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ABSTRACT: In the AdS/CFT correspondence, amplitudes associated to connected bulk
manifolds with disconnected boundaries have presented a longstanding mystery. A possible
interpretation is that they reflect the effects of averaging over an ensemble of boundary
theories. But in examples in dimension D > 3, an appropriate ensemble of boundary
theories does not exist. Here we sharpen the puzzle by identifying a class of “fixed energy”
or “sub-threshold” observables that we claim do not show effects of ensemble averaging.
These are amplitudes that involve states that are above the ground state by only a fixed
amount in the large N limit, and in particular are far from being black hole states. To
support our claim, we explore the example of D = 3, and show that connected solutions of
Einstein’s equations with disconnected boundary never contribute to these observables. To
demonstrate this requires some novel results about the renormalized volume of a hyperbolic
three-manifold, which we prove using modern methods in hyperbolic geometry. Why then
do any observables show apparent ensemble averaging? We propose that this reflects the
chaotic nature of black hole physics and the fact that the Hilbert space describing a black
hole does not have a large N limit.
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1 Introduction

Since early days of the AdS/CFT correspondence [1], there has been a puzzle of how to
interpret Euclidean amplitudes computed on a connected bulk manifold X whose confor-
mal boundary M is not connected [2, 3]. If M is connected, the sum over all choices of X
is interpreted in the AdS/CFT correspondence as computing what we will call Z(M), the
conformal field theory (CFT) partition function on M. What if M has, say, two connected
components M7, Ma? The sum over all choices of X whose conformal boundary is the
disjoint union M = M; LI M5 appears to compute, in some sense, a connected correlation
function (Z(M1)Z(Ma))e = (Z(M1)Z(Ma)) — (Z(M1)){Z(M?z)) between the two CFT par-
tition functions Z(M;) and Z(Ms). We will refer to such connected correlation functions



between different boundaries (possibly with operator insertions on the boundaries) as “con-
nected amplitudes with disconnected boundaries” or CADB amplitudes for short. CADB
amplitudes are not a standard concept in CFT or indeed in any Euclidean quantum field
theory, so the fact that AdS/CFT duality seems to give a way to calculate them has been
puzzling.

A new perspective came from the discovery that a simple, soluble model, namely JT
gravity in two dimensions, computes an ensemble average in a random matrix theory [4]. A
two-dimensional gravitational theory is expected to have a dual description by an ordinary
quantum theory on the 1-dimensional boundary of a 2-dimensional world. A compact
connected 1-manifold is a circle S, say of circumference 3, and the partition function is then
Z(B) = Tr exp(—SH), where H is the Hamiltonian of the boundary theory. However, it
turns out that the theory dual to JT gravity does not have a unique Hamiltonian H; rather,
H is drawn from a random matrix ensemble. This provides a rationale for the existence
of connected correlation functions between observables associated to different boundary
circles. Such amplitudes can be generated in the boundary description by averaging over the
random matrix H. This discovery revived interest in much older ideas about gravitational
wormholes and ensemble averages [5-7].

But the interpretation of CADB amplitudes in terms of ensemble averages raises an
immediate paradox. In many basic examples of AdS/CFT duality, it is believed that the
parameters on which the boundary theory depends are all known and all have a known
interpretation in terms of the bulk theory. The duality seems to say that a specific boundary
theory, with specific values of the parameters, is dual to a specific bulk theory with the
same parameters. For instance, two of the original examples of AdS/CFT duality are the
maximally supersymmetric models based on AdSy x S” and AdS7 x S%. In these examples,
the only parameter that the boundary CFT depends on is a single positive integer N. The
bulk theory also depends on N; in fact, Newton’s constant G varies as a negative power of
N, and N can be measured as the integral of a certain seven-form or four-form on S” or
S*. The duality claims an equivalence between bulk and boundary theories for each choice
of N; and for given IV, there appears to be nothing else one could be averaging over in
an ensemble. So how can CADB amplitudes in these theories be interpreted in terms of
averaging over an ensemble?

We will try to shed some light on this question by arguing that when the Anti de
Sitter dimension D is at least 3, and therefore the boundary dimension d = D — 1 is at
least 2, certain important observables, which we will call fixed energy observables, are not
affected by ensemble averaging; if one considers only these observables, one will see no
sign of ensemble averaging. These are observables that can be defined just in terms of the
energy and couplings of states whose energy remains above the ground state by only a
finite amount as N becomes large. In particular these observables involve states that are
far below the black hole threshold, which in the AdS/CFT correspondence is the energy of
the Hawking-Page transition [8] from a thermal gas in Anti de Sitter space to a black hole;
in gauge theory examples, this can also be interpreted as a deconfining transition [9]. The
fixed energy observables are described more precisely in section 2.1. Another formulation
of our proposal involves integrability. Some important examples of AdS/CFT duality are



integrable in the large N limit, and apparently also in an asymptotic expansion around that
limit; for an extensive review, see [10]. Our proposal is that precisely the observables that
are accessible via integrability are not affected by ensemble averaging. This is consistent
with the fact that calculations based on integrability do appear to describe a definite CFT,
not an ensemble average.

In the case D = 3, d = 2, our proposal has implications for hyperbolic geometry that
are explained in section 2.3, so we can test the proposal by verifying those predictions.
Thus, we consider examples of AdS/CFT duality in which the bulk spacetime is asymp-
totic to AdS3 x B for some compact manifold B. The choice of B will play no role in
our discussion; various examples have been much studied, including S® x T4, S? x K3, and
S3 x §3 x S! (S™ is an n-sphere, T" is an n-torus, and K3 is the complex surface of that
name). Let M, My, ---, M, be a collection of Riemann surfaces. If X is a hyperbolic
three-manifold whose conformal boundary is a disjoint union M; LI My U --- L M, then a
path integral on X x B contributes to a connected amplitude (Z(M;)Z(Ma) - - Z(My))e.
For small G or equivalently large N, the contribution is proportional asymptotically to
exp(—Vgr(X)/4nGl?), where Vi(X) is the renormalized volume of X, and ¢, which we
assume much larger than G, is the AdS radius of curvature. We will deduce the statement
that fixed energy amplitudes do not receive contributions from manifolds with disconnected
boundary from properties of renormalized volumes. Specifically, we will show that a hy-
perbolic three-manifold X contributes to a fixed energy amplitude on a Riemann surface
M only if the boundary of X is connected and consists only of M. An overview of the
mathematical arguments is given in section 3; details appear in appendix A.

Even if X has connected boundary M, it is not necessarily true that X contributes
to fixed energy amplitudes on M. To contribute to such amplitudes, X must be a “han-
dlebody” or Schottky manifold. This means that for some embedding of M in R3, X is
topologically equivalent to the interior of M. In other words, we will find that only the sim-
plest hyperbolic three-manifolds with boundary M contribute to fixed energy amplitudes
on M.

We hope that these statements about hyperbolic three-manifolds are illustrating a
general lesson that fixed energy observables are not subject to ensemble averaging, but a
number of caveats are necessary. First, we consider only the case D = 3, d = 2. Though we
suspect that a similar picture holds for larger values of D, to show this will require more
work with both the physics and the classical geometry. Second, our main arguments concern
the case that X is a classical solution of Einstein’s equations, that is, a hyperbolic three-
manifold. However, it is believed that in some cases, non-solutions must be considered.!
Since little is known about what non-solutions are relevant in general, we cannot make a
systematic analysis. However, we will consider the few examples that have been analyzed
in the literature, namely R x T2, studied in [12], and Seifert fibered manifolds, studied in

'In at least some cases, these non-solutions can be interpreted as critical points of the action at infinity
(see section 4.2 of [11] for discussion), as opposed to classical solutions, which are ordinary critical points.
They can also possibly be interpreted, at least in some cases, as complex critical points (critical points
of the analytic continuation of the Einstein action to a holomorphic function of a complex-valued metric
tensor on X).



[13]. The known and conjectured results are consistent with the claim that fixed energy
observables do not show apparent ensemble averaging. Finally, even if one restricts to
classical solutions, there is no need to consider only spacetimes of the product form X x B;
one could consider a more general ten-manifold with the same asymptotic behavior. Little
is known about possible solutions of this more general form, and we are not in a position
to prove that they do not contribute to fixed energy CADB amplitudes.

Assuming that fixed energy observables indeed do not have CADB contributions, this
is a strong indication that in AdS/CFT duality, there is no ensemble average over unknown
parameters. It would be very hard for such an average not to affect fixed energy observables.
Given this, why do amplitudes that involve black hole states have CADB contributions?
This question will be discussed in section 4. We propose that this phenomenon reflects the
following two points: (1) black hole physics is highly chaotic [14]; (2) the Hamiltonian and
Hilbert space that describe a single black hole apparently do not have a large N or small
G limit. The first of these assertions is well-known in the present context and was a large
part of the motivation for the work that eventually led to the interpretation of JT gravity
in terms of an ensemble average [4]. The second assertion, which has not been considered
in the present context, is a negative one; since the entropy of a black hole grows as a
power of N (as N? in the case of N' = 4 super Yang-Mills in four dimensions), it is hard
to see in what sense the Hilbert space describing a black hole could have a large N limit,
and the literature certainly does not contain any proposal for such a limit. See [15] for
more discussion. (By contrast, the thermofield double, which is dual to an entangled pair of
black holes [16], does have a large N limit.) Point (1) means that the Hamiltonian Hy that
describes black holes of a given energy for a given value of N can be viewed as a very large
pseudorandom matrix, which will look like a random matrix in any standard calculation.
Point (2) suggests that for N # N’, even if |[N' — N| < N, Hy and Hp can be viewed to
a good approximation as independent draws from a random matrix ensemble. If so, then
quantities that depend on Hpy, such as the partition function, will be smooth functions of
N only to the extent that they are self-averaging in random matrix theory. (In random
matrix theory, a quantity is called self-averaging if it has almost the same value for almost
any draw from a given random matrix ensemble.) Quantities that are not self-averaging in
random matrix theory will depend erratically on N or G. With present techniques, what
we know how to calculate from the gravitational path integral are smooth functions of N
or GG, and given the facts just stated, above the Hawking-Page transition, we can only
calculate quantities that are self-averaging in random matrix theory.? If it is possible to
compute erratically varying quantities from a gravitational path integral, this will involve
an unfamiliar type of path integral that is not dominated by a simple sum over critical
points, not even critical points at infinity. In random matrix theory, CADB amplitudes
make sense and are sometimes self-averaging; when that is the case, there can be a simple
way to calculate them from the gravitational path integral. A shorthand way to summarize
the proposal made here is that the ensemble averaging that is seen in gravitational path

2If a quantity is not self-averaging but does have a nonzero average in random matrix theory, it may be
possible to compute this average. Examples are discussed in [17].



integral calculations is simply an averaging over nearby values of N to eliminate erratic
fluctuations. This makes sense as a general proposal because in all known examples of
AdS/CFT duality for D > 3, G varies inversely with one or more integers N.

We should stress again that we unfortunately do not know for sure how to extrapolate
from the specific results we will prove about hyperbolic three-manifolds to a general lesson
about AdS/CFT duality. As noted previously, in some important examples of AdS/CFT
duality, states whose energy above the ground state is fixed for N — oo are described by
an integrable system.? Given this, and since integrability is the antithesis of chaos, and
given also the close relation of apparent ensemble averaging to chaos, the safest conjecture
in the context of the present article is that energies and couplings of fixed energy states
are not affected by apparent ensemble averaging. Thus a conservative title for this article
would be “No Ensemble Averaging at Fixed Energy Above the Ground State.” However,
in practice, in a theory that can be well approximated by pure gravity up to the black hole
threshold, the detailed results we obtain in section 3 are valid for any state that is below
that threshold; therefore, especially in section 3, when discussing classical solutions of pure
gravity, we use the language of sub-threshold states, rather than fixed energy states. We
should note, though, that in a theory that can be approximated by pure gravity up to the
black hole threshold, the sub-threshold states are all Virasoro descendants of the identity,
which explains why their couplings behave similarly to those of the fixed energy states.

After v1 of this paper was submitted to the arXiv, there appeared a very interesting
article [18] on couplings in 3d gravity of states whose energy, in the large N limit, is above
the ground state by a fixed fraction — positive but less than 1 — of the energy required to
make a black hole. (This regime might be similar to the regime mentioned in footnote 3
with k& ~ N.) Such states could be solitons, for example. Couplings of such states do show
apparent ensemble averaging. A possible interpretation, in the spirit of section 4, is that
couplings of these states are described in the semiclassical limit by the nonlinear gravity
or supergravity theory, which (if it has the assumed states) is not integrable and is likely
to lead to classical and quantum chaos.

2 Volumes and Fixed Energy Amplitudes

2.1 Preliminaries

As was remarked in the introduction, known examples of AdS/CFT duality in D > 3
always depend on one or more integers with an inverse relation to Newton’s constant G.
For example, four-dimensional maximally supersymmetric Yang-Mills theory with gauge
group SU(N) has a dual description in AdSs x S® with G ~ 1/N2. In examples with D = 3,

3 As pointed out to us by J. Maldacena, even when there is no integrable system, the spectrum
of fixed energy states is never truly chaotic, since for large N the dimension of a multi-trace operator
TrO1 Tr Oz - - - Tr Oy is simply the sum of the dimensions of the individual factors. This assumes that the
number k of factors is kept fixed for N — oco. For k ~ N, one enters a different regime in which nonlinear
interactions are important in the large N limit, potentially leading to classical and quantum chaos (though
in general probably not the maximal chaos of black hole physics).



d = 2, which will be our main focus in this article, one has*

!
-2

where c is the central charge of the boundary CFT, and ¢ is the radius of curvature of

(2.1)

the AdSs space. For D = 3, d = 2, the “large N limit” is a limit in which ¢ is large,
and therefore G < ¢; that last condition enables gravity to be treated semiclassically, by
summing over classical solutions, as we will assume in this article. For instance, in one
much-studied family of models, ¢ = 6Q1Q)5, where @1 and Q5 are integer-valued one-brane
and five-brane charges. In that example, by “large N limit,” we mean the limit in which
)1 and Q)5 are taken to be large, with a fixed ratio, ensuring, in particular, that c is large.
In a d-dimensional CFT, a local operator O is inserted in a correlation function at
a point p in a d-manifold M. A local operator O has a dimension A, which determines
how it behaves under a conformal transformation that rescales the tangent space at p, and
it transforms in an irreducible representation J of the group SO(d) of rotations around
the point p, or (in a theory with fermions) its double cover Spin(d). J is called the spin
of the operator. In our main example of d = 2, the group Spin(2) is abelian and J can
be viewed as an integer or half-integer, an element of %Z. In a CFT that participates in
AdS/CFT duality, the dimensions A; and representations J; of local operators O; have a
large N limit. This is a basic prediction of the duality, and in gauge theory examples in
d = 4 it is a consequence of the planar diagram expansion [20]. There is precisely one
local operator of dimension 0, namely the identity operator 1, which transforms in a trivial
1-dimensional representation of Spin(d). The other local operators O;, i = 1,2,--- have
positive dimensions and can be labeled in order of increasing dimension 0 < A; < Ay < -+ -,
By the operator-state correspondence of CFT, local operators correspond to Hilbert
space states if a CFT is quantized on a spatial manifold S¢~! (with a round metric). For
odd d, the identity operator corresponds to a state of energy 0, but for even d the identity
operator corresponds to a state with an energy that is determined by the anomaly in a
conformal mapping from R? with a point removed to R x S9!, We will be mainly interested
in d = 2, in which case the identity operator corresponds to a state of energy
c
-

Importantly, this value is negative and, in the large N limit, it is large. That will lead

Eo = (2.2)

to a prediction that certain renormalized volumes of three-manifolds should go to —oo
in appropriate limits. Any other operator O; corresponds to a state (more precisely a
collection of states transforming in an irreducible representation J; of Spin(d)) of energy

Thus the dimension A; of an operator is the same as the excitation energy of the corre-
sponding state above the ground state. A; is by definition the energy of the i*" excited state,
and in the context of AdS/CFT duality, it has a limit for ¢ — co. So in our terminology,
the " excited state for each i is a fixed energy state.

4This formula was actually discovered before the general understanding of AdS/CFT duality [19].



A; and J; are the first basic examples of fixed energy observables that we propose
are not subject to ensemble averaging. The other such observables are essentially the
trilinear correlation functions of the ;. The O; can be normalized to put their two-point
functions in a standard form (for spinless operators, the standard form is (O;(z)O;(y)) =

8i;/|z — y|**¢) and then the trilinear or three-point correlation functions®

Aijk = (Oi(2)0;(y)Or(2)) (2.4)

are important observables of a CFT. We propose that also the A;;;, are not affected by
ensemble averaging.

In d = 2, all observables of a CFT are completely determined, in principle, in terms of
the A;, J;, and A;j. This can be proved by using the fact that any two-manifold without
boundary can be built by gluing together three-holed spheres, a fact that we will exploit
in section 2.3. As a result, in d = 2, we expect that all observables not subject to ensemble
averaging are actually determined by A;, J;, and A;j;. In d = 2, a complete set of conditions
on Ay, J;, and A;ji so that they are CFT data is known in principle (but often hard to use
in practice). Above d = 2, none of these statements have equally simple analogs, and in
particular we do not know whether to expect that the A;, J;, and \;j; are a complete set
of observables that are free of ensemble averaging.

If A;, J;, and \;j are a complete set of CE'T observables in d = 2, and are not subject
to ensemble averaging, then why in d = 2 do any observables appear to be subject to
ensemble averaging? The answer to this question depends on the fact that the observables
that appear to be subject to ensemble averaging are the ones that receive contributions
from black hole states. We will refer to a spacetime asymptotic to AdS3 at spatial infinity as
an AAdS3 spacetime. The Einstein equations have an AAdS3 black hole solution, namely
the BTZ black hole [21]. It was understood in the original paper on the BTZ black hole
that if energy is defined by the usual ADM recipe of general relativity, then AdSs itself has
negative energy. Later it was understood [22] that this negative energy can be understood
in terms of the central charge of the BTZ black hole. Thus AdSj itself corresponds to the
ground state of the CFT, with energy

Ey=— (2.5)

12’
with ¢ = 3¢/2G [19]. Small perturbations of AdSs give the states that have energy —c/12+
A;, with fixed A; and large ¢. We get to the black hole regime if we take ¢ large with
A > ¢/12, meaning that the total energy Fy + A is large and positive. In that regime,
the density of states per unit energy is exponentially large; it is e>(¥), where S (E), which
is the Bekenstein-Hawking entropy of the black hole at energy F, is of order c for large ¢
and fixed E/c.

For any given value of ¢ or N, there is no useful notion of whether a given state is a
black hole or not. The black hole region is defined only in terms of a limiting process: if we

®In the case of spinless conformal primary fields, these three-point functions depend only on the chosen
points z,y, z. More generally, one has to pick local parameters at z,y, z. The details are not important in
the present article.



go to large ¢ with fixed A, we get an ordinary state, and if we go to large ¢ with E/c fixed
and positive, we get a black hole. The distinction is only sharp in the limit of large ¢, but
because the gravitational calculations that we know how to perform involve an asymptotic
expansion at large c¢, the distinction is quite sharp in computations that we can actually
perform.

Concretely, the Hawking-Page phase transition occurs as follows. In AdS/CFT duality,
the partition function on a boundary manifold M is computed by summing over bulk
manifolds with conformal boundary M. In stating the following, we will assume that d = 2
and that we can assume the bulk manifold is a hyperbolic three-manifold X with conformal
boundary M. (As explained in the introduction, in general there are other possibilities.)
The contribution of a given X is, for small G, asymptotic to exp(—Vg(X)/4wG(?). That
simple exponential is multiplied by an asymptotic series of quantum corrections; this series
depends only on powers of G, not an exponential of 1/G. The choice of X depends on the
complex structure of M, and therefore so does the volume Vi(X). For example, if we are
trying to compute Tre ¥ we take M to be a torus with a complex structure that depends
on [ (see section 2.2 for more detail). Then the renormalized volume Vg(X) depends on
B and we can write it more explicitly as Vi(X, ). Since we have to sum over the choices
of X to compute Tre PH  we get

Tre 7 S exp(—Vi(Xa, 8)/4G) - Fu(5,G), (2.6)

where the sum runs over the possible choices of three-manifold X, and for each a, F, (5, G)
is the corresponding series of quantum corrections. For any given value of ¢ or G, the sum
in eqn. (2.6) just produces an analytic function of 5. However, the asymptotic behavior
for ¢ - oo or G — 0 is dominated by the term in the sum with the smallest possible
Vr(Xa, B). As [ is varied, there can be a “crossover” with a jump in the choice of X that
minimizes Vi(X, 8) and therefore a discontinuous change in the asymptotic behavior of the
partition function for small G. That jump is the Hawking-Page transition. What has just
been explained (or its analog in higher dimensions) was actually the original explanation
of the Hawking-Page transition [8], long before AdS/CFT duality was understood.

2.2 Review Of The Renormalized Volume

The relation of the renormalized volume of a hyperbolic three-manifold to the negative
ground state energy of a two-dimensional CFT will be important in what follows, so we
will review it in detail. First we recall the relation between the Einstein action and the
renormalized volume.

With negative cosmological constant, the Einstein action in a three-dimensional space-
time X of Euclidean signature, with boundary 0.X, is

1 3 2N\ L[ g
I= 16WG/dx\/§<R+£2> 52 ), VK (2.7)

where R is the Ricci scalar of X, and v and K are the induced metric and the trace of
the second fundamental form of X (R, will denote the scalar curvature of ). The last



term is the Gibbons-Hawking-York (GHY) boundary term. Using Einstein’s equations

R;; — % 9ij R — K%gij = 0, one can rewrite the bulk part of the action as a multiple of the
volume of X: 1 1

I= Bryg— — | dPavVhK 2.8

Ar G2 /X I G [ TV (28)

To this action, one can add “counterterms,” which are simply local integrals over 0.X of

invariant functions of the induced metric. For our purposes there are two relevant terms:

[0
/ax e/ (?2 + /\R7> . aAER. (2.9)

One adjusts « and A to cancel the divergent part of the action (2.7) and to make the action
conformally invariant, that is, invariant under Weyl transformations of the boundary metric
v, apart from the usual c-number Weyl anomaly of two-dimensional CFT. The bulk term in
eqn. (2.8) is formally V/47G, where V' is the volume of X. For a hyperbolic three-manifold
with non-empty conformal boundary, this volume is divergent. After renormalization it will
be replaced with a renormalized volume Vg. On the other hand, it turns out that in D = 3,
the GHY boundary term is entirely canceled by renormalization. So the renormalized action
will be just Ip = Vg /4nG.

A convenient reference on the necessary computation is [23], which we will follow here
(with minor changes of notation). To evaluate the action on an AAdS3 spacetime, one puts
the metric of X in the form

d2—£d2 LSy da'da? 2.10
S—4p2p+plzgw($,p)xx (2.10)
1=1,2
near the conformal boundary of X, which in these coordinates is at p = 0. In two dimen-
sions, g(x, p) has an expansion

9(x, p) = G0y (x) + pg(a)(¥) + plog p hiz) (z) + O(p* log p). (2.11)

The only facts we need to know from the Einstein equations (eqn. (7) of [23]) are that

ki &
90 9@m = 5 Ro)
9oy Pk = 0, (2.12)

where R(g) is the Ricci scalar of the metric g(q).

The first step in defining the renormalized volume is to “cut off” X by restricting to
the region X, with p > ¢€; to define Vg, one computes the volume of X, and then takes
the limit € — 0 after adjusting the counterterms of eqn. (2.9) to cancel divergences. Using
the form (2.10) of the metric with the expansion (2.11) together with (2.12), one finds the
divergent parts in the volume V' (X):

AN
V(Xe) = /edp /8X d%z, /det g(o) (,02 + %R(O) + O(log p))
¢ 2 *log(1/e) / 2 :
= - _ fi . (21
; /8)(5 d*z, /det gy + 1 ok d*zy/det gy R(o) + finite. (2.13)



Subtracting the divergent part, we arrive at the definition of the renormalized volume of
X:6

3
Vr(X) = lim (V(XE) — é/ d%z, /det gy — Elog(l/e)/ d%z, /det g(O)R(0)> .
e—0 €Jo X, 4 89X,
(2.14)

The GHY boundary term can be analyzed similarly. One finds with the help of eqn.
(2.12) that the GHY boundary term in the action of X, is a linear combination of the
two counterterms in eqn. (2.9) (plus a remainder that vanishes for ¢ — 0). Hence the
GHY boundary term does not contribute to the renormalized Einstein action, which is just
Ig = Vg/AwGP2.

Now we can understand in terms of the renormalized volume the fact that Tre #H
diverges for large 8 and large ¢ as e?¢/12 = ¢B/3G To compute Tre PH | we take the
conformal boundary to be a two-torus M parametrized by ¢ and ¢ with metric ds? =
d¢? + dt? and periodicities” ¢ = ¢ + 27 and ¢t = t + 5. To compute Tre A we have to
sum over hyperbolic three-manifolds with boundary M. The dominant one for large § is
just AdSs itself with a periodic identification ¢ = t+ £, making what we might call thermal
AdS;. The metric is®

2 2
ds? = <Z2 n 1) 2de? + ﬂdrl + r2dg?. (2.15)

52

To put this in the desired form of eqn. (2.10), we have to solve

{d d
T ey (2.16)
2p (%2 +1)1/2
leadingtopzr%—%—F--- or
1
= P )2+ O(p). (2.17)

The cutoff at p > € therefore corresponds to r < r,, = 1/e — £?/2, so the volume of X, is

V(Xe):/Omdr/:ﬂdqs/oﬁdt\/cﬁtg:e/ormdr/:ﬂdqs/oﬁdtr:wﬁ <f—“§>

(2.18)
Subtracting the divergent part, we are left with Vg(X) = —763/2, so exp(—Vg/4rG(?) =
exp(p/8G), as expected.

5The conformal anomaly arises from the logarithmically divergent term. If we repeat the calculation
after making a Weyl rescaling of the boundary metric g, the renormalized volume Vr(X) is shifted by
the conformal anomaly.

"¢ should have period 27 because the statement that the ground state energy of a CFT is —¢/12 assumes
that the CFT is quantized on a circle of circumference 27, here parametrized by ¢. To compute Tre™?H
we propagate the ¢ circle though imaginary time (3, so we need t =t 4 .

8This metric is often written in terms of ¢ = £¢. Our normalization ensures that the metric on the torus

at infinity is conformal to d¢® + d¢?.

~10 -



The moral of the story is that the large negative CFT ground state energy —c/12 for
large ¢ corresponds to the fact that for large 3, Vg = —m3¢3/2 becomes very negative.
Generalizing this, our hypothesis that there is no ensemble averaging for fixed energy ob-
servables leads to predictions about precisely when Vi(X), for a hyperbolic three-manifold
X, can go to —oo. This will be explained in section 2.3. But first, we will discuss other
contributions to Tre A" to illustrate the fact that in most cases, Vz(X) does not go to
—oo when S becomes large.

Before being general, we will describe the special case that is actually important in
understanding the Hawking-Page phase transition. In a CFT, we are free to rescale the
metric of the torus M, so instead of saying that ¢ and ¢ have periods 27 and 3, we could
rescale the metric and say that the periods are 47%/3 and 27. Now we can write down the
same metric as before but with ¢t and ¢ exchanged:

2 r’ 27,2 dr? 27,2
ds :<£2+1)€d¢ +T+1+Tdt. (2.19)
02

Assuming that ¢ is regarded as the Euclidean time direction, this is the Euclidean version of
the BTZ black hole; we get the actual BTZ black hole if we continue to Lorentz signature’
by t — it. Obviously, the renormalized volume can be evaluated just as before, but with
f3 replaced by 472/3. So the leading black hole contribution to Tre ™ is exp(n2¢/26G),
obtained from the previous exp(8¢/8G) by B — 4n?/3. Clearly, for G asymptotically
small, exp(3¢/8G) and exp(n2(/2G) exchange dominance at 8 = 2, and this is the
Hawking-Page phase transition.

We can generalize this slightly to describe all hyperbolic three-manifolds whose con-
formal boundary is the torus M. First, going back to AdSs3, notice that we can slightly
generalize the equivalence relation on ¢ and ¢ that we used before so that the torus at
infinity is defined by

(¢7 t) = (¢ + 2m, t)
(¢.1) = (¢ + b + ). (2.20)

A shift in imaginary time by ( is now accompanied by a rotation of the circle parametrized
by ¢ by an angle a, so a CFT path integral on this torus computes Tr e #H P where P
is the operator that generates a rotation of the circle. The eigenvalues of H and P on a
state that corresponds to an operator of dimension A and spin J are —15 + A and J, so

o0
Ty e—BH+QP _ ,Bc/12 Z e B+ (2.21)
=0

Tf we set 72 + £* = R? and substitute ¢ — it, the line element (2.19) becomes R*d¢? + £2 R‘%IZQ —(R*—
£*)dt®. This is a commonly written form of the BTZ black hole metric (with zero angular momentum) up
to constant rescalings of R, ¢, and t. Note that in this way of writing the BTZ metric, the black hole mass
is encoded entirely in the period of the ¢ variable. The black hole horizon is at R = ¢, where the coefficient
of dt? vanishes. As usual the vanishing of this coefficient represents only a breakdown of the coordinate

system, and the Lorentz signature geometry has a real analytic continuation beyond this horizon.
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The computation of Vg is not affected by the angle a, so Vg = —m3¢3/2, independent of a.
This agrees with the fact that the exponentially growing factor e#¢/!2 in the CFT partition
function (2.21) does not depend on «, since the spin of the ground state is Jy = 0.

If we set z = (¢ +1it) /27, we see that the two-torus that is defined in eqn. (2.20) is the
quotient of the complex z-plane by the lattice generated by 1 and (i 4+ «)/27. So it can
be viewed as a complex elliptic curve with the modular parameter

rofta (2.22)
27
In this language, the formula for the renormalized volume becomes
Vr(T) = —m*3Im(7). (2.23)

Let u be the image in the boundary torus M of a straight line from z = 0 to z = 1, and
let v be the image of a straight line from z = 0 to z = 7. Thus u and v are circles in M. In
the thermal AdS3 space of eqn. (2.15), u is the boundary of a disc and v is not.!’ In the
FEuclidean black hole, since it is defined by exchanging ¢ and ¢, the roles are reversed: v is
the boundary of a disc and u is not. More generally, if ¢, d are any relatively prime integers,
there exists a hyperbolic three-manifold X4 with boundary M such that cu + dv is the
boundary of a disc in X, 4 and other linear combinations are not. In this notation, X 1 is
thermal AdS3 and X is the Euclidean black hole. Generalizing the way we introduced
the Euclidean black hole, X, 4 is defined by replacing the angles 27t/ and ¢ with integer
linear combinations of themselves. In other words, X4 is actually the same manifold as
the original thermal AdSs space, but with the boundary parametrized differently. The
X,,q are actually the complete set of hyperbolic three-manifolds with boundary M. The
renormalized volume of X 4 is

VR(Xc,d) = —7T2£3CI7_H:_(73‘2. (2.24)
For our purposes, what is notable about this formula is that except in the original case
¢ = 0,d = 1 of thermal AdSs, it never happens that Vg — —oo for § — o0o. On the
contrary, whenever ¢ # 0, eqn. (2.14) implies that Vg — 0 for § — oo. Therefore, the
thermal AdS3 space Xy 1 is the only one of these manifolds that contributes to the partition
function of the fixed energy states, or indeed to any states below the black hole threshold.
None of the observations in this section are in any way new. The computation of the
renormalized volume of thermal AdS3 and the BTZ black hole is equivalent to the analysis
of ADM masses in the original BTZ paper [21]. As noted earlier, the CFT interpretation
of the result of this computation goes back to [22], and in turn to the construction of a
boundary stress tensor [19]. Summation over the manifolds X, 4 has been considered in
several previous papers — in [24, 25] to count certain supersymmetric black hole states in
AdS3, and in [26] in an attempt to construct a partition function of three-dimensional pure
gravity. The special role of X1 was part of those analyses.

0The coordinates r, ¢ can be viewed as polar coordinates for a copy of R2. Then u is a large circle in
this R? and therefore is the boundary of a disc.
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Figure 1. A three-holed sphere, with its boundaries labeled by fixed energy states 1, j, k.

Figure 2. A genus two surface M with three nonintersecting and homotopically independent one-
cycles labeled A, B, and C. M is the conformal boundary of a hyperbolic three-manifold X. If X
is such that Vz(X) — —oo when A is pinched, then the contribution of X to Z(M) has a part that
describes propagation through A of a fixed energy state. In general, however, black hole states are
propagating through B and C and this amplitude is subject to ensemble averaging. If we stipulate
that Vr(X) — —oo when any of A, B, or C is pinched, we get an amplitude that has a contribution
that describes fixed energy states propagating through each of A, B, and C, and interacting via two
three-holed spheres, one to the left of A and one to the right. A contribution of this type, according
to our conjecture, should not be subject to ensemble averaging. So this behavior of Vg(X) should
be possible only if the conformal boundary of X is connected.

2.3 Implications of The Conjecture For Hyperbolic Geometry

We have proposed that certain observables are not affected by ensemble averaging: the
excitation energies A; and spins J; of the fixed energy states, and their trilinear couplings
Aijk- Those couplings can be computed as three-point functions (O;(x)O;(y)Ok(2)) on
S2. Another description will be more useful in what follows: because of the operator-state
correspondence of CFT, the A;;, can also be computed by a path integral on a three-holed
sphere, with the fixed energy states i, j, k inserted on its boundaries (fig. 1).

In order to test our proposal using properties of hyperbolic three-manifolds, we want
to identify observables in genus g > 2 that can be determined in terms of A;, J;, and
Aijk- Hopefully, the hyperbolic geometry will work out in such a way that amplitudes that
can be determined in terms of A;, J;, and A, receive contributions only from hyperbolic
manifolds with connected boundary.

To illustrate the idea, drawn in fig. 2 is a genus 2 surface M, along with three nonin-
tersecting and homotopically independent one-cycles A, B, and C. From a conformal point
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of view, it is equivalent to say that a one-cycle such as A is becoming short, or is being
“pinched,” or that the tube through A is becoming long. (We used this equivalence in sec-
tion 2.2 when we said that it is equivalent conformally to consider the circle parametrized
by t to be long, of circumference 8 > 1, or to consider the circle parametrized by ¢ to
be short, of circumference 472/3 < 1.) When A is pinched or the tube is long, the CFT
partition function Z(M) grows exponentially, because of the negative CFT ground state
energy.

Now let X be a hyperbolic three-manifold that has M in its conformal boundary. If
the conformal boundary of X consists only of M, then the path integral Zx contributes
to Z(M). If the conformal boundary is M U M’ for some M’ (which may or may not be
connected), then Zx contributes to a connected correlation function (Z(M)Z(M')).. In
either case, we ask what happens when a one-cycle such as A or B or C is pinched. Does
Zx grow exponentially, reflecting in terms of the boundary CFT a sub-threshold state
propagating through the cycle that is being pinched?!!

Since Zx is asymptotic for small G to exp(—Vg/47G), a necessary condition for Zx
to show exponential growth in the pinching limit is that Vz(X) must go to —oo in that
limit. In section 3 and appendix A we determine the condition on X such that Vi(X)
goes to —oo when a given boundary cycle A is pinched. The answer is that this occurs if
and only if A is the boundary of a disc in X. This generalizes the previously known facts
for genus 1 that were summarized in section 2.2: of the manifolds X, 4, the only one with
the property that limg_,oc Vr(X,,4) = —o0 is the thermal AdS3 space Xy 1, and this is also
the only one in which the circle parametrized by ¢ (which is the one that is pinched for
B — o0) is the boundary of a disc. Mathematically, if a circle A in a component M of the
conformal boundary of X is the boundary of a disc in X (but not in M), then A is said
to be “compressible” in X. If M contains a compressible circle, then M itself is said to be
compressible.

In most cases, a given boundary circle A is not compressible, so Zx does not contribute
to an amplitude in which a sub-threshold state propagates through A. For many choices of
X, there is no compressible circle at all in a given boundary component M. (An example
is the Fuchsian manifold that we discuss later.) But even if A is compressible in X, X
typically does not contribute to an amplitude on M that we expect to be free of ensemble
averaging, because even if a sub-threshold state is propagating through A, there may be
black hole states propagating in the rest of the Riemann surface. For example, in fig. 2, even
if a sub-threshold state is propagating through A, the states propagating on the genus one
Riemann surfaces to the left and right of A may be black hole states. To identify something
that we expect to be free of ensemble averaging, we reason as follows. If we cut the genus
two surface M on the three nonintersecting and homotopically independent one-cycles A,
B, and C, it decomposes into the union of two three-holed spheres. A contribution to Z (M)
in which specified sub-threshold states i, j, k are propagating through A, B, and C can be

11n order for a state of fixed energy above the ground state to propagate through the cycle that is being
pinched, we need a stronger condition that Zx grows as eP°/12 Tt turns out, however, that the interesting
constraints on X arise if one merely asks for exponential growth of Zx, without specifying the rate, and
therefore it will not be important to distinguish fixed energy states from sub-threshold states.
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evaluated in terms of the dimensions and spins of the three states and the path integrals
on the two three-holed spheres, The boundaries of the two three-holed spheres are labeled
by the particular sub-threshold states that propagate through A, B, and C (in the example
sketched in the figure, if states ¢, j, k propagates respectively through A, B, and C, then the
labels are 75 for the three-holed sphere on the left and ¢kk for the three-holed sphere on the
right). The path integral on such a labeled three-holed sphere computes a trilinear coupling
of sub-threshold states. Since, according to our conjecture, the dimensions and spins of the
sub-threshold states and their trilinear couplings are all unaffected by ensemble averaging,
we expect that a contribution to Z (M) with sub-threshold states propagating through A,
B, and C is not subject to ensemble averaging. On the other hand, a necessary condition for
X to contribute to an amplitude with sub-threshold states propagating through each of A,
B, and C is that Vz(X) must go to —oo when any of A, B, or C is pinched. Equivalently, in
view of what has already been said, A, B, and C must all be compressible in X. Conversely,
if A, B, and C are all compressible in X, then Vz(X) does go to —oco when any of those
cycles is pinched. In that case, we expect that the conformal boundary of X is connected
and consists only of M, ensuring that X does not contribute to a connected amplitude
between disconnected boundaries.

This discussion has a straightforward generalization to higher genus. If a surface M
of genus g > 2 is cut along 3g — 3 nonintersecting and homotopically independent circles
A,, 0 =1,---,3g — 3, then it decomposes into a union of 2g — 2 three-holed spheres.
A contribution to Z(M) in which a sub-threshold state is propagating through each of
the A, should, according to our conjecture, not be subject to ensemble averaging. For
a hyperbolic manifold X whose conformal boundary contains M to contribute to such an
amplitude, the A, must all be compressible in X. So we expect that if M contains 3g — 3
nonintersecting and homotopically independent circles A, that are all compressible in X,
then the conformal boundary of X consists only of M.

As we explain in section 3 and appendix A, this is true and in fact more is true.
If at least 3g — 5 homotopically independent and non-intersecting one-cycles in M are
compressible in X (or 3g — 6 of them for g > 3), then the conformal boundary of X is
connected and consists only of M, and moreover X is a Schottky manifold. A Schottky
manifold is the simplest type of hyperbolic three-manifold. A Schottky manifold with
conformal boundary M is, topologically, the “interior” of M for some embedding of M
in R3. For example, the picture drawn in fig. 2 suggests an embedding of a genus two
surface in R3. The interior of M for this embedding is a three-manifold in which A, B, and
C are all compressible. Topologically, this interior is called a handlebody. A handlebody
with boundary M admits a hyperbolic metric with M as the conformal boundary (for any
choice of the conformal structure on M). Endowed with such a metric the handlebody is
called a Schottky manifold.

From what has just been explained, we learn, modulo the arguments in section 3 and
appendix A, that three-dimensional hyperbolic geometry, at least for the questions that we
have asked, is consistent with our hypothesis that certain AdS/CFT observables are not
affected by ensemble averaging.

Some of the points can be illustrated with the simple example of a Fuchsian manifold.
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This is a three-manifold that is topologically of the form X = M x R, where M is a

Riemann surface of genus g > 2. X carries a hyperbolic metric of the form'?

ds? = (2 (dt* + cosh? ¢ dQ?) (2.25)

where dQ? is a metric on M of constant scalar curvature R = —2. The conformal boundary
of X consists of two copies of M, at t = —oo and t = +00, respectively; let us call these My
and Ms. M; and My have the same complex structure since they have the same metric d02.
The path integral on X contributes to a connected amplitude (Z(M7)Z(Ma)).. However, a
simple calculation shows that V(X)) is a topological invariant, independent of the complex
structure of M; and Ms. Vg never goes to —oo regardless of how we vary the complex
structure of the boundary, so the path integral on X never shows the exponential growth
characteristic of a sub-threshold state.

The drawback of this simple example is that since M; and My have the same metric,
we cannot vary their complex structures independently. What happens, for example, if
we pinch a cycle in M; without changing M>? In fact, there is a more general family
of hyperbolic metrics on X such that the complex structures on M; and M, do vary
independently. These metrics are called quasi-Fuchsian, and unfortunately in a situation
that involves pinching on only one side, they are only known by existence proofs, not
explicit formulas. At any rate, no one-cycle in either M; or M is compressible, so the
results of section 3 and appendix A imply that Vz(X) never goes to —oco. Thus, although
X does contribute to a connected amplitude (Z(M;)Z(Mz))., its contribution only involves
black hole states, with no sub-threshold states appearing in any channel.

So far in this section, we have only considered the case of a surface of genus > 2, and
in fact the case of genus 1 is exceptional. A hyperbolic three-manifold whose conformal
boundary contains a component of genus 1 is always one of the manifolds X, 4 that were
discussed in section 2.2. In particular, at the level of hyperbolic geometry there are no
disconnected amplitudes involving a torus T2. This is, however, not the whole story.
There is good reason to suspect [17] the existence in AdS/CFT models of a connected
correlation function (Z(M)Z(M')). where M and M’ are tori, even though there are no
classical hyperbolic manifolds that can generate such a contribution. It has been argued in
[12] that a path integral on R x T2 contributes to (Z(M)Z(M"))., even though no classical
solution is available on this manifold. That paper actually contains in eqn. (3.56) an
interesting formula for the contribution of R x T2 to (Z(M)Z(M"))., with independent
complex structures on M and M’. We do not know if this formula is precisely correct.
However, the formula is independent of G and in particular shows no exponential growth
for G — 0. Soif it is even qualitatively correct, the contribution of Rx T2 to (Z(M)Z(M')).
is completely consistent with out conjectures.

12 The submanifold X¢ defined by t = 0 is totally geodesic and moreover is geodesically convex (any
geodesic in X between two points in X¢ is actually contained in X¢). Xc¢ is called the “convex core” of
X, a notion that will be important in section 3. This example is exceptional, because X¢ has volume 0.
Apart from a Fuchsian manifold, or a solid torus, such as the BTZ black hole, the convex core of any other
hyperbolic three-manifold, including the quasi-Fuchsian ones that are discussed momentarily, has positive
volume. (The convex core is not defined for AdSs itself.)
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There is one other case known of manifolds that do not admit classical hyperbolic
metrics but nonetheless make relatively well understood contributions to the path integral
of three-dimensional gravity with A < 0. These are Seifert fibered manifolds, whose contri-
butions were analyzed in [13] in the Kaluza-Klein limit, that is, the limit that the fiber is
small. As the remaining moduli are varied, these path integrals do not show contributions
of sub-threshold states.

3 Overview of Mathematical Arguments

In the following, M is an oriented two-manifold that is a component of the conformal
boundary of a hyperbolic three-manifold X. It is known by elementary arguments that
if M has genus 0, then X must be AdSs itself, and if M has genus 1, X is one of the
manifolds X 4 that were introduced in section 2.2. Therefore, we are primarily interested
in the case that M has genus at least 2. Such an M admits a hyperbolic metric of constant
scalar curvature R = —2; the space of such metrics, up to diffeomorphisms of M that are
isotopic to the identity, is the Teichmiiller space 7 (M). As one approaches the boundary
of T(M), it is possible for the length of a simple closed geodesic v to go to 0; we will say
that in that limit, v is “pinched.” We say that a collection of embedded circles in M are
“independent” if they are non-intersecting and homotopically independent. If M has genus
g > 2, a maximal set of independent circles in M consists of 3g — 3 circles, as in fig. 3. If
g = 1, a maximal set consists of just one circle. An embedded circle in M is compressible
in X if it is homotopically nontrivial in M but bounds a disc in X. As explained in more
detail in section 2.3, a Schottky manifold is topologically the “interior” of M, for some
embedding of M in R3. Topologically the X4 are solid tori, the genus 1 analogs of a
Schottky manifold.
The arguments of section 2 relied on two mathematical assertions:

Proposition 3.1. If a component M of the conformal boundary of X contains a collection
of at least 3g — b independent circles that are compressible in X, then the boundary of X
is connected and consists only of M, and moreover X is a Schottky manifold.

Theorem 3.2. In the limit that a simple closed geodesic v C M 1is pinched, the renormal-
ized volume VR(X) remains finite if vy is not compressible in X, and approaches —oo if y
is compressible in X.

Here we will give a very rough sketch of the proofs.!> Further detail is explained in
appendix A.

One important tool in the arguments is that, by varying the hyperbolic metric of X,
the conformal structure of M can be varied arbitrarily. Indeed, by a classic result, the
moduli space of hyperbolic metrics on X is the space of all complex structures on the

13The bound 3¢ — 5 in Proposition 3.1 is stronger than we actually needed in section 2, where a bound of
39 — 3 would have sufficed. We do not know if the stronger bound is significant in the AdS/CFT context.
In appendix A.6, we prove a slightly sharper bound for g > 3 (Theorem A.4). Likewise Theorem 3.2 is
sharpened in Theorem A.15, as remarked at the end of this section.
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Figure 3. A surface M of genus g = 3, with 3g — 3 = 6 independent circles marked. Surgery on
A produces a surface M; of genus g1 = g — 1 = 2. In passing to M;, A disappears, B becomes
nullhomotopic, and C and D become homotopic to each other, leaving three independent circles on
M. Surgery on B leaves a surface Mj of genus ¢gf = 1 and a surface M7 of genus gi = 2. Of the
original 6 independent circles on M, B disappears in the surgery, A remains on Mj, and C and D
become homotopic. We remain with 3¢g7 — 3 = 3 independent circles on M.

conformal boundary of X (whether that conformal boundary is connected or not) modulo
diffeomorphisms of the conformal boundary that extend over X.

Therefore, in discussing Proposition 3.1, we can pick the complex structure of M to be
such that the 3g — 5 independent compressible circles correspond to disjoint simple closed
geodesics that are all very short. Let v be one of these. As v is compressible, it is the
boundary of a disc P C X. In appendix A, we show that one can choose P to be a totally
geodesic plane (thus, a copy of AdSy) embedded in X. This makes it possible to perform
a simple “surgery” on X. We cut X along P. Along each of the resulting boundaries, we
glue in a copy of half of AdS3. (Concretely, one can cut AdSs in half along a geodesic plane
AdSy C AdSs, and then glue in the resulting pieces along the cuts in X.) This gives a new
hyperbolic manifold X7, which may or may not be connected. The effect of the surgery on
M is to cut M along v and glue in a disc on each side, giving a new oriented two-manifold
M. Even if X; is connected, M7 may not be. Components of the conformal boundary of
X other than M, if there are any, are not affected by the surgery.

If M; is connected, it has genus g1 = g — 1. Of the 3g — 5 independent compressible
curves that we started with on M, one, namely =y, disappeared in the surgery. The other
3g—4 independent compressible circles in M are still compressible in X;. At most 2 of them
are no longer independent in M; (they are nullhomotopic or homotopic to each other; see
fig. 3). Therefore, if M has 3g — 5 independent compressible circles, then M; has at least
3g—8 = 3g1 —5 such circles. Now let us assume inductively that Proposition 3.1 is true for a
conformal boundary component of genus g— 1. By this inductive hypothesis applied to M,
we learn that X; is a Schottky manifold. Given this, an elementary geometric argument
shows that X is also a Schottky manifold, and in particular its conformal boundary is
connected.

If M is not connected, it is the union of components Mj, M) of genera g}, g/ > 1,
with ¢} + ¢f = ¢. First consider the case g}, g{ > 2. Let n},n] be the maximum number of
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independent compressible circles on M{, M{. We have n| + n{ > 3g — 8 (we started with
at least 3g — 5 such circles on M; v was lost and at most one compressible circle on M| and
one on M7 is no longer independent after the surgery, leaving at least 3g — 8 of them). On
the other hand, n} < 3¢} — 3, n}, < 3¢{ — 3, since a Riemann surface of genus h supports
at most 3h — 3 independent circles. So nj > 3g] — 5, nf > 3¢g{ — 5. Hence by the inductive
hypothesis applied to M{ and M{, X; must consist of disjoint components X] and X7,
where X7 is a Schottky manifold of conformal boundary M, and X} is a Schottky manifold
of conformal boundary MJ. Again it follows by an elementary geometric argument that X
is also a Schottky manifold, in particular with connected conformal boundary.

The same conclusion applies if M| and/or M{ has genus 1. For example, if M/ has
genus 1, then M{ has genus ¢gf = g — 1. In this case, of the original compressible circles on
M, at most 1 was originally on M| and (assuming g7 > 2) at most 1 which was originally
on M7 is no longer independent after the surgery. So there are at least 3g — 8 = 3¢ — 5
independent compressible circles on M{, and the inductive hypothesis applies to M| as
before. As for Mj, since it has genus 1, we invoke the fact that a hyperbolic three-manifold
whose conformal boundary has a genus 1 component is one of the X, 4, topologically a
solid torus. So X is the disjoint union of two components, one a solid torus with conformal
boundary M| and one a Schottky manifold with conformal boundary M{. Again it follows
that X is also a Schottky manifold. A similar argument applies in the special case g = 2,
g1 = g{ = 1. This completes the proof of Proposition 3.1.

The proof of Theorem 3.2 requires more sophisticated tools. We must prove two
statements: (i) if v is not compressible in X, then when ~ is pinched, Vr(X) remains
bounded; (ii) if  is compressible, then when + is pinched, Vz(X) — —oc.

To prove the first statement, we use the fact that the pinching locus is at finite distance
in the Weil-Petersson metric on Teichmiiller space. Therefore, to show that Vz(X) remains
bounded as one approaches the pinching locus, it suffices to know that the gradient of
Vr(X) in the Weil-Petersson metric remains bounded. In fact, it is known that the Weil-
Petersson gradient of Vg(X) remains bounded as long as no curve in M that is compressible
in X becomes short. Specifically, if £ is the length of the shortest non-trivial closed curve
in M that is compressible in X, and x(M) is the Euler characteristic of M, then [51, 53]
the gradient satisfies the bound

3/ 7[x (0 X)|
[dVR[wp < m- (3.1)

For completeness, we provide a proof in appendix A.

For the second statement, we need an upper bound on Vg(X). There is a useful upper
bound in terms of the volume of the convex core of X, which we will denote as Vo (X), and
the length of the measured bending lamination of the convex core, which we will denote as
L, (1). The meaning of these terms is described in appendix A. In terms of these quantities,
one has a bound on Vz(X):

1 7 log 2
Va(X) < Ve(X) = 7Ln(l) + =

IX(M)]. (3.2)
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(The coefficient of the last term on the right of this equation depends on a choice of
normalization in the definition of Vg.) This inequality can be found in [39, Theorem 1.1]
for quasi-Fuchsian manifolds, but the proof extends without change for general X; see [51,
Section 3].

In appendix A, we show that V(X)) remains bounded when one or more compressible
curves is pinched. One also has a result of Bridgeman and Canary (see [67, Theorem 2],
and also [51, Theorem 4.2]) showing that L,,(l) — oo when a compressible curve is pinched.
Specifically, there are constants P, (one can take P = 74 and @ = 36) such that if M
contains a compressible closed geodesic of length r < 1, then

o) 2 -0 (33)

The second part of Theorem 3.2, asserting that V(X) — —oo when a compressible curve
is pinched, follows from the bounds (3.2) and (3.3) along with the fact that V(X)) remains
bounded in this limit.

Physically, one would expect a more precise result than we have stated so far. One
would expect that when a compressible cycle is pinched, the divergence of Vi would pre-
cisely reflect the CFT ground state propagating through the cycle in question. With some
more detailed arguments, we establish this in Theorem A.15.

4 Why Do Some Observables Show Ensemble Averaging?

As explained in the introduction, connected amplitudes with disconnected boundary, or
CADB amplitudes for short, have been a puzzle since early days of the AdS/CFT corre-
spondence. A possible explanation has been that actually, the dual of a specific bulk theory
is the average of an ensemble of boundary theories, rather than a specific boundary theory.
Averaging over an ensemble can readily generate CADB amplitudes. There is a standard
objection to this proposal: in many examples of AdS/CFT duality, it is believed that all
of the parameters that the CFT can depend upon (consistent with its general properties
such as the supersymmetry algebra it satisfies) are known, and the bulk theory depends
on all of the same parameters. So what ensemble could one possibly be averaging over to
generate CADB amplitudes?

In this article, we have attempted to sharpen this puzzle by arguing that a certain
important class of observables, namely the ones that can be defined purely in terms of
energies and couplings of states that are below the black hole threshold, does not receive any
contributions with disconnected boundaries and thus is not affected by ensemble averaging.

If there is no ensemble to average over, and if states below the black hole threshold do
not show any sign of ensemble averaging, why is it that when we compute observables in-
volving black holes states, the gravitational path integral appears to give ensemble-averaged
answers? Clearly the answer must involve some essential difference between fixed energy
states and black hole states.

Here we will propose a simple answer to this question, based on two assertions:

e Black hole physics is highly chaotic.
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e The Hamiltonian Hpy describing black hole states does not have a large N limit,
and likewise other CFT observables involving black hole states, such as the trilinear
couplings (0;0;0Of), do not have a large N limit, even in a rather general sense, as
will be further discussed presently.

The first statement is generally accepted, based on a reinterpretation [14] of older
calculations [27] of the behavior of perturbations in the field of a black hole. This statement
involves a contrast between black holes and fixed energy states, because in a number of
important examples, the spectrum of fixed energy states is believed to be described by
an integrable model [10], not a system with chaotic behavior. The second statement also
involves a contrast between black holes and fixed energy states. Fixed energy states are
the states that we see if we take N — oo keeping fixed the excitation energy above the
ground state. AdS/CFT duality implies that the energies and couplings of such states
have a large N limit; when the boundary theory is a gauge theory, this can also be seen
via a classic analysis of Feynman diagrams [20]. To reach the black hole region, we take
N — oo with an excitation energy of order N? if the boundary theory is a gauge theory
(and a different positive power of N in other cases). The literature does not contain any
proposal concerning a sense in which the Hamiltonian and other observables of black hole
states have a large N limit. Since the entropy (for black hole states of a fixed temperature)
is also growing as a power of NV, the dimension of the black hole Hilbert space (at a fixed
temperature) increases by a vast factor from one large value of N to the next. For example,
in the case that the boundary theory is a gauge theory, since the entropy is asymptotically
S = bN?, with b of order 1, when one changes N from 10° to 10 + 1, the dimension

6 . . .
2bx10° " This makes it unclear in what

eS of the Hilbert space increases by a vast factor e
sense one might hope that the black hole Hilbert space and other observables would have a
large N limit. In the somewhat analogous problem of quantum statistical mechanics with
the volume V' playing the role of N, the standard answer is that the Hilbert space and
Hamiltonian do not have a large V limit. By contrast, the thermofield double state of a
pair of entangled systems does have both a large V' [28] and large N [16] limit. See [15] for
more discussion.

Most likely, the black hole Hamiltonian and couplings do not have a large N limit,
in the sense that, in general, energies and couplings of black hole states do not have any
regularity for large N beyond what follows from the fact that thermodynamic functions
and other averages over the spectrum depend smoothly on N and that, similarly, certain
asymptotic averages of functions of couplings are also smooth functions of N. Asymptotic
formulas for averages of functions of couplings were introduced in [29] and have been studied
in a number of more recent papers.

Our proposal is that these differences between black hole states and fixed energy states
are the reason that apparent ensemble averaging affects black hole states and not fixed
energy states. Let Hy be the CFT Hamiltonian at given N, on a sphere S?~! with round
metric. Hy commutes with a symmetry group G consisting of rotations of S¥~! and
possible additional symmetries of the CFT, and so is block diagonal with blocks labeled
by representations of G. Chaos in black hole physics means that if we restrict to states

— 21 —



in a band of energies that is above the black hole threshold, then Hy in each block is
an enormous pseudorandom matrix. A pseudorandom matrix is a matrix that cannot be
distinguished from a truly random matrix by any simple measurement. If it is true that
Hpy does not have a large IV limit above the black hold threshold, this suggests that in each
block, the Hy for neighboring values of N can be viewed as independent pseudorandom
draws from a random matrix ensemble. (As we explain later, it seems that this statement is
actually subject to corrections that are exponentially small in IV, but it can serve as a first
approximation.) The random matrix ensemble is characterized by specifying the entropy
S as a function of the energy E and other conserved charges, so it depends smoothly on
N.

Let us consider CFT observables that can be constructed just in terms of Hy. The
most important such observables are the twisted partition functions Zy r(5) = Tr e PHNR,
where Re 3 is positive and is small enough that the trace is dominated by black hole states,
and R € G. But the following explanation may be clearer if we think first about an
arbitrary observable Wy that depends only on the pseudorandom matrix Hy. Wy may
be a “self-averaging” function in random matrix theory, meaning that it has almost the
same value for almost any draw from the random matrix ensemble. In that case (Wy) will
be a smooth function of N, modulo exponentially small corrections that reflect the fact
that even self-averaging functions of a random matrix differ slightly from draw to draw.
(These corrections are exponentially small because the size eS of the random matrix is
exponentially large, as observed in [17].) The corrections to self-averaging behavior will
depend erratically on IV, since they depend on a pseudorandom draw which is different for
each N. If W is not self-averaging, it will be an erratic function of N. With presently known
methods, the gravitational path integral always produces a smooth function of NV, typically
by summing over contributions of saddle points corresponding to classical solutions. Even
when classical solutions are not available, calculations that we know how to perform lead
to smooth functions of N, as in [12].

Based on this, what might be calculable with presently available methods? If Wy
is self-averaging, we can hope to calculate (Wy) modulo exponentially small terms that
depend erratically on N and depend on a particular draw from the random matrix ensemble.
If Wy is not self-averaging, we will not be able to compute any approximation to (Wx)
with presently known methods. However, an observable that is not self-averaging might
still have a nonzero average value in a random matrix ensemble (see [17] for examples),
and it might be possible to compute this from the gravitational path integral. In that case,
the expression for (Wy) that the gravitational path integral would compute would really
be an average value, averaged over nearby values of V.

Now consider several observables Wy 1, kK = 1,--- , s that are all functions of the pseu-
dorandom matrix Hy. Whether or not individually they have nonzero averages, the con-
nected correlation function <WN71WN72 - -WN,k)c may have a nonzero average in random
matrix theory, in which case we may be able to compute this average from the gravitational
path integral. Let us focus on the special case Wy = Tr e PefIN R for some By, Ry. In
this special case, Wy i, is a partition function Zxy (S, Ry) on a manifold S x S4-1. Here if
B, is real, it is the circumference of S'; it is also interesting to analytically continue these
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observables to complex (3, as in [17]. The group element Ry € G determines a holonomy
around the S* factor; this holonomy consists of a rotation of S%~! and/or an internal sym-
metry. From what we have just said, the gravitational path integral with known methods
may be able to calculate an averaged value of the connected correlation function

(Zn(B1, R1)ZN (B2, R2) - - ZN(Br, Ri))e- (4.1)

How the gravitational path integral would calculate this function, or more precisely an
approximation to it with a smooth dependence on N, is not immediately clear just from
the hypothesis that the Hy are independent pseudorandom matrices. But using every-
thing we know about path integrals and quantum gravity, the obvious hypothesis is that
(Zn(B1, R1)ZN(B2, R2) -+« ZN(Bk, Ri))e should be computed from a path integral with a
connected bulk and a boundary that is the disjoint union of k copies of St x S,

This is a plausible interpretation of CADB amplitudes for the special case that the
boundary is a union of copies of'* S x S?~1. If it is correct, then presumably something
similar must be true for CADB amplitudes with the k copies of S' x S4~! replaced by more
general d-manifolds. The rough idea must be that the CFT at a specific large value of N,
though actually it is a definite CFT (dependent in some cases on a few known parameters),
looks, if one only has access to asymptotic expansions near N = oo, like a pseudorandom
solution of the axioms'® of CFT. Then one would repeat everything we have said so far
with the assertion that the Hy for different N are independent pseudorandom matrices
replaced by the statement that the CFT’s for different N are independent pseudorandom
draws from a family of asymptotic solutions of CFT axioms.

Since it is not believed that an ensemble of CFT’s with the appropriate properties
actually exists, the idea here is really that the ensemble of random solutions of CFT
axioms from which a given large N CFT appears to be drawn only exists in an asymptotic
sense, for large N. A rough analogy is that in low energy effective field theory, the S-matrix
of a relativistic quantum field theory appears to be a special case of a family of unitary,
relativistic S-matrices that can be obtained by giving arbitrary coefficients to all possible
parameters in the low energy effective action. It is generally believed that the generic
element of this family exists only as an asymptotic expansion at low energies.

Thus, our proposal can be stated as follows. The CFT’s that govern black hole states
for different large values of N look, in simple measurements, like (nearly) independent
pseudorandom draws from a “swampland” of effective CFT’s that are defined asymptoti-
cally for large N and cannot be completed to true theories at integer values of N. This

M Considering this example first made possible a description in terms of Hy only, which was helpful,
because random matrix theory is on a much clearer footing than random CFT, which we require in a
more general case. But unfortunately, this example is actually inconvenient from a different point of view,
because S' x S?7! has positive Ricci scalar. In any dimension, the boundary of an asymptotically AdS
solution of Einstein’s equations, if not connected, does not contain any component of positive Ricci scalar
[2]. So a bulk computation of the observables in eqn. (4.1) has to rely on contributions that are less well
understood, perhaps somewhat along the lines of [12].

15For example, an important axiom that contains much of the content of CFT is a quadratic “crossing”
equation satisfied by the trilinear couplings (O;O;Oy). This relation is found by comparing different ways
to analyze a four-point function (O;0;0,0;).
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CFT “swampland” would be analogous to the usual “swampland” of low energy effective
field theories that are believed not to have ultraviolet completions [30]. The gravitational
path integral, with known methods, calculates averages over the pseudorandom CFT’s with
neighboring values of N.

Finally, we should point out that in the context of AdS/CFT duality, it is not true
that the CFT’s for different N are truly independent above the black hole threshold.
That is because (in known examples) the theories with different values of N are unified in
string/M-theory and are connected by domain walls. We will illustrate this point with a
simple example that generalizes the Fuchsian manifold that was introduced in eqn. (2.25).
Let M be a compact hyperbolic d-manifold with metric dQ? and set X = M x R. On X
there is a complete hyperbolic metric

ds® = dt? + cosh? t dQ2. (4.2)

The conformal boundary of X consists of two copies of M, at t = d+oo. Let U be the
submanifold of X defined by ¢t = 0. Then U is a minimal submanifold,'® so there is a
classical solution in which a brane is placed on U. If this brane is of the appropriate type,
the integer that characterizes the CFT (or one of those integers in the case of a CFT
that depends on multiple integers) will jump from N to N + 1 in crossing U. Thus a
path integral on X in the presence of this brane generates a connected correlation function
between partition functions with different values of N on the same manifold M:

(ZN(M)ZN41(M))e # 0. (4.3)

So the pseudorandom matrices or CF'T’s for different values of N are not truly independent.
However, they are nearly independent, in the sense that

[(Zn (M) Zy 1 (M)l < VIZn(M)Zy(M))el (Zn41 (M) Zn 41 (M)l (4.4)

because the brane action contributes to the left hand side and not to the right hand side.
Hopefully this is enough to justify the explanation of CADB amplitudes based on pseudo-
randomness. Still, the existence of correlations between the theories for different values of
N seems to mean that the Hamiltonians and CFT’s of different N are not truly indepen-
dent pseudorandom objects. Perhaps corrections involving branes lead to exponentially
small departures from what one would expect based on independent draws from a random
ensemble.

One may summarize what we have said as a proposal that ensemble averaging in
gravity is averaging over nearby values of N to produce smooth approximations that can
be computed by the gravitational path integral with known methods. That obviously
leaves the question of what kind of path integral or what new method is needed, at least
in principle, to describe the non-smooth contributions. There have been several papers
aiming to find simple models of how this can work [31, 32].

161y D = 3, U is the convex core of X; see footnote 12.
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A Mathematical details

This appendix contains detailed proofs of Proposition 3.1 and of Theorem 3.2, which were
already explained heuristically in Section 3, as well as Theorem A.4, which slightly improves
on Proposition 3.1. In addition, we provide two results which help better understand the

properties of the renormalized volume under pinching of compressible curves.!”

e Theorem A.10, which shows that the renormalized volume associated to the hyper-
bolic metric at infinity, denoted by Vg here, is within a bounded constant, depending
only on the topology of the boundary, from the renormalized volume associated to
the Thurston metric at infinity, denoted here by V}. Note that V}, is equal to the
volume of the convex core minus one fourth of the length of the measured bending
lamination on its boundary.

e Theorem A.15, which gives the first term in the asymptotic development of the renor-
malized volume when a compressible curve is pinched.

The arguments are quite elementary but based on recent developments in the study
of the renormalized volume of hyperbolic manifolds, which has recently been a focus of
some interest among hyperbolic geometers. The renormalized volume was found to have
close relations to topics of interest in geometry, and to be a useful or promising tool for
well-established mathematical questions. We list here some of those developments.

A first motivation stemmed from the identification in [33, 34] between the renormalized
volume of (some) hyperbolic manifolds and the Liouville functional studied for instance in
[35, 36].

Another connection was made in [37-39] between the renormalized volume and the
volume of the convex core of convex cocompact hyperbolic manifolds. This relationship
was then used for instance in [40], to relate the entropy of pseudo-Anosov diffeomorphisms
to their hyperbolic volume of their mapping torus, in [41, 42] to study the symplectic
structure on moduli spaces of quasi-Fuchsian manifolds, and in [43] to study the metric
geometry of moduli space (such as its inradius or systole). In addition, geometric properties
of the renormalized volume were investigated, such as its convexity at the critical points
[44, 45] and continuity under geometric limits [46, 47].

It was proved in [48] that the renormalized volume of almost-Fuchsian manifolds (quasi-
Fuchsian manifolds containing a closed minimal surface with principal curvatures less than
1) is non-negative, a result that was then extended to quasi-Fuchsian hyperbolic manifolds
[49] and more generally convex co-compact manifolds with incompressible boundary [50].

" Those to results were not contained in the first arxiv version.
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In contrast, the renormalized volume of hyperbolic manifolds with compressible boundary
can be negative — this remark, which plays a key role here, already appeared e.g. in [51, 52].

A particularly active current direction of research concerns the Weil-Petersson gradient
flow of the renormalized volume [49, 50, 53], considered as a tool to understand the structure
of 3-dimensional hyperbolic manifolds.

The properties of the renormalized volume for Schottky manifolds are considered specif-
ically in [52], in view of the comparison of volumes of quasi-Fuchsian and Schottky manifolds
with a given conformal boundary.

Since this section is geared towards more mathematical arguments, we use a slightly
different notation than in the previous sections. We will always consider the hyperbolic
space H? of constant sectional curvature —1, which is equivalent to setting ¢ = 1.

A.1 Convex co-compact hyperbolic manifolds

Before entering the arguments, it is useful to clarify some definitions.

We consider here a complete hyperbolic structure g on an oriented 3-dimensional man-
ifold X, which will always be the interior of a compact manifold with boundary. Such a
hyperbolic structure is the quotient of the 3-dimensional hyperbolic space H? by p(m1 X),
where p: m X — PSL(2,C) is the holonomy representation of (X, g).

The boundary at infinity of H® can be identified with CP!, and it is tempting to
consider p as an action of mX on O,H® = CP!. However, this action on CP! is not
properly discontinuous, so that one cannot take the quotient. To avoid this issue, one
needs to “remove” from CP! the limit set A, of p, defined as the intersection with 9.,H?
of the closure in H? U d,,H? of the orbit p(m1X)(z) of any point € H3. It turns out (see
Section A.2) that p acts properly discontinuously on CP* \Ap.

We say that the subgroup p(mX) is elementary if its limit set has at most 2 points.

A hyperbolic manifold is convex co-compact if

e its holonomy representation acts co-compactly (i.e. with compact quotient) on a
convex domain in H3, and

e the image of its fundamental group in PSL(2,C) is non-elementary.

In other terms, it is the quotient of H? by a non-elementary subgroup of PSL(2,C), which
contains a non-empty compact geodesically convex subset.!'®

Definition A.1. Let X be a hyperbolic manifold. A subset K C X is geodesically convex
if any geodesic segment of X with endpoints in K is contained in K.

Note that geodesic convexity is a strong property, for instance a small ball in a complete
hyperbolic manifold with non-trivial fundamental group is not geodesically convex. In fact,
if K is a non-empty geodesically convex subset of X, then the inclusion of K in X is a
homotopy equivalence, see Section A.12.

8The term “convex co-compact” is perhaps a bit misleading. What can properly be called convex co-
compact is rather the holonomy representation p : m1.X — PSL(2,C), since it acts on a convex subset (the
convex hull of A, in H*) with compact quotient.
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Here we will use the equivalent definition of a convex co-compact manifold, which is
more convenient for the proofs.

Definition A.2. A convex co-compact hyperbolic structure on a manifold X is a complete
hyperbolic structures for which X contains a non-empty, compact, geodesically convex sub-
set K, and such that X is not topologically a ball or a solid torus.

We exclude from the definition the case where X is a ball or a torus, which correspond
to elementary group actions. Therefore, a complete hyperbolic manifold which contains a
compact, non-empty, geodesically convex subset can be either H?, a solid torus, or a convex
co-compact manifold as defined here.

For a hyperbolic manifold, being convex co-compact is equivalent to being conformally
compact, that is, to having a Riemannian metric that can be written as g = §/p?, where g
is a Riemannian metric which is smooth on X up to the boundary, while p : X — Rx( is
a smooth function that vanishes on the boundary, with ||dp|lg =1 on 0X. Indeed:

e If (X, g) is conformally compact, a direct computation shows that the surfaces
Se={z e X | p(x) =€}

are locally convex for € > 0 small enough. This simplies that the (compact) set
Xe={z e X |p(z) =€}

is geodesically convex for € > 0 small enough. Indeed, a geodesic segment with
endpoints in X, must stay in X, since otherwise, at the point where p achieves its
minimum pp,in, it would need to be tangent to S, ., on the convex side, a contra-

diction.

e Conversely, if X is convex co-compact, it contains a geodesically convex subset K
which is compact. Replacing if necessary K by an r-neighborhood and smoothing
its boundary, we can assume that K has smooth boundary. If » : X — Ry¢ is

T

defined as the distance to K, the function p = e™" is a defining function and (X, g)

is conformally compact.

A.2 The complex structure at infinity

The set 2, = 8OOH3\Ap is called the discontinuity domain of p. Since p acts by hyperbolic
isometries on H?, it acts by complex transformations on 1,, and it can be proved that
this action is properly discontinuous, see [54, Sections 8.1 and 8.2]. The quotient Jxo X =
Q,/p(m1X) is therefore equipped with a complex structures, which will be denoted by ¢
here.

By a series of results of Ahlfors, Bers, Kra, Marden, Maskit, Sullivan and Thurston,
a convex co-compact hyperbolic metric on X is uniquely determined by ¢, considered as a
point in the Teichmiiller space Tgx of 0X. If X has incompressible boundary, then this
map from Tgx to the moduli space of convex co-compact hyperbolic metrics is one-to-
one. However, if X has compressible boundary, two points in Tyx can determine the same
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convex co-compact structure on X. This happens when one is the image of the other by
an (isotopy class of) homeomorphism which extends over the manifold — for instance, a
homeomorphism corresponding to a Dehn twist along a compressible simple closed curve
(a curve in X which bounds a disk in X).

As a consequence, the space of convex co-compact hyperbolic structures on X is param-
eterized in Tyx /T, where T is the group of isotopy classes of X UJX which are homotopic
to the identity, see [55, Section 3].

Note that 0, X = ,/p(m1X) is equipped with more than a complex structure: each
point has a neighborhood that can be identified with a domain in CP!, and this identifica-
tion is well-defined up to elements of PSL(2,C).!? The existence of those local charts in
CP! will be relevant in Section A.7.

A.3 Measured laminations on surfaces

Measured laminations play a significant role in the arguments below, so we provide here
a brief introduction to their definition and key properties. Measured laminations occur in
the next section when describing the geometric structure on the boundary of the convex
core of a convex co-compact hyperbolic manifold.

Let M be a closed surface, equipped with a hyperbolic metric h — one can consider
more generally complete hyperbolic surfaces of finite area (or even, with some adaptations,
of infinite volume). A geodesic lamination is then defined as a closed subset of M which
is a disjoint union of complete geodesics. A measured geodesic lamination is a geodesic
lamination equipped with a transverse measure, that is, each transverse curve is equipped
with a measure, and this measure does not change when the curve is moved while keeping
the intersection with the lamination transverse, see [56, Section 10].

The simplest case of geodesic laminations is the disjoint union of a finite family
c1,+ -+ ,cp of disjoint closed geodesics. A transverse measure is then defined simply as
a positive weight w; associated to each geodesic c¢;, yielding a weighted multicurve. There
is a natural topology on the space of weighted multicurves, where two weighted multicurves
are close if they have a similar intersection with any transverse closed curve on M. The
space of measured geodesic laminations can be defined as the completion of the space of
weighted multicurves for this topology. It follows that weighted multicurves (and in fact
even weighted closed geodesics) are dense in the space of measured geodesic laminations.

However, “generic” geodesic laminations can be more complex than weighted multi-
curves. While their support has Hausdorff dimension equal to 1 [57], a short transverse
segment might have an uncountable set of intersections, none of which has an atomic
weight.

Given a hyperbolic metric m on M and a measured lamination [, Thurston (see e.g.
[58, Section 2]) proved that one can define the hyperbolic length of I for m, denoted here
by L, (l). It is defined as the limit of the hyperbolic lengths of a sequence of weighted

multicurves ((c',w}')i=1,... k, converging to [, where the hyperbolic length of a weighted

n

19This can be formalized as the existence on 0., X of a complex projective structure, but this point of
view will not be necessary here.
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multicurve (w;, ¢;)i=1.... ; is defined as

k
Ly ((wi, ¢i)i=1,... k) = ZwiLm(Ci) -
i1

The notion of measured lamination does not in fact require a hyperbolic metric, and
can be defined “topologically”. Any measured lamination on a closed surface M can then
be realized uniquely as a geodesic measured lamination for any hyperbolic metric m on M,
much like any closed curve and be realized uniquely as a geodesic.

A.4 The convex core and the geometry of its boundary

The arguments presented here rely heavily on the relations between the renormalized vol-
ume and the volume of the convex core of convex co-compact hyperbolic manifolds, as well
as on the geometry of the boundary of this convex core.

It follows from the definition that, in a hyperbolic manifold, the intersection of two
closed, geodesically convex subsets is still geodesically convex. In addition it can be shown
(see Section A.12) that, if the manifold has non-trivial topology, then the intersection
is non-empty. As a consequence, any convex co-compact hyperbolic manifold contains a
smallest non-empty, closed, geodesically convex subset, called its convex core, which is
compact. We denote it here by C(X).

The convex core has finite volume, denoted here by Vo (X). This volume is closely
related to the renormalized volume — when the boundary is incompressible, there is a bound
on the difference between the two, which only depends on the topology of the boundary,
see Section A.8 below.

The geometry of the boundary of the convex core was analysed by Thurston (see [54,
Section 8.5]). Since the convex core is a minimal geodesically convex subset, its boundary
cannot have extremal points, so it is a locally convex pleated surface — it is the union of
a finite set of totally geodesic ideal triangles intersecting along their boundary, and as a
consequence the induced metric on the boundary is hyperbolic (of constant curvature —1).
We will denote this hyperbolic metric on dC(X) by m. (Note that the ideal triangles
mentioned here generally “wrap” around the boundary of C(X), so they appear more
clearly in the universal cover of X, where their vertices can be identified as points of the
limit set of X.)

However the pleating locus — the set of points which do not have a neighborhood which
is totally geodesic — can be quite complicated. It is a geodesic lamination, as seen in Section
A.3. Moreover the pleating locus is equipped with a transverse measure, which records the
amount of “bending” along each geodesic. In the simplest cases where the bending locus is
a disjoint union of closed geodesics, each of the closed geodesics is equipped with a positive
weight, which records the exterior angle of the boundary of the convex core along this
“edge”.

In generic examples, no geodesic in the pleating locus has an atomic weight. However
simple closed geodesics equipped with a positive weight are dense, in a suitable topology
(see Section A.3) in the space of measured laminations. Heuristically, it is therefore often
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sufficient to think of (arbitrarily long and complicated) weighted simple closed curves,
rather than of generic measured laminations.

Bonahon and Otal [59] gave a complete description of the measured laminations that
can arise in this manner on the boundary 0X. The conditions are that each closed curve has
weight at most 7, that for any essential annulus A or Mobius band in X (with boundary in
0X), OA has positive intersection with [, and that for any essential disk D (with boundary
in 0X), 9D has intersection larger than 27 with [.

A.5 Relations between the boundary of the convex core and the boundary at
infinity

Given a convex co-compact hyperbolic manifold X, let NOC'(X) be the unit normal bundle
of 0C(X), that is, the set of outwards-pointing unit vectors normal to a support plane of
C(X) at a boundary point. For each n € NOC(X), let g, : R>g — X be the geodesic
ray determined by the initial vector n. It can be proved (see Section A.12) that the
images of the g, are all disjoint (and do not intersect C(X) except at their origin). As a
consequence, the map sending n to the endpoint at infinity of g,, defines a homeomorphism
between NOC(X) and 0, X.

Moreover, when X is not Fuchsian??, this homeomorphism can be deformed, by “smooth-
ing out” the bending locus, to a (non-canonical) homeomorphism between 0C(X) and
O0xX. (If X is Fuchsian, the convex core is a smooth surface, and no smoothing is nec-
essary.) We will often use this homeomorphism implicitly below, and identify the two
surfaces. (If X is Fuchsian, then 0o X is homeomorphic to the disjoint union of two copies
of C(X), which in this case is a totally geodesic surface, so that NOC(X) is a double cover
of C(X).)

The boundary at infinity 0 X is equipped with a conformal structure, and therefore
with a hyperbolic metric provided by the Poincaré-Riemann uniformization theorem — it
is called the Poincaré metric, and denoted here by h. It can be compared to the induced
metric m on the boundary of the convex core.

e A simple closed curve is short for A if and only if it is short in m. Specifically, for
all € > 0 small enough, there exists ¢ > 0 such that if a simple closed curve 7 has
length less than € for h, then it has length less than e for m, and conversely (with a
different value of €'), see [60, 61].

e Curves which do not enter the “thin” part of 0X for either m or [ (the subset
composed of points where the injectivity radius is smaller than a fixed constant ¢g
— for g small enough, this thin part is the disjoint union of long and “thin” annuli,
each associated to a simple closed geodesic of length less than €y) have lengths for m
and for [ which are comparable, up to bounded multiplicative constants, see [62].

20A Fuchsian manifold is the quotient of H® by a surface group acting properly discontinously and
cocompactly on a totally geodesic plane. So the convex core of a Fuchsian manifold is a totally geodesic
surface, while for any other convex co-compact manifold it is a 3-dimensional domain with positive volume.
See also Section 2.3, and specifically footnote 9.
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A.6 The maximal set of contractible curves in the boundary

The proof of Proposition 3.1, presented in Section 3, is based on a surgery that can be
applied on convex co-compact hyperbolic structures when the length of a compressible
curve (in the Poincaré metric at infinity) is sufficiently short. Similar ideas will be used
again below in Section A.10 when considering the limit of the volume of the convex core
when a finite set of disjoint closed compressible curves in the boundary is pinched.

We consider a convex co-compact hyperbolic manifold X, a connected component M
of 0C(X), and a simple closed curve v in M which is compressible, i.e., bounds a disk in
X. We first deform X so that the geodesic representative of ~ is pinched to have length
less than € (for a value of € that will be made more precise below) for the induced metric
m on 0C(X). Then the geodesic representative yg of v in (M, m) is the “center” of a long
collar, of width w(e) arbitrary large if € is small.

Let A be a complete geodesic in C(X) intersecting the disk D in C(X) bounded by
Y0, and let P be a totally geodesic plane in X orthogonal to A and intersecting 7g. (Note
that P is not entirely determined by those conditions, since g is not necessarily contained
in a plane orthogonal to A.)

The following elementary lemma is used in Section 3.

Lemma A.3. P is embedded in X, that is, it has no self-intersection.

Proof. Assume the opposite, it would mean that there are two distinct lifts P; and P, of
P to X ~ H3 which intersect at a point z. Let 1 and 2 be the corresponding lifts of g,
and let z1 € vy N Py, 2 € 2 N Ps. Let a3 be the geodesic segment connecting x; to x
(which is in P;) and let ag be the geodesic segment connecting o to x. Finally, let § be
the geodesic segment connecting x1 to zs.

Since C(X) is geodesically convex, the segment [ is contained in its universal cover
E(TX/) , and is therefore almost orthogonal (for € small enough) to both P; and P», and also
to ap and ag. So if we call 6; (resp. 03) the angle between 5 and «; (resp. a3) then both
are close to m/2 as € — 0. Moreover, [ has length at least 2w(e), which goes to infinity as
€ — 0. However, a standard hyperbolic triangle formula, applied to the triangle with edges
a1, oo and B, ensures that

cos(f) = — cos(01) cos(f2) + cosh(L(3)) sin(01) sin(f2) ,

where 6 is the angle between oy and as at x.
For € small enough, this cannot hold since the two sine terms on the right are close to
1 and cosh(L()) is large. O

Note that the same argument shows that if we consider two totally geodesic planes P
and P’ corresponding to two short contractible curves v and «/, then P and P’ are disjoint
— this is used in Section A.10.

We are now equipped to prove the following small improvement of Proposition 3.1.
The proof repeats the proof of Proposition 3.1 given in Section 3 with more attention given
to surfaces of genus 2.
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Figure 4. Planes almost orthogonal to thin tubes cannot intersect.

Theorem A.4. Let X be a convex co-compact hyperbolic manifold, and let M be a boundary
component of X. If M has genus 2 and contains at least one compressible curve, or if M
has genus g > 3 and contains at least 3g — 6 disjoint, non-homotopic compressible curves,
then X is a Schottky manifold and 0X = M.

Proof. The first step is to analyse more carefully what happens to a family of indepen-
dent curves when a surface M is cut along one of them, say c. Different cases can be
distinguished, see Figure 3.

1. ¢ separates a genus 1 surface M; from a genus ¢’ surface My, g’ > 2. Then at most
one pair of curves on M can become homotopic on M.

2. c separates a surface My from a surface My, with ¢’ > 2, ¢” > 2. Then at most one
pair of non-homotopic curves on each side of ¢ can become homotopic.

3. cis non-separating. Then at most one curve can become homotopically trivial, while
at most one pair of non-homotopic curves can be homotopic in the complement of
M.

The proof proceeds by induction on the genus of M, as for the proof of Proposition
3.1. The statement is already known, from Section 3, when M has genus 1 or genus 2. We
assume that it is true for genus at most g — 1, and consider a boundary component M of
genus g. We assume that M contains 3g — 6 independent compressible curves, and choose
one of those curves, say c. We now consider different cases.

e If ¢ splits M into two surfaces M’, M" of genus ¢’ > 3 and ¢’ > 3. The argument
is then exactly as seen in the proof of Proposition 3.1: ¢’ + ¢” = g, the number of
remaining independent compressible curves is at least 3g — 9 = 3(¢’ + ¢”) — 9, but
M’ can have at most 3¢’ — 3 while M” can have at most 3¢” — 3. It follows that M’
has at least 3¢’ — 6 independent compressible curves, while M” has at least 3g” — 6.
So both are boundaries of Schottky manifolds by the induction hypothesis, and the
surgery done on the interiors means that M also bounds a Schottky manifold.
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e Similarly, the same argument as in the proof of Proposition 3.1 can be applied if ¢ is
non-separating and M has genus at least 4.

e Suppose now that ¢ splits M into M’ of genus ¢’ = 2 and M" of genus ¢” > 3. If M’
contains at least one compressible curve, then the same argument as before shows
that M" contains at least 3¢” — 6 independent compressible curves, so by induction
M" is the boundary of a Schottky manifold, and therefore M is the boundary of a
Schottky manifold.

If M’ contained no compressible curve, then M” would have at least 3g — 8 inde-
pendent compressible curves, since cutting along ¢ can only “destroy” c¢, plus one
compressible curve on the side of M" (two compressible curves might become homo-
topic). But 3g — 8 = 3¢” — 2, a contradiction because M"” cannot have more than
3¢” — 3 independent compressible curves.

e If M has genus 4 and at least 6 independent compressible curves, and is cut by ¢
into two surfaces of genus 2, the same argument shows that there must be at least
one compressible curve remaining on each side. Otherwise at most 2 curves would
be “lost” (¢ plus one pair of compressible curves becoming homotopic) so one side
would need to have 4 independent compressible curves, a contradiction.

e Finally suppose that M has genus 3 and at least 3 compressible curves, and is cut
along a non-separating compressible curve c. One obtains a surface of genus 2 con-
taining at least one compressible curve, because at most one compressible curve could
become nul-homotopic. So the surface obtained after cutting along c is the boundary
of a Schottky manifold, and therefore X is Schottky:.

O

A.7 A variational formula for the renormalized volume

Although convex co-compact hyperbolic manifolds have infinite volume, one can define a
renormalized volume, see [63]. We will need a variational formula for the renormalized
volume, see [35-37] or [39, Corollary 3.11]. To state it, note that d-X is equipped with
a holomorphic quadratic differential ¢, which can be defined as follows. Let 9;X be a
connected component of 0, X. Since 0; X is a closed surface of genus at least 2, equipped
with a complex structure (the restriction of ¢ to 9;X), there is by the Poincaré-Riemann
uniformization theorem a holomorphic map f; : D — 9; X, where D is the unit disk in C.
Note that 9, X can be locally identified with CP! (or C, using the holomorphic identifi-
cation of C to CP'\ {oo}), and this local identification is well-defined up to left composition
by an element of PSL(2,C). This makes it possible to consider the Schwarzian derivative
of f;. Recall that given a holomorphic map f : 2 — C, where Q0 C C, its Schwarzian

o= ((5) 2057

The following properties are relevant:

derivative is defined as:
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e S(f) =0 if and only if f corresponds to an element of PSL(2,C),

o S(fog)=S(f)+ fS(9).

It follows from those two properties that the Schwarzian derivative of f is invariant under
composition of f on the left by an element of PSL(2,C). As a consequence, the Schwarzian
derivative of f; is well-defined — even if the identification of 9, X with CP! is only local.
We define

q= fixS(fi) -

By construction, ¢ is a holomorphic quadratic differential on 9;X. 2!

Lemma A.5. Let (Ct)te[ml) be a one-parameter family of complex structures in Tox /T .

Then WVale) J
R\Ct) _ acy
@ Re (<q’ dt >> ’

where (,) denotes the natural duality product between holomorphic quadratic differentials

and Beltrami differentials.

A.8 The renormalized volume and the volume of the convex core

There are close relations between the Vo (X) and Vg(X), given in particular by the following

lemma.

Lemma A.6. For any convex co-compact hyperbolic manifold X,

1 mlog(2)

Vo(X) = {Ln(l) — COX) < Va(X) < Vo(X) — 1 Ln(D) + 22 [y(0x)]

where C(0X) is a constant depending only on the topology of 0X.

(Note that the additive constant on the right of the equation depends on a choice of
normalization in the definition of Vg.) The inequality on the right can be found as [39,
Theorem 1.1] for quasi-Fuchsian manifolds, but the proof extends without change to convex
co-compact hyperbolic manifolds, see [51, Section 3]. The inequality on the left is Theorem
A.10 below.

There is also a lower bound on renormalized volume, in terms of the volume of the
convex core, for convex co-compact manifolds with incompressible boundary, see [39, 51].
For convex co-compact manifolds with compressible boundary, the constant depends on
the injectivity radius of the boundary.

2IThere is another way to introduce g, in relation to the second term of the asymptotic development of the
metric near infinity when the metric at infinity (corresponding to the first term) has constant curvature.
The real part of ¢ is then minus the traceless part of this second term, see e.g. [37, Lemma 8.3]. The
holomorphic quadratic differential ¢ already appears in this form in [23]. We will not need this different
point of view here.
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A.9 A bound on the Weil-Petersson gradient

We recall here a bound on the Weil-Petersson gradient of Vp when no compressible curve is
short. Similar estimates can be found in [50, 64]. We provide a proof for completeness. A
more precise analysis of the convergence of the geometric structure when an incompressible
curve is pinched can be found in [65].

Lemma A.7. Let X be a convex co-compact hyperbolic manifold, such that the length for
the Poincaré metric of any non-trivial simple closed curve in O, X compressible in X is at
least . Then the Weil-Petersson gradient of Vg on Tox /T is bounded by

37X (0 X]|
||dVR||WP < e 12 "

V2 tanh?(1/4)
Proof. The proof is based on a classical bound on the Schwarzian derivative at the center
of a holomorphic map which is injective on a disk, and on the fact that if the shortest
compressible curve in (X, h) has length at least [, then every point in (0X,h) is the
center of an embedded open disk of radius /2. This second point follows from the fact
that if z € X realizes the minimum of the injectivity radius (the radius r of the largest
embedded disk centered at z) then there is a embedded open disk of radius r centered at
x with a self-tangency, and it follows that x is on a closed geodesic of length 2r in (8)? Jh).
This closed geodesic projects to a closed compressible geodesic of length 2r on 0X.

We first note that if D, is the disk of radius r in C and f : D, — C is a univalent
holomorphic map, then S(f) can be written as odz?, with |0(0)] < 6/r2. Indeed, the
function f : z — f(rz) is then a univalent holomorphic map from D to C, so that by the
Nehari-Kraus estimate [66], its Schwarzian differential can be written as S(f) = &(2)dz?,
with |7(0)| < 6. But it follows from the definition of the Schwarzian derivative that

S(f)=r*8(f) -
Since the hyperbolic metric at 0 is 4(dx? + dy?), the norm of the real part of S(f) with
respect to the hyperbolic metric h on D is bounded (pointwise) by

Re(S()O) I < 22

Now let z € 9-X be a point where the injectivity radius is at least /2. Consider the
Riemann uniformization map f from I to the connected component of 8oo)~( , chosen so
that f(0) = x. By construction, f is a local isometry between the hyperbolic metric on
D and the Poincaré metric on 0, X. Moreover, the disk of center z and radius /2 (for
the Poincaré metric) is embedded in 95X, so that the restriction of f to a disk of center
0 and hyperbolic radius [/2 is injective. But a disk of hyperbolic radius 1/2 and center 0
(for the hyperbolic metric on D, that is, the Poincaré disk model of the hyperbolic plane)
is a disk of Euclidean radius r = tanh(//4). So the norm of the real part of the Schwarzian
derivative of f at x is bounded, in the hyperbolic metric, by

3v2

[Re(S(fNIn < tan? (/4]
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Integrating over s, X, we obtain that the L? norm of Re(q) is bounded by

(AHR&@%@M>U2§3¢HXQWX)'

tanh?(1/4)
It then follows from Lemma A.5 that

|Vl p < 20|
V2 tanh?(1/4)

O

We notice for future reference that the WP estimate here could be improved, since the
pointwise estimate on Re(q) is better at each point where the injectivity radius is larger
than [/2.

It follows from this lemma that on any 1-parameter family of boundary complex struc-
tures (ct)sc(o,1) in Tox /I of finite Weil-Petersson length, ending on a stratum of the Weil-
Petersson completion of Tyx /I corresponding to pinching a closed curve which is not
compressible in X, Vi remains bounded (see [46]). This follows from the lemma since, in
this 1-parameter family, the lengths of simple, non-trivial closed curves compressible in X
remains bounded from below by a positive constant.

A.10 Convergence of convex cores when pinching compressible curves

In this section we consider a sequence of conformal structures (¢, )peny on 0X, ¢, € Tox /T,
and denote by h, the hyperbolic metric in the conformal class ¢,. We assume that (¢, )nen
converges, in the Weil-Petersson metric completion of Tyx/T', to a boundary point cso,
where a set of disjoint simple closed curves ~;,1 < ¢ < k is pinched, with each ~; bounding
a disk D; in X. Let X;,1 < j <, be the connected components of X \ (D1 U---U Dy,).

We denote by g, the convex co-compact hyperbolic metric on X associated to ¢, by
the Ahlfors-Bers theorem, and by X(n) = (X,g,). The limit conformal structure cs
determines a conformal structure on 0X;,1 < j < [, marked by 2k points &1,---, &ox
corresponding to the pinching of the 7;,1 < i < k, and we denote by £(j) the set composed
of the & which are in the boundary of X;, 1 < j <. (Note that if X is connected, then
each of the X; is equipped with at least one of the §; on its boundary, so £(j) has at least
one element. )

Now consider € > 0 small enough so that for n > ng, for a ng large enough, the ~; have
length less than e for 1 < ¢ < k, while all closed curves not homotopic to a finite cover of
one of the v; have length larger than e. For n > ny, 9C(X(n)) is the union of:

e k tubes Tj(n),1 < i < k, composed of points where the injectivity radius is less
than €/2 — each tube having the geodesic representative of one of the ~; as its core
meridian,

e | connected regions Cj(n),1 < j < I, one for each of the X;, composed of points
where the injectivity radius is at least €/2.
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The diameter of each of the Cj(n), 1 < j <, is uniformly bounded from above (indepen-
dently of n), because 0C(X (n)) has bounded area by the Gauss-Bonnet theorem, and the
Cj(n) are connected and composed of points were the injectivity radius is at least €/2.
We choose in each of the Cj(n),1 < j <[, a point z;(n). The x;(n) will be used as
base-points below, when considering the Gromov-Hausdorff convergence of the X;(n). The
precise choice of the xj(n) is not important, since they are constrained to be contained
in a region of bounded diameter — this will be sufficient to ensure convergence in the
Gromov-Hausdorff topology pointed at z;(n), after extracting a sub-sequence.

Lemma A.8. Under the hypothesis above, for each j € {1,2,--- I} (and after extracting

a subsequence):

1. The pointed manifold (X (n),xj(n)) converges in the Gromov-Hausdorff topology on
compact subsets to a complete hyperbolic manifold (Yj,fj), with Yj diffeomorphic to
Xj. (Yj can be either convex co-compact, a solid torus, or a ball.)

2. The sequence of pointed convex cores (C(X(n)),zj(n)) converges to CH(£(5)) C X,
the convex hull of £(j) in X ;.

3. Vo(X(n)) = Y5y V(CH(E()))), which is finite.

Here by the convez hull of £(j) we mean the smallest geodesically convex subset of X
containing £(7) in its asymptotic boundary. By definition this subset contains the convex
core of Yj.

Proof. We will use the same argument as in Section A.6, and notice that there exists ng € N
such that for n > ng the lengths of all the ~; is at most ¢, for a fixed value of ¢ > 0. If ¢ is
small enough, we can then consider a totally geodesic plane P; as in Section A.6, that is, a
plane orthogonal to one of the lines in the thin tube with core meridian ;. The planes P;
and Py are then disjoint for 7 # ¢/, as seen in Section A.6. We now only consider n > ny.

We then let ©;(n) be the connected component of X(n)\ (P, U---U P) containing
zj(n), and let Kj(n) = Q;(n)NC(X, gn). Asin Section A.6, we glue a half-space to 2;(n) at
each of the P; adjacent to ©;(n), and obtain in this manner a complete hyperbolic manifold
X;(n), which is either convex co-compact, a solid torus, or a ball. Abusing notations a bit,
we consider the P; adjacent to ©;(n) as disjoint, totally geodesic planes in X;(n).

To this surgery in the hyperbolic metric corresponds a simple surgery on the conformal
structure at infinity of X (n): a curve (which is short in say the Poincaré metric on 0,X (n))
is cut and one side replaced by a small disk. As n — oo, the conformal structure at
infinity obtained in this manner converges to the conformal structure c,, on 9X;. So
X;(n) converges in the Gromov-Hausdorff topology to Yj. This proves the first point.

The closure of the convex subset K(n) is the convex hull in X;(n) of the P; N 0Q;(n),
which are topological disks with boundaries corresponding to the ;. This is clear because
K ;(n) is geodesically convex by definition, and its boundary is a pleated surface outside of
the P; N OKj(n), so its closure is the minimal closed geodesically convex subset of X;(n)
containing the P;NJKj(n). The boundary of P;NdQ;(n) corresponds to ; and its length
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goes to 0 as n — co. Moreover, for each i, d(z;(n), P, N 02j(n)) — oo as n — 0o, because
the length of the tube Tj(n) around ; goes to infinity. As each of the P;N0%2;(n) converges
to one of the points of £(j) as n — oo, we see that K;(n) converges to the convex hull of
&(j) in X, which proves point (2).

The convergence of V(X (n)) to the sum of the volumes of the CH (£(j)) follows from
the Gromov-Hausdorff convergence of the different components of X (n), pointed at the
zj(n).

To see that the volume of CH (£(j)) is bounded, consider & € £(j), let P be a totally
geodesic plane in X ; separating ¢ from C(X;) and from the other elements of £(j), and
let H be the half-space bounded by P containing ¢ in its boundary. Then H N CH(§)
is the convex hull of £ and of a compact domain in P (the intersection of CH ({(j)) with
P). So HN CH(§) has finite volume. Since this holds for all the £ € £(j), we see that
CH(&(j)) can be written as the union of a finite family of subsets of finite volume — one for
each element of £(j) — and the remaining part which is compact. So CH(£(j)) has finite
volume. O

A.11 Limit of the renormalized volume when pinching a compressible curve

We now consider the case where (ct);c(0,1) pinches a curve v which is contractible in X. The
fact that Vr(c:) - —oo as t — 1 then follow from Lemma A.6 and Lemma A.8, together
with the following result of Bridgeman and Canary, see [67, Theorem 2’], and also [51,
Theorem 4.2].

Theorem A.9 (Bridgeman-Canary). There exists constants P and Q) (one can take P = T4
and @ = 36) such that if X is a convex co-compact hyperbolic manifold such 8oo)~f contains
a closed compressible geodesic of length r < 1 in the Poincaré metric, then the length of
the measured bending lamination on the boundary of the convex core is bounded from below
by:

L, () > % -Q . (A.1)

Note that the coefficient 74 above is twice that found in [51], since we consider here
the length of closed contractible curves in d.X, rather than the injectivity radius of 0X.

Without getting into the precise value of the constants, we can indicate a heuristic
explanation for (A.1). When 0, X contains a closed geodesic v of length r for the Poincaré
metric h, then it contains a collar of width approximately L = |log(r)| around ~. If v is
contractible, the induced metric m on OC(X) contains a tube of length w approximately
exp(L) = 1/r around ~y. But since 7 is contractible, the intersection with v of the measured
bending lamination [ (that is, the transverse measure of [ evaluated on +) is at least 2,
and in fact very close to 2w as r — 0. Finally, all leaves of [ intersecting v must cross the
whole length of the tubular collar around ~, so must have length at least 2w, so of the
order of 1/r. More precise arguments of this type can lead to (A.1).

A.12 Geodesically convex subsets of a hyperbolic manifold

We first indicate why the intersection of two closed, non-empty, geodesically convex subsets
K, K' in a complete hyperbolic manifold X # H? is non-empty. Since X has non-trivial
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topology and is complete, it contains a closed, oriented geodesic . Let x € K, and, for
n € N, let v, be the geodesic segment starting and ending at =, and homotopic to a path
going from x to a point of «, doing n turns around -, and going back to x.

Let 7,, and 7 be lifts of v, and of v to the universal cover of X, chosen so that the
distance from the endpoints of 7,, to 7 is equal to the distance of x to v in X. For n large,
%, is a long geodesic segment with endpoints at bounded distance from 7, so there is a
sub-segment of 7,, of length at least the length of v which is arbitrarily close to 7, say at
distance less than €,, for some €, > 0 with lim,,_, €, = 0.

It follows that each point of « is at distance at most €, from a point of ~,. Since K
is geodesically convex, v, C K, and since K is closed and ¢, — 0, v C K. The same
argument shows that v C K’, and it follows that K N K’ # ().

Let now K C X be a geodesically convex, let z € K, and let n be the outward
oriented unit normal to a support planes®? of K at z. Let a be the half-geodesic starting
from z in the direction of n. Then a N K = {z}, since otherwise the whole intersection of
a between x and its first intersection with K would be contained in K.

If 8 is another such geodesic ray, starting from a point 2’ € K in the direction of a
unit normal vector to a support plane of K at z’, then o and 3 must be disjoint. Suppose
indeed that they intersect at a point y, and let 7 be the geodesic segment from z to z’
homotomic to the union of the segment of o from x to y union the segment of 5 from y
to 2’. The angle between v and « (resp. v and ) must be bigger than 7/2, because both
« and S are directed by outwards unit normals of support planes of K, while ~y is towards
the interior of K. But having two angles larger than 7/2 contradicts the Gauss-Bonnet
relation for hyperbolic triangles (the sum of the interior angles is equal to 7 minus the
area).

Figure 5. A pair of geodesic rays «, 8 normal to a convex subset K cannot intersect, because the
sum of the angles of triangle xx’y would be greater than .

It follows from this remark that, if we denote again by NOK the unit normal bundle

22 A support plane of K at x is a totally geodesic plane containing x, which locally bounds a closed
half-space containing K.
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of the boundary of K, then the map

exp: NOK xRsop — X
(n,t) — exp(nt)

is a diffeomorphism from NOK x R to X \ K.
It also follows that K is homotopic to X. This applies in particular to C(X), the

convex core of X.

A.13 The Thurston metric at infinity

Finally, this section describes briefly some properties of a natural metric at infinity of
convex co-compact hyperbolic manifolds, which appears prominently in Sections A.14 and
A.15.

The boundary at infinity 0, X of a convex co-compact hyperbolic manifold is equipped
naturally with a Riemannian metric in the standard conformal class, called the Thurston
metric (or projective metric, or sometimes the grafting metric), closely related to the
boundary of C'(X). We denote it by hpp, and give three descriptions of it.

The first description is simpler when the measured bending lamination [ on 9C(X) is
along disjoint closed geodesics c1, - - - , ¢,, with each ¢; equipped with a positive weight w;.
In this case, hpyp is obtained by cutting (M, m) along the geodesics ¢; and replacing (or
“grafting”) ¢; by a flat strip of width w;.

A second description is as the natural metric induced on NOC(X), the unit normal
bundle of the boundary of C'(X). As seen in Section A.5, the normal exponential map is
a homeomorphism between NOC(X) and 0 X, so that the metric can then be pushed to
Oso X

A third description is as the metric at infinity defined by the equidistant foliation of
X\C(X). Forr > 0, let M, be the set of points at distance r from C'(X). The surfaces M,
can be identified through the flow of the normal directions. Let h, be the induced metric
on M,. As r — oo, h, “expands” exponentially, but the “normalized” metric 4e=2"h,
converges to hpp.

A consequence of this last description is that the renormalized volume associated to
the metric hpp, at infinity is (up to an additive, topological constant)

VelX) = 3Lm(0)

where Vo (X) is the volume of the convex core and L,,(I) the length of the measured
bending lamination on the boundary of the convex core.
A.14 The renormalized volume associated to the Thurston metric

In this section we show that the renormalized volume Vy, of X associated to the Thurston
metric hpyp at infinity is within a bounded additive constant from the renormalized volume
VR associated to the Poincaré metric h at infinity.
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Theorem A.10. There exists a constant C(0X), depending only on the topology of 0X,
such that
VI/?, <Vrp+C(0X).

Note that the opposite inequality Vg < V}; holds, up to an additive constant depending
on normalization, as already stated in Lemma A.6.
The heuristic idea of the proof of Theorem A.10 is quite simple.

e The difference V}, — Vg can be expressed as an integral of a function of the conformal
factor between the hyperbolic metric and the Thurston metric, see Definition A.11.
Or, more specifically, in terms of the function u such that hgy, = e2“h.

e The contribution to this integral of the “thick” part of 0X — the set of points where
the injectivity radius for h is bounded from below — is uniformly bounded, because
the conformal factor and its gradient are bounded in this region, see Lemma A.12.
So we can focus on the long thin tubes around closed geodesics which are short for

h.

e On those tubes, the Thurston metric can be approximated by a flat metric on a long
cylinder of perimeter 2w. We approximate the Thurston metric hyp, by such a flat
metric hy, and write u = ug + ua, where h, = e2®p. and hyy, = ezuAhy.

e The integral term corresponding to ug can then be explicitly computed (see Lemma
A.13) and it is bounded.

e Moreover, one can find sufficient bounds on ua to show that the correction coming
from ua is also bounded (see Lemma A.14).

We now proceed with the proof.

Definition A.11. Let S C 0X, let g be a Riemannian metric on S, and let v : S — R be
a function. Let

u 1
Wo(eg.9) = = [ (Idul} = 2K u)da,

It follows from the “Polyakov formula” for the dependence of the renormalized volume
on the metric at infinity that

Vi — Vi = Wax (hqn, h) .
Moreover hrpy, is conformal to the Poincaré metric h, so we can write
hrn = e*“h

for a function u : 0X — R.
We will use the following well-known C! bound on u in the “thick” part of z € (90X, h).

Lemma A.12. There exists a constant C; > 0 such that for all x € (0X,h) where the
injectivity radius of h is at least €y/2, u < Cy and ||du||p < C.
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Proof. The bound on u can be found in the proof of Theorem 2.17 in [50].

The bound on du then follows from the bound on u and the bound on Awu together
with the lower bound on the injectivity radius. Although this estimate is well-known to
analyst, we include an informal argument for completeness. Let x be such a point, and let
r > 0 be such that the disk D(z,r) of center x and radius r is embedded. We can write
the restriction of u to D(z,r) as

u=v+uw,

with
VoD (z,r) = WoD(zr) » Arv =0,
Wop(zr) =0, Apw = Apu .

Then w can be written as an integral over D(x,r) of Green functions for Ay, on D(x,r),
multiplied by Apu, which is uniformly bounded. The uniform bound on dw at x follows.
In addition, dv is uniformly bounded at = because u (and therefore also v) is uniformly
bounded on dD(z,r). The uniform bound on du at = follows. O

We denote by T’, the “Margulis tube” associated to 7 in the hyperbolic metric h. That
is, we fix a constant ey > 0, and let T, be the set of points at distance at most r (from
h) from the geodesic representative of -y, with r chosen so that the boundary of T, is the
disjoint union of two closed curves of length €y — this is possible if ¢y is small enough. This
tube T, can also be defined as the connected component of the geodesic representative of
v in the set of points in (0X, h) where the injectivity radius is at most €y/2.

This tube is also equipped with a standard Euclidean metric h, conformal to the
restriction of h to T.. We choose this metric h, to be isometric to S* x [~L., L,], where
L., will be determined below.

Lemma A.13. There exists a constant Cy such that |[Wr, (h, h)| < Cp.

Proof. By definition, h. is conformal to h, so there exists a function ug : T, — R such that
hy = e*"0h

on T, with ug constant on 97T.

This function ug is clearly invariant by rotation, and only depends on the distance z
to the core curve of T, (the geodesic representative of v for h). Since the curve composed
of points at (oriented) distance z from the core curve has length [, cosh(z) for h, while it
has length 27 for h,. Since each boundary component of 7', has length 27 for h,

euo(z) _ 27T
L, cosh(z) ’
and therefore
up(2)| = | — tanh(z)| < 1.
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As a consequence,

|WTW (h’yv h)| = dap

1
4

/ duo2 + 2uq
T’Y

1 1
< —Area(Ty,h) + / uodap,
4 2 )z,

2

1 o
< ZArea(Tva h) +/0 L, cosh(z) log <l70()sh(z)> dz

where L, is the half-length of T, for h, that is, such that
lycosh(L,) =€ .
A direct computation shows that
L'Y
/ 1, cosh(z)log(l cosh(z))dz =
0

= 1, sinh(L,)log(l, cosh(L,)) + 21, (7 /4 — arctan(e ™)) — 1, sinh(L,) ,

and since [, cosh(L,) = €,

L
/ ’ 1, cosh(z) log(l, cosh(z))dz| < eglog(ep) + €0 + lVg .
0

Finally,
L'Y
/ I, cosh(z)dz = [y sinh(Ly) < g .
0

Adding the terms in the upper bound on |Wr (h, h)| yields the result. O

We can also compare the flat metric i, on T, to the Thurston metric hzy. Since hry,
is conformal to h, it is also conformal to h,, so we can write

2
hTh =€ uAh7 s

for a function ua : T, — R. By definition, u = ug +ua on T,. The next lemma states a
bound on ua, with fixed constants, over T’,.

Lemma A.14. There exists a constant Co > 0 such that, on T,
lua| < Co

and
/T ”duAH%LThdahTh S CQ .
.
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Proof. Since h, = e 2Ushpy and h. is flat, the curvature of hyy, satisfies
Arpua = Kt

Since K7y, <0, Arpua <0, so ua > Cq by the maximum principle.

In addition, Appua > —1. It then follows from standard arguments (using the fact
that Kpp, € [—1,0]) that there exists ¢ > 0 such that if ua(zg) > ¢, then ua > 1 on
the disk of center z¢ and radius 27 in hpp. Since (T, hyy) is approximated, outside a
neighborhood of its boundary, by a tube of perimeter 27, there exists a closed curve 7/
homotopic to v going through zg, of length less than 3w for hzp. Then ua > 1 on v It
would then follow that the length of 4/ for h, is at most 3me~2 < 2m, a contradiction since
(T, hy) is isometric to a cylinder of perimeter 27 and ~ is homotopic to 7. So ua < ¢ on
T.,. We can already conclude that, for a certain Cy > 0, |ua| < C on T.

Notice that

/ HduAH,%ThdahTh :/ uAAThuAdahTh-i-/ uaduna(n)ds
T, T, o,

:/ uAKThdahTh+/ uadup(n)ds ,
T’y 8T—y

SO
/ HduAH%ThdahTh < O Krypdap,, +/ luaduna(n)| ds
T, T, .
< CyArea(Ty,m) + 2Cie
The uniform bound on the integral follows. O

Proof of Theorem A.10. Let ~1,--- ,7v, be the closed geodesics of length less than ¢y in
(0X, h). If ¢y is small enough, those short closed geodesics are disjoint, and they are the
core curves of disjoint long thin tubes in (90X, h), denoted here by T, ,--- , T, . Since the
~; are disjoint, n < (3/2)|x(0X)|.

For each i € {1,--- ,n}, we have seen that

’WT.” (hrn, h)‘ =

1
3 [ o+ s+ 20 -+ us)da,
T

Vi

Since u = ug + ua > 0,

W, (hrn, h)’ <

1
1 / lnduol2 + lluall? + uo + uadar

2 Z'Vz
2 /
T.

J "2
T Y

'
1 1
+ 2/ ||duAH%ThdahTh + 2/ uaday, .

T, T,

1

2

IN

1
2

|duol|7 + 2uoday,

/ lduall + uaday

T,

IN

2|VVT%- (h'w h)| + 5

1
/ upday,
T

i
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However we have already seen in the proof of Lemma A.13 that the integral of ug on 7%, is
bounded by a fixed constant, say C{,. Using Lemma A.13 and Lemma A.14, it follows that

ch,  C C
|WT.” (hrn,h)| < 2CH + ?0 + ?2 + fArea(T%, h) .
In addition o2
+
’WBX\(TMU...UT%)(hTh,h)| < 1TlArea(aX, h),
and the result follows. O

A.15 Asymptotic behavior of the renormalized volume when pinching a com-
pressible curve

Finally we give here a more precise asymptotic description of the behavior of V}, when
a compressible curve is pinched. This analysis can be extended to the case where two
or more compressible curves are pinched, with a dominant term which is a sum of terms
corresponding to each pinched curve.

Theorem A.15. Let (Ct)te[o,l) be a smooth curve in Tyx, with limg_1 ¢; a point in the Weil-
Petersson compactification of Tox corresponding to a hyperbolic metric with one simple
compressible closed curve v pinched. Then, ast — 1,

V)~ Lo

where L¢, () is the length of v in the hyperbolic metric ¢; on 0X.

Note that the proof actually shows a little more: in the case where several curves are
pinched so as to have (asymptotically) constant length ratio, Vj, is equivalent to a sum of
terms corresponding to each of those short curves.

In the next lemma, we consider T, as a subset of dC(X), using the nearest-point
projection from -, X to 0C(X).

Lemma A.16. There exists a constant C3 > 0 such that if the Margulis tube T, contains
a maximal segment of length 2L for the induced metric m in the support of the measured
bending lamination 1, then all segments of 1 in T, have length in [2L — Cs,2L + Cs3], and
the extremal length of v satisfies

s
E ——| < .
[Ext(y) L’_C:a

Proof. Let ¢ and ¢’ be two maximal segments in 7T in the support of I. Let c¢_,cy be the
endpoints of ¢ on 97, and similarly let ¢, ¢, be the endpoints of ¢, with ¢ on the same
boundary component of Ty as c_. Since the boundary components of T’, have length €y for
h, c— and ¢_ are at distance at most €y/2 for h, and similarly for ¢4 and ¢/, .

Lemma A.12 therefore shows that c_ and ¢_ are also at distance at most e“¢y/2 in
the Thurston metric hry, and similarly for c¢; and /.. But then it follows that they are
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also at distance at most e“1¢g/2 in the induced metric m on the OC(X), which is smaller
than App. This constant therefore also bounds their hyperbolic distance in X.

Since ¢ and ¢’ are geodesics for the hyperbolic metric on X, it follows from the triangle
inequality that the hyperbolic length of ¢ and ¢’ are close:

|L(¢) — L(c)| < e%eq .

This proves the first point.

For the second point, let ¢y be a geodesic segment of C(X), of length 2L, centered at
a point close to the geodesic representative of v in C(X). The same argument as above
for ¢ and ¢’ shows that there exists a constant C' > 0 such that the orthogonal projection
of T, on the geodesic containing cy is within the set of points at distance at most C' from
cop — we denote this extended segment by coi. Conversely, this orthogonal projection of T
contains the set of points of ¢y at distance at least C' from the endpoints, denoted here by
Co—-

Let N'cgy be the unit normal space to ¢, that is, the set of unit vectors orthogonal to
coy. We consider the exponential map exp, : Nlcgy — 05X sending a vector n € Nlcy,
to the endpoint at infinity of the geodesic ray defined by n. If ¢y is small enough, then
eXp,, is a diffeomorphism on its image, which is an annulus in 0, X containing 7.

An explicit computation — using for instance the Poincaré model of H? — shows that
Mod(expy,(co—)) = =€ while Mod (exp,(cos)) = % Since the modulus is increasing

™
under inclusion, it follows that

L — L
C < Mod(T,,n) < ZEC
i i

Since the conformal structure in the “thick” part of 0X remains bounded, standard
arguments then show that the modulus of v in 90X differs from its modulus in 7T by
bounded quantity, that is, replacing C' if necessary, any annulus A extending 7% in 0.X
satisfies

Mod(T’y, h) < Mod(A, h) < Mod(Ty,h) +C' .
Therefore the extremal length of v in 0.X satisfies

™

L+2C L-C’
and the result follows. O

< Extax(y) <

Proof of Theorem A.15. We assume that the hyperbolic length of + goes to zero as t — 1.
It then follows from results of Maskit [68] that the extremal length of v for ¢; is equivalent
to

Exte(v) ~ LC;(’Y) :

It then follows from Lemma A.16 that if the Margulis tube around ~ contains a maximal
segment of length 2L; in the support of the measured bending lamination, then

s 7'('2

~

T Exte(7)  Le()

Ly
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However, the total length of the measured bending lamination in the “thick” part of 0C(X)
(the set of points where the injectivity radius is larger than €y/2) is uniformly bounded.
Moreover, the intersection with v of the measured bending lamination /; on the boundary
of the convex core converges to

i(7y,le) = 2m

as can be seen by considering the intersection of dC(X) with the plane P considered in
Section A.6. As a consequence, since the length of every segment of [; in T, has length
approximatively 2L;, the length of I; for the induced metric m; on the convex core behaves
has

Ly, (lt) ~ 2720y = 4w Ly .

and, as a consequence,
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