couplings in 3d gravity of states whose energy, in the large N limit, is above

the ground state by a fixed fraction – positive but less than 1 – of the energy required to

make a black hole. (This regime might be similar to the regime mentioned in footnote 3

with k ∼ N .) Such states could be solitons, for example. Couplings of such states do show

apparent ensemble averaging. A possible interpretation, in the spirit of section 4, is that

couplings of these states are described in the semiclassical limit by the nonlinear gravity

or supergravity theory, which (if it has the assumed states) is not integrable and is likely

to lead to classical and quantum chaos.

2 Volumes and Fixed Energy Amplitudes

2.1 Preliminaries

As was remarked in the introduction, known examples of AdS/CFT duality in D ≥ 3

always depend on one or more integers with an inverse relation to Newton’s constant G.

For example, four-dimensional maximally supersymmetric Yang-Mills theory with gauge

group SU(N) has a dual description in AdS5×S5 with G ∼ 1/N2. In examples with D = 3,

3 As pointed out to us by J. Maldacena, even when there is no integrable system, the spectrum

of fixed energy states is never truly chaotic, since for large N the dimension of a multi-trace operator

TrO1 TrO2 · · ·TrOk is simply the sum of the dimensions of the individual factors. This assumes that the

number k of factors is kept fixed for N →∞. For k ∼ N , one enters a different regime in which nonlinear

interactions are important in the large N limit, potentially leading to classical and quantum chaos (though

in general probably not the maximal chaos of black hole physics).
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d = 2, which will be our main focus in this article, one has4

G =
3`

2c
, (2.1)

where c is the central charge of the boundary CFT, and ` is the radius of curvature of

the AdS3 space. For D = 3, d = 2, the “large N limit” is a limit in which c is large,

and therefore G � `; that last condition enables gravity to be treated semiclassically, by

summing over classical solutions, as we will assume in this article. For instance, in one

much-studied family of models, c = 6Q1Q5, where Q1 and Q5 are integer-valued one-brane

and five-brane charges. In that example, by “large N limit,” we mean the limit in which

Q1 and Q5 are taken to be large, with a fixed ratio, ensuring, in particular, that c is large.

In a d-dimensional CFT, a local operator O is inserted in a correlation function at

a point p in a d-manifold M . A local operator O has a dimension ∆, which determines

how it behaves under a conformal transformation that rescales the tangent space at p, and

it transforms in an irreducible representation J of the group SO(d) of rotations around

the point p, or (in a theory with fermions) its double cover Spin(d). J is called the spin

of the operator. In our main example of d = 2, the group Spin(2) is abelian and J can

be viewed as an integer or half-integer, an element of 1
2Z. In a CFT that participates in

AdS/CFT duality, the dimensions ∆i and representations Ji of local operators Oi have a

large N limit. This is a basic prediction of the duality, and in gauge theory examples in

d = 4 it is a consequence of the planar diagram expansion [20]. There is precisely one

local operator of dimension 0, namely the identity operator 1, which transforms in a trivial

1-dimensional representation of Spin(d). The other local operators Oi, i = 1, 2, · · · have

positive dimensions and can be labeled in order of increasing dimension 0 < ∆1 ≤ ∆2 ≤ · · · .
By the operator-state correspondence of CFT, local operators correspond to Hilbert

space states if a CFT is quantized on a spatial manifold Sd−1 (with a round metric). For

odd d, the identity operator corresponds to a state of energy 0, but for even d the identity

operator corresponds to a state with an energy that is determined by the anomaly in a

conformal mapping from Rd with a point removed to R×Sd−1. We will be mainly interested

in d = 2, in which case the identity operator corresponds to a state of energy

E0 = − c

12
. (2.2)

Importantly, this value is negative and, in the large N limit, it is large. That will lead

to a prediction that certain renormalized volumes of three-manifolds should go to −∞
in appropriate limits. Any other operator Oi corresponds to a state (more precisely a

collection of states transforming in an irreducible representation Ji of Spin(d)) of energy

Ei = E0 + ∆i. (2.3)

Thus the dimension ∆i of an operator is the same as the excitation energy of the corre-

sponding state above the ground state. ∆i is by definition the energy of the ith excited state,

and in the context of AdS/CFT duality, it has a limit for c → ∞. So in our terminology,

the ith excited state for each i is a fixed energy state.

4This formula was actually discovered before the general understanding of AdS/CFT duality [19].
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∆i and Ji are the first basic examples of fixed energy observables that we propose

are not subject to ensemble averaging. The other such observables are essentially the

trilinear correlation functions of the Oi. The Oi can be normalized to put their two-point

functions in a standard form (for spinless operators, the standard form is 〈Oi(x)Oj(y)〉 =

δij/|x− y|2∆i) and then the trilinear or three-point correlation functions5

λijk = 〈Oi(x)Oj(y)Ok(z)〉 (2.4)

are important observables of a CFT. We propose that also the λijk are not affected by

ensemble averaging.

In d = 2, all observables of a CFT are completely determined, in principle, in terms of

the ∆i, Ji, and λijk. This can be proved by using the fact that any two-manifold without

boundary can be built by gluing together three-holed spheres, a fact that we will exploit

in section 2.3. As a result, in d = 2, we expect that all observables not subject to ensemble

averaging are actually determined by ∆i, Ji, and λijk. In d = 2, a complete set of conditions

on ∆i, Ji, and λijk so that they are CFT data is known in principle (but often hard to use

in practice). Above d = 2, none of these statements have equally simple analogs, and in

particular we do not know whether to expect that the ∆i, Ji, and λijk are a complete set

of observables that are free of ensemble averaging.

If ∆i, Ji, and λijk are a complete set of CFT observables in d = 2, and are not subject

to ensemble averaging, then why in d = 2 do any observables appear to be subject to

ensemble averaging? The answer to this question depends on the fact that the observables

that appear to be subject to ensemble averaging are the ones that receive contributions

from black hole states. We will refer to a spacetime asymptotic to AdS3 at spatial infinity as

an AAdS3 spacetime. The Einstein equations have an AAdS3 black hole solution, namely

the BTZ black hole [21]. It was understood in the original paper on the BTZ black hole

that if energy is defined by the usual ADM recipe of general relativity, then AdS3 itself has

negative energy. Later it was understood [22] that this negative energy can be understood

in terms of the central charge of the BTZ black hole. Thus AdS3 itself corresponds to the

ground state of the CFT, with energy

E0 = − c

12
, (2.5)

with c = 3`/2G [19]. Small perturbations of AdS3 give the states that have energy −c/12+

∆i, with fixed ∆i and large c. We get to the black hole regime if we take c large with

∆ � c/12, meaning that the total energy E0 + ∆ is large and positive. In that regime,

the density of states per unit energy is exponentially large; it is eS(E), where S(E), which

is the Bekenstein-Hawking entropy of the black hole at energy E, is of order c for large c

and fixed E/c.

For any given value of c or N , there is no useful notion of whether a given state is a

black hole or not. The black hole region is defined only in terms of a limiting process: if we

5In the case of spinless conformal primary fields, these three-point functions depend only on the chosen

points x, y, z. More generally, one has to pick local parameters at x, y, z. The details are not important in

the present article.

– 7 –



go to large c with fixed ∆, we get an ordinary state, and if we go to large c with E/c fixed

and positive, we get a black hole. The distinction is only sharp in the limit of large c, but

because the gravitational calculations that we know how to perform involve an asymptotic

expansion at large c, the distinction is quite sharp in computations that we can actually

perform.

Concretely, the Hawking-Page phase transition occurs as follows. In AdS/CFT duality,

the partition function on a boundary manifold M is computed by summing over bulk

manifolds with conformal boundary M . In stating the following, we will assume that d = 2

and that we can assume the bulk manifold is a hyperbolic three-manifold X with conformal

boundary M . (As explained in the introduction, in general there are other possibilities.)

The contribution of a given X is, for small G, asymptotic to exp(−VR(X)/4πG`2). That

simple exponential is multiplied by an asymptotic series of quantum corrections; this series

depends only on powers of G, not an exponential of 1/G. The choice of X depends on the

complex structure of M , and therefore so does the volume VR(X). For example, if we are

trying to compute Tr e−βH , we take M to be a torus with a complex structure that depends

on β (see section 2.2 for more detail). Then the renormalized volume VR(X) depends on

β and we can write it more explicitly as VR(X,β). Since we have to sum over the choices

of X to compute Tr e−βH , we get

Tr e−βH ∼
∑
α

exp(−VR(Xα, β)/4G) · Fα(β,G), (2.6)

where the sum runs over the possible choices of three-manifold Xα, and for each α, Fα(β,G)

is the corresponding series of quantum corrections. For any given value of c or G, the sum

in eqn. (2.6) just produces an analytic function of β. However, the asymptotic behavior

for c → ∞ or G → 0 is dominated by the term in the sum with the smallest possible

VR(Xα, β). As β is varied, there can be a “crossover” with a jump in the choice of X that

minimizes VR(X,β) and therefore a discontinuous change in the asymptotic behavior of the

partition function for small G. That jump is the Hawking-Page transition. What has just

been explained (or its analog in higher dimensions) was actually the original explanation

of the Hawking-Page transition [8], long before AdS/CFT duality was understood.

2.2 Review Of The Renormalized Volume

The relation of the renormalized volume of a hyperbolic three-manifold to the negative

ground state energy of a two-dimensional CFT will be important in what follows, so we

will review it in detail. First we recall the relation between the Einstein action and the

renormalized volume.

With negative cosmological constant, the Einstein action in a three-dimensional space-

time X of Euclidean signature, with boundary ∂X, is

I = − 1

16πG

∫
d3x
√
g

(
R+

2

`2

)
− 1

8πG

∫
∂X

d2x
√
γK, (2.7)

where R is the Ricci scalar of X, and γ and K are the induced metric and the trace of

the second fundamental form of ∂X (Rγ will denote the scalar curvature of γ). The last
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term is the Gibbons-Hawking-York (GHY) boundary term. Using Einstein’s equations

Rij − 1
2gijR −

1
`2
gij = 0, one can rewrite the bulk part of the action as a multiple of the

volume of X:

I =
1

4πG`2

∫
X

d3x
√
g − 1

8πG

∫
∂X

d2x
√
hK, (2.8)

To this action, one can add “counterterms,” which are simply local integrals over ∂X of

invariant functions of the induced metric. For our purposes there are two relevant terms:∫
∂X

d2x
√
γ
( α
`2

+ λRγ

)
, α, λ ∈ R. (2.9)

One adjusts α and λ to cancel the divergent part of the action (2.7) and to make the action

conformally invariant, that is, invariant under Weyl transformations of the boundary metric

γ, apart from the usual c-number Weyl anomaly of two-dimensional CFT. The bulk term in

eqn. (2.8) is formally V/4πG, where V is the volume of X. For a hyperbolic three-manifold

with non-empty conformal boundary, this volume is divergent. After renormalization it will

be replaced with a renormalized volume VR. On the other hand, it turns out that in D = 3,

the GHY boundary term is entirely canceled by renormalization. So the renormalized action

will be just IR = VR/4πG.

A convenient reference on the necessary computation is [23], which we will follow here

(with minor changes of notation). To evaluate the action on an AAdS3 spacetime, one puts

the metric of X in the form

ds2 =
`2

4ρ2
dρ2 +

1

ρ

∑
i=1,2

gij(x, ρ)dxidxj (2.10)

near the conformal boundary of X, which in these coordinates is at ρ = 0. In two dimen-

sions, g(x, ρ) has an expansion

g(x, ρ) = g(0)(x) + ρg(2)(x) + ρ log ρ h(2)(x) +O(ρ2 log ρ). (2.11)

The only facts we need to know from the Einstein equations (eqn. (7) of [23]) are that

gkl(0)g(2)kl =
`2

2
R(0)

gkl(0)h(2)kl = 0, (2.12)

where R(0) is the Ricci scalar of the metric g(0).

The first step in defining the renormalized volume is to “cut off” X by restricting to

the region Xε with ρ ≥ ε; to define VR, one computes the volume of Xε and then takes

the limit ε→ 0 after adjusting the counterterms of eqn. (2.9) to cancel divergences. Using

the form (2.10) of the metric with the expansion (2.11) together with (2.12), one finds the

divergent parts in the volume V (Xε):

V (Xε) =

∫
ε
dρ

∫
∂Xε

d2x
√

det g(0)

(
`

ρ2
+
`3

4ρ
R(0) +O(log ρ)

)
=
`

ε

∫
∂Xε

d2x
√

det g(0) +
`3 log(1/ε)

4

∫
∂Xε

d2x
√

det g(0)R(0) + finite. (2.13)
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Subtracting the divergent part, we arrive at the definition of the renormalized volume of

X:6

VR(X) = lim
ε→0

(
V (Xε)−

`

ε

∫
∂Xε

d2x
√

det g(0) −
`3 log(1/ε)

4

∫
∂Xε

d2x
√

det g(0)R(0)

)
.

(2.14)

The GHY boundary term can be analyzed similarly. One finds with the help of eqn.

(2.12) that the GHY boundary term in the action of Xε is a linear combination of the

two counterterms in eqn. (2.9) (plus a remainder that vanishes for ε → 0). Hence the

GHY boundary term does not contribute to the renormalized Einstein action, which is just

IR = VR/4πG`
2.

Now we can understand in terms of the renormalized volume the fact that Tr e−βH

diverges for large β and large c as eβc/12 = eβ`/8G. To compute Tr e−βH , we take the

conformal boundary to be a two-torus M parametrized by φ and t with metric ds2 =

dφ2 + dt2 and periodicities7 φ ∼= φ + 2π and t ∼= t + β. To compute Tr e−βH , we have to

sum over hyperbolic three-manifolds with boundary M . The dominant one for large β is

just AdS3 itself with a periodic identification t ∼= t+β, making what we might call thermal

AdS3. The metric is8

ds2 =

(
r2

`2
+ 1

)
`2dt2 +

dr2

r2

`2
+ 1

+ r2dφ2. (2.15)

To put this in the desired form of eqn. (2.10), we have to solve

`

2

dρ

ρ
= − dr

( r
2

`2
+ 1)1/2

, (2.16)

leading to ρ = 1
r2 − `2

2r4 + · · · or

r2 =
1

ρ
− `2/2 +O(ρ). (2.17)

The cutoff at ρ ≥ ε therefore corresponds to r ≤ rm = 1/ε− `2/2, so the volume of Xε is

V (Xε) =

∫ rm

0
dr

∫ 2π

0
dφ

∫ β

0
dt
√

det g = `

∫ rm

0
dr

∫ 2π

0
dφ

∫ β

0
dt r = πβ

(
`

ε
− `3

2

)
.

(2.18)

Subtracting the divergent part, we are left with VR(X) = −πβ`3/2, so exp(−VR/4πG`2) =

exp(β`/8G), as expected.

6The conformal anomaly arises from the logarithmically divergent term. If we repeat the calculation

after making a Weyl rescaling of the boundary metric g(0), the renormalized volume VR(X) is shifted by

the conformal anomaly.
7φ should have period 2π because the statement that the ground state energy of a CFT is −c/12 assumes

that the CFT is quantized on a circle of circumference 2π, here parametrized by φ. To compute Tr e−βH ,

we propagate the φ circle though imaginary time β, so we need t ∼= t+ β.
8This metric is often written in terms of t̃ = `t. Our normalization ensures that the metric on the torus

at infinity is conformal to dt2 + dφ2.
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The moral of the story is that the large negative CFT ground state energy −c/12 for

large c corresponds to the fact that for large β, VR = −πβ`3/2 becomes very negative.

Generalizing this, our hypothesis that there is no ensemble averaging for fixed energy ob-

servables leads to predictions about precisely when VR(X), for a hyperbolic three-manifold

X, can go to −∞. This will be explained in section 2.3. But first, we will discuss other

contributions to Tr e−βH to illustrate the fact that in most cases, VR(X) does not go to

−∞ when β becomes large.

Before being general, we will describe the special case that is actually important in

understanding the Hawking-Page phase transition. In a CFT, we are free to rescale the

metric of the torus M , so instead of saying that φ and t have periods 2π and β, we could

rescale the metric and say that the periods are 4π2/β and 2π. Now we can write down the

same metric as before but with t and φ exchanged:

ds2 =

(
r2

`2
+ 1

)
`2dφ2 +

dr2

r2

`2
+ 1

+ r2dt2. (2.19)

Assuming that t is regarded as the Euclidean time direction, this is the Euclidean version of

the BTZ black hole; we get the actual BTZ black hole if we continue to Lorentz signature9

by t → it. Obviously, the renormalized volume can be evaluated just as before, but with

β replaced by 4π2/β. So the leading black hole contribution to Tr e−βH is exp(π2`/2βG),

obtained from the previous exp(β`/8G) by β → 4π2/β. Clearly, for G asymptotically

small, exp(β`/8G) and exp(π2`/2βG) exchange dominance at β = 2π, and this is the

Hawking-Page phase transition.

We can generalize this slightly to describe all hyperbolic three-manifolds whose con-

formal boundary is the torus M . First, going back to AdS3, notice that we can slightly

generalize the equivalence relation on φ and t that we used before so that the torus at

infinity is defined by

(φ, t) ∼= (φ+ 2π, t)

(φ, t) ∼= (φ+ α, t+ β). (2.20)

A shift in imaginary time by β is now accompanied by a rotation of the circle parametrized

by φ by an angle α, so a CFT path integral on this torus computes Tr e−βH+iαP , where P

is the operator that generates a rotation of the circle. The eigenvalues of H and P on a

state that corresponds to an operator of dimension ∆ and spin J are − c
12 + ∆ and J , so

Tr e−βH+iαP = eβc/12
∞∑
i=0

e−β∆i+iαJi . (2.21)

9If we set r2 + `2 = R2 and substitute t→ it, the line element (2.19) becomes R2dφ2 + `2 dR2

R2−`2 − (R2−
`2)dt2. This is a commonly written form of the BTZ black hole metric (with zero angular momentum) up

to constant rescalings of R,φ, and t. Note that in this way of writing the BTZ metric, the black hole mass

is encoded entirely in the period of the φ variable. The black hole horizon is at R = `, where the coefficient

of dt2 vanishes. As usual the vanishing of this coefficient represents only a breakdown of the coordinate

system, and the Lorentz signature geometry has a real analytic continuation beyond this horizon.
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The computation of VR is not affected by the angle α, so VR = −πβ`3/2, independent of α.

This agrees with the fact that the exponentially growing factor eβc/12 in the CFT partition

function (2.21) does not depend on α, since the spin of the ground state is J0 = 0.

If we set z = (φ+ it)/2π, we see that the two-torus that is defined in eqn. (2.20) is the

quotient of the complex z-plane by the lattice generated by 1 and (iβ + α)/2π. So it can

be viewed as a complex elliptic curve with the modular parameter

τ =
iβ + α

2π
. (2.22)

In this language, the formula for the renormalized volume becomes

VR(τ) = −π2`3Im(τ). (2.23)

Let u be the image in the boundary torus M of a straight line from z = 0 to z = 1, and

let v be the image of a straight line from z = 0 to z = τ . Thus u and v are circles in M . In

the thermal AdS3 space of eqn. (2.15), u is the boundary of a disc and v is not.10 In the

Euclidean black hole, since it is defined by exchanging t and φ, the roles are reversed: v is

the boundary of a disc and u is not. More generally, if c, d are any relatively prime integers,

there exists a hyperbolic three-manifold Xc,d with boundary M such that cu + dv is the

boundary of a disc in Xc,d and other linear combinations are not. In this notation, X0,1 is

thermal AdS3 and X1,0 is the Euclidean black hole. Generalizing the way we introduced

the Euclidean black hole, Xc,d is defined by replacing the angles 2πt/β and φ with integer

linear combinations of themselves. In other words, Xc,d is actually the same manifold as

the original thermal AdS3 space, but with the boundary parametrized differently. The

Xc,d are actually the complete set of hyperbolic three-manifolds with boundary M . The

renormalized volume of Xc,d is

VR(Xc,d) = −π2`3
Im(τ)

|cτ + d|2
. (2.24)

For our purposes, what is notable about this formula is that except in the original case

c = 0, d = 1 of thermal AdS3, it never happens that VR → −∞ for β → ∞. On the

contrary, whenever c 6= 0, eqn. (2.14) implies that VR → 0 for β → ∞. Therefore, the

thermal AdS3 space X0,1 is the only one of these manifolds that contributes to the partition

function of the fixed energy states, or indeed to any states below the black hole threshold.

None of the observations in this section are in any way new. The computation of the

renormalized volume of thermal AdS3 and the BTZ black hole is equivalent to the analysis

of ADM masses in the original BTZ paper [21]. As noted earlier, the CFT interpretation

of the result of this computation goes back to [22], and in turn to the construction of a

boundary stress tensor [19]. Summation over the manifolds Xc,d has been considered in

several previous papers – in [24, 25] to count certain supersymmetric black hole states in

AdS3, and in [26] in an attempt to construct a partition function of three-dimensional pure

gravity. The special role of X0,1 was part of those analyses.

10The coordinates r, φ can be viewed as polar coordinates for a copy of R2. Then u is a large circle in

this R2 and therefore is the boundary of a disc.
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Figure 1. A three-holed sphere, with its boundaries labeled by fixed energy states i, j, k.

Figure 2. A genus two surface M with three nonintersecting and homotopically independent one-

cycles labeled A, B, and C. M is the conformal boundary of a hyperbolic three-manifold X. If X

is such that VR(X)→ −∞ when A is pinched, then the contribution of X to Z(M) has a part that

describes propagation through A of a fixed energy state. In general, however, black hole states are

propagating through B and C and this amplitude is subject to ensemble averaging. If we stipulate

that VR(X)→ −∞ when any of A, B, or C is pinched, we get an amplitude that has a contribution

that describes fixed energy states propagating through each of A, B, and C, and interacting via two

three-holed spheres, one to the left of A and one to the right. A contribution of this type, according

to our conjecture, should not be subject to ensemble averaging. So this behavior of VR(X) should

be possible only if the conformal boundary of X is connected.

2.3 Implications of The Conjecture For Hyperbolic Geometry

We have proposed that certain observables are not affected by ensemble averaging: the

excitation energies ∆i and spins Ji of the fixed energy states, and their trilinear couplings

λijk. Those couplings can be computed as three-point functions 〈OI(x)Oj(y)Ok(z)〉 on

S2. Another description will be more useful in what follows: because of the operator-state

correspondence of CFT, the λijk can also be computed by a path integral on a three-holed

sphere, with the fixed energy states i, j, k inserted on its boundaries (fig. 1).

In order to test our proposal using properties of hyperbolic three-manifolds, we want

to identify observables in genus g ≥ 2 that can be determined in terms of ∆i, Ji, and

λijk. Hopefully, the hyperbolic geometry will work out in such a way that amplitudes that

can be determined in terms of ∆i, Ji, and λijk receive contributions only from hyperbolic

manifolds with connected boundary.

To illustrate the idea, drawn in fig. 2 is a genus 2 surface M , along with three nonin-

tersecting and homotopically independent one-cycles A, B, and C. From a conformal point
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of view, it is equivalent to say that a one-cycle such as A is becoming short, or is being

“pinched,” or that the tube through A is becoming long. (We used this equivalence in sec-

tion 2.2 when we said that it is equivalent conformally to consider the circle parametrized

by t to be long, of circumference β � 1, or to consider the circle parametrized by φ to

be short, of circumference 4π2/β � 1.) When A is pinched or the tube is long, the CFT

partition function Z(M) grows exponentially, because of the negative CFT ground state

energy.

Now let X be a hyperbolic three-manifold that has M in its conformal boundary. If

the conformal boundary of X consists only of M , then the path integral ZX contributes

to Z(M). If the conformal boundary is M tM ′ for some M ′ (which may or may not be

connected), then ZX contributes to a connected correlation function 〈Z(M)Z(M ′)〉c. In

either case, we ask what happens when a one-cycle such as A or B or C is pinched. Does

ZX grow exponentially, reflecting in terms of the boundary CFT a sub-threshold state

propagating through the cycle that is being pinched?11

Since ZX is asymptotic for small G to exp(−VR/4πG), a necessary condition for ZX
to show exponential growth in the pinching limit is that VR(X) must go to −∞ in that

limit. In section 3 and appendix A we determine the condition on X such that VR(X)

goes to −∞ when a given boundary cycle A is pinched. The answer is that this occurs if

and only if A is the boundary of a disc in X. This generalizes the previously known facts

for genus 1 that were summarized in section 2.2: of the manifolds Xc,d, the only one with

the property that limβ→∞ VR(Xc,d) = −∞ is the thermal AdS3 space X0,1, and this is also

the only one in which the circle parametrized by φ (which is the one that is pinched for

β →∞) is the boundary of a disc. Mathematically, if a circle A in a component M of the

conformal boundary of X is the boundary of a disc in X (but not in M), then A is said

to be “compressible” in X. If M contains a compressible circle, then M itself is said to be

compressible.

In most cases, a given boundary circle A is not compressible, so ZX does not contribute

to an amplitude in which a sub-threshold state propagates through A. For many choices of

X, there is no compressible circle at all in a given boundary component M . (An example

is the Fuchsian manifold that we discuss later.) But even if A is compressible in X, X

typically does not contribute to an amplitude on M that we expect to be free of ensemble

averaging, because even if a sub-threshold state is propagating through A, there may be

black hole states propagating in the rest of the Riemann surface. For example, in fig. 2, even

if a sub-threshold state is propagating through A, the states propagating on the genus one

Riemann surfaces to the left and right of A may be black hole states. To identify something

that we expect to be free of ensemble averaging, we reason as follows. If we cut the genus

two surface M on the three nonintersecting and homotopically independent one-cycles A,

B, and C, it decomposes into the union of two three-holed spheres. A contribution to Z(M)

in which specified sub-threshold states i, j, k are propagating through A, B, and C can be

11In order for a state of fixed energy above the ground state to propagate through the cycle that is being

pinched, we need a stronger condition that ZX grows as eβc/12. It turns out, however, that the interesting

constraints on X arise if one merely asks for exponential growth of ZX , without specifying the rate, and

therefore it will not be important to distinguish fixed energy states from sub-threshold states.
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evaluated in terms of the dimensions and spins of the three states and the path integrals

on the two three-holed spheres, The boundaries of the two three-holed spheres are labeled

by the particular sub-threshold states that propagate through A, B, and C (in the example

sketched in the figure, if states i, j, k propagates respectively through A, B, and C, then the

labels are ijj for the three-holed sphere on the left and ikk for the three-holed sphere on the

right). The path integral on such a labeled three-holed sphere computes a trilinear coupling

of sub-threshold states. Since, according to our conjecture, the dimensions and spins of the

sub-threshold states and their trilinear couplings are all unaffected by ensemble averaging,

we expect that a contribution to Z(M) with sub-threshold states propagating through A,

B, and C is not subject to ensemble averaging. On the other hand, a necessary condition for

X to contribute to an amplitude with sub-threshold states propagating through each of A,

B, and C is that VR(X) must go to −∞ when any of A, B, or C is pinched. Equivalently, in

view of what has already been said, A, B, and C must all be compressible in X. Conversely,

if A, B, and C are all compressible in X, then VR(X) does go to −∞ when any of those

cycles is pinched. In that case, we expect that the conformal boundary of X is connected

and consists only of M , ensuring that X does not contribute to a connected amplitude

between disconnected boundaries.

This discussion has a straightforward generalization to higher genus. If a surface M

of genus g ≥ 2 is cut along 3g − 3 nonintersecting and homotopically independent circles

Aσ, σ = 1, · · · , 3g − 3, then it decomposes into a union of 2g − 2 three-holed spheres.

A contribution to Z(M) in which a sub-threshold state is propagating through each of

the Aσ, should, according to our conjecture, not be subject to ensemble averaging. For

a hyperbolic manifold X whose conformal boundary contains M to contribute to such an

amplitude, the Aσ must all be compressible in X. So we expect that if M contains 3g − 3

nonintersecting and homotopically independent circles Aσ that are all compressible in X,

then the conformal boundary of X consists only of M .

As we explain in section 3 and appendix A, this is true and in fact more is true.

If at least 3g − 5 homotopically independent and non-intersecting one-cycles in M are

compressible in X (or 3g − 6 of them for g ≥ 3), then the conformal boundary of X is

connected and consists only of M , and moreover X is a Schottky manifold. A Schottky

manifold is the simplest type of hyperbolic three-manifold. A Schottky manifold with

conformal boundary M is, topologically, the “interior” of M for some embedding of M

in R3. For example, the picture drawn in fig. 2 suggests an embedding of a genus two

surface in R3. The interior of M for this embedding is a three-manifold in which A, B, and

C are all compressible. Topologically, this interior is called a handlebody. A handlebody

with boundary M admits a hyperbolic metric with M as the conformal boundary (for any

choice of the conformal structure on M). Endowed with such a metric the handlebody is

called a Schottky manifold.

From what has just been explained, we learn, modulo the arguments in section 3 and

appendix A, that three-dimensional hyperbolic geometry, at least for the questions that we

have asked, is consistent with our hypothesis that certain AdS/CFT observables are not

affected by ensemble averaging.

Some of the points can be illustrated with the simple example of a Fuchsian manifold.
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This is a three-manifold that is topologically of the form X = M × R, where M is a

Riemann surface of genus g ≥ 2. X carries a hyperbolic metric of the form12

ds2 = `2
(
dt2 + cosh2 t dΩ2

)
, (2.25)

where dΩ2 is a metric on M of constant scalar curvature R = −2. The conformal boundary

of X consists of two copies of M , at t = −∞ and t = +∞, respectively; let us call these M1

and M2. M1 and M2 have the same complex structure since they have the same metric dΩ2.

The path integral on X contributes to a connected amplitude 〈Z(M1)Z(M2)〉c. However, a

simple calculation shows that VR(X) is a topological invariant, independent of the complex

structure of M1 and M2. VR never goes to −∞ regardless of how we vary the complex

structure of the boundary, so the path integral on X never shows the exponential growth

characteristic of a sub-threshold state.

The drawback of this simple example is that since M1 and M2 have the same metric,

we cannot vary their complex structures independently. What happens, for example, if

we pinch a cycle in M1 without changing M2? In fact, there is a more general family

of hyperbolic metrics on X such that the complex structures on M1 and M2 do vary

independently. These metrics are called quasi-Fuchsian, and unfortunately in a situation

that involves pinching on only one side, they are only known by existence proofs, not

explicit formulas. At any rate, no one-cycle in either M1 or M2 is compressible, so the

results of section 3 and appendix A imply that VR(X) never goes to −∞. Thus, although

X does contribute to a connected amplitude 〈Z(M1)Z(M2)〉c, its contribution only involves

black hole states, with no sub-threshold states appearing in any channel.

So far in this section, we have only considered the case of a surface of genus ≥ 2, and

in fact the case of genus 1 is exceptional. A hyperbolic three-manifold whose conformal

boundary contains a component of genus 1 is always one of the manifolds Xc,d that were

discussed in section 2.2. In particular, at the level of hyperbolic geometry there are no

disconnected amplitudes involving a torus T2. This is, however, not the whole story.

There is good reason to suspect [17] the existence in AdS/CFT models of a connected

correlation function 〈Z(M)Z(M ′)〉c where M and M ′ are tori, even though there are no

classical hyperbolic manifolds that can generate such a contribution. It has been argued in

[12] that a path integral on R×T2 contributes to 〈Z(M)Z(M ′)〉c, even though no classical

solution is available on this manifold. That paper actually contains in eqn. (3.56) an

interesting formula for the contribution of R × T2 to 〈Z(M)Z(M ′)〉c, with independent

complex structures on M and M ′. We do not know if this formula is precisely correct.

However, the formula is independent of G and in particular shows no exponential growth

for G→ 0. So if it is even qualitatively correct, the contribution of R×T2 to 〈Z(M)Z(M ′)〉c
is completely consistent with out conjectures.

12 The submanifold XC defined by t = 0 is totally geodesic and moreover is geodesically convex (any

geodesic in X between two points in XC is actually contained in XC). XC is called the “convex core” of

X, a notion that will be important in section 3. This example is exceptional, because XC has volume 0.

Apart from a Fuchsian manifold, or a solid torus, such as the BTZ black hole, the convex core of any other

hyperbolic three-manifold, including the quasi-Fuchsian ones that are discussed momentarily, has positive

volume. (The convex core is not defined for AdS3 itself.)
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There is one other case known of manifolds that do not admit classical hyperbolic

metrics but nonetheless make relatively well understood contributions to the path integral

of three-dimensional gravity with Λ < 0. These are Seifert fibered manifolds, whose contri-

butions were analyzed in [13] in the Kaluza-Klein limit, that is, the limit that the fiber is

small. As the remaining moduli are varied, these path integrals do not show contributions

of sub-threshold states.

3 Overview of Mathematical Arguments

In the following, M is an oriented two-manifold that is a component of the conformal

boundary of a hyperbolic three-manifold X. It is known by elementary arguments that

if M has genus 0, then X must be AdS3 itself, and if M has genus 1, X is one of the

manifolds Xc,d that were introduced in section 2.2. Therefore, we are primarily interested

in the case that M has genus at least 2. Such an M admits a hyperbolic metric of constant

scalar curvature R = −2; the space of such metrics, up to diffeomorphisms of M that are

isotopic to the identity, is the Teichmüller space T (M). As one approaches the boundary

of T (M), it is possible for the length of a simple closed geodesic γ to go to 0; we will say

that in that limit, γ is “pinched.” We say that a collection of embedded circles in M are

“independent” if they are non-intersecting and homotopically independent. If M has genus

g ≥ 2, a maximal set of independent circles in M consists of 3g − 3 circles, as in fig. 3. If

g = 1, a maximal set consists of just one circle. An embedded circle in M is compressible

in X if it is homotopically nontrivial in M but bounds a disc in X. As explained in more

detail in section 2.3, a Schottky manifold is topologically the “interior” of M , for some

embedding of M in R3. Topologically the Xc,d are solid tori, the genus 1 analogs of a

Schottky manifold.

The arguments of section 2 relied on two mathematical assertions:

Proposition 3.1. If a component M of the conformal boundary of X contains a collection

of at least 3g − 5 independent circles that are compressible in X, then the boundary of X

is connected and consists only of M , and moreover X is a Schottky manifold.

Theorem 3.2. In the limit that a simple closed geodesic γ ⊂M is pinched, the renormal-

ized volume VR(X) remains finite if γ is not compressible in X, and approaches −∞ if γ

is compressible in X.

Here we will give a very rough sketch of the proofs.13 Further detail is explained in

appendix A.

One important tool in the arguments is that, by varying the hyperbolic metric of X,

the conformal structure of M can be varied arbitrarily. Indeed, by a classic result, the

moduli space of hyperbolic metrics on X is the space of all complex structures on the

13The bound 3g− 5 in Proposition 3.1 is stronger than we actually needed in section 2, where a bound of

3g − 3 would have sufficed. We do not know if the stronger bound is significant in the AdS/CFT context.

In appendix A.6, we prove a slightly sharper bound for g ≥ 3 (Theorem A.4). Likewise Theorem 3.2 is

sharpened in Theorem A.15, as remarked at the end of this section.
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Figure 3. A surface M of genus g = 3, with 3g − 3 = 6 independent circles marked. Surgery on

A produces a surface M1 of genus g1 = g − 1 = 2. In passing to M1, A disappears, B becomes

nullhomotopic, and C and D become homotopic to each other, leaving three independent circles on

M1. Surgery on B leaves a surface M ′
1 of genus g′1 = 1 and a surface M ′′

1 of genus g′′1 = 2. Of the

original 6 independent circles on M , B disappears in the surgery, A remains on M ′
1, and C and D

become homotopic. We remain with 3g′′1 − 3 = 3 independent circles on M ′
2.

conformal boundary of X (whether that conformal boundary is connected or not) modulo

diffeomorphisms of the conformal boundary that extend over X.

Therefore, in discussing Proposition 3.1, we can pick the complex structure of M to be

such that the 3g − 5 independent compressible circles correspond to disjoint simple closed

geodesics that are all very short. Let γ be one of these. As γ is compressible, it is the

boundary of a disc P ⊂ X. In appendix A, we show that one can choose P to be a totally

geodesic plane (thus, a copy of AdS2) embedded in X. This makes it possible to perform

a simple “surgery” on X. We cut X along P . Along each of the resulting boundaries, we

glue in a copy of half of AdS3. (Concretely, one can cut AdS3 in half along a geodesic plane

AdS2 ⊂ AdS3, and then glue in the resulting pieces along the cuts in X.) This gives a new

hyperbolic manifold X1, which may or may not be connected. The effect of the surgery on

M is to cut M along γ and glue in a disc on each side, giving a new oriented two-manifold

M1. Even if X1 is connected, M1 may not be. Components of the conformal boundary of

X other than M , if there are any, are not affected by the surgery.

If M1 is connected, it has genus g1 = g − 1. Of the 3g − 5 independent compressible

curves that we started with on M , one, namely γ, disappeared in the surgery. The other

3g−4 independent compressible circles in M are still compressible in X1. At most 2 of them

are no longer independent in M1 (they are nullhomotopic or homotopic to each other; see

fig. 3). Therefore, if M has 3g − 5 independent compressible circles, then M1 has at least

3g−8 = 3g1−5 such circles. Now let us assume inductively that Proposition 3.1 is true for a

conformal boundary component of genus g−1. By this inductive hypothesis applied to M1,

we learn that X1 is a Schottky manifold. Given this, an elementary geometric argument

shows that X is also a Schottky manifold, and in particular its conformal boundary is

connected.

If M1 is not connected, it is the union of components M ′1, M ′2 of genera g′1, g
′′
1 ≥ 1,

with g′1 + g′′1 = g. First consider the case g′1, g
′′
1 ≥ 2. Let n′1, n

′′
1 be the maximum number of
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independent compressible circles on M ′1, M
′′
1 . We have n′1 + n′′1 ≥ 3g − 8 (we started with

at least 3g−5 such circles on M ; γ was lost and at most one compressible circle on M ′1 and

one on M ′′1 is no longer independent after the surgery, leaving at least 3g− 8 of them). On

the other hand, n′1 ≤ 3g′1 − 3, n′2 ≤ 3g′′1 − 3, since a Riemann surface of genus h supports

at most 3h− 3 independent circles. So n′1 ≥ 3g′1− 5, n′′1 ≥ 3g′′1 − 5. Hence by the inductive

hypothesis applied to M ′1 and M ′′1 , X1 must consist of disjoint components X ′1 and X ′′1 ,

where X ′1 is a Schottky manifold of conformal boundary M ′1, and X ′2 is a Schottky manifold

of conformal boundary M ′2. Again it follows by an elementary geometric argument that X

is also a Schottky manifold, in particular with connected conformal boundary.

The same conclusion applies if M ′1 and/or M ′′1 has genus 1. For example, if M ′1 has

genus 1, then M ′′1 has genus g′′1 = g− 1. In this case, of the original compressible circles on

M , at most 1 was originally on M ′1 and (assuming g′′1 ≥ 2) at most 1 which was originally

on M ′′1 is no longer independent after the surgery. So there are at least 3g − 8 = 3g′′1 − 5

independent compressible circles on M ′′1 , and the inductive hypothesis applies to M ′′1 as

before. As for M ′1, since it has genus 1, we invoke the fact that a hyperbolic three-manifold

whose conformal boundary has a genus 1 component is one of the Xc,d, topologically a

solid torus. So X is the disjoint union of two components, one a solid torus with conformal

boundary M ′1 and one a Schottky manifold with conformal boundary M ′′1 . Again it follows

that X is also a Schottky manifold. A similar argument applies in the special case g = 2,

g′1 = g′′1 = 1. This completes the proof of Proposition 3.1.

The proof of Theorem 3.2 requires more sophisticated tools. We must prove two

statements: (i) if γ is not compressible in X, then when γ is pinched, VR(X) remains

bounded; (ii) if γ is compressible, then when γ is pinched, VR(X)→ −∞.

To prove the first statement, we use the fact that the pinching locus is at finite distance

in the Weil-Petersson metric on Teichmüller space. Therefore, to show that VR(X) remains

bounded as one approaches the pinching locus, it suffices to know that the gradient of

VR(X) in the Weil-Petersson metric remains bounded. In fact, it is known that the Weil-

Petersson gradient of VR(X) remains bounded as long as no curve in M that is compressible

in X becomes short. Specifically, if ` is the length of the shortest non-trivial closed curve

in M that is compressible in X, and χ(M) is the Euler characteristic of M , then [51, 53]

the gradient satisfies the bound

‖dVR‖WP ≤
3
√
π|χ(∂∞X)|√

2 tanh2(`/4)
. (3.1)

For completeness, we provide a proof in appendix A.

For the second statement, we need an upper bound on VR(X). There is a useful upper

bound in terms of the volume of the convex core of X, which we will denote as VC(X), and

the length of the measured bending lamination of the convex core, which we will denote as

Lm(l). The meaning of these terms is described in appendix A. In terms of these quantities,

one has a bound on VR(X):

VR(X) ≤ VC(X)− 1

4
Lm(l) +

π log 2

2
|χ(M)|. (3.2)
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(The coefficient of the last term on the right of this equation depends on a choice of

normalization in the definition of VR.) This inequality can be found in [39, Theorem 1.1]

for quasi-Fuchsian manifolds, but the proof extends without change for general X; see [51,

Section 3].

In appendix A, we show that VC(X) remains bounded when one or more compressible

curves is pinched. One also has a result of Bridgeman and Canary (see [67, Theorem 2],

and also [51, Theorem 4.2]) showing that Lm(l)→∞ when a compressible curve is pinched.

Specifically, there are constants P,Q (one can take P = 74 and Q = 36) such that if M

contains a compressible closed geodesic of length r < 1, then

Lm(l) ≥ P

r
−Q. (3.3)

The second part of Theorem 3.2, asserting that VR(X)→ −∞ when a compressible curve

is pinched, follows from the bounds (3.2) and (3.3) along with the fact that VC(X) remains

bounded in this limit.

Physically, one would expect a more precise result than we have stated so far. One

would expect that when a compressible cycle is pinched, the divergence of VR would pre-

cisely reflect the CFT ground state propagating through the cycle in question. With some

more detailed arguments, we establish this in Theorem A.15.

4 Why Do Some Observables Show Ensemble Averaging?

As explained in the introduction, connected amplitudes with disconnected boundary, or

CADB amplitudes for short, have been a puzzle since early days of the AdS/CFT corre-

spondence. A possible explanation has been that actually, the dual of a specific bulk theory

is the average of an ensemble of boundary theories, rather than a specific boundary theory.

Averaging over an ensemble can readily generate CADB amplitudes. There is a standard

objection to this proposal: in many examples of AdS/CFT duality, it is believed that all

of the parameters that the CFT can depend upon (consistent with its general properties

such as the supersymmetry algebra it satisfies) are known, and the bulk theory depends

on all of the same parameters. So what ensemble could one possibly be averaging over to

generate CADB amplitudes?

In this article, we have attempted to sharpen this puzzle by arguing that a certain

important class of observables, namely the ones that can be defined purely in terms of

energies and couplings of states that are below the black hole threshold, does not receive any

contributions with disconnected boundaries and thus is not affected by ensemble averaging.

If there is no ensemble to average over, and if states below the black hole threshold do

not show any sign of ensemble averaging, why is it that when we compute observables in-

volving black holes states, the gravitational path integral appears to give ensemble-averaged

answers? Clearly the answer must involve some essential difference between fixed energy

states and black hole states.

Here we will propose a simple answer to this question, based on two assertions:

• Black hole physics is highly chaotic.
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• The Hamiltonian HN describing black hole states does not have a large N limit,

and likewise other CFT observables involving black hole states, such as the trilinear

couplings 〈OiOjOk〉, do not have a large N limit, even in a rather general sense, as

will be further discussed presently.

The first statement is generally accepted, based on a reinterpretation [14] of older

calculations [27] of the behavior of perturbations in the field of a black hole. This statement

involves a contrast between black holes and fixed energy states, because in a number of

important examples, the spectrum of fixed energy states is believed to be described by

an integrable model [10], not a system with chaotic behavior. The second statement also

involves a contrast between black holes and fixed energy states. Fixed energy states are

the states that we see if we take N → ∞ keeping fixed the excitation energy above the

ground state. AdS/CFT duality implies that the energies and couplings of such states

have a large N limit; when the boundary theory is a gauge theory, this can also be seen

via a classic analysis of Feynman diagrams [20]. To reach the black hole region, we take

N → ∞ with an excitation energy of order N2 if the boundary theory is a gauge theory

(and a different positive power of N in other cases). The literature does not contain any

proposal concerning a sense in which the Hamiltonian and other observables of black hole

states have a large N limit. Since the entropy (for black hole states of a fixed temperature)

is also growing as a power of N , the dimension of the black hole Hilbert space (at a fixed

temperature) increases by a vast factor from one large value of N to the next. For example,

in the case that the boundary theory is a gauge theory, since the entropy is asymptotically

S = bN2, with b of order 1, when one changes N from 106 to 106 + 1, the dimension

eS of the Hilbert space increases by a vast factor e2b×106
. This makes it unclear in what

sense one might hope that the black hole Hilbert space and other observables would have a

large N limit. In the somewhat analogous problem of quantum statistical mechanics with

the volume V playing the role of N , the standard answer is that the Hilbert space and

Hamiltonian do not have a large V limit. By contrast, the thermofield double state of a

pair of entangled systems does have both a large V [28] and large N [16] limit. See [15] for

more discussion.

Most likely, the black hole Hamiltonian and couplings do not have a large N limit,

in the sense that, in general, energies and couplings of black hole states do not have any

regularity for large N beyond what follows from the fact that thermodynamic functions

and other averages over the spectrum depend smoothly on N and that, similarly, certain

asymptotic averages of functions of couplings are also smooth functions of N . Asymptotic

formulas for averages of functions of couplings were introduced in [29] and have been studied

in a number of more recent papers.

Our proposal is that these differences between black hole states and fixed energy states

are the reason that apparent ensemble averaging affects black hole states and not fixed

energy states. Let HN be the CFT Hamiltonian at given N , on a sphere Sd−1 with round

metric. HN commutes with a symmetry group G consisting of rotations of Sd−1 and

possible additional symmetries of the CFT, and so is block diagonal with blocks labeled

by representations of G. Chaos in black hole physics means that if we restrict to states
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in a band of energies that is above the black hole threshold, then HN in each block is

an enormous pseudorandom matrix. A pseudorandom matrix is a matrix that cannot be

distinguished from a truly random matrix by any simple measurement. If it is true that

HN does not have a large N limit above the black hold threshold, this suggests that in each

block, the HN for neighboring values of N can be viewed as independent pseudorandom

draws from a random matrix ensemble. (As we explain later, it seems that this statement is

actually subject to corrections that are exponentially small in N , but it can serve as a first

approximation.) The random matrix ensemble is characterized by specifying the entropy

S as a function of the energy E and other conserved charges, so it depends smoothly on

N .

Let us consider CFT observables that can be constructed just in terms of HN . The

most important such observables are the twisted partition functions ZN,R(β) = Tr e−βHNR,

where Reβ is positive and is small enough that the trace is dominated by black hole states,

and R ∈ G. But the following explanation may be clearer if we think first about an

arbitrary observable WN that depends only on the pseudorandom matrix HN . WN may

be a “self-averaging” function in random matrix theory, meaning that it has almost the

same value for almost any draw from the random matrix ensemble. In that case 〈WN 〉 will

be a smooth function of N , modulo exponentially small corrections that reflect the fact

that even self-averaging functions of a random matrix differ slightly from draw to draw.

(These corrections are exponentially small because the size eS of the random matrix is

exponentially large, as observed in [17].) The corrections to self-averaging behavior will

depend erratically on N , since they depend on a pseudorandom draw which is different for

each N . IfW is not self-averaging, it will be an erratic function of N . With presently known

methods, the gravitational path integral always produces a smooth function of N , typically

by summing over contributions of saddle points corresponding to classical solutions. Even

when classical solutions are not available, calculations that we know how to perform lead

to smooth functions of N , as in [12].

Based on this, what might be calculable with presently available methods? If WN

is self-averaging, we can hope to calculate 〈WN 〉 modulo exponentially small terms that

depend erratically on N and depend on a particular draw from the random matrix ensemble.

If WN is not self-averaging, we will not be able to compute any approximation to 〈WN 〉
with presently known methods. However, an observable that is not self-averaging might

still have a nonzero average value in a random matrix ensemble (see [17] for examples),

and it might be possible to compute this from the gravitational path integral. In that case,

the expression for 〈WN 〉 that the gravitational path integral would compute would really

be an average value, averaged over nearby values of N .

Now consider several observables WN,k, k = 1, · · · , s that are all functions of the pseu-

dorandom matrix HN . Whether or not individually they have nonzero averages, the con-

nected correlation function 〈WN,1WN,2 · · ·WN,k〉c may have a nonzero average in random

matrix theory, in which case we may be able to compute this average from the gravitational

path integral. Let us focus on the special case WN,k = Tr e−βkHNRk, for some βk, Rk. In

this special case, WN,k is a partition function ZN (βk, Rk) on a manifold S1× Sd−1. Here if

βk is real, it is the circumference of S1; it is also interesting to analytically continue these
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observables to complex β, as in [17]. The group element Rk ∈ G determines a holonomy

around the S1 factor; this holonomy consists of a rotation of Sd−1 and/or an internal sym-

metry. From what we have just said, the gravitational path integral with known methods

may be able to calculate an averaged value of the connected correlation function

〈ZN (β1, R1)ZN (β2, R2) · · ·ZN (βk, Rk)〉c. (4.1)

How the gravitational path integral would calculate this function, or more precisely an

approximation to it with a smooth dependence on N , is not immediately clear just from

the hypothesis that the HN are independent pseudorandom matrices. But using every-

thing we know about path integrals and quantum gravity, the obvious hypothesis is that

〈ZN (β1, R1)ZN (β2, R2) · · ·ZN (βk, Rk)〉c should be computed from a path integral with a

connected bulk and a boundary that is the disjoint union of k copies of S1 × Sd−1.

This is a plausible interpretation of CADB amplitudes for the special case that the

boundary is a union of copies of14 S1 × Sd−1. If it is correct, then presumably something

similar must be true for CADB amplitudes with the k copies of S1×Sd−1 replaced by more

general d-manifolds. The rough idea must be that the CFT at a specific large value of N ,

though actually it is a definite CFT (dependent in some cases on a few known parameters),

looks, if one only has access to asymptotic expansions near N = ∞, like a pseudorandom

solution of the axioms15 of CFT. Then one would repeat everything we have said so far

with the assertion that the HN for different N are independent pseudorandom matrices

replaced by the statement that the CFT’s for different N are independent pseudorandom

draws from a family of asymptotic solutions of CFT axioms.

Since it is not believed that an ensemble of CFT’s with the appropriate properties

actually exists, the idea here is really that the ensemble of random solutions of CFT

axioms from which a given large N CFT appears to be drawn only exists in an asymptotic

sense, for large N . A rough analogy is that in low energy effective field theory, the S-matrix

of a relativistic quantum field theory appears to be a special case of a family of unitary,

relativistic S-matrices that can be obtained by giving arbitrary coefficients to all possible

parameters in the low energy effective action. It is generally believed that the generic

element of this family exists only as an asymptotic expansion at low energies.

Thus, our proposal can be stated as follows. The CFT’s that govern black hole states

for different large values of N look, in simple measurements, like (nearly) independent

pseudorandom draws from a “swampland” of effective CFT’s that are defined asymptoti-

cally for large N and cannot be completed to true theories at integer values of N . This

14Considering this example first made possible a description in terms of HN only, which was helpful,

because random matrix theory is on a much clearer footing than random CFT, which we require in a

more general case. But unfortunately, this example is actually inconvenient from a different point of view,

because S1 × Sd−1 has positive Ricci scalar. In any dimension, the boundary of an asymptotically AdS

solution of Einstein’s equations, if not connected, does not contain any component of positive Ricci scalar

[2]. So a bulk computation of the observables in eqn. (4.1) has to rely on contributions that are less well

understood, perhaps somewhat along the lines of [12].
15For example, an important axiom that contains much of the content of CFT is a quadratic “crossing”

equation satisfied by the trilinear couplings 〈OiOjOk〉. This relation is found by comparing different ways

to analyze a four-point function 〈OiOjOkOl〉.
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CFT “swampland” would be analogous to the usual “swampland” of low energy effective

field theories that are believed not to have ultraviolet completions [30]. The gravitational

path integral, with known methods, calculates averages over the pseudorandom CFT’s with

neighboring values of N .

Finally, we should point out that in the context of AdS/CFT duality, it is not true

that the CFT’s for different N are truly independent above the black hole threshold.

That is because (in known examples) the theories with different values of N are unified in

string/M-theory and are connected by domain walls. We will illustrate this point with a

simple example that generalizes the Fuchsian manifold that was introduced in eqn. (2.25).

Let M be a compact hyperbolic d-manifold with metric dΩ2 and set X = M × R. On X

there is a complete hyperbolic metric

ds2 = dt2 + cosh2 t dΩ2. (4.2)

The conformal boundary of X consists of two copies of M , at t = ±∞. Let U be the

submanifold of X defined by t = 0. Then U is a minimal submanifold,16 so there is a

classical solution in which a brane is placed on U . If this brane is of the appropriate type,

the integer that characterizes the CFT (or one of those integers in the case of a CFT

that depends on multiple integers) will jump from N to N + 1 in crossing U . Thus a

path integral on X in the presence of this brane generates a connected correlation function

between partition functions with different values of N on the same manifold M :

〈ZN (M)ZN+1(M)〉c 6= 0. (4.3)

So the pseudorandom matrices or CFT’s for different values of N are not truly independent.

However, they are nearly independent, in the sense that

|〈ZN (M)ZN+1(M)〉c| �
√
|〈ZN (M)ZN (M)〉c| |〈ZN+1(M)ZN+1(M)〉c|, (4.4)

because the brane action contributes to the left hand side and not to the right hand side.

Hopefully this is enough to justify the explanation of CADB amplitudes based on pseudo-

randomness. Still, the existence of correlations between the theories for different values of

N seems to mean that the Hamiltonians and CFT’s of different N are not truly indepen-

dent pseudorandom objects. Perhaps corrections involving branes lead to exponentially

small departures from what one would expect based on independent draws from a random

ensemble.

One may summarize what we have said as a proposal that ensemble averaging in

gravity is averaging over nearby values of N to produce smooth approximations that can

be computed by the gravitational path integral with known methods. That obviously

leaves the question of what kind of path integral or what new method is needed, at least

in principle, to describe the non-smooth contributions. There have been several papers

aiming to find simple models of how this can work [31, 32].

16In D = 3, U is the convex core of X; see footnote 12.
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A Mathematical details

This appendix contains detailed proofs of Proposition 3.1 and of Theorem 3.2, which were

already explained heuristically in Section 3, as well as Theorem A.4, which slightly improves

on Proposition 3.1. In addition, we provide two results which help better understand the

properties of the renormalized volume under pinching of compressible curves.17

• Theorem A.10, which shows that the renormalized volume associated to the hyper-

bolic metric at infinity, denoted by VR here, is within a bounded constant, depending

only on the topology of the boundary, from the renormalized volume associated to

the Thurston metric at infinity, denoted here by V ′R. Note that V ′R is equal to the

volume of the convex core minus one fourth of the length of the measured bending

lamination on its boundary.

• Theorem A.15, which gives the first term in the asymptotic development of the renor-

malized volume when a compressible curve is pinched.

The arguments are quite elementary but based on recent developments in the study

of the renormalized volume of hyperbolic manifolds, which has recently been a focus of

some interest among hyperbolic geometers. The renormalized volume was found to have

close relations to topics of interest in geometry, and to be a useful or promising tool for

well-established mathematical questions. We list here some of those developments.

A first motivation stemmed from the identification in [33, 34] between the renormalized

volume of (some) hyperbolic manifolds and the Liouville functional studied for instance in

[35, 36].

Another connection was made in [37–39] between the renormalized volume and the

volume of the convex core of convex cocompact hyperbolic manifolds. This relationship

was then used for instance in [40], to relate the entropy of pseudo-Anosov diffeomorphisms

to their hyperbolic volume of their mapping torus, in [41, 42] to study the symplectic

structure on moduli spaces of quasi-Fuchsian manifolds, and in [43] to study the metric

geometry of moduli space (such as its inradius or systole). In addition, geometric properties

of the renormalized volume were investigated, such as its convexity at the critical points

[44, 45] and continuity under geometric limits [46, 47].

It was proved in [48] that the renormalized volume of almost-Fuchsian manifolds (quasi-

Fuchsian manifolds containing a closed minimal surface with principal curvatures less than

1) is non-negative, a result that was then extended to quasi-Fuchsian hyperbolic manifolds

[49] and more generally convex co-compact manifolds with incompressible boundary [50].

17Those to results were not contained in the first arxiv version.
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In contrast, the renormalized volume of hyperbolic manifolds with compressible boundary

can be negative – this remark, which plays a key role here, already appeared e.g. in [51, 52].

A particularly active current direction of research concerns the Weil-Petersson gradient

flow of the renormalized volume [49, 50, 53], considered as a tool to understand the structure

of 3-dimensional hyperbolic manifolds.

The properties of the renormalized volume for Schottky manifolds are considered specif-

ically in [52], in view of the comparison of volumes of quasi-Fuchsian and Schottky manifolds

with a given conformal boundary.

Since this section is geared towards more mathematical arguments, we use a slightly

different notation than in the previous sections. We will always consider the hyperbolic

space H3 of constant sectional curvature −1, which is equivalent to setting ` = 1.

A.1 Convex co-compact hyperbolic manifolds

Before entering the arguments, it is useful to clarify some definitions.

We consider here a complete hyperbolic structure g on an oriented 3-dimensional man-

ifold X, which will always be the interior of a compact manifold with boundary. Such a

hyperbolic structure is the quotient of the 3-dimensional hyperbolic space H3 by ρ(π1X),

where ρ : π1X → PSL(2,C) is the holonomy representation of (X, g).

The boundary at infinity of H3 can be identified with CP1, and it is tempting to

consider ρ as an action of π1X on ∂∞H3 = CP1. However, this action on CP1 is not

properly discontinuous, so that one cannot take the quotient. To avoid this issue, one

needs to “remove” from CP1 the limit set Λρ of ρ, defined as the intersection with ∂∞H3

of the closure in H3 ∪ ∂∞H3 of the orbit ρ(π1X)(x) of any point x ∈ H3. It turns out (see

Section A.2) that ρ acts properly discontinuously on CP1 \ Λρ.

We say that the subgroup ρ(π1X) is elementary if its limit set has at most 2 points.

A hyperbolic manifold is convex co-compact if

• its holonomy representation acts co-compactly (i.e. with compact quotient) on a

convex domain in H3, and

• the image of its fundamental group in PSL(2,C) is non-elementary.

In other terms, it is the quotient of H3 by a non-elementary subgroup of PSL(2,C), which

contains a non-empty compact geodesically convex subset.18

Definition A.1. Let X be a hyperbolic manifold. A subset K ⊂ X is geodesically convex

if any geodesic segment of X with endpoints in K is contained in K.

Note that geodesic convexity is a strong property, for instance a small ball in a complete

hyperbolic manifold with non-trivial fundamental group is not geodesically convex. In fact,

if K is a non-empty geodesically convex subset of X, then the inclusion of K in X is a

homotopy equivalence, see Section A.12.

18The term “convex co-compact” is perhaps a bit misleading. What can properly be called convex co-

compact is rather the holonomy representation ρ : π1X → PSL(2,C), since it acts on a convex subset (the

convex hull of Λρ in H3) with compact quotient.
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Here we will use the equivalent definition of a convex co-compact manifold, which is

more convenient for the proofs.

Definition A.2. A convex co-compact hyperbolic structure on a manifold X is a complete

hyperbolic structures for which X contains a non-empty, compact, geodesically convex sub-

set K, and such that X is not topologically a ball or a solid torus.

We exclude from the definition the case where X is a ball or a torus, which correspond

to elementary group actions. Therefore, a complete hyperbolic manifold which contains a

compact, non-empty, geodesically convex subset can be either H3, a solid torus, or a convex

co-compact manifold as defined here.

For a hyperbolic manifold, being convex co-compact is equivalent to being conformally

compact, that is, to having a Riemannian metric that can be written as g = g/ρ2, where g

is a Riemannian metric which is smooth on X up to the boundary, while ρ : X → R≥0 is

a smooth function that vanishes on the boundary, with ‖dρ‖g = 1 on ∂X. Indeed:

• If (X, g) is conformally compact, a direct computation shows that the surfaces

Sε = {x ∈ X | ρ(x) = ε}

are locally convex for ε > 0 small enough. This simplies that the (compact) set

Xε = {x ∈ X | ρ(x) ≥ ε}

is geodesically convex for ε > 0 small enough. Indeed, a geodesic segment with

endpoints in Xε must stay in Xε since otherwise, at the point where ρ achieves its

minimum ρmin, it would need to be tangent to Sρmin on the convex side, a contra-

diction.

• Conversely, if X is convex co-compact, it contains a geodesically convex subset K

which is compact. Replacing if necessary K by an r-neighborhood and smoothing

its boundary, we can assume that K has smooth boundary. If r : X → R≥0 is

defined as the distance to K, the function ρ = e−r is a defining function and (X, g)

is conformally compact.

A.2 The complex structure at infinity

The set Ωρ = ∂∞H3 \Λρ is called the discontinuity domain of ρ. Since ρ acts by hyperbolic

isometries on H3, it acts by complex transformations on Ωρ, and it can be proved that

this action is properly discontinuous, see [54, Sections 8.1 and 8.2]. The quotient ∂∞X =

Ωρ/ρ(π1X) is therefore equipped with a complex structures, which will be denoted by c

here.

By a series of results of Ahlfors, Bers, Kra, Marden, Maskit, Sullivan and Thurston,

a convex co-compact hyperbolic metric on X is uniquely determined by c, considered as a

point in the Teichmüller space T∂X of ∂X. If X has incompressible boundary, then this

map from T∂X to the moduli space of convex co-compact hyperbolic metrics is one-to-

one. However, if X has compressible boundary, two points in T∂X can determine the same
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convex co-compact structure on X. This happens when one is the image of the other by

an (isotopy class of) homeomorphism which extends over the manifold – for instance, a

homeomorphism corresponding to a Dehn twist along a compressible simple closed curve

(a curve in ∂X which bounds a disk in X).

As a consequence, the space of convex co-compact hyperbolic structures on X is param-

eterized in T∂X/Γ, where Γ is the group of isotopy classes of X ∪ ∂X which are homotopic

to the identity, see [55, Section 3].

Note that ∂∞X = Ωρ/ρ(π1X) is equipped with more than a complex structure: each

point has a neighborhood that can be identified with a domain in CP1, and this identifica-

tion is well-defined up to elements of PSL(2,C).19 The existence of those local charts in

CP1 will be relevant in Section A.7.

A.3 Measured laminations on surfaces

Measured laminations play a significant role in the arguments below, so we provide here

a brief introduction to their definition and key properties. Measured laminations occur in

the next section when describing the geometric structure on the boundary of the convex

core of a convex co-compact hyperbolic manifold.

Let M be a closed surface, equipped with a hyperbolic metric h – one can consider

more generally complete hyperbolic surfaces of finite area (or even, with some adaptations,

of infinite volume). A geodesic lamination is then defined as a closed subset of M which

is a disjoint union of complete geodesics. A measured geodesic lamination is a geodesic

lamination equipped with a transverse measure, that is, each transverse curve is equipped

with a measure, and this measure does not change when the curve is moved while keeping

the intersection with the lamination transverse, see [56, Section 10].

The simplest case of geodesic laminations is the disjoint union of a finite family

c1, · · · , cn of disjoint closed geodesics. A transverse measure is then defined simply as

a positive weight wi associated to each geodesic ci, yielding a weighted multicurve. There

is a natural topology on the space of weighted multicurves, where two weighted multicurves

are close if they have a similar intersection with any transverse closed curve on M . The

space of measured geodesic laminations can be defined as the completion of the space of

weighted multicurves for this topology. It follows that weighted multicurves (and in fact

even weighted closed geodesics) are dense in the space of measured geodesic laminations.

However, “generic” geodesic laminations can be more complex than weighted multi-

curves. While their support has Hausdorff dimension equal to 1 [57], a short transverse

segment might have an uncountable set of intersections, none of which has an atomic

weight.

Given a hyperbolic metric m on M and a measured lamination l, Thurston (see e.g.

[58, Section 2]) proved that one can define the hyperbolic length of l for m, denoted here

by Lm(l). It is defined as the limit of the hyperbolic lengths of a sequence of weighted

multicurves ((cni , w
n
i )i=1,··· ,kn converging to l, where the hyperbolic length of a weighted

19This can be formalized as the existence on ∂∞X of a complex projective structure, but this point of

view will not be necessary here.
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multicurve (wi, ci)i=1,··· ,k is defined as

Lm((wi, ci)i=1,··· ,k) =

k∑
i=1

wiLm(ci) .

The notion of measured lamination does not in fact require a hyperbolic metric, and

can be defined “topologically”. Any measured lamination on a closed surface M can then

be realized uniquely as a geodesic measured lamination for any hyperbolic metric m on M ,

much like any closed curve and be realized uniquely as a geodesic.

A.4 The convex core and the geometry of its boundary

The arguments presented here rely heavily on the relations between the renormalized vol-

ume and the volume of the convex core of convex co-compact hyperbolic manifolds, as well

as on the geometry of the boundary of this convex core.

It follows from the definition that, in a hyperbolic manifold, the intersection of two

closed, geodesically convex subsets is still geodesically convex. In addition it can be shown

(see Section A.12) that, if the manifold has non-trivial topology, then the intersection

is non-empty. As a consequence, any convex co-compact hyperbolic manifold contains a

smallest non-empty, closed, geodesically convex subset, called its convex core, which is

compact. We denote it here by C(X).

The convex core has finite volume, denoted here by VC(X). This volume is closely

related to the renormalized volume – when the boundary is incompressible, there is a bound

on the difference between the two, which only depends on the topology of the boundary,

see Section A.8 below.

The geometry of the boundary of the convex core was analysed by Thurston (see [54,

Section 8.5]). Since the convex core is a minimal geodesically convex subset, its boundary

cannot have extremal points, so it is a locally convex pleated surface – it is the union of

a finite set of totally geodesic ideal triangles intersecting along their boundary, and as a

consequence the induced metric on the boundary is hyperbolic (of constant curvature −1).

We will denote this hyperbolic metric on ∂C(X) by m. (Note that the ideal triangles

mentioned here generally “wrap” around the boundary of C(X), so they appear more

clearly in the universal cover of X, where their vertices can be identified as points of the

limit set of X.)

However the pleating locus – the set of points which do not have a neighborhood which

is totally geodesic – can be quite complicated. It is a geodesic lamination, as seen in Section

A.3. Moreover the pleating locus is equipped with a transverse measure, which records the

amount of “bending” along each geodesic. In the simplest cases where the bending locus is

a disjoint union of closed geodesics, each of the closed geodesics is equipped with a positive

weight, which records the exterior angle of the boundary of the convex core along this

“edge”.

In generic examples, no geodesic in the pleating locus has an atomic weight. However

simple closed geodesics equipped with a positive weight are dense, in a suitable topology

(see Section A.3) in the space of measured laminations. Heuristically, it is therefore often
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sufficient to think of (arbitrarily long and complicated) weighted simple closed curves,

rather than of generic measured laminations.

Bonahon and Otal [59] gave a complete description of the measured laminations that

can arise in this manner on the boundary ∂X. The conditions are that each closed curve has

weight at most π, that for any essential annulus A or Möbius band in X (with boundary in

∂X), ∂A has positive intersection with l, and that for any essential disk D (with boundary

in ∂X), ∂D has intersection larger than 2π with l.

A.5 Relations between the boundary of the convex core and the boundary at

infinity

Given a convex co-compact hyperbolic manifold X, let N∂C(X) be the unit normal bundle

of ∂C(X), that is, the set of outwards-pointing unit vectors normal to a support plane of

C(X) at a boundary point. For each n ∈ N∂C(X), let gn : R≥0 → X be the geodesic

ray determined by the initial vector n. It can be proved (see Section A.12) that the

images of the gn are all disjoint (and do not intersect C(X) except at their origin). As a

consequence, the map sending n to the endpoint at infinity of gn defines a homeomorphism

between N∂C(X) and ∂∞X.

Moreover, whenX is not Fuchsian20, this homeomorphism can be deformed, by “smooth-

ing out” the bending locus, to a (non-canonical) homeomorphism between ∂C(X) and

∂∞X. (If X is Fuchsian, the convex core is a smooth surface, and no smoothing is nec-

essary.) We will often use this homeomorphism implicitly below, and identify the two

surfaces. (If X is Fuchsian, then ∂∞X is homeomorphic to the disjoint union of two copies

of C(X), which in this case is a totally geodesic surface, so that N∂C(X) is a double cover

of C(X).)

The boundary at infinity ∂∞X is equipped with a conformal structure, and therefore

with a hyperbolic metric provided by the Poincaré-Riemann uniformization theorem – it

is called the Poincaré metric, and denoted here by h. It can be compared to the induced

metric m on the boundary of the convex core.

• A simple closed curve is short for h if and only if it is short in m. Specifically, for

all ε > 0 small enough, there exists ε′ > 0 such that if a simple closed curve γ has

length less than ε′ for h, then it has length less than ε for m, and conversely (with a

different value of ε′), see [60, 61].

• Curves which do not enter the “thin” part of ∂X for either m or l (the subset

composed of points where the injectivity radius is smaller than a fixed constant ε0
– for ε0 small enough, this thin part is the disjoint union of long and “thin” annuli,

each associated to a simple closed geodesic of length less than ε0) have lengths for m

and for l which are comparable, up to bounded multiplicative constants, see [62].

20A Fuchsian manifold is the quotient of H3 by a surface group acting properly discontinously and

cocompactly on a totally geodesic plane. So the convex core of a Fuchsian manifold is a totally geodesic

surface, while for any other convex co-compact manifold it is a 3-dimensional domain with positive volume.

See also Section 2.3, and specifically footnote 9.
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A.6 The maximal set of contractible curves in the boundary

The proof of Proposition 3.1, presented in Section 3, is based on a surgery that can be

applied on convex co-compact hyperbolic structures when the length of a compressible

curve (in the Poincaré metric at infinity) is sufficiently short. Similar ideas will be used

again below in Section A.10 when considering the limit of the volume of the convex core

when a finite set of disjoint closed compressible curves in the boundary is pinched.

We consider a convex co-compact hyperbolic manifold X, a connected component M

of ∂C(X), and a simple closed curve γ in M which is compressible, i.e., bounds a disk in

X. We first deform X so that the geodesic representative of γ is pinched to have length

less than ε (for a value of ε that will be made more precise below) for the induced metric

m on ∂C(X). Then the geodesic representative γ0 of γ in (M,m) is the “center” of a long

collar, of width w(ε) arbitrary large if ε is small.

Let ∆ be a complete geodesic in C(X) intersecting the disk D in C(X) bounded by

γ0, and let P be a totally geodesic plane in X orthogonal to ∆ and intersecting γ0. (Note

that P is not entirely determined by those conditions, since γ0 is not necessarily contained

in a plane orthogonal to ∆.)

The following elementary lemma is used in Section 3.

Lemma A.3. P is embedded in X, that is, it has no self-intersection.

Proof. Assume the opposite, it would mean that there are two distinct lifts P1 and P2 of

P to X̃ ' H3 which intersect at a point x. Let γ1 and γ2 be the corresponding lifts of γ0,

and let x1 ∈ γ1 ∩ P1, x2 ∈ γ2 ∩ P2. Let α1 be the geodesic segment connecting x1 to x

(which is in P1) and let α2 be the geodesic segment connecting x2 to x. Finally, let β be

the geodesic segment connecting x1 to x2.

Since C(X) is geodesically convex, the segment β is contained in its universal cover

C̃(X), and is therefore almost orthogonal (for ε small enough) to both P1 and P2, and also

to α1 and α2. So if we call θ1 (resp. θ2) the angle between β and α1 (resp. α2) then both

are close to π/2 as ε→ 0. Moreover, β has length at least 2w(ε), which goes to infinity as

ε→ 0. However, a standard hyperbolic triangle formula, applied to the triangle with edges

α1, α2 and β, ensures that

cos(θ) = − cos(θ1) cos(θ2) + cosh(L(β)) sin(θ1) sin(θ2) ,

where θ is the angle between α1 and α2 at x.

For ε small enough, this cannot hold since the two sine terms on the right are close to

1 and cosh(L(β)) is large.

Note that the same argument shows that if we consider two totally geodesic planes P

and P ′ corresponding to two short contractible curves γ and γ′, then P and P ′ are disjoint

– this is used in Section A.10.

We are now equipped to prove the following small improvement of Proposition 3.1.

The proof repeats the proof of Proposition 3.1 given in Section 3 with more attention given

to surfaces of genus 2.
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Figure 4. Planes almost orthogonal to thin tubes cannot intersect.

Theorem A.4. Let X be a convex co-compact hyperbolic manifold, and let M be a boundary

component of X. If M has genus 2 and contains at least one compressible curve, or if M

has genus g ≥ 3 and contains at least 3g − 6 disjoint, non-homotopic compressible curves,

then X is a Schottky manifold and ∂X = M .

Proof. The first step is to analyse more carefully what happens to a family of indepen-

dent curves when a surface M is cut along one of them, say c. Different cases can be

distinguished, see Figure 3.

1. c separates a genus 1 surface M1 from a genus g′ surface Mg′ , g
′ ≥ 2. Then at most

one pair of curves on M can become homotopic on Mg′ .

2. c separates a surface Mg′ from a surface Mg′′ , with g′ ≥ 2, g′′ ≥ 2. Then at most one

pair of non-homotopic curves on each side of c can become homotopic.

3. c is non-separating. Then at most one curve can become homotopically trivial, while

at most one pair of non-homotopic curves can be homotopic in the complement of

M .

The proof proceeds by induction on the genus of M , as for the proof of Proposition

3.1. The statement is already known, from Section 3, when M has genus 1 or genus 2. We

assume that it is true for genus at most g − 1, and consider a boundary component M of

genus g. We assume that M contains 3g − 6 independent compressible curves, and choose

one of those curves, say c. We now consider different cases.

• If c splits M into two surfaces M ′, M ′′ of genus g′ ≥ 3 and g′′ ≥ 3. The argument

is then exactly as seen in the proof of Proposition 3.1: g′ + g′′ = g, the number of

remaining independent compressible curves is at least 3g − 9 = 3(g′ + g′′) − 9, but

M ′ can have at most 3g′ − 3 while M ′′ can have at most 3g′′ − 3. It follows that M ′

has at least 3g′ − 6 independent compressible curves, while M ′′ has at least 3g′′ − 6.

So both are boundaries of Schottky manifolds by the induction hypothesis, and the

surgery done on the interiors means that M also bounds a Schottky manifold.
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• Similarly, the same argument as in the proof of Proposition 3.1 can be applied if c is

non-separating and M has genus at least 4.

• Suppose now that c splits M into M ′ of genus g′ = 2 and M ′′ of genus g′′ ≥ 3. If M ′

contains at least one compressible curve, then the same argument as before shows

that M ′′ contains at least 3g′′ − 6 independent compressible curves, so by induction

M ′′ is the boundary of a Schottky manifold, and therefore M is the boundary of a

Schottky manifold.

If M ′ contained no compressible curve, then M ′′ would have at least 3g − 8 inde-

pendent compressible curves, since cutting along c can only “destroy” c, plus one

compressible curve on the side of M ′′ (two compressible curves might become homo-

topic). But 3g − 8 = 3g′′ − 2, a contradiction because M ′′ cannot have more than

3g′′ − 3 independent compressible curves.

• If M has genus 4 and at least 6 independent compressible curves, and is cut by c

into two surfaces of genus 2, the same argument shows that there must be at least

one compressible curve remaining on each side. Otherwise at most 2 curves would

be “lost” (c plus one pair of compressible curves becoming homotopic) so one side

would need to have 4 independent compressible curves, a contradiction.

• Finally suppose that M has genus 3 and at least 3 compressible curves, and is cut

along a non-separating compressible curve c. One obtains a surface of genus 2 con-

taining at least one compressible curve, because at most one compressible curve could

become nul-homotopic. So the surface obtained after cutting along c is the boundary

of a Schottky manifold, and therefore X is Schottky.

A.7 A variational formula for the renormalized volume

Although convex co-compact hyperbolic manifolds have infinite volume, one can define a

renormalized volume, see [63]. We will need a variational formula for the renormalized

volume, see [35–37] or [39, Corollary 3.11]. To state it, note that ∂∞X is equipped with

a holomorphic quadratic differential q, which can be defined as follows. Let ∂iX be a

connected component of ∂∞X. Since ∂iX is a closed surface of genus at least 2, equipped

with a complex structure (the restriction of c to ∂iX), there is by the Poincaré-Riemann

uniformization theorem a holomorphic map fi : D→ ∂iX, where D is the unit disk in C.

Note that ∂∞X can be locally identified with CP1 (or C, using the holomorphic identifi-

cation of C to CP1\{∞}), and this local identification is well-defined up to left composition

by an element of PSL(2,C). This makes it possible to consider the Schwarzian derivative

of fi. Recall that given a holomorphic map f : Ω → C, where Ω ⊂ C, its Schwarzian

derivative is defined as:

S(f) =

((
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
)
dz2 .

The following properties are relevant:
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• S(f) = 0 if and only if f corresponds to an element of PSL(2,C),

• S(f ◦ g) = S(f) + f∗S(g).

It follows from those two properties that the Schwarzian derivative of f is invariant under

composition of f on the left by an element of PSL(2,C). As a consequence, the Schwarzian

derivative of fi is well-defined – even if the identification of ∂∞X with CP1 is only local.

We define

q = fi∗S(fi) .

By construction, q is a holomorphic quadratic differential on ∂iX. 21

Lemma A.5. Let (ct)t∈[0,1) be a one-parameter family of complex structures in T∂X/Γ.

Then
dVR(ct)

dt
= Re

(〈
q,
dct
dt

〉)
,

where 〈, 〉 denotes the natural duality product between holomorphic quadratic differentials

and Beltrami differentials.

A.8 The renormalized volume and the volume of the convex core

There are close relations between the VC(X) and VR(X), given in particular by the following

lemma.

Lemma A.6. For any convex co-compact hyperbolic manifold X,

VC(X)− 1

4
Lm(l) − C(∂X) ≤ VR(X) ≤ VC(X)− 1

4
Lm(l) +

π log(2)

2
|χ(∂X)| .

where C(∂X) is a constant depending only on the topology of ∂X.

(Note that the additive constant on the right of the equation depends on a choice of

normalization in the definition of VR.) The inequality on the right can be found as [39,

Theorem 1.1] for quasi-Fuchsian manifolds, but the proof extends without change to convex

co-compact hyperbolic manifolds, see [51, Section 3]. The inequality on the left is Theorem

A.10 below.

There is also a lower bound on renormalized volume, in terms of the volume of the

convex core, for convex co-compact manifolds with incompressible boundary, see [39, 51].

For convex co-compact manifolds with compressible boundary, the constant depends on

the injectivity radius of the boundary.

21There is another way to introduce q, in relation to the second term of the asymptotic development of the

metric near infinity when the metric at infinity (corresponding to the first term) has constant curvature.

The real part of q is then minus the traceless part of this second term, see e.g. [37, Lemma 8.3]. The

holomorphic quadratic differential q already appears in this form in [23]. We will not need this different

point of view here.
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A.9 A bound on the Weil-Petersson gradient

We recall here a bound on the Weil-Petersson gradient of VR when no compressible curve is

short. Similar estimates can be found in [50, 64]. We provide a proof for completeness. A

more precise analysis of the convergence of the geometric structure when an incompressible

curve is pinched can be found in [65].

Lemma A.7. Let X be a convex co-compact hyperbolic manifold, such that the length for

the Poincaré metric of any non-trivial simple closed curve in ∂∞X compressible in X is at

least l. Then the Weil-Petersson gradient of VR on T∂X/Γ is bounded by

‖dVR‖WP ≤
3
√
π|χ(∂∞X|√

2 tanh2(l/4)
.

Proof. The proof is based on a classical bound on the Schwarzian derivative at the center

of a holomorphic map which is injective on a disk, and on the fact that if the shortest

compressible curve in (∂X, h) has length at least l, then every point in (∂X̃, h) is the

center of an embedded open disk of radius l/2. This second point follows from the fact

that if x ∈ ∂X̃ realizes the minimum of the injectivity radius (the radius r of the largest

embedded disk centered at x) then there is a embedded open disk of radius r centered at

x with a self-tangency, and it follows that x is on a closed geodesic of length 2r in (∂X̃, h).

This closed geodesic projects to a closed compressible geodesic of length 2r on ∂X.

We first note that if Dr is the disk of radius r in C and f : Dr → C is a univalent

holomorphic map, then S(f) can be written as σdz2, with |σ(0)| ≤ 6/r2. Indeed, the

function f : z 7→ f(rz) is then a univalent holomorphic map from D to C, so that by the

Nehari-Kraus estimate [66], its Schwarzian differential can be written as S(f) = σ(z)dz2,

with |σ(0)| ≤ 6. But it follows from the definition of the Schwarzian derivative that

S(f) = r2S(f) .

Since the hyperbolic metric at 0 is 4(dx2 +dy2), the norm of the real part of S(f) with

respect to the hyperbolic metric h on D is bounded (pointwise) by

‖Re(S(f)(0))‖h ≤
3
√

2

2r2
.

Now let x ∈ ∂∞X̃ be a point where the injectivity radius is at least l/2. Consider the

Riemann uniformization map f from D to the connected component of ∂∞X̃, chosen so

that f(0) = x. By construction, f is a local isometry between the hyperbolic metric on

D and the Poincaré metric on ∂∞X̃. Moreover, the disk of center x and radius l/2 (for

the Poincaré metric) is embedded in ∂∞X̃, so that the restriction of f to a disk of center

0 and hyperbolic radius l/2 is injective. But a disk of hyperbolic radius l/2 and center 0

(for the hyperbolic metric on D, that is, the Poincaré disk model of the hyperbolic plane)

is a disk of Euclidean radius r = tanh(l/4). So the norm of the real part of the Schwarzian

derivative of f at x is bounded, in the hyperbolic metric, by

‖Re(S(f))‖h ≤
3
√

2

2 tanh2(l/4)
.
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Integrating over ∂∞X, we obtain that the L2 norm of Re(q) is bounded by(∫
S
‖Re(q)‖2hdah

)1/2

≤
3
√
π|χ(∂∞X)|

tanh2(l/4)
.

It then follows from Lemma A.5 that

‖dVR‖WP ≤
3
√
π|χ(∂∞X|√

2 tanh2(l/4)
.

We notice for future reference that the WP estimate here could be improved, since the

pointwise estimate on Re(q) is better at each point where the injectivity radius is larger

than l/2.

It follows from this lemma that on any 1-parameter family of boundary complex struc-

tures (ct)t∈[0,1) in T∂X/Γ of finite Weil-Petersson length, ending on a stratum of the Weil-

Petersson completion of T∂X/Γ corresponding to pinching a closed curve which is not

compressible in X, VR remains bounded (see [46]). This follows from the lemma since, in

this 1-parameter family, the lengths of simple, non-trivial closed curves compressible in X

remains bounded from below by a positive constant.

A.10 Convergence of convex cores when pinching compressible curves

In this section we consider a sequence of conformal structures (cn)n∈N on ∂X, cn ∈ T∂X/Γ,

and denote by hn the hyperbolic metric in the conformal class cn. We assume that (cn)n∈N
converges, in the Weil-Petersson metric completion of T∂X/Γ, to a boundary point c∞,

where a set of disjoint simple closed curves γi, 1 ≤ i ≤ k is pinched, with each γi bounding

a disk Di in X. Let Xj , 1 ≤ j ≤ l, be the connected components of X \ (D1 ∪ · · · ∪Dk).

We denote by gn the convex co-compact hyperbolic metric on X associated to cn by

the Ahlfors-Bers theorem, and by X(n) = (X, gn). The limit conformal structure c∞
determines a conformal structure on ∂Xj , 1 ≤ j ≤ l, marked by 2k points ξ1, · · · , ξ2k

corresponding to the pinching of the γi, 1 ≤ i ≤ k, and we denote by ξ(j) the set composed

of the ξi which are in the boundary of Xj , 1 ≤ j ≤ l. (Note that if X is connected, then

each of the Xj is equipped with at least one of the ξi on its boundary, so ξ(j) has at least

one element.)

Now consider ε > 0 small enough so that for n ≥ n0, for a n0 large enough, the γi have

length less than ε for 1 ≤ i ≤ k, while all closed curves not homotopic to a finite cover of

one of the γi have length larger than ε. For n ≥ n0, ∂C(X(n)) is the union of:

• k tubes Ti(n), 1 ≤ i ≤ k, composed of points where the injectivity radius is less

than ε/2 – each tube having the geodesic representative of one of the γi as its core

meridian,

• l connected regions Cj(n), 1 ≤ j ≤ l, one for each of the Xj , composed of points

where the injectivity radius is at least ε/2.
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The diameter of each of the Cj(n), 1 ≤ j ≤ l, is uniformly bounded from above (indepen-

dently of n), because ∂C(X(n)) has bounded area by the Gauss-Bonnet theorem, and the

Cj(n) are connected and composed of points were the injectivity radius is at least ε/2.

We choose in each of the Cj(n), 1 ≤ j ≤ l, a point xj(n). The xj(n) will be used as

base-points below, when considering the Gromov-Hausdorff convergence of the Xj(n). The

precise choice of the xj(n) is not important, since they are constrained to be contained

in a region of bounded diameter – this will be sufficient to ensure convergence in the

Gromov-Hausdorff topology pointed at xj(n), after extracting a sub-sequence.

Lemma A.8. Under the hypothesis above, for each j ∈ {1, 2, · · · , l} (and after extracting

a subsequence):

1. The pointed manifold (X(n), xj(n)) converges in the Gromov-Hausdorff topology on

compact subsets to a complete hyperbolic manifold (Xj , xj), with Xj diffeomorphic to

Xj. (Xj can be either convex co-compact, a solid torus, or a ball.)

2. The sequence of pointed convex cores (C(X(n)), xj(n)) converges to CH(ξ(j)) ⊂ Xj,

the convex hull of ξ(j) in Xj.

3. VC(X(n))→
∑l

j=1 V (CH(ξ(j))), which is finite.

Here by the convex hull of ξ(j) we mean the smallest geodesically convex subset of Xj

containing ξ(j) in its asymptotic boundary. By definition this subset contains the convex

core of Xj .

Proof. We will use the same argument as in Section A.6, and notice that there exists n0 ∈ N
such that for n ≥ n0 the lengths of all the γi is at most ε′, for a fixed value of ε′ > 0. If ε′ is

small enough, we can then consider a totally geodesic plane Pi as in Section A.6, that is, a

plane orthogonal to one of the lines in the thin tube with core meridian γi. The planes Pi
and Pi′ are then disjoint for i 6= i′, as seen in Section A.6. We now only consider n ≥ n0.

We then let Ωj(n) be the connected component of X(n) \ (P1 ∪ · · · ∪ Pk) containing

xj(n), and let Kj(n) = Ωj(n)∩C(X, gn). As in Section A.6, we glue a half-space to Ωj(n) at

each of the Pi adjacent to Ωj(n), and obtain in this manner a complete hyperbolic manifold

Xj(n), which is either convex co-compact, a solid torus, or a ball. Abusing notations a bit,

we consider the Pi adjacent to Ωj(n) as disjoint, totally geodesic planes in Xj(n).

To this surgery in the hyperbolic metric corresponds a simple surgery on the conformal

structure at infinity of X(n): a curve (which is short in say the Poincaré metric on ∂∞X(n))

is cut and one side replaced by a small disk. As n → ∞, the conformal structure at

infinity obtained in this manner converges to the conformal structure c∞ on ∂Xj . So

Xj(n) converges in the Gromov-Hausdorff topology to Xj . This proves the first point.

The closure of the convex subset Kj(n) is the convex hull in Xj(n) of the Pi ∩ ∂Ωj(n),

which are topological disks with boundaries corresponding to the γi. This is clear because

Kj(n) is geodesically convex by definition, and its boundary is a pleated surface outside of

the Pi ∩ ∂Kj(n), so its closure is the minimal closed geodesically convex subset of Xj(n)

containing the Pi ∩ ∂Kj(n). The boundary of Pi ∩ ∂Ωj(n) corresponds to γi and its length
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goes to 0 as n→∞. Moreover, for each i, d(xj(n), Pi ∩ ∂Ωj(n))→∞ as n→∞, because

the length of the tube Ti(n) around γi goes to infinity. As each of the Pi∩∂Ωj(n) converges

to one of the points of ξ(j) as n → ∞, we see that Kj(n) converges to the convex hull of

ξ(j) in Xj , which proves point (2).

The convergence of VC(X(n)) to the sum of the volumes of the CH(ξ(j)) follows from

the Gromov-Hausdorff convergence of the different components of X(n), pointed at the

xj(n).

To see that the volume of CH(ξ(j)) is bounded, consider ξ ∈ ξ(j), let P be a totally

geodesic plane in Xj separating ξ from C(Xj) and from the other elements of ξ(j), and

let H be the half-space bounded by P containing ξ in its boundary. Then H ∩ CH(ξ)

is the convex hull of ξ and of a compact domain in P (the intersection of CH(ξ(j)) with

P ). So H ∩ CH(ξ) has finite volume. Since this holds for all the ξ ∈ ξ(j), we see that

CH(ξ(j)) can be written as the union of a finite family of subsets of finite volume – one for

each element of ξ(j) – and the remaining part which is compact. So CH(ξ(j)) has finite

volume.

A.11 Limit of the renormalized volume when pinching a compressible curve

We now consider the case where (ct)t∈[0,1) pinches a curve γ which is contractible in X. The

fact that VR(ct) → −∞ as t → 1 then follow from Lemma A.6 and Lemma A.8, together

with the following result of Bridgeman and Canary, see [67, Theorem 2’], and also [51,

Theorem 4.2].

Theorem A.9 (Bridgeman-Canary). There exists constants P and Q (one can take P = 74

and Q = 36) such that if X is a convex co-compact hyperbolic manifold such ∂∞X̃ contains

a closed compressible geodesic of length r < 1 in the Poincaré metric, then the length of

the measured bending lamination on the boundary of the convex core is bounded from below

by:

Lm(l) ≥ P

r
−Q . (A.1)

Note that the coefficient 74 above is twice that found in [51], since we consider here

the length of closed contractible curves in ∂X, rather than the injectivity radius of ∂X̃.

Without getting into the precise value of the constants, we can indicate a heuristic

explanation for (A.1). When ∂∞X contains a closed geodesic γ of length r for the Poincaré

metric h, then it contains a collar of width approximately L = | log(r)| around γ. If γ is

contractible, the induced metric m on ∂C(X) contains a tube of length w approximately

exp(L) = 1/r around γ. But since γ is contractible, the intersection with γ of the measured

bending lamination l (that is, the transverse measure of l evaluated on γ) is at least 2π,

and in fact very close to 2π as r → 0. Finally, all leaves of l intersecting γ must cross the

whole length of the tubular collar around γ, so must have length at least 2w, so of the

order of 1/r. More precise arguments of this type can lead to (A.1).

A.12 Geodesically convex subsets of a hyperbolic manifold

We first indicate why the intersection of two closed, non-empty, geodesically convex subsets

K,K ′ in a complete hyperbolic manifold X 6= H3 is non-empty. Since X has non-trivial
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topology and is complete, it contains a closed, oriented geodesic γ. Let x ∈ K, and, for

n ∈ N, let γn be the geodesic segment starting and ending at x, and homotopic to a path

going from x to a point of γ, doing n turns around γ, and going back to x.

Let γn and γ be lifts of γn and of γ to the universal cover of X, chosen so that the

distance from the endpoints of γn to γ is equal to the distance of x to γ in X. For n large,

γn is a long geodesic segment with endpoints at bounded distance from γ, so there is a

sub-segment of γn of length at least the length of γ which is arbitrarily close to γ, say at

distance less than εn, for some εn > 0 with limn→∞ εn = 0.

It follows that each point of γ is at distance at most εn from a point of γn. Since K

is geodesically convex, γn ⊂ K, and since K is closed and εn → 0, γ ⊂ K. The same

argument shows that γ ⊂ K ′, and it follows that K ∩K ′ 6= ∅.
Let now K ⊂ X be a geodesically convex, let x ∈ ∂K, and let n be the outward

oriented unit normal to a support planes22 of K at x. Let α be the half-geodesic starting

from x in the direction of n. Then α ∩K = {x}, since otherwise the whole intersection of

α between x and its first intersection with K would be contained in K.

If β is another such geodesic ray, starting from a point x′ ∈ ∂K in the direction of a

unit normal vector to a support plane of K at x′, then α and β must be disjoint. Suppose

indeed that they intersect at a point y, and let γ be the geodesic segment from x to x′

homotomic to the union of the segment of α from x to y union the segment of β from y

to x′. The angle between γ and α (resp. γ and β) must be bigger than π/2, because both

α and β are directed by outwards unit normals of support planes of K, while γ is towards

the interior of K. But having two angles larger than π/2 contradicts the Gauss-Bonnet

relation for hyperbolic triangles (the sum of the interior angles is equal to π minus the

area).

Figure 5. A pair of geodesic rays α, β normal to a convex subset K cannot intersect, because the

sum of the angles of triangle xx′y would be greater than π.

It follows from this remark that, if we denote again by N∂K the unit normal bundle

22A support plane of K at x is a totally geodesic plane containing x, which locally bounds a closed

half-space containing K.
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of the boundary of K, then the map

exp : N∂K × R>0 → X

(n, t) 7→ exp(nt)

is a diffeomorphism from N∂K × R>0 to X \K.

It also follows that K is homotopic to X. This applies in particular to C(X), the

convex core of X.

A.13 The Thurston metric at infinity

Finally, this section describes briefly some properties of a natural metric at infinity of

convex co-compact hyperbolic manifolds, which appears prominently in Sections A.14 and

A.15.

The boundary at infinity ∂∞X of a convex co-compact hyperbolic manifold is equipped

naturally with a Riemannian metric in the standard conformal class, called the Thurston

metric (or projective metric, or sometimes the grafting metric), closely related to the

boundary of C(X). We denote it by hTh, and give three descriptions of it.

The first description is simpler when the measured bending lamination l on ∂C(X) is

along disjoint closed geodesics c1, · · · , cn, with each ci equipped with a positive weight wi.

In this case, hTh is obtained by cutting (M,m) along the geodesics ci and replacing (or

“grafting”) ci by a flat strip of width wi.

A second description is as the natural metric induced on N∂C(X), the unit normal

bundle of the boundary of C(X). As seen in Section A.5, the normal exponential map is

a homeomorphism between N∂C(X) and ∂∞X, so that the metric can then be pushed to

∂∞X.

A third description is as the metric at infinity defined by the equidistant foliation of

X \C(X). For r > 0, let Mr be the set of points at distance r from C(X). The surfaces Mr

can be identified through the flow of the normal directions. Let hr be the induced metric

on Mr. As r → ∞, hr “expands” exponentially, but the “normalized” metric 4e−2rhr
converges to hTh.

A consequence of this last description is that the renormalized volume associated to

the metric hTh at infinity is (up to an additive, topological constant)

VC(X)− 1

4
Lm(l) ,

where VC(X) is the volume of the convex core and Lm(l) the length of the measured

bending lamination on the boundary of the convex core.

A.14 The renormalized volume associated to the Thurston metric

In this section we show that the renormalized volume V ′R of X associated to the Thurston

metric hTh at infinity is within a bounded additive constant from the renormalized volume

VR associated to the Poincaré metric h at infinity.

– 40 –



Theorem A.10. There exists a constant C(∂X), depending only on the topology of ∂X,

such that

V ′R ≤ VR + C(∂X) .

Note that the opposite inequality VR ≤ V ′R holds, up to an additive constant depending

on normalization, as already stated in Lemma A.6.

The heuristic idea of the proof of Theorem A.10 is quite simple.

• The difference V ′R−VR can be expressed as an integral of a function of the conformal

factor between the hyperbolic metric and the Thurston metric, see Definition A.11.

Or, more specifically, in terms of the function u such that hTh = e2uh.

• The contribution to this integral of the “thick” part of ∂X – the set of points where

the injectivity radius for h is bounded from below – is uniformly bounded, because

the conformal factor and its gradient are bounded in this region, see Lemma A.12.

So we can focus on the long thin tubes around closed geodesics which are short for

h.

• On those tubes, the Thurston metric can be approximated by a flat metric on a long

cylinder of perimeter 2π. We approximate the Thurston metric hTh by such a flat

metric hγ , and write u = u0 + u∆, where hγ = e2u0h, and hTh = e2u∆hγ .

• The integral term corresponding to u0 can then be explicitly computed (see Lemma

A.13) and it is bounded.

• Moreover, one can find sufficient bounds on u∆ to show that the correction coming

from u∆ is also bounded (see Lemma A.14).

We now proceed with the proof.

Definition A.11. Let S ⊂ ∂X, let g be a Riemannian metric on S, and let u : S → R be

a function. Let

WS(e2ug, g) = −1

4

∫
S

(‖du‖2g − 2Kgu)dag .

It follows from the “Polyakov formula” for the dependence of the renormalized volume

on the metric at infinity that

V ′R − VR = W∂X(hTh, h) .

Moreover hTh is conformal to the Poincaré metric h, so we can write

hTh = e2uh ,

for a function u : ∂X → R.

We will use the following well-known C1 bound on u in the “thick” part of x ∈ (∂X, h).

Lemma A.12. There exists a constant C1 > 0 such that for all x ∈ (∂X, h) where the

injectivity radius of h is at least ε0/2, u ≤ C1 and ‖du‖h ≤ C1.
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Proof. The bound on u can be found in the proof of Theorem 2.17 in [50].

The bound on du then follows from the bound on u and the bound on ∆u together

with the lower bound on the injectivity radius. Although this estimate is well-known to

analyst, we include an informal argument for completeness. Let x be such a point, and let

r > 0 be such that the disk D(x, r) of center x and radius r is embedded. We can write

the restriction of u to D(x, r) as

u = v + w ,

with

v|∂D(x,r) = u|∂D(x,r) , ∆hv = 0 ,

w|∂D(x,r) = 0 , ∆hw = ∆hu .

Then w can be written as an integral over D(x, r) of Green functions for ∆h on D(x, r),

multiplied by ∆hu, which is uniformly bounded. The uniform bound on dw at x follows.

In addition, dv is uniformly bounded at x because u (and therefore also v) is uniformly

bounded on ∂D(x, r). The uniform bound on du at x follows.

We denote by Tγ the “Margulis tube” associated to γ in the hyperbolic metric h. That

is, we fix a constant ε0 > 0, and let Tγ be the set of points at distance at most r (from

h) from the geodesic representative of γ, with r chosen so that the boundary of Tγ is the

disjoint union of two closed curves of length ε0 – this is possible if ε0 is small enough. This

tube Tγ can also be defined as the connected component of the geodesic representative of

γ in the set of points in (∂X, h) where the injectivity radius is at most ε0/2.

This tube is also equipped with a standard Euclidean metric hγ conformal to the

restriction of h to Tγ . We choose this metric hγ to be isometric to S1 × [−Lγ , Lγ ], where

Lγ will be determined below.

Lemma A.13. There exists a constant C0 such that |WTγ (hγ , h)| ≤ C0.

Proof. By definition, hγ is conformal to h, so there exists a function u0 : Tγ → R such that

hγ = e2u0h

on Tγ , with u0 constant on ∂Tγ .

This function u0 is clearly invariant by rotation, and only depends on the distance z

to the core curve of Tγ (the geodesic representative of γ for h). Since the curve composed

of points at (oriented) distance z from the core curve has length lγ cosh(z) for h, while it

has length 2π for hγ . Since each boundary component of Tγ has length 2π for h,

eu0(z) =
2π

lγ cosh(z)
,

and therefore

|u′0(z)| = | − tanh(z)| ≤ 1 .
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As a consequence,

|WTγ (hγ , h)| =
1

4

∣∣∣∣∣
∫
Tγ

‖du0‖2h + 2u0

∣∣∣∣∣ dah
≤ 1

4
Area(Tγ , h) +

1

2

∫
Tγ

u0dah

≤ 1

4
Area(Tγ , h) +

∫ Lγ

0
lγ cosh(z) log

(
2π

lγ cosh(z)

)
dz ,

where Lγ is the half-length of Tγ for h, that is, such that

lγ cosh(Lγ) = ε0 .

A direct computation shows that∫ Lγ

0
lγ cosh(z) log(lγ cosh(z))dz =

= lγ sinh(Lγ) log(lγ cosh(Lγ)) + 2lγ(π/4− arctan(e−Lγ ))− lγ sinh(Lγ) ,

and since lγ cosh(Lγ) = ε0,∣∣∣∣∫ Lγ

0
lγ cosh(z) log(lγ cosh(z))dz

∣∣∣∣ ≤ ε0 log(ε0) + ε0 + lγ
π

2
.

Finally, ∫ Lγ

0
lγ cosh(z)dz = lγ sinh(Lγ) ≤ ε0 .

Adding the terms in the upper bound on |WTγ (hγ , h)| yields the result.

We can also compare the flat metric hγ on Tγ to the Thurston metric hTh. Since hTh
is conformal to h, it is also conformal to hγ , so we can write

hTh = e2u∆hγ ,

for a function u∆ : Tγ → R. By definition, u = u0 + u∆ on Tγ . The next lemma states a

bound on u∆, with fixed constants, over Tγ .

Lemma A.14. There exists a constant C2 > 0 such that, on Tγ,

|u∆| ≤ C2

and ∫
Tγ

‖du∆‖2hThdahTh ≤ C2 .
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Proof. Since hγ = e−2u∆hTh and hγ is flat, the curvature of hTh satisfies

∆Thu∆ = KTh .

Since KTh ≤ 0, ∆Thu∆ ≤ 0, so u∆ ≥ C1 by the maximum principle.

In addition, ∆Thu∆ ≥ −1. It then follows from standard arguments (using the fact

that KTh ∈ [−1, 0]) that there exists c > 0 such that if u∆(x0) ≥ c, then u∆ ≥ 1 on

the disk of center x0 and radius 2π in hTh. Since (Tγ , hTh) is approximated, outside a

neighborhood of its boundary, by a tube of perimeter 2π, there exists a closed curve γ′

homotopic to γ going through x0, of length less than 3π for hTh. Then u∆ ≥ 1 on γ′. It

would then follow that the length of γ′ for hγ is at most 3πe−2 < 2π, a contradiction since

(Tγ , hγ) is isometric to a cylinder of perimeter 2π and γ′ is homotopic to γ. So u∆ ≤ c on

Tγ . We can already conclude that, for a certain C2 > 0, |u∆| ≤ C2 on Tγ .

Notice that∫
Tγ

‖du∆‖2hThdahTh =

∫
Tγ

u∆∆Thu∆dahTh +

∫
∂Tγ

u∆du∆(n)ds

=

∫
Tγ

u∆KThdahTh +

∫
∂Tγ

u∆du∆(n)ds ,

so ∣∣∣∣∣
∫
Tγ

‖du∆‖2hThdahTh

∣∣∣∣∣ ≤ C2

∣∣∣∣∣
∫
Tγ

KThdahTh

∣∣∣∣∣+

∫
∂Tγ

|u∆du∆(n)| ds

≤ C2Area(Tγ ,m) + 2C2
1ε0 .

The uniform bound on the integral follows.

Proof of Theorem A.10. Let γ1, · · · , γn be the closed geodesics of length less than ε0 in

(∂X, h). If ε0 is small enough, those short closed geodesics are disjoint, and they are the

core curves of disjoint long thin tubes in (∂X, h), denoted here by Tγ1 , · · · , Tγn . Since the

γi are disjoint, n ≤ (3/2)|χ(∂X)|.
For each i ∈ {1, · · · , n}, we have seen that

∣∣∣WTγi
(hTh, h)

∣∣∣ =

∣∣∣∣∣14
∫
Tγi

‖d(u0 + u∆)‖2h + 2(u0 + u∆)dah

∣∣∣∣∣ .
Since u = u0 + u∆ > 0,

∣∣∣WTγi
(hTh, h)

∣∣∣ ≤ ∣∣∣∣∣12
∫
Tγi

‖hdu0‖2h + ‖u∆‖2h + u0 + u∆dah

∣∣∣∣∣
≤ 1

2

∣∣∣∣∣
∫
Tγi

‖du0‖2h + 2u0dah

∣∣∣∣∣+
1

2

∣∣∣∣∣
∫
Tγi

u0dah

∣∣∣∣∣+
1

2

∣∣∣∣∣
∫
Tγi

‖du∆‖2h + u∆dah

∣∣∣∣∣
≤ 2|WTγi

(hγi , h)|+ 1

2

∣∣∣∣∣
∫
Tγi

u0dah

∣∣∣∣∣+
1

2

∫
Tγi

‖du∆‖2hThdahTh +
1

2

∫
Tγi

u∆dah .
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However we have already seen in the proof of Lemma A.13 that the integral of u0 on Tγi is

bounded by a fixed constant, say C ′0. Using Lemma A.13 and Lemma A.14, it follows that

|WTγi
(hTh, h)| ≤ 2C0 +

C ′0
2

+
C2

2
+
C2

2
Area(Tγi , h) .

In addition

|W∂X\(Tγ1∪···∪Tγn )(hTh, h)| ≤ C2
1 + C1

4
Area(∂X, h) ,

and the result follows.

A.15 Asymptotic behavior of the renormalized volume when pinching a com-

pressible curve

Finally we give here a more precise asymptotic description of the behavior of V ′R when

a compressible curve is pinched. This analysis can be extended to the case where two

or more compressible curves are pinched, with a dominant term which is a sum of terms

corresponding to each pinched curve.

Theorem A.15. Let (ct)t∈[0,1) be a smooth curve in T∂X , with limt→1 ct a point in the Weil-

Petersson compactification of T∂X corresponding to a hyperbolic metric with one simple

compressible closed curve γ pinched. Then, as t→ 1,

V ′R(ct) ∼
−π3

Lct(γ)
,

where Lct(γ) is the length of γ in the hyperbolic metric ct on ∂X.

Note that the proof actually shows a little more: in the case where several curves are

pinched so as to have (asymptotically) constant length ratio, V ′R is equivalent to a sum of

terms corresponding to each of those short curves.

In the next lemma, we consider Tγ as a subset of ∂C(X), using the nearest-point

projection from ∂∞X to ∂C(X).

Lemma A.16. There exists a constant C3 > 0 such that if the Margulis tube Tγ contains

a maximal segment of length 2L for the induced metric m in the support of the measured

bending lamination l, then all segments of l in Tγ have length in [2L − C3, 2L + C3], and

the extremal length of γ satisfies

|Ext(γ)− π

L
| ≤ C3 .

Proof. Let c and c′ be two maximal segments in Tγ in the support of l. Let c−, c+ be the

endpoints of c on ∂Tγ , and similarly let c′−, c
′
+ be the endpoints of c′, with c′− on the same

boundary component of Tγ as c−. Since the boundary components of Tγ have length ε0 for

h, c− and c′− are at distance at most ε0/2 for h, and similarly for c+ and c′+.

Lemma A.12 therefore shows that c− and c′− are also at distance at most eC1ε0/2 in

the Thurston metric hTh, and similarly for c+ and c′+. But then it follows that they are
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also at distance at most eC1ε0/2 in the induced metric m on the ∂C(X), which is smaller

than hTh. This constant therefore also bounds their hyperbolic distance in X.

Since c and c′ are geodesics for the hyperbolic metric on X, it follows from the triangle

inequality that the hyperbolic length of c and c′ are close:

|L(c′)− L(c)| ≤ eC1ε0 .

This proves the first point.

For the second point, let c0 be a geodesic segment of C(X), of length 2L, centered at

a point close to the geodesic representative of γ in ∂C(X). The same argument as above

for c and c′ shows that there exists a constant C > 0 such that the orthogonal projection

of Tγ on the geodesic containing c0 is within the set of points at distance at most C from

c0 – we denote this extended segment by c0+. Conversely, this orthogonal projection of Tγ
contains the set of points of c0 at distance at least C from the endpoints, denoted here by

c0−.

Let N1c0+ be the unit normal space to c0+, that is, the set of unit vectors orthogonal to

c0+. We consider the exponential map exp∞ : N1c0+ → ∂∞X sending a vector n ∈ N1c0+

to the endpoint at infinity of the geodesic ray defined by n. If ε0 is small enough, then

exp∞ is a diffeomorphism on its image, which is an annulus in ∂∞X containing Tγ .

An explicit computation – using for instance the Poincaré model of H3 – shows that

Mod(exp∞(c0−)) = L−C
π while Mod(exp∞(c0+)) = L+C

π . Since the modulus is increasing

under inclusion, it follows that

L− C
π

≤ Mod(Tγ , h) ≤ L+ C

π
.

Since the conformal structure in the “thick” part of ∂X remains bounded, standard

arguments then show that the modulus of γ in ∂X differs from its modulus in Tγ by

bounded quantity, that is, replacing C if necessary, any annulus A extending Tγ in ∂X

satisfies

Mod(Tγ , h) ≤ Mod(A, h) ≤ Mod(Tγ , h) + C .

Therefore the extremal length of γ in ∂X satisfies

π

L+ 2C
≤ Ext∂X(γ) ≤ π

L− C
,

and the result follows.

Proof of Theorem A.15. We assume that the hyperbolic length of γ goes to zero as t→ 1.

It then follows from results of Maskit [68] that the extremal length of γ for ct is equivalent

to

Extc(γ) ∼ Lct(γ)

π
.

It then follows from Lemma A.16 that if the Margulis tube around γ contains a maximal

segment of length 2Lt in the support of the measured bending lamination, then

Lt ∼
π

Extct(γ)
∼ π2

Lct(γ)
.
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However, the total length of the measured bending lamination in the “thick” part of ∂C(X)

(the set of points where the injectivity radius is larger than ε0/2) is uniformly bounded.

Moreover, the intersection with γ of the measured bending lamination lt on the boundary

of the convex core converges to

i(γ, lt)→ 2π ,

as can be seen by considering the intersection of ∂C(X) with the plane P considered in

Section A.6. As a consequence, since the length of every segment of lt in Tγ has length

approximatively 2Lt, the length of lt for the induced metric mt on the convex core behaves

has

Lmt(lt) ∼ 2π.2Lt = 4πLt .

and, as a consequence,

V ′R ∼ −
Lmt(lt)

4
∼ −πLt ∼ −

π3

Lct(γ)
.
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