

Title: Rate limits and isotopologue fractionations for microbial methanogenesis examined with combined pathway protein cost and isotopologue flow network models

Shuhei Ono^{1,*}, Jeemin H. Rhim^{1,†}, Eric C. Ryberg¹

¹ Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA USA. sono@mit.edu, jrhim@alum.mit.edu, eryberg@mit.edu

A revised manuscript (R1) prepared for submission to *Geochimica Cosmochimica Acta*

*corresponding author: sono@mit.edu

[†] present address: Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA

Abstract

Microbial methanogenesis produces a range of isotope ($^{13}\text{C}/^{12}\text{C}$ and D/H) and isotopologue ($^{13}\text{CH}_3\text{D}$ and $^{12}\text{CH}_2\text{D}_2$) fractionations. Differential reversibility of enzymatic reactions qualitatively explains the isotope and isotopologue fractionations observed in both laboratory cultures and environmental samples. We applied pathway thermodynamics and isotopologue flow network models to quantitatively describe $^{13}\text{C}/^{12}\text{C}$, D/H, $^{13}\text{CH}_3\text{D}$, and $^{12}\text{CH}_2\text{D}_2$ fractionations during hydrogenotrophic methanogenesis. The model consists of the 10 enzymatic reactions of the methanogenesis pathway and tracks mass balance of isotopologues by taking into account the reaction symmetries of singly- and doubly-deuterated isotopologues. Based on the thermodynamics and enzyme kinetic data, the model estimates the reversibilities of 8 reactions from predicted *in vivo* concentrations of 17 metabolites and cofactors. The isotopologue flow network model calculates the isotopologue composition of product methane as well as all intermediates as a function of reversibilities and prescribed fractionation factors.

The model explains a number of observations for laboratory culture experiments, including the range of $^{13}\text{C}/^{12}\text{C}$ fractionation up to 80‰ between CH_4 and CO_2 , with increasing magnitudes while decreasing pH_2 . Relatively constant D/H fractionations of $300 \pm 40\text{‰}$ between methane and water can be explained when methane is produced from three near-equilibrium H in methyl-coenzyme M with the addition of one kinetic D-depleted H during the last step of methanogenesis. Abundances of the doubly substituted isotopologues, $^{13}\text{CH}_3\text{D}$ and $^{12}\text{CH}_2\text{D}_2$, reflect kinetic and equilibrium end-members with additional complications due to non-linear mixing and/or combinatorial effect.

Our model can make predictions for isotopologue fractionations under slow rates of methanogenesis in energy-limiting deep sedimentary environments, where a large quantity of methane is produced. Near-equilibrium isotopologue ratios, often observed in marine sedimentary environments, are produced when pH_2 is less than 10 Pa. Our model results indicate that methanogenesis does not occur or only proceeds at extremely slow rates at this low pH_2 because low concentration of methyl-tetrahydromethanopterin limits the rate and

44 thermodynamic feasibility of methanogenesis. Accordingly, it is proposed that near-equilibrium
45 methane isotopologue signals in deep marine sediments are produced by the catalytic
46 reversibility of methyl-coenzyme M reductase, likely from anaerobic methanotrophic archaea
47 performing either anaerobic methane oxidation or net methanogenesis. The pathway
48 thermodynamics and isotopologue flow network model scheme presented herein can be applied
49 and expanded to predict isotopologue fractionations for a range of metabolisms beyond
50 methanogenesis.

51

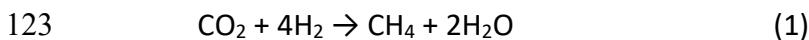
52 1 Introduction

53 Methane is both an important energy source and a strong greenhouse gas. A group of
54 microbes, called methanogens, is the major source of methane to the atmosphere as well as
55 methane in deep sediments. Methanogens are strictly anaerobic Euryarchaeota specializing in
56 the formation of methane from CO_2 and H_2 (hydrogenotrophic methanogenesis), formate,
57 methanol, methylamines and/or acetate (Ferry, 1993; Thauer et al., 2008; Daniels, 1993).

58 Carbon ($^{13}\text{C}/^{12}\text{C}$) and hydrogen (D/H) isotope ratios have been widely used to trace the origin
59 of methane in the environment (e.g., Whiticar, 1999). In addition to isotope ratios, the
60 abundances of doubly substituted methane isotopologues ($^{13}\text{CH}_3\text{D}$ and $^{12}\text{CH}_2\text{D}_2$) have been
61 proposed as proxies for the temperature of methane formation, although kinetic fractionations
62 during microbial methane generation complicates their utility as geothermometers (e.g., Stolper
63 et al., 2014; Stolper et al., 2015; Wang et al., 2015; Young et al., 2017). While these proxies are
64 used as tools to fingerprint source(s) of methane, we do not understand, in particular, the origin
65 of methane commonly observed in marine environments that often show intermolecular (H_2O
66 versus CH_4) and intramolecular ($^{13}\text{CH}_3\text{D}$ and $^{12}\text{CH}_2\text{D}_2$) equilibria because laboratory methanogen
67 cultures so far have exclusively produced methane with strong kinetic isotope and isotopologue
68 signals (e.g., Valentine et al., 2004; Okumura et al., 2016; Stolper et al., 2015; Wang et al., 2015;
69 Young et al., 2017).

70 Isotope and isotopologue compositions of methane in the environment can be generally
71 grouped into kinetic (disequilibrium) and equilibrium populations (Wang et al., 2015; Okumura et
72 al., 2016; Stolper et al., 2015; Gropp et al., 2021). Methane from surface freshwater
73 environments (e.g., lakes, wetlands) and ruminants often exhibit strong kinetic signals in both
74 $^{13}\text{C}/^{12}\text{C}$ and D/H ratios (against CO_2 and H_2O , respectively). They are characterized by relatively
75 high $\delta^{13}\text{C}$ values and low D/H fractionation factors of 0.70 ± 0.04 against water (Okumura et
76 al., 2016; Waldron et al., 1999). In contrast, methane from marine sediments often yields $^{13}\text{C}/^{12}\text{C}$
77 and D/H ratios close to those expected under equilibrium against CO_2 and H_2O , respectively (with
78 D/H fractionation factors of 0.81 ± 0.02 against water) (Whiticar, 1999; Okumura et al., 2016).
79 There are two schools of interpretation for the origin of kinetic versus equilibrium signals. One
80 relates different isotope signals to the rate of methanogenesis as slow methanogenesis in marine
81 environments generate methane with near-equilibrium isotope signals and fast methanogenesis
82 in shallow freshwater environments produces kinetic isotope signals (Meister et al., 2019;
83 Okumura et al., 2016; Wang et al., 2015; Jautzy et al., 2021; Turner et al., 2021). The other
84 associates the kinetic (D-depleted) signals with the predominance of acetoclastic
85 methanogenesis in freshwater environments (e.g., Whiticar, 1999). The latter implies that the
86 equilibrium methane in marine environments is produced by equilibration during anaerobic

87 oxidation of methane (e.g., Ash et al., 2019; Giunta et al., 2019; 2021; Warr et al., 2021).
88 Therefore, one of the critical questions regarding the origin of kinetic vs. equilibrium isotope
89 signals is if microbial methanogenesis can produce methane with (near-)equilibrium isotope and
90 isotopologue signals.


91 The differential reversibility model (Valentine et al., 2004) was proposed to explain a range
92 of carbon isotope fractionations during microbial methanogenesis. The model suggests that the
93 magnitude of fractionation reflects the reversibilities of reactions in the pathway of
94 methanogenesis and has been expanded to explain deuterium and isotopologue fractionations
95 (e.g., Okumura et al., 2016; Stolper et al., 2015; Wang et al., 2015). The model qualitatively
96 explains the isotope fractionations between equilibrium and kinetic end-members, as previous
97 models used prescribed reversibilities (Stolper et al., 2015; Cao et al., 2019) or used an empirical
98 function to describe them (Wang et al., 2015) (see Gropp et al., 2021 for a review of existing
99 models).

100 We present a model that links pathway thermodynamic and isotopologue flow network
101 models to quantitatively describe isotopologue fractionations as a function of energy availability
102 by hydrogen concentrations. The model takes advantage of the available knowledge about
103 energy conservation of methanogenesis (Thauer et al., 2008) and applies it to the pathway
104 thermodynamics protein cost model by Flamholz et al. (2013) to derive reversibilities of reactions
105 based on the flux-force relationship. We then apply kinetic isotope fractionation factors
106 experimentally derived from *in vitro* methanogenesis (Scheller et al., 2013) and theoretically
107 derived equilibrium fractionation factors (Gropp et al., 2021) to construct a pathway protein cost-
108 isotope flux model that explicitly tracks singly- and doubly-substituted isotopologues for all
109 intermediate metabolites. Our approach follows the Wing and Halevy (2014) model to predict
110 sulfur isotope fractionations by sulfate reducers, but our model explicitly quantifies protein in
111 addition to metabolite concentrations. We also show that the slow dissolution rate of H₂ gas
112 often limits the rate of methanogenesis in laboratory cultures such that methanogens are
113 exposed to much lower H₂ concentrations than expected from saturation against gaseous H₂. The
114 model explains a number of observations for previous laboratory culture experiments, including
115 the range of ¹³C/¹²C fractionation between CH₄ and CO₂ up to 80‰ (with increasing magnitudes
116 at decreasing pH₂), commonly observed D/H fractionations of 300±40‰ that are relatively
117 constant against pH₂, and the range of ¹³CH₃D and ¹²CH₂D₂ abundances (e.g., Okumura et al.,
118 2016; Penning et al., 2005; Gruen et al., 2018; Stolper et al., 2015; Young et al., 2017).
119

120 2 Method

121 2.1 The model of energy conservation for methanogens without cytochromes

122 The overall reaction for hydrogenotrophic methanogenesis can be written as:

124 The reaction yields Gibbs free energy of -131 kJ/mol CH₄ at standard conditions (i.e., CO₂, H₂
125 and CH₄ at 10⁵ Pa at 25°C, Thauer et al., 2008). The free energy change of the overall
126 methanogenesis reaction is shared among the multiple reactions in the pathway. In this work,
127 we used the model of energy conservation for methanogens without cytochromes (Figure 1,
128 Thauer et al., 2008). Methanogens without cytochromes represent those specialized in

129 hydrogenotrophic methanogenesis and are characterized by a higher affinity to H₂ and lower
 130 growth yields compared to methanogens with cytochromes. Methanogens with cytochromes are
 131 members of Methanomicrobiales that are capable of using diverse substrates, including acetate
 132 and methanol (Thauer et al., 2008). In our model, the hydrogenotrophic methanogenesis
 133 pathway is represented in 10 reactions shown in Figure 1 and Table 1. Methanogens reduce CO₂
 134 to CH₄ by a series of 7 reactions among which four reactions (reactions-1, 4, 5, and 7) are two
 135 electron transfer reactions that add H atoms to carbon, and reactions-6 and 7 are energy yielding
 136 reactions. The first step, reduction of CO₂ to formyl-methanofuran (formyl-MFR), requires
 137 reduced ferredoxin at ca. -500 mV SHE (potential against standard hydrogen electrode), which is
 138 lower than the redox potential of the H₂/H⁺ pair (-413 mV SHE at 1 bar H₂ and pH=7). It has been
 139 shown that methanogens reduce ferredoxin via an electron bifurcation reaction in which the
 140 highly exergonic reduction of heterodisulfide (CoM-S-S-CoB) is coupled to the endergonic
 141 reduction of ferredoxin (reaction-10) (Kaster et al., 2011). The subsequent two C₁-reduction steps
 142 (reactions-4 and 5), are catalyzed by methylene-tetrahydromethanopterin (methylene-H₄MPT)
 143 dehydrogenase and methylene-H₄MPT reductase, respectively, and coupled to the redox
 144 reaction of coenzyme F₄₂₀, which is coupled to the H₂/H⁺ pair via reaction-9. Reaction-6, the
 145 transfer of methyl group from H₄MPT to coenzyme M, is exergonic with an estimated energy
 146 yield of -30 kJ/mol. This reaction is coupled to sodium ion translocation to produce sodium
 147 motive force for ATP production and reduced ferredoxin (Thauer et al., 2008; Thauer et al., 2010).
 148 The last step of methanogenesis, reduction of methyl-coenzyme M (methyl-CoM) to CH₄, is
 149 catalyzed by methyl-CoM reductase (MCR) and is another exergonic step in methanogenesis.
 150

151 2.2 Pathway protein cost model

152 We apply the pathway protein cost (PPC) model of Flamholz et al. (2013) to
 153 hydrogenotrophic methanogenesis. Our model estimates the concentrations of 17 metabolites
 154 and cofactors by an optimization algorithm. The cost function (Λ) to minimize is the sum of
 155 enzymes (by mass) required for the given pathway flux:

$$157 \quad \Lambda = \sum_i \frac{M_i}{k_{cat,i}} \left(1 + \prod_j \frac{K_{m,ik}}{c_j} \right) \left(1 - e^{\frac{\Delta G_{r,i}}{RT}} \right) \quad (2)$$

158 where M_i is the molecular mass of an enzyme that catalyzes the reaction i , k_{cat} is a turnover
 159 number for the enzyme, $K_{m,ik}$ is the half saturation constant for the substrate k in reaction i , $\Delta G_{r,i}$
 160 is the free energy change of the reaction i , R is the gas constant, and T is the temperature in
 161 Kelvin (see Table 2 for a list of notations and symbols). The first term on the right-hand side of
 162 equation-2 represents the base kinetic parameter for enzymes and indicates that less enzyme
 163 (by mass) is required if the enzyme has lower molecular weight (M_i) or higher turnover rate (k_{cat}).
 164 The second term represents an approximate solution for reversible Michaelis-Menten kinetics,
 165 which takes into account the penalty when substrate metabolite concentration is lower than the
 166 half saturation constant. The third term is derived from the flux-force relationship that relates
 167 thermodynamic drive to the ratio of forward (J^+) to backward (J^-) pathway fluxes:

$$169 \quad \frac{J^+}{J^-} = e^{-\frac{\Delta G_r}{RT}} \quad (3)$$

170 The third term in equation-2 indicates that when ΔG_r is less negative, higher forward flux (and
171 thus more protein) is required to maintain the same net flux ($J_{net} = J^+ - J^-$). The cost function is
172 the sum of protein costs for all reactions considered (8 in our model, excluding reactions-8 and -
173 9 in Table 1). The cost function, Λ , has a unit of mass of protein per pathway flux (e.g., g-protein
174 s mol⁻¹), and the reciprocal of the cost function $1/\Lambda$ is the pathway flux per protein, that is
175 methane production rate (MPR) per mass of protein (e.g., in mol CH₄ s⁻¹ g protein⁻¹).

176 The cost function (equation-2) is optimized under the conditions that all reactions are
177 exergonic ($\Delta G_r < 0$) with metabolite concentrations within upper and lower bounds (Flamholz et
178 al., 2013). Kinetic parameters for enzymes were taken from the literature (Table 3 also see
179 Peterson et al., 2014). Enzymes catalyzing reactions-3 and 4, methenyl-H₄MPT⁺ cyclohydrolase
180 and methylene-H₄MPT dehydrogenase, respectively, were only assayed in the reverse direction;
181 we took the value for the reverse direction and assumed the same K_m values for corresponding
182 substrates. These kinetic parameters differ by experiments, species, and experimental
183 conditions; the sensitivity of the model for enzyme kinetic parameters are presented in the
184 supplementary material. Upper and lower bounds of metabolites and cofactors are set to 10 mM
185 and 1 nM, respectively, following Wing and Halevy (2014) and Noor et al. (2014), except for the
186 upper bound of H₄MPT and their C₁ compounds (100 mM) because relatively high concentrations
187 were previously reported (Daniels, 1993 and references therein). The upper limit of H₄MPT is
188 related to the lower limit of pH₂ for methanogenesis as we discuss in section 4.1.

189 The Gibbs free energy change of reactions are listed in Table 1. Reaction-6 is coupled to
190 sodium ion translocation. Based on the growth yield of methanogen without cytochromes for
191 laboratory cultures of *M. marburgensis*, Thauer et al. (2008) estimated an ATP yield of 0.5 mol
192 per mole of CH₄ produced. Assuming the synthesis of ATP from ADP in living cells requires -50
193 kJ/mol (Thauer et al., 1977), -25 kJ/mol of free energy change of reaction-6 is used for sodium
194 translocation by growing cultures of methanogens. Since it is not clear how much free energy is
195 coupled with Na⁺ translocation for reaction-6 under H₂-limited conditions in natural
196 environments, we assumed that half the free energy is used for Na⁺ translocation as derived
197 above. The value of ΔG_r for reaction-6 ranges from -32 to -4 kJ/mol for pH₂ 100 kPa to 0.14 Pa
198 such that energy used for Na⁺ translocation was -16 to -2 kJ/mol in our model. Reactions-8 and
199 -9 are reactions for cofactors and are excluded from the protein cost function (equation-2). The
200 model conditions include $\Delta G_r < 0$ for reaction-9 but reaction-8 can be endergonic (i.e., the
201 Fd_{red}/Fd_{ox} pair is in disequilibrium with the H₂/H⁺ pair). The sensitivity of the model was tested by
202 varying one input variable at a time (k_{cat} , K_m , or ΔG_r) and solved for MPR and isotopologue
203 compositions of methane (supplementary materials, Figure S1 and S2). Optimization was
204 performed using MATLAB, and the model was run for a range of pH₂ from 0.1 Pa to 100 kPa.
205

206 2.3 Estimating the effect of transport limit

207 The PPC model provides the rate of methanogenesis as a function of thermodynamic
208 driving force gauged by pH₂, a metric that was used in previous experimental studies (e.g.,
209 Okumura et al., 2016; Penning et al., 2005). For gases with low solubilities, such as H₂ and CH₄,
210 however, the gas-liquid transfer can limit the rate of microbial growth and metabolisms (e.g., Jud
211 et al., 2007; Pauss et al., 1990; Valentine et al., 2000). Due to the high solubility, dissolution and
212 diffusion of CO₂ are unlikely to limit the rate of methanogenesis for laboratory cultures except
213 for highly alkaline conditions (Miller et al., 2018).

214 For a bioreactor at steady state, the rate of dissolution equals to H₂ consumption:

215
$$k_L a (K_H p H_2 - m H_2) = 4 \frac{N_{cell}}{V} csMPR \quad (4)$$

216 where, $k_L a$ is the volumetric mass transfer coefficient, N_{cell}/V and $csMPR$ are cell density and cell
217 specific MPR , respectively (e.g., Pauss et al., 1990). The factor 4 is for reaction stoichiometry of
218 H₂/CH₄ from equation-1. The mass transfer coefficient ($k_L a$) represents the rate of transfer for the
219 whole reactor, and depends upon the stirring rate, bubble size and geometry of the reactor. The
220 value of $k_L a$ ranges across orders of magnitude (e.g., Garcia-Ochoa and Gomez, 2005). For
221 example, Pauss et al. (1990) reported a $k_L a$ of 0.16 hr⁻¹ for a stirred fed-batch anaerobic fermenter,
222 whereas Jud et al., (1997) measured much higher values of 220 to 1500 h⁻¹ for a pure culture of
223 methanogen in a 2-L bioreactor.

224 In addition to gas-liquid transfer rate, diffusion of H₂ in water can limit the rate of
225 methanogenesis in nature and in some co-culture experiments (Hoehler, 2004; Boone et al.,
226 1989). Assuming spherical geometry for a microbe, the concentration gradient to sustain
227 substrate flux (J) into the cell can be written as:

228
$$m_{H2}(x) - m_{H2}(r) = \frac{J}{4\pi D} \cdot \left(\frac{1}{r} - \frac{1}{x} \right) \quad (5)$$

229 where m_{H2} is the concentration of H₂ at distance x and r from the center of the cell, r is the radius
230 of the cell, D is the diffusion coefficient (Hoehler, 2004). Because the mean distance between
231 cells at cell density 10⁸ cells/mL is 21 μm, at the high-end of cell density for a culture, r is much
232 smaller than x for most conditions in cultures and nature. Equation-5, thus, can be reduced to

233
$$\Delta m_{H2} = \frac{J}{4\pi D} \cdot \left(\frac{1}{r} \right) \quad (6)$$

234 where Δm_{H2} is the concentration gradient between the bulk media or porewater and the
235 surface of the cell.

237 2.4 Isotopologue flow network model applied to methanogenesis

238 Based on the biochemical pathway of methanogenesis described in the previous sections,
239 a mathematical model was constructed to quantitatively describe the isotope fractionations of
240 microbial methanogenesis. The isotope flow network model was originally developed to explain
241 sulfur isotope fractionation by sulfate reducing microbes (Rees, 1973), which was later modified
242 by a number of studies (Brunner and Bernasconi, 2005; Farquhar et al., 2003; Wing and Halevy,
243 2014). A similar model was also applied for carbon isotope fractionations within biosynthetic
244 pathways (e.g., Hayes, 2001), as well as isotopologue fractionations during methanogenesis
245 (Yoshinaga et al., 2014; Wang et al., 2015; Stolper et al., 2015, Cao et al., 2019) and anaerobic
246 methane oxidation (Ono et al. 2021; Wegener et al., 2021). We note that Wing and Halevy (2014)
247 was the first study that linked Gibbs free energy of reaction to the reversibilities and applied it to
248 the isotope flow network model.

249 These isotope flux network models use prescribed kinetic isotope effects (KIEs) intrinsic to
250 each enzymatic reaction and calculates isotope fractionations of the overall pathway as a
251 function of reaction reversibilities that maintain isotopologue mass balance. Application of flow
252 network model to the carbon isotope system of methanogenesis is straightforward; its
253 application to singly- or doubly-deuterated isotopologues, however, is complicated due to

254 molecular symmetry and multiple sites where D can substitute H. Our approach is to set up a
 255 total of 26 isotopologue mass balance equations (8 for ^{13}C , 7 each for ^{12}CD and ^{13}CD , and 4 for D_2
 256 isotopologues). Since these can be arranged in a set of linear equations, we use matrix algebra
 257 to simultaneously solve for the isotopologue compositions of methane as well as the
 258 isotopologue compositions of all intermediates as described below.

259

260 **2.4.1 Notations**

261 Notations and symbols used in this study are summarized in Table 2. In this paper, r_j , d_j , q_j ,
 262 and u_j represent the abundance ratios of ^{13}C , D, ^{13}CD , and D_2 substituted isotopologues relative
 263 to $^{12}\text{C-H}$ containing isotopologues, respectively, and j is an index of single carbon containing
 264 species ($j=1$ to 8) in Table 4.

265 For example,

$$266 \quad r_8 = \frac{^{13}\text{CH}_4}{^{12}\text{CH}_4}, d_8 = \frac{^{12}\text{CH}_4\text{D}}{^{12}\text{CH}_4}, q_8 = \frac{^{13}\text{CH}_4\text{D}}{^{12}\text{CH}_4}, u_8 = \frac{^{12}\text{CH}_2\text{D}_2}{^{12}\text{CH}_4} \quad (7)$$

267 Isotope ratios are then described using conventional delta notations:

268

$$269 \quad \delta^{13}\text{C} = \frac{r_i}{r_{ref}} - 1, \text{ and } \delta\text{D} = \left(\frac{x\sigma_j}{\sigma_j} \right) \frac{d_j}{d_{ref}} - 1 \quad (8)$$

270

271 where r_{ref} and d_{ref} denote the isotope ratios of reference materials. For this study, r_{ref} is the $^{13}\text{C}/^{12}\text{C}$
 272 ratio of CO_2 , and d_{ref} is the D/H ratio of H_2O . We use H_2O as a reference because it is commonly
 273 measured for environmental studies and most H carriers are exchangeable with H in H_2O (see
 274 section 2.4.2). The symmetry ratio ($x\sigma_j/\sigma_j$) is used to calculate isotope ratios from isotopologue
 275 ratios for deuterated species. For example, the symmetry ratios for singly-deuterated methane
 276 ($^{12}\text{CH}_3\text{D}$ and $^{13}\text{CH}_3\text{D}$) are 1/4 based on the symmetry number of CH_3D ($^d\sigma_8 = 3$) over CH_4 ($\sigma_8 = 12$).
 277 The symmetry number for doubly-deuterated methane ($^{12}\text{CH}_2\text{D}_2$) is 2 such that the symmetry
 278 ratio is 1/6 for $^{12}\text{CH}_2\text{D}_2/^{12}\text{CH}_4$.

279 The abundance of clumped isotopologues ($^{13}\text{CH}_3\text{D}$ and $^{12}\text{CH}_2\text{D}_2$) is quantified by the
 280 metrics $\Delta^{13}\text{CD}$ and ΔD_2 , which are the deviations of the ratios $^{13}\text{CD}/^{12}\text{CH}$ and $^{12}\text{CD}_2/^{12}\text{CH}_2$ relative
 281 to those expected for stochastic abundance:

$$282 \quad \Delta^{13}\text{CD}_j = \frac{q_j}{r_j d_j} - 1 \text{ and } \Delta\text{D}_2 = \frac{(^u\sigma_j/\sigma_j)}{(^d\sigma_j/\sigma_j)^2} \frac{u_j}{d_j^2} - 1 \quad (9)$$

283 Kinetic isotope effect (KIE) is defined as the ratio of rate constants for a given
 284 isotopologue against $^{12}\text{C-H}$ isotopologue. For example, $\alpha_i = {^{13}k_i}/{^{12}k_i}$. where, xk_i is the rate constant
 285 for isotopologue x for reaction i (Table 2; Table 1). We consider both primary (α_{pi}) and secondary
 286 (α_{si}) KIEs for deuterated isotopologues. Primary fractionation occurs when a C–D bond is broken
 287 or formed, whereas secondary fractionation occurs during a reaction in which a C–D bond (or
 288 two C–D bonds) is(are) transferred from a reactant to a product while breaking or forming a C–H
 289 bond (see Table 5).

290 KIEs for multiply-substituted (clumped) isotopologues follows the rule of geometric mean
 291 (Bigeleisen, 1955) such that the KIE for $^{13}\text{CH}_3\text{D}$, for example, is approximately the product of KIEs
 for D/H and $^{13}\text{C}/^{12}\text{C}$. A small deviation from this rule is expected due to combined zero-point

292 energy shifts for double substitutions (Whitehill et al., 2017), and it is quantified by the γ_x factor
 293 (Table 2) (Wang et al., 2015). For example:

$$\alpha_{cp7}^+ = \gamma_{cp7^+} \alpha_7^+ \alpha_{p7}^+ \quad (10)$$

294 Table 5 shows 8 isotopologue reactions considered for the last step of methanogenesis
 295 (reaction-7). Note the symmetry factors of $\frac{1}{4}$ and $\frac{3}{4}$ for the reverse reaction for primary and
 296 secondary D-abstraction reactions, respectively. These are derived from reaction symmetry (e.g.,
 297 Bigeleisen, 1949) but related to a statistical chance to remove D or H from $^{12}\text{CH}_3\text{D}$ (or $^{13}\text{CH}_3\text{D}$).
 298 For solving the isotope flow network model, we did not consider reactions for doubly-substituted
 299 isotopologues for the mass balance of singly-substituted isotopologues. For example, a reaction,
 300 $\text{CH}_2\text{D}_2 + \text{R} \rightarrow \text{CH}_2\text{D}-\text{R} + \text{D}$, was not included in the mass balance for singly-deuterated
 301 isotopologues. The result is accurate because of the relatively low abundance of doubly-
 302 substituted compared to singly-substituted isotopologues.
 303

304 2.4.2 Isotopologue flow network model

305 The isotopologue flow network model tracks the flow of isotopologues among 8
 306 metabolites from CO_2 to CH_4 (Table 4). We set up a total of 26 mass balance equations (8 for ^{13}C ,
 307 7 for D and ^{13}CD , and 4 for D_2 -substituted isotopologues). These mass balance equations are used
 308 to construct a fractionation matrix \mathbf{F} , which is solved by using matrix algebra for the isotopologue
 309 ratios of CH_4 as well as all intermediates. In this study, the fractionation matrix \mathbf{F} was constructed
 310 manually but it can be automatically generated for a model with larger and more complex
 311 molecules (see Goldman et al., 2019 for ^{13}C models).

312 Each reaction (reactions-1 to 7) is given forward and backward fluxes (e.g., the number of
 313 moles of substrates per cell per unit time), which are denoted as J_i^+ and J_i^- , respectively ($i = 0$ to
 314 7). Reversibility (ϕ_i) is defined as: $\phi_i = J_i^-/J_i^+$. Assuming intermediate steady states, net fluxes are
 315 equal to the difference between forward and reverse fluxes (i.e., $J_{net} = J_0^+ - J_0^- = J_1^+ - J_1^- = \dots = J_8^+$)
 316 such that all J_n^+ and J_n^- terms can be solved as a function of ϕ_i and J_{net} :

$$317 \quad J_i^+ = \frac{1}{1-\phi_i} J_{net}, \text{ and } J_i^- = \frac{\phi_i}{1-\phi_i} J_{net}, \quad (11)$$

318 When solving for a steady state, J_{net} cancels out so that the model solution only depends on the
 319 reversibility (ϕ_1 to ϕ_7) and does not depend on the rate of methanogenesis.

320 For ^{13}C isotopologues, a series of mass balance equations can be written as:

$$321 \quad \frac{d^{13}m_1}{dt} = J_0^+ r_0 - (\alpha_1^+ J_1^+ + J_0^-)r_1 + \alpha_1^- J_1^- r_2 \quad (12a)$$

$$322 \quad \frac{d^{13}m_2}{dt} = \alpha_1^+ J_1^+ r_1 - (\alpha_2^+ J_2^+ + \alpha_1^- J_1^-)r_2 + \alpha_2^- J_2^- r_3 \quad (12b)$$

$$323 \quad \frac{d^{13}m_3}{dt} = \alpha_2^+ J_2^+ r_2 - (\alpha_3^+ J_3^+ + \alpha_2^- J_2^-)r_3 + \alpha_3^- J_3^- r_4 \quad (12c)$$

324 \ddots

$$325 \quad \frac{d^{13}m_7}{dt} = \alpha_6^+ J_6^+ r_6 - (\alpha_7^+ J_7^+ + \alpha_6^- J_6^-)r_7 + \alpha_7^- J_7^- r_8 \quad (12c)$$

$$326 \quad \frac{d^{13}m_8}{dt} = \alpha_7^+ J_7^+ r_7 - (\alpha_8^+ J_8^+ + \alpha_7^- J_7^-)r_8 \quad (12d)$$

327 where $^{13}m_j$ is the amount (e.g., mol) of ^{13}C -isotopologues *in vivo*, and r_0 is the $^{13}\text{C}/^{12}\text{C}$ ratio of CO_2
 328 outside the cell. Assuming intermediate steady states (i.e., $d^{13}m_j/dt = 0$), a set of linear equations
 329 (equations-12a to 12d) can be arranged into a tridiagonal matrix \mathbf{F} . Equation-12 shows the
 330 relationship among \mathbf{F} , an isotopologue ratio column vector \mathbf{r} , and a boundary condition column
 331 vector \mathbf{b} as $\mathbf{F} \cdot \mathbf{r} = \mathbf{b}$:

$$333 \quad \begin{bmatrix} \alpha_1^+ J_1^+ + J_0^- & -\alpha_1^- J_1^- & & & & & & \\ -\alpha_1^+ J_1^+ & \alpha_2^+ J_2^+ + \alpha_1^- J_1^- & -\alpha_2^- J_2^- & & & & & \\ & -\alpha_2^+ J_2^+ & \ddots & \ddots & & & & \\ & & \ddots & \ddots & & & & \\ & & & -\alpha_7^+ J_7^+ & \alpha_8^+ J_8^+ + \alpha_7^- J_7^- & & & \\ & & & & & & & \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ \vdots \\ r_8 \end{bmatrix} = \begin{bmatrix} J_0^+ r_0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad (13)$$

334 Equation-13 can be solved for the carbon isotopologue ratios of all intermediate species (r_j) by
 335 inverting the fractionation matrix ($\mathbf{r} = \mathbf{F}^{-1}\mathbf{b}$).

337 Mass conservations for deuterated isotopologues are more complicated than ^{13}C due to
 338 primary and secondary KIEs and reaction symmetry factors for reverse (bond-breaking) reactions:

$$339 \quad \frac{d^2m_2}{dt} = \alpha_{p1}^+ J_1^+ d_H - (\alpha_{p1}^- J_1^- + \alpha_{s2}^+ J_2^+) d_2 + \alpha_{s2}^- J_2^- d_3 \quad (14a)$$

$$340 \quad \frac{d^2m_3}{dt} = \alpha_{s2}^+ J_2^+ d_2 - (\alpha_{s2}^- J_2^- + \alpha_{s3}^+ J_3^+) d_3 + \alpha_{s3}^- J_3^- d_4 \quad (14b)$$

$$341 \quad \frac{d^2m_4}{dt} = \alpha_{s3}^+ J_3^+ d_3 - (\alpha_{s3}^- J_3^- + \alpha_{s4}^+ J_4^+) d_4 + \alpha_{s4}^- J_4^- d_5 \quad (14c)$$

$$342 \quad \frac{d^2m_5}{dt} = \alpha_{p4}^+ J_4^+ d_H + \alpha_{s4}^+ J_4^+ d_4 - (\frac{1}{2}\alpha_{p4}^- J_4^- + \frac{1}{2}\alpha_{s4}^- J_4^- + \alpha_{s5}^+ J_5^+) d_5 + \alpha_{s5}^- J_5^- d_6 \quad (14d)$$

$$343 \quad \frac{d^2m_6}{dt} = \alpha_{p5}^+ J_5^+ d_H + \alpha_{s5}^+ J_5^+ d_5 - (\frac{1}{3}\alpha_{p5}^- J_5^- + \frac{2}{3}\alpha_{s5}^- J_5^- + \alpha_{s6}^+ J_6^+) d_6 + \alpha_{s6}^- J_6^- d_7 \quad (14e)$$

$$344 \quad \frac{d^2m_7}{dt} = \alpha_{s6}^+ J_6^+ d_6 - (\alpha_{s6}^- J_6^- + \alpha_{s7}^+ J_7^+) d_7 + \alpha_{s7}^- J_7^- d_8 \quad (14f)$$

$$345 \quad \frac{d^2m_8}{dt} = \alpha_{p7}^+ J_7^+ d_H + \alpha_{s7}^+ J_7^+ d_7 - (\frac{1}{4}\alpha_{p7}^- J_7^- + \frac{3}{4}\alpha_{s7}^- J_7^- + J_8^+) d_8 \quad (14g)$$

346 where, d_H is the D/H ratio of source H. We assumed H source is water, as most H carriers (e.g.,
 347 HS in methyl-coM, H in F_{420}H_2) are exchangeable with H in water. For example, during reaction-
 348 4, H added to $\text{CH}_2=\text{H}_4\text{MPT}$ is derived from C5 position of F_{420}H_2 (Klein and Thauer, 1995), which is
 349 derived from H_2O and not from H_2 as is written in reaction-9 (Livingston et al., 1987). We note
 350 that at least one hydrogenase, H_2 -forming methylene- H_4MPT dehydrogenase, has been shown
 351 to directly transfer H_2 in H during the reduction of methenyl- to methylene- H_4MPT (Zirngible et
 352 al., 1992). The enzyme is upregulated during early growth phase (Nolling et al., 1995) or under
 353 conditions of excess H_2 (Morgan et al., 1997; Hendrickson et al., 2007) and may explain some
 354 experimental results (Kawagucci et al., 2014).

355 Again, the series of equations-13a to 13g can also be arranged in a matrix form:

$$356 \quad \begin{bmatrix} \alpha_{p1}^- J_1^- + \alpha_{s2}^+ J_2^+ & -\alpha_{s2}^- J_2^- & & & & & & \\ -\alpha_{s2}^+ J_2^+ & \alpha_{s2}^- J_2^- + \alpha_{s3}^+ J_3^+ & -\alpha_{s3}^- J_3^- & & & & & \\ & -\alpha_{s3}^+ J_3^+ & \ddots & \ddots & & & & \\ & & \ddots & \ddots & & & & \\ & & & \alpha_{s7}^+ J_7^+ & \frac{1}{4}\alpha_{p7}^- J_7^- + \frac{3}{4}\alpha_{s7}^- J_7^- + J_8^+ & & & \\ & & & & & & & \end{bmatrix} \begin{bmatrix} d_2 \\ d_3 \\ d_4 \\ \vdots \\ d_8 \end{bmatrix} = \begin{bmatrix} \alpha_{p1}^+ J_1^+ d_H \\ 0 \\ 0 \\ \vdots \\ \alpha_{p7}^+ J_7^+ d_H \end{bmatrix} \quad (15)$$

358 and solved by inverting the fractionation matrix for the values of d_j ($j=2$ to 8).

359 For ^{13}C -D isotopologues, mass balance equations are similar to singly-deuterated
360 isotopologues and solved similarly.

$$361 \quad \frac{d^{13,2}m_2}{dt} = \alpha_{cp1}^+ J_1^+ r_1 d_{\text{H}} - (\alpha_{cp1}^- J_1^- + \alpha_{cs2}^+ J_2^+) q_2 + \alpha_{cs2}^- J_2^- q_3 \quad (16\text{a})$$

$$362 \quad \frac{d^{13,2}m_3}{dt} = \alpha_{cs2}^+ J_2^+ q_2 - (\alpha_{cs2}^- J_2^- + \alpha_{cs3}^+ J_3^+) q_3 + \alpha_{cs3}^- J_3^- q_4 \quad (16\text{b})$$

$$363 \quad \frac{d^{13,2}m_4}{dt} = \alpha_{cs3}^+ J_3^+ q_3 - (\alpha_{cs3}^- J_3^- + \alpha_{cs4}^+ J_4^+) q_4 + \alpha_{cs4}^- J_4^- q_5 \quad (16\text{c})$$

$$364 \quad \frac{d^{13,2}m_5}{dt} = \alpha_{cp4}^+ J_4^+ r_4 d_{\text{H}} + \alpha_{cs4}^+ J_4^+ q_4 - (\frac{1}{2} \alpha_{cp4}^- J_4^- + \frac{1}{2} \alpha_{cs4}^- J_4^- + \alpha_{cs5}^+ J_5^+) q_5 + \alpha_{cs5}^- J_5^- q_6 \quad (16\text{d})$$

$$365 \quad \frac{d^{13,2}m_6}{dt} = \alpha_{cp5}^+ J_5^+ r_5 d_{\text{H}} + \alpha_{cs5}^+ J_5^+ q_5 - (\frac{1}{3} \alpha_{cp5}^- J_5^- + \frac{2}{3} \alpha_{cs5}^- J_5^- + \alpha_{cs6}^+ J_6^+) q_6 + \alpha_{cs6}^- J_6^- q_7 \quad (16\text{e})$$

$$366 \quad \frac{d^{13,2}m_7}{dt} = \alpha_{cs6}^+ J_6^+ q_6 - (\alpha_{cs6}^- J_6^- + \alpha_{cs7}^+ J_7^+) q_7 + \alpha_{cs7}^- J_7^- q_8 \quad (16\text{f})$$

367 Double deuterium substitutions only apply to four species ($j=5$ to 8 in Table 4; $\text{CD}_2=\text{H}_4\text{MPT}$
368 to CH_2D_2), and their mass conservation equations are:

$$369 \quad \frac{d^{2,2}m_5}{dt} = \alpha_{dp4}^+ J_4^+ d_4 d_{\text{H}} - (\alpha_{dp4}^- J_4^- + \alpha_{ds5}^+ J_5^+) u_5 + \frac{1}{3} \alpha_{ds5}^- J_5^- u_6 \quad (17\text{d})$$

$$370 \quad \frac{d^{2,2}m_6}{dt} = \alpha_{dp5}^+ J_5^+ d_5 d_{\text{H}} + \alpha_{cs5}^+ J_5^+ u_5 - (\frac{2}{3} \alpha_{dp5}^- J_5^- + \frac{1}{3} \alpha_{ds5}^- J_5^- + \alpha_{ds6}^+ J_6^+) u_6 + \alpha_{ds6}^- J_6^- u_7 \quad (17\text{e})$$

$$371 \quad \frac{d^{2,2}m_7}{dt} = \alpha_{ds6}^+ J_6^+ u_6 - (\alpha_{ds6}^- J_6^- + \alpha_{ds7}^+ J_7^+) u_7 + \alpha_{ds7}^- J_7^- u_8 \quad (17\text{f})$$

$$372 \quad \frac{d^{2,2}m_8}{dt} = \alpha_{dp7}^+ J_7^+ d_7 d_{\text{H}} + \alpha_{ds7}^+ J_7^+ u_7 - (\frac{1}{2} \alpha_{dp7}^- J_7^- + \frac{1}{2} \alpha_{ds7}^- J_7^- + \alpha_{ds8}^+ J_8^+) u_8 \quad (17\text{g})$$

373 These can be arranged in a matrix form:

$$374 \quad \begin{bmatrix} \alpha_{dp4}^- J_4^- + \alpha_{ds5}^+ J_5^+ & -\frac{1}{3} \alpha_{ds5}^- J_5^- \\ -\alpha_{cs5}^+ J_5^+ & \frac{2}{3} \alpha_{dp5}^- J_5^- + \frac{1}{3} \alpha_{ds5}^- J_5^- + \alpha_{ds6}^+ J_6^+ \\ & -\alpha_{ds6}^+ J_6^+ \end{bmatrix} \begin{bmatrix} u_5 \\ u_6 \\ u_7 \\ u_8 \end{bmatrix} = \begin{bmatrix} \alpha_{dp4}^+ J_4^+ d_4 d_{\text{H}} \\ \alpha_{dp5}^+ J_5^+ d_5 d_{\text{H}} \\ 0 \\ \alpha_{ap7}^+ J_7^+ d_7 d_{\text{H}} \end{bmatrix} \quad (18)$$

375 The resulting isotopologue ratios (r_j , d_j , q_j , and u_j) are used to calculate isotope ratios ($\delta^{13}\text{C}$ and
376 δD) and clumped isotopologue compositions ($\Delta^{13}\text{CD}$ and ΔD_2) following equations-8 and 9.

377 2.4.3 Assignment of KIE values

378 The magnitudes of KIEs are key input parameters for the isotopologue flow network
379 model. While experimental data or theoretical estimates for KIEs of enzymatic reactions are
380 limited, equilibrium fractionation factors estimated by quantum mechanical calculation (Ono et
381 al., 2021; Gropp et al., 2020) are considered to be accurate for the purpose of this work. The
382 knowledge of equilibrium fractionation factors constrains the model solution for the fully
383 reversible (equilibrium) case. We used equilibrium fractionation factors estimated by Gropp et
384 al. (2020) for fractionations among metabolites against water vapor and gaseous CO_2 .
385 Experimentally derived fractionation factors between liquid water and vapor water by Horita and
386 Wesolowski (1994) were used to derive equilibrium fractionation factors against liquid water.
387 We are aware of other fractionation factors (e.g., Horibe and Craig, Turner et al., 2021 for CH_4 -
388 and CH_3D).

392 H₂O, Kueter et al., 2019 and Horita 2001 for CH₄-CO₂) but we did not use them to keep
 393 consistency. Table 4 lists isotopologue compositions (in δ and Δ values) of all metabolites
 394 expected under equilibrium at 25°C. We used 25°C for our model calculation to be consistent
 395 with thermodynamic data by Thauer et al. (2008). The model sensitivity of temperature of
 396 fractionation is presented in supplementary materials (Figure S3). The estimated equilibrium
 397 carbon isotope compositions systematically decrease with decreasing carbon oxidation state.
 398 Clumped isotope fractionations are largely constant at 5.0 ± 0.8‰ and 16.0 ± 2.6‰, for $\Delta^{13}\text{CD}$
 399 and ΔD_2 , respectively (Table 4).

400 Once KIE for the forward reaction is assigned, KIE for the reverse reaction is constrained
 401 by the equilibrium fractionation factors (and vice versa). This maintains consistency and
 402 effectively reduces the number of input parameters to half. For example, for reaction-7:

$$\alpha_{p7}^{eq} = \frac{d_H}{d_8} = \frac{\alpha_{p7}^-}{\alpha_{p7}^+} \quad (19)$$

403 and

$$\alpha_{s7}^{eq} = \frac{d_7}{d_8} = \frac{\alpha_{s7}^+}{\alpha_{s7}^-} \quad (20)$$

404 where, α_{p7}^{eq} and α_{s7}^{eq} , represent equilibrium fractionation factors for primary and secondary
 405 fractionations, respectively.

406 Similarly, the following relationships apply for clumped KIEs:

$$\gamma_8 = \frac{\gamma_{p7}^-}{\gamma_{p7}^+}, \text{ and } \frac{\gamma_7}{\gamma_8} = \frac{\gamma_{s7}^-}{\gamma_{s7}^+} \quad (21)$$

407 To our knowledge, Scheller et al., (2013) is the only study that examined the enzyme
 408 isotope effect associated with methanogenesis *in vitro*. The values of KIEs for other reactions are
 409 the major uncertainty for the isotopologues flow network model. We assigned KIEs with a range
 410 of uncertainty and propagated to the product isotopologue ratios by the Monte Carlo simulation
 411 ($N=1000$) assuming normal distribution with 1σ values listed in Table 6 ($N=1000$). Scheller et al.
 412 (2013) reported ¹³C-KIE of 0.96±0.01 for reaction-7 (formation of methane from CH₃-S-CoM and
 413 HS-CoB) assayed at 60°C. For simplicity, ¹³C-KIEs for forward reactions are assumed to be
 414 0.96±0.02 except for the last step, to which we assigned a smaller uncertainty of ±0.01 (Table 6).
 415 By using the same magnitude of KIEs, we aim to examine the isotopologues fractionation due to
 416 differential reversibility. These yield ¹³C-KIEs of backward reactions ranging from 0.957 to 0.977
 417 (Table 6). For comparison, ¹³C-KIEs were experimentally determined to be 0.96 for yeast formate
 418 dehydrogenase (formate to CO₂) and 0.98 for alcohol dehydrogenase (alcohol to aldehyde)
 419 (Hermes et al., 1984; Scharshmidt et al., 1984).

420 Scheller et al (2013) reported a primary KIE (k_H/k_D) of 2.44 ± 0.22 for the activation of
 421 methane (note that enzyme community reports KIEs by H/D); the reciprocal of this value yields a
 422 α_{p7}^- value of 0.41 ± 0.04. This yields a forward primary D-KIE (α_{p7}^+) of 0.34 based on the
 423 equilibrium fractionation factor between CH₄ and H₂O_(l) of 0.822 (Table 6). This magnitude of
 424 primary isotope effect is commonly observed during the breaking or forming of C–D/C–H bonds.
 425 For reference, primary D-KIE of 0.24 is measured for yeast alcohol dehydrogenase (Cha et al.,
 426 1989) and that of 0.46 is reported for formate dehydrogenase (Hermes et al., 1984). Bell (1973)
 427 estimated the minimum value of 0.15 for D-KIE of C–D/C–H bond-breaking reactions (i.e., α_p^-)

428 based on a typical zero-point energy difference between C-D and C-H asymmetric stretching
429 vibrations of 4.8 kJ/mol (ca. 400 cm⁻¹). We assigned 0.82±0.20 for the D-primary KIEs in reverse
430 directions (α_{pi^-}) for reactions 1, 4 and 6 as the best fit to the experimental data; these D-KIEs are
431 the least constrained variable in the model.

432 For secondary D-KIE, Scheller et al. (2013) report 0.84 and 0.85 for forward and backward
433 reactions, respectively, for the reaction-7. Accordingly, we assigned 0.85±0.05 for all forward
434 secondary D-KIEs (α_{si^+}), except for the last step with a smaller uncertainty of ±0.01, and derived
435 backward D-KIEs from equation-20 (Table 6). For comparison, Roston and Kohen (2010) reported
436 secondary D-KIE associated with the alcohol dehydrogenase of 0.94 for the forward reaction
437 (alcohol to aldehyde) and 0.81 for the reverse reaction.

438 It is worth noting that clumped KIEs for enzyme reactions have been previously studied by
439 comparing ¹³C/¹²C fractionation of deuterated versus non-deuterated substrates (summarized in
440 Rucker and Klinman, 1999). For example, the ¹³C-KIE is 0.9853 for the oxidation of benzyl alcohol
441 catalyzed by alcohol dehydrogenase and the KIE increases to 0.9788 for doubly-deuterated
442 benzyl alcohol- α,α -d₂ (Scharschmidt et al., 1984). These values yield clumped KIE of 0.9933 ($\ln\gamma_p^-$
443 = -6.7‰) for the C-D bond-breaking reaction (note that this was a doubly-deuterated carbon).
444 Accordingly, we assigned 1.000±0.008 for primary clumped KIE (γ_{cp}^+). This range of values
445 reproduces the negative (anti-clumped) $\Delta^{13}\text{CH}_3\text{D}$ values measured for laboratory cultures of
446 methanogens as well as some natural methane samples (Gruen et al., 2018; Wang et al., 2015;
447 Stolper et al., 2015) (Table 7). For doubly-deuterated species, we assigned 1.000±0.010 for
448 primary clumped KIEs (γ_{dp}^+) for forward reactions. We also assumed no clumped KIEs for
449 secondary reactions for the forward directions ($\gamma_{cs}^+ = 1.000$ and $\gamma_{ds}^+ = 1.000$) (Table 7). It is possible
450 that clumped KIEs are associated with secondary D-KIE. Our model can be used to test the
451 isotopologue systematics for different prescribed clumped KIE values, when more experimental
452 data become available.

453 3 Results

454 3.1 Differential energy yields and reversibility for methanogenesis reactions

455 The PPC model allows us to estimate how the free energy of the total methanogenesis
456 reaction (equation-1) is shared among the 8 reactions in the pathway of methanogenesis. Figure
457 2 shows the model results for cumulative free energy changes for the 8 reactions. The PPC model
458 indicates that reactions-1, 6, 7 and 10 are more exergonic (energy-yielding) than reactions-2, 3,
459 4, and 5 ($\Delta G_r > -5$ kJ/mol), and this translates to the high pathway fluxes in both directions (high
460 reversibilities) for the middle steps (steps between CH≡H₄MPT⁺ and CH₃-H₄MPT) of the
461 methanogenesis pathway under the range of pH₂ (0.16 Pa to 100 kPa) that allows
462 methanogenesis (Figure 2; Figure 3). The PPC model suggests that reaction-1 is moderately
463 exergonic. This is partly because the reaction is coupled to an exergonic electron bifurcation
464 reaction (reaction-10) that produces reduced ferredoxin (Figure 1).

465 The relatively low energy yields ($\Delta G_r > -5$ kJ/mol) for reactions-2 to 5 translate to their high
466 reversibilities ($\varphi > 0.1$) and their relatively high pathway fluxes and protein costs. Since the
467 second and third H atoms are added to C during reactions-2 to 5, their high reversibilities have
468 important effects for isotope systematics. High pathway fluxes (and high protein costs) become
469 significant at lower pH₂ between 1 and 50 Pa, in particular (Figure 3). This is consistent with a

470 transcriptomics study that reported up-regulation of methylene-H₄MPT dehydrogenase and
471 methylene-H₄MPT reductase for *M. maripaludis* cultured at H₂-limiting conditions (Costa et al.,
472 2013). The last two steps (reactions-6 and 7) are highly exergonic except under very low pH₂ (<
473 0.6 Pa or mH₂ < 5 nM) when reactions become moderately reversible (φ_6 and $\varphi_7 > 0.1$, $\Delta G_r > -5.7$
474 kJ/mol) (Figure 3). This differential reversibility explains the different pH₂ sensitivity of $\delta^{13}\text{C}$ and
475 δD fractionations during microbial methanogenesis, as discussed in section 4.2.
476

477 3.2 Methane production rate and H₂ transport limit

478 The PPC model can be used to model methane production rate (MPR) as a function of pH₂
479 because the reciprocal of the cost function is pathway flux ($J_{\text{net}} = \text{MPR}$) per mass of protein (Figure
480 4, solid blue line). The result shows a maximum MPR of 133 mmol g-protein⁻¹ hour⁻¹.
481 Approximately 10% of the dry weight of cells (DWC) is composed of proteins used for
482 methanogenesis, given that the total protein fraction per biomass is 63% (Peterson et al., 2014)
483 and that 18% of the proteome is associated with methanogenesis (Müller et al., 2021). This yields
484 a maximum MPR of 13 mmol CH₄ g-DWC⁻¹ h⁻¹. The modeled MPR is lower compared to MPR of
485 110 mmol CH₄ g-DWC⁻¹ h⁻¹ for batch cultures of the mesophilic methanogen, *M. maripaludis*
486 (Goyal et al., 2015), suggesting the model overestimated the protein cost by a factor of 8.

487 Figure 4 shows the results of calculations including the considerations for dissolution (green
488 lines) and diffusion (red line) limits of H₂ transport. The diffusion limit calculation predicts
489 undersaturation by a factor of 10 or higher, and the dissolution limit calculation predicts
490 undersaturation by a factor of 10 to 1000 for a range of $k_L a$ values of 10 to 1000 h⁻¹. The model
491 shows an apparent half saturation constant for methanogenesis at pH₂ at 5 Pa (= 10^{0.7} Pa) when
492 the transport limit is not considered (Figure 4; blue line). The dissolution limit with $k_L a = 100$ h⁻¹
493 gives apparent K_m values of 1 kPa, which matches with 670 to 1700 Pa (10^{2.8} to 10^{3.2} Pa) measured
494 for laboratory cultures of methanogens (Zinder, 1993 and reference therein) (Figure 4). The
495 lower H₂ threshold for methanogen cultures ranges from 23 to 390 nM (3 to 52 Pa, Cord-Ruwisch
496 et al., 1988). The dissolution limit result of $k_L a > 100$ h⁻¹ produced by our model is consistent with
497 these experimental observations (Figure 4).
498

499 3.3 Isotopologue fractionations

500 The model predicts that methane isotopologue fractionations generally follow the patterns
501 for MPR and that isotopologue systematics can be divided into high (≥ 1 kPa), medium (1k to 10
502 Pa) and low (<10 Pa) pH₂ regions (Figure 5). The exact pH₂ values depend upon the cell density
503 and $k_L a$ values for the reactor set up according to equation-4. The model produced larger ranges
504 of solutions for all four isotopologue compositions at high pH₂ (≥ 1 kPa) relative to low pH₂ (≤ 1
505 kPa) (Figure 5). These larger uncertainties reflect the relatively large uncertainties assigned for
506 the fractionation factors for reaction 1 to 6 (Table 6). The model solution range is better
507 constrained at low pH₂, where KIEs for the reaction-7 are expressed (Figure 5).

508 The model shows that the magnitude of carbon isotope fractionation is mainly controlled
509 by the reversibility of the first step (reaction-1, Table 1) and increases from -40 to -80‰ as pH₂
510 decreases from 1 kPa to <10 Pa, reproducing observations for laboratory cultures when a range
511 of fractionation factors are considered (Figure 5A). At high pH₂ (≥ 1 kPa), the model predicts that
512 all C₁ metabolites except for CH₄ have $\delta^{13}\text{C}$ of 0 to 5‰. This indicates that, with prescribed KIE of

513 0.96, all the fluxes (J_1^+ to J_8^+) carry C with $\delta^{13}\text{C} = -40$ to $-35\text{\textperthousand}$, including the final product CH_4
514 (Figure 3). This is because no C enters or leaves the cell except via reaction-1 such that ^{13}C of all
515 the metabolites are predominantly controlled by KIE of the first irreversible step (α_1^+) of 0.96
516 (Table 6). When the first step (J_1^+) becomes reversible at lower pH_2 between 1 kPa to 10 Pa, the
517 increased reversibility allows additional KIEs during reactions-6 and -7 to be expressed to produce
518 maximum fractionations down to $-80\text{\textperthousand}$. At very low pH_2 below 10 Pa, $\delta^{13}\text{C}$ value of methane
519 increases and approaches to equilibrium value of $-66.3\text{\textperthousand}$ because the last two reactions become
520 reversible (Table 4; Figure 5).

521 In contrast to $\delta^{13}\text{C}$ value of methane, which is sensitive to the reversibility of the whole
522 pathway, δD value of methane is mainly controlled by the last reversible step. This is because the
523 last reversible primary-D reaction resets the D/H fractionation for upstream reactions by
524 exchanging isotopes with water.

525 At high pH_2 above 1 kPa, δD values of $-360 \pm 80\text{\textperthousand}$ correspond to the kinetic endmember. A
526 large range of model solutions reflect the relatively large uncertainty ($\pm 200\text{\textperthousand}$ 1σ) assigned for
527 the primary D-fractionation factors for the first three H-addition reactions (Table 6). The model
528 solutions show a relatively narrower range of $\pm 80\text{\textperthousand}$ (for 67 percentile) compared to model inputs
529 of $\pm 200\text{\textperthousand}$ because of the averaging over the four hydrogens (the error for the average of 4
530 numbers is $1/\sqrt{4}$).

531 At lower pH_2 from 10 Pa to 1 kPa, the reversibility for reaction-5 increases and CH_4 shows
532 relatively constant δD values of $-340 \pm 40\text{\textperthousand}$ (Figure 5B). This explains the observation by Okumura
533 et al. (2016) of relatively constant D/H fractionation under a range of pH_2 at fractionation of -320
534 $\pm 10\text{\textperthousand}$ (albeit 20% higher than our model prediction). At this pH_2 range (10 Pa to 1 kPa), three
535 H atoms in methane carry near-equilibrium signals (Figure 3-B and C). Fully equilibrated $\text{CH}_3\text{-CoM}$
536 would have δD of $-131\text{\textperthousand}$ (Table 4). The addition of a highly D-depleted fourth H atom ($1 - \alpha_{p7}^+ = -$
537 $620\text{\textperthousand}$) can explain the commonly observed fractionation of $-300 \pm 40\text{\textperthousand}$ between H_2O and CH_4
538 (Figure 5; Ono et al., 2021). At $\text{pH}_2 < 10$ Pa, the last reaction becomes reversible and δD values
539 approach the equilibrium value of $-178\text{\textperthousand}$, although full equilibrium is not attained in the model.

540 Doubly-substituted isotopologues follow complicated patterns with $\Delta^{13}\text{CH}_3\text{D}$ and $\Delta^{12}\text{CH}_2\text{D}_2$
541 values reflecting kinetic versus equilibrium end-members as well as the effect of mixing (Figure
542 5C and 5D). A wide range of $\Delta^{13}\text{CH}_3\text{D}$ at pH_2 above 1 kPa predicted by the model (-3.8 to $4.5\text{\textperthousand}$)
543 is consistent with a wide range of $\Delta^{13}\text{CH}_3\text{D}$ values (-4.7 to $6.2\text{\textperthousand}$) reported for laboratory cultures
544 of methanogens. The range for solutions is less than the assigned uncertainty for γ_{cp}^+ values
545 ($\pm 8\text{\textperthousand}$) because of the averaging effect (Table 7). The model also predicts a wide range of
546 $\Delta^{12}\text{CH}_2\text{D}_2$ values. At high pH_2 ($> 1\text{kPa}$), the model predicts highly negative $\Delta^{12}\text{CH}_2\text{D}_2$ of $-25\text{\textperthousand}$ for
547 the default case and down to $-50\text{\textperthousand}$ due to combinatorial effects (Yeung, 2016; Röckmann et al.,
548 2016).

549 Figure 6 shows the cross-plot of isotopologue ratios. It shows the trajectory of kinetic ($\delta^{13}\text{C} = -40$,
550 $\delta\text{D} = -360\text{\textperthousand}$) to equilibrium endmembers ($\delta^{13}\text{C} = -66\text{\textperthousand}$ and $\delta\text{D} = -178\text{\textperthousand}$). For all
551 isotopologues, model uncertainties become larger for kinetic end-members than equilibrium
552 end-members because of the smaller uncertainty for KIEs for the last step of methanogenesis
553 (reaction-7).

554

555 4 Discussion

556 4.1 Metabolite ($\text{CH}_3\text{-H}_4\text{MPT}$) concentration limits the rate of methanogenesis at low
557 pH_2

558 The protein cost model predicts that the lower bound concentration of $\text{CH}_3\text{-H}_4\text{MPT}$ limits
559 the rate and thermodynamic feasibility of methanogenesis. Figure 7 compares the predicted
560 metabolite concentrations at pH_2 of 100 Pa and 1 Pa, showing the low concentration of $\text{CH}_3\text{-H}_4\text{MPT}$
561 at low pH_2 conditions. This is because reactions-4 and 5 (reductions of $\text{CH}\equiv\text{H}_4\text{MPT}^+$ to
562 $\text{CH}_2=\text{H}_4\text{MPT}$ and $\text{CH}_2=\text{H}_4\text{MPT}$ to $\text{CH}_3\text{-H}_4\text{MPT}$) are both coupled to the redox of cofactor $F_{420}/F_{420}\text{H}_2$
563 (standard mid potential, $E^0' = -356$ mV) (Figure 1; Table 1). The redox potential of the H_2/H^+ pair
564 becomes less negative and increases from -413 mV to -265 mV, as pH_2 decreases from 100 kPa
565 to 1 Pa. In order to accept electrons from $F_{420}\text{H}_2$, the concentration ratios of
566 $\text{CH}\equiv\text{H}_4\text{MPT}^+/\text{CH}_2=\text{H}_4\text{MPT}$ ($E^0' = -387$ mV) and $\text{CH}_2=\text{H}_4\text{MPT}/\text{CH}_3\text{-H}_4\text{MPT}$ ($E^0' = -325$ mV) have to
567 increase (i.e., redox potentials become less negative). Accordingly, the lowest pH_2 at which
568 methanogenesis can proceed depends upon the dynamic range (upper and lower bound
569 concentrations, respectively) of $\text{CH}\equiv\text{H}_4\text{MPT}^+$ and $\text{CH}_3\text{-H}_4\text{MPT}$ concentrations. Combining
570 reactions-4, 5 and 9 constrains the minimum value of pH_2 as:

$$571 \log \text{pH}_2 > \frac{1}{2} \left\{ \log \frac{[\text{CH}_3\text{-H}_4\text{MPT}]}{[\text{CH}\equiv\text{H}_4\text{MPT}^+]} - 3.9 \right\} \quad (22)$$

572 Therefore, the allowed concentration range of $\text{CH}\equiv\text{H}_4\text{MPT}$ and $\text{CH}_3\text{-H}_4\text{MPT}$ of 100 M to 1 nM
573 restricts the minimum pH_2 to 0.11 Pa for methanogenesis to proceed (i.e., all reactions except
574 reaction-9 remain exergonic). This value is roughly consistent with the observation for marine
575 sediments where methanogenesis appear to cease at ca. -10 kJ/mol (Hoehler et al., 2001) with a
576 corresponding pH_2 of 0.25 Pa (with both CH_4 and CO_2 at 10^5 Pa).

577 While the above discussion provides thermodynamic constraints, low concentrations of
578 $\text{CH}_3\text{-H}_4\text{MPT}$ also limit MPR because the protein cost model takes into account the penalty for low
579 metabolite concentrations with the reversible Michaelis-Menten kinetics term ($1+K_m/C$) of the
580 cost function (equation-2). The diffusion of metabolites from one enzyme to another, which is
581 not considered in our model, may further limit the rate of methanogenesis because diffusive flux
582 is proportional to the concentration gradient. If enzymes that catalyze the reaction-5 and
583 reaction-6 ($\text{CH}_3\text{-H}_4\text{MPT}:\text{CH}_3\text{-CoM}$ methyltransferase) are located in physical proximity (i.e.,
584 compartmentalized), the thermodynamic constraints can be relaxed by effectively combining
585 reactions-5 and 6 (combined reaction can be exergonic while either reaction is endergonic).
586 However, the enzyme catalyzing reaction-5 ($\text{CH}_2=\text{H}_4\text{MPT}$ reductase) is cytoplasmic, while the
587 enzyme for reaction-6 ($\text{CH}_3\text{-H}_4\text{MPT}:\text{CH}_3\text{-CoM}$ methyltransferase) is membrane-bound, pointing
588 against compartmentalization (e.g., Thauer et al., 2010). Understanding how methanogens cope
589 with low concentrations of $\text{CH}_3\text{-H}_4\text{MPT}$ is therefore important to consider for modeling
590 methanogenesis under energy limited environments.

591

592 4.2 Isotopologue model explains experimental observations

593 Our model quantitatively explains carbon isotope systematics observed in laboratory
594 culture experiments; the magnitude of carbon isotope fractionation increases as pH_2 decreases
595 from 1 kPa to <10 Pa (Okumura et al., 2016; Topçuoğlu et al., 2019; Penning et al., 2005, Figure
596 5A). The model shows that the different magnitudes of observed carbon isotope fractionation

597 can be explained by increasing the reversibility of the first step of methanogenesis, the reduction
598 of CO₂ to CHO-MFR.

599 Our model results also explain the effect of growth phase. Botz et al. (1993) reported that
600 cultures under stationary phase produced larger carbon isotope fractionation (close to -80‰)
601 than cultures under exponential growth phase. This growth phase effect can be explained, at
602 least in part, by the dissolution rate limit because high cell density (>10⁸ cells/mL) cultures during
603 stationary phase would result in significant undersaturation of H₂ in a typical bioreactor set up
604 (see equation-4). It is important to characterize $k_L a$ values for the experimental set up to evaluate
605 the effect of pH₂, cell density, and growth phase on isotopologue fractionations.

606 At high pH₂ (pH₂ > 1 kPa), D/H ratios of methane follow kinetic end-members, where the
607 overall fractionation factor is the average of four primary D-KIEs (α_{ip}^+ values) of 0.659 (δD of -
608 341‰). With assigned uncertainty of ±200‰ for KIEs (Table 6) for the first three primary D-KIEs,
609 the solution (67 percentile) is -360±80‰ (the range is smaller than 200‰ by averaging effect).
610 In comparison, laboratory cultures often produce a wider magnitude of D-KIE from -150 to -450‰
611 (Figure 5B). Some results can be explained by the effect of δD of H₂ (Kawagucci et al., 2014;
612 Okumura et al., 2016). The δD values of H₂ can affect the δD of CH₄ (δD -H₂ effect) by D/H isotope
613 exchange catalyzed by hydrogenases, production of metabolic water from H₂, and/or isoenzyme
614 switching between H₂-forming and F₄₂₀-dependent methylene-H₄MPT (Burke, 1993; Kawagucci
615 et al., 2014; Okumura et al., 2016). Significant deviation of δD values of intercellular water from
616 environmental water is expected at high metabolic rates of laboratory cultures. These effects
617 were important in culture experiments but less critical in nature, and not considered in our model.
618 Okumura et al. (2016) noted that δD -H₂ effect is related to H₂ consumption rates, as slowly
619 growing methanogens tend to show less δD -H₂ effect. This suggests that high δD -CH₄ values can
620 also be related to cultures under the H₂ dissolution rate limit.

621 At low pH₂ between 10Pa and 1kPa, our model reproduced the relatively constant δD
622 values of -300±40‰ for low pH₂ experiments ran as co-cultures (Figure 5B; Okumura et al., 2016).
623 This is explained by the relatively high reversibility of reaction-5 that equilibrates the three
624 methyl H atoms in CH₃-H₄MPT. The addition of the last H atom with D-KIE of ~0.4 explains the
625 value of ca. -350±50‰ in the product CH₄ (Gruen et al., 2018). Considering the range of pH₂ in
626 the environment, this solution explains the relatively constant D/H fractionations of 300±40‰
627 (e.g., Okumura et al., 2016; Waldron et al., 1999) between methane and water in natural settings.
628 Such δD values have often been interpreted as the predominance of acetoclastic methanogenesis
629 (e.g., Whiticar, 1999).

630 At high pH₂ (>1 kPa), the model solutions for $\Delta^{13}\text{CH}_3\text{D}$ range from -3.8 to +4.5‰, which is
631 comparable to the range of $\Delta^{13}\text{CH}_3\text{D}$ values (-4.7 to 6.2‰) reported for laboratory cultures of
632 hydrogenotrophic methanogens (Wang et al., 2015; Gruen et al., 2018; Stoler et al., 2015; Young
633 et al., 2017) (Figure 5C). Our model suggests that a range of assigned γ_{cp}^+ values (0±8‰) explains
634 all the culture data so far. Cao et al. (2019) proposed a simple formula for γ from reduced masses.
635 However, the physical mechanism of clumped KIE is not well understood. The model predicts
636 high $\Delta^{13}\text{CH}_3\text{D}$ values at intermediate pH₂ between 10 Pa and 1 kPa as a result of increased
637 reversibility of reaction-5 (Figure 3; Figure 5C). The $\Delta^{13}\text{CH}_3\text{D}$ values of methane reach a minimum
638 value at pH₂ < 10 Pa because of the clumped KIE for C-H bond breaking process for reaction-7
639 ($\gamma_{cp7}^- = 0.9923$). $\Delta^{13}\text{CH}_3\text{D}$ values approach the equilibrium value only at very low pH₂ (<10 Pa),
640 where methanogenesis may not proceed.

641 The values of $\Delta^{12}\text{CH}_2\text{D}_2$ reflect three effects: equilibrium, mixing and combinatorial effects.
 642 Mixing is non-linear for doubly-substituted isotopologues such that $\Delta^{12}\text{CH}_2\text{D}_2$ (and $\Delta^{13}\text{CH}_3\text{D}$)
 643 values of mixed methane is not a linear mixing of $\Delta^{12}\text{CH}_2\text{D}_2$ (and $\Delta^{13}\text{CH}_3\text{D}$) values of the two pools
 644 of methane being mixed (Young et al., 2016; Douglas et al., 2017; Deflise and Lohmann, 2015
 645 for $^{47}\text{CO}_2$). The mixing relationship is quadratic to the mixing ratio (f) and the difference between
 646 the δD values of pools of CH species being mixed. For $\Delta^{13}\text{CH}_3\text{D}$ and $\Delta^{12}\text{CH}_2\text{D}_2$ the following
 647 approximations can be derived for mixing of two methane pools (A and B) (Supplementary
 648 material):

649
$$\Delta^{13}\text{CD}_{\text{mix}} \simeq (1-f)\Delta_A + f\Delta_B + f(1-f)(\delta^{13}\text{C}_A - \delta^{13}\text{C}_B)(\delta\text{D}_A - \delta\text{D}_B) \quad (23)$$

650 and

651
$$\Delta\text{D}_{2,\text{mix}} \simeq (1-f)\Delta_A + f\Delta_B + f(1-f)(\delta\text{D}_A - \delta\text{D}_B)^2 \quad (24)$$

652 where, f is the mixing ratio of pool B. For example, 1:1 mixing of CH-species that are different in
 653 δD by 300‰ yields 22.5‰ ($0.5 \times 0.5 \times 0.3^2 = 0.0225$) non-linearity in $\Delta^{12}\text{CH}_2\text{D}_2$ of the mixture. As
 654 the last square term is always positive for D_2 isotopologues, mixing of two pools of D_2
 655 isotopologues produces positive bias. This mixing effect explains the relatively high $\Delta^{12}\text{CH}_2\text{D}_2$
 656 values predicted for $\text{CH}_2\text{-H}_4\text{MPT}$, to $\text{CH}_3\text{-H}_4\text{MPT}$ and $\text{CH}_3\text{-S-CoM}$ under intermediate pH_2 (Figure
 657 3-B).

658 Our model provides a framework to quantitatively describe the combinatorial effect that
 659 produces the highly negative $\Delta^{12}\text{CH}_2\text{D}_2$ values (-25 to -50‰ at $\text{pH}_2 > 1\text{kPa}$) observed for
 660 methanogen cultures (Young et al., 2017). The combinatorial effect is produced when two C–H
 661 bonds are formed sequentially, each of which derives from a distinct isotopic reservoir or is
 662 formed with a distinct KIE and ends up in symmetrically equivalent position in the product
 663 molecule. The magnitude of the combinatorial effect follows the ratio of geometric mean over
 664 arithmetic mean:

665
$$\Delta\text{D}_2 \simeq \left[\frac{\sqrt{\alpha_1 \alpha_2}}{\frac{1}{2}(\alpha_1 + \alpha_2)} \right]^2 - 1 \quad (25)$$

666 where α_1 and α_2 are KIEs for reactions forming the C–D bonds. Because the ratio of geometric
 667 over arithmetic means is always less than unity, combinatorial effects always produce negative
 668 ΔD_2 bias (Yeung, 2016; Röckmann et al., 2016). The model solutions for $\Delta^{12}\text{CH}_2\text{D}_2$ are asymmetric,
 669 and predict highly negative values (Figure 5D) when the range of α_{ip}^+ values (± 0.2) are prescribed
 670 (Table 6).

671 Mechanistic understanding of the clumped isotopologue fractionation is still under
 672 development. Our isotopologue flow network model can provide a framework to understand the
 673 clumped isotopologue systematics once more experimental data under low pH_2 conditions
 674 become available.

675

676 4.3 Does near-equilibrium fractionation require anaerobic oxidation of methane?

677 Some studies attributed near-equilibrium isotopologue signals (i.e., $\delta\text{D} \simeq -180\text{‰}$, $\Delta^{13}\text{CH}_3\text{D}$
 678 $\simeq 5.7\text{‰}$, $\Delta^{12}\text{CH}_2\text{D}_2 \simeq 18.5\text{‰}$) observed in nature to anaerobic oxidation of methane (AOM) (e.g.,
 679 Ash et al., 2019; Giunta et al., 2019; 2021) because laboratory cultures of methanogens have
 680 exclusively produced methane with strong kinetic signals (Okumura et al., 2016; Valentine et al.,

681 2004; Gruen et al., 2018; Stolper et al., 2015; Young et al., 2017). While laboratory cultures
682 performing AOM provide some indication of isotope equilibration, they did not produce
683 equilibrium signals under the experimental conditions tested (Ono et al., 2021; Wegener et al.,
684 2021). Although it is tempting to link near-equilibrium isotopologue signals to a specific microbial
685 metabolism, such association is often asymmetrical. That is, while AOM likely produces near-
686 equilibrium signals in CH₄, near-equilibrium signals may not necessarily be a result of AOM. Given
687 the experimental conditions for most culture studies (pH₂ > 10⁵ Pa), it is unclear if experimental
688 studies can exclude the possibility that methanogenesis can produce near-equilibrium signals.

689 Sulfur isotope systems may offer a good historic example. It had been considered that
690 larger than 46‰ KIE of ³⁴S/³²S between sulfate and sulfide indicates oxidative sulfur cycling and
691 KIEs from sulfur disproportionation in addition to sulfate reduction (Canfield and Thamdrup,
692 1994). The threshold value of 46‰ was the maximum KIE produced by pure cultures of sulfate
693 reducing microbes reported in Kaplan and Rittenberg (1964). After nearly five decades, the
694 maximum value for pure cultures of sulfate reducing microbes was updated to 64‰ (Sim et al.,
695 2011; Leavitt et al., 2013) demonstrating that sulfate reduction alone, under certain experimental
696 (e.g., slow growth) conditions, can produce near-equilibrium sulfur isotope signals.

697 While experimental proof of methanogenic microbes producing near-equilibrium
698 isotopologue signals may become available in the future, our study allows us to make predictions
699 about isotopologue fractionations in natural settings. Our model suggests that it will be
700 challenging to reproduce near-equilibrium signals by laboratory cultures of methanogens. This is
701 because the production of near-equilibrium isotopologue signals requires conditions where the
702 last step of methanogenesis (reaction-7) becomes (almost) fully reversible. Our model indicates
703 that this occurs at mH₂ of less than 0.1 nM (saturation pH₂ < 1 Pa if equilibrium) (Figure 7).
704 Methanogenesis does not occur or only proceeds at extremely slow rates below ca. 1 Pa because
705 the *in vivo* concentration of CH₃-H₄MPT limits both the rate and thermodynamic limit of
706 methanogenesis under low H₂ concentrations (section 4.1).

707 Most, if not all, enzymes that catalyze methanogenesis have been shown to be reversible
708 (Scheller et al., 2010), and anaerobic methanotrophic archaea (ANME) performing AOM are
709 thought to perform methanogenesis, or parts of the methanogenic metabolic pathway, in
710 reverse (Thauer et al., 2011). Conversely, some studies hypothesized that ANME species,
711 commonly found in symbiosis with sulfate reducers, are capable of both methanotrophy and
712 methanogenesis. The evidence supporting this hypothesis includes abundant ANME genes in
713 environments where net methanogenesis is occurring (Orcutt et al., 2005; Lloyd et al., 2011;
714 Kevorkian et al., 2021), isotope studies of enrichment cultures (House et al., 2009; Bertram et al.,
715 2013), and enrichment of ANME species under methanogenic conditions (Jagersma et al., 2012).
716 Accordingly, commonly observed near-equilibrium methane isotopologue compositions below
717 the sulfate-methane transition zone can be explained by ANME equilibrating methane
718 isotopologues in deep subsurface sediments via slow methanogenesis.

719 What is required to produce equilibrium isotopologue signals can be reduced to the
720 enzyme catalyzing reaction-7, methyl-coenzyme M reductase (MCR). The rate of equilibration
721 can be estimated from the concentrations of MCR in sediments. Both methanogens and ANME
722 carry MCR although it is more abundant in ANME (Hallman et al., 2004; Heller et al., 2008).
723 Scheller et al. (2010) reported that MCR purified from methanogens (*M. marburgensis*) catalyzes
724 methane oxidation at 11.4 nmol min⁻¹ mg-MCR⁻¹ at 1 mM CH₄ (*k*_{cat} = 53 s⁻¹). Inagaki et al. (2015)

725 reported F_{430} concentrations from 0.2 to 60 fmol/g of sediments for deep sea sediments from
726 100 to 2000 m below the seafloor. Since one mole of MCR contains 2 moles of F_{430} cofactor
727 (Ellefson et al., 1982), this translates to MCR concentrations of 0.1 to 30 fmol/g sediments, and
728 a methane turnover rate of 530 fmol s^{-1} g-sediment $^{-1}$ is derived (k_{cat} times MCR concentration of
729 10 fmol/g sediments). Assuming a porosity of 50% and CH₄ concentration of 10 mM in porewater
730 gives 5 μ mol of CH₄ per gram of deep sediments and methane turnover time of 0.3 years. The
731 actual rate of equilibration may be slower because reaction-7 requires cofactors (HS-CoB and
732 CoM-S-S-CoB; Table 1). The exchange rate might also be limited by the diffusion of substrates in
733 the sediment. Nevertheless, the exchange timescale of less than a year is much shorter compared
734 to the timescale of sedimentation (millions of years per km) and slow metabolisms of the deep
735 biosphere (turn over time as slow as 100 years, e.g., Trembath-Reinchert, 2017). Therefore, near-
736 equilibrium methane isotopologue signals can be reasonably expected for deep sediments that
737 carry intact MCRs but not necessarily indicate the process of AOM. The MCR could be from ANME
738 or nominally methanogenic microbes, and the equilibration process can be linked to the net
739 methanogenesis or methanotrophy. Our model can be applied to model AOM to explore its
740 isotopologue systematics in the future to test the hypothesis.

741 5 Conclusions

742 The pathway protein cost and isotopologue flow network models were applied to
743 quantitatively describe $^{13}\text{C}/^{12}\text{C}$, D/H, $^{13}\text{CH}_3\text{D}$, and $^{12}\text{CH}_2\text{D}_2$ fractionations during hydrogenotrophic
744 methanogenesis. Based on the thermodynamics and kinetic data for enzymatic reactions, the
745 model predicts reversibilities of 8 reactions for methanogenesis pathway. The isotopologue
746 ratios of methane and all intermediate metabolites are solved as a function of reversibilities and
747 prescribed fractionation factors. The model can explain a number of observations for laboratory
748 culture experiments, including the range of $^{13}\text{C}/^{12}\text{C}$ fractionation of 40 to 80‰ between CH₄ and
749 CO₂ as a function of pH₂, and relatively constant kinetic D/H fractionations of 300±40‰ between
750 methane and water. The model also can make accurate predictions for doubly substituted
751 isotopologues, $^{13}\text{CH}_3\text{D}$ and $^{12}\text{CH}_2\text{D}_2$. The pathway thermodynamics and isotopologue flow
752 network model scheme presented herein can be applied and expanded to predict isotope and
753 isotopologue fractionations for a range of metabolisms.

754

755 **Acknowledgements:** We thank the associate editor (Ed Hornbrook) and two anonymous
756 reviewers for constructive comments. This work was supported by the NASA Astrobiology
757 Institute “Rock-Powered Life” project under cooperative agreement NNA15BB02A, NSF-
758 Geobiology and Low Temperature Geochemistry, EAR-1852946, N. Braunsdorf and D. Smit of
759 Shell PTI/EG, and the Deep Carbon Observatory (to S.O.). J.H.R. was also supported by the Grayce
760 B. Kerr Fellowship, the Robert R. Shrock Fellowship, and the Callahan Dee Fellowship at MIT.

761

762 References

763 Ash J. L., Egger M., Treude T., Kohl I., Cragg B., Parkes R. J., Slomp C. P., Lollar B. S. and Young E.
764 D. (2019) Exchange catalysis during anaerobic methanotrophy revealed by $^{12}\text{CH}_2\text{D}_2$ and
765 $^{13}\text{CH}_3\text{D}$ in methane. *Geochemical Perspect. Lett.* **10**, 26–30.

766 Balabane, M., Galimov, E., Hermann, M., Létolle, R. (1987) Hydrogen and carbon isotope
767 fractionation during experimental production of bacterial methane. *Organic Geochemistry*
768 **11**, 115–119.

769 Belyaev, S.S., Wolkin, R., Kenealy, W.R., DeNiro, M.J., Epstein, S., Zeikus, J.G. (1983)
770 Methanogenic Bacteria from the Bondyuzhskoe Oil Field: General Characterization and
771 Analysis of Stable-Carbon Isotopic Fractionation. *Appl Environ Microbiol* **45**, 691–697.

772 Bell R. P. (1973) Kinetic Isotope Effects in Proton-Transfer Reactions. In *The Proton in Chemistry*
773 Springer US, Boston, MA. pp. 250–296.

774 Bertram S., Blumenberg M., Michaelis W., Siegert M., Krüger M. and Seifert R. (2013)
775 Methanogenic capabilities of ANME-archaea deduced from ^{13}C -labelling approaches.
776 *Environ. Microbiol.* **15**, 2384–2393.

777 Bigeleisen J. (1949) The relative reaction velocities of isotopic molecules. *J. Chem. Phys.* **17**, 675–
778 678.

779 Bigeleisen J. (1955) Statistical mechanics of isotopic systems with small quantum corrections. I.
780 general considerations and the rule of the geometric mean. *J. Chem. Phys.* **23**, 2264–2267.

781 Boone D. R., Johnson R. L. and Liu Y. (1989) Diffusion of the interspecies electron carriers H₂ and
782 formate in methanogenic ecosystems and its implications in the measurement of Km for
783 H₂ or formate uptake. *Appl. Environ. Microbiol.* **55**, 1735–1741.

784 Botz R., Pokojski H. D., Schmitt M. and Thomm M. (1997) Carbon isotope fractionation during
785 bacterial methanogenesis by CO₂ reduction. *Org. Geochem.* **25**, 255–262.

786 Brunner B. and Bernasconi S. M. (2005) A revised isotope fractionation model for dissimilatory
787 sulfate reduction in sulfate reducing bacteria. *Geochim. Cosmochim. Acta* **69**, 4759–4771.

788 Burke A. R. (1993) Possible Influence of hydrogen concentration on microbial methane stable
789 hydrogen isotopic composition. *Chemosphere* **26**, 55–67.

790 Canfield D. E. and Thamdrup B. (1994) The production of ^{34}S -depleted sulfide during bacterial
791 disproportionation of elemental sulfur. *Science* **266**, 1973–1975.

792 Cao X., Bao H. and Peng Y. (2019) A kinetic model for isotopologue signatures of methane
793 generated by biotic and abiotic CO₂ methanation. *Geochim. Cosmochim. Acta* **249**, 59–75.

794 Cha Y., Murray C. J. and Klinman J. P. (1989) Hydrogen tunneling in enzyme reactions. *Science*
795 **243**, 1325–1330.

796 Cord-Ruwisch R., Seitz H. J. and Conrad R. (1988) The capacity of hydrogenotrophic anaerobic
797 bacteria to compete for traces of hydrogen depends on the redox potential of the terminal
798 electron acceptor. *Arch. Microbiol.* **149**, 350–357.

799 Costa K. C., Yoon S. H., Pan M., Burn J. A., Baliga N. S. and Leigh J. A. (2013) Effects of H₂ and
800 formate on growth yield and regulation of methanogenesis in *Methanococcus maripaludis*.
801 *J. Bacteriol.* **195**, 1456–1462.

802 Daniels L. (1993) Biochemistry of methanogenesis. In *New Comprehensive Biochemistry*. Elsevier
803 pp. 41–112.

804 Deflise W. F. and Lohmann K. C. (2015) Non-linear mixing effects on mass-47 CO₂ clumped
805 isotope thermometry: Patterns and implications. *Rapid Commun. Mass Spectrom.* **29**, 901–
806 909.

807 Douglas P. M. J., Stolper D. A., Eiler J. M., Sessions A. L., Lawson M., Shuai Y., Bishop A., Podlaha
808 O. G., Ferreira A. A., Santos Neto E. V., Niemann M., Steen A. S., Huang L., Chimiak L.,
809 Valentine D. L., Fiebig J., Luhmann A. J., Seyfried W. E., Etiope G., Schoell M., Inskeep W. P.,

810 Moran J. J. and Kitchen N. (2017) Methane clumped isotopes: progress and potential for a
811 new isotopic tracer. *Org. Geochem.* **113**, 262–282.

812 Farquhar J., Johnston D. T., Wing B. A., Habicht K. S., Canfield D. E., Airieau S. and Thiemens M.
813 H. (2003) Multiple sulphur isotopic interpretations of biosynthetic pathways: implications
814 for biological signatures in the sulphur isotope record. *Geobiology* **1**, 27–36.

815 Ferry J. G. (1993) *Methanogenesis*. ed. J. G. Ferry, Springer US, Boston, MA.

816 Flamholz A., Noor E., Bar-Even A., Liebermeister W. and Milo R. (2013) Glycolytic strategy as a
817 tradeoff between energy yield and protein cost. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 10039–
818 10044.

819 Games, L.M., HayesRobert, J.M., Gunsalus, P. (1978) Methane-producing bacteria: natural
820 fractionations of the stable carbon isotopes. *Geochimica et Cosmochimica Acta* **42**, 1295–
821 1297.

822 Garcia-Ochoa F. and Gomez E. (2005) Prediction of gas-liquid mass transfer coefficient in sparged
823 stirred tank bioreactors. *Biotechnol. Bioeng.* **92**, 761–772.

824 Giunta T., Labidi J., Kohl I. E., Ruffine L., Donval J. P., Géli L., Çağatay M. N., Lu H. and Young E. D.
825 (2021) Evidence for methane isotopic bond re-ordering in gas reservoirs sourcing cold
826 seeps from the Sea of Marmara. *Earth Planet. Sci. Lett.* **553**.

827 Giunta T., Young E. D., Warr O., Kohl I., Ash J. L., Martini A., Mundale S. O. C., Rumble D., Pérez-
828 Rodríguez I., Wasley M., LaRowe D. E., Gilbert A. and Sherwood Lollar B. (2019) Methane
829 sources and sinks in continental sedimentary systems: New insights from paired clumped
830 isotopologues $^{13}\text{CH}_3\text{D}$ and $^{12}\text{CH}_2\text{D}_2$. *Geochim. Cosmochim. Acta* **245**, 327–351.

831 Goldman M. J., Vandewiele N. M., Ono S. and Green W. H. (2019) Computer-generated isotope
832 model achieves experimental accuracy of filiation for position-specific isotope analysis.
833 *Chem. Geol.* **514**, 1–9.

834 Groppe J., Iron M. A. and Halevy I. (2021) Theoretical estimates of equilibrium carbon and
835 hydrogen isotope effects in microbial methane production and anaerobic oxidation of
836 methane. *Geochim. Cosmochim. Acta* **295**, 237–264.

837 Gruen D. S., Wang D. T., Könneke M., Topçuoğlu B. D., Stewart L. C., Goldhammer T., Holden J. F.,
838 Hinrichs K.-U. and Ono S. (2018) Experimental investigation on the controls of clumped
839 isotope and hydrogen isotope ratios in microbial methane. *Geochim. Cosmochim. Acta* **237**, 339–356.

840 Hallam S. J., Grguis P. R., Preston C. M., Richardson P. M. and DeLong E. F. (2003) Identification
841 of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing
842 archaea. *Appl. Environ. Microbiol.* **69**, 5483–5491.

843 Hayes J. M. (2019) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In
844 *Stable Isotope Geochemistry* pp. 225–277.

845 Heller C., Hoppert M. and Reitner J. (2008) Immunological localization of coenzyme M reductase
846 in anaerobic methane-oxidizing archaea of ANME 1 and ANME 2 type. *Geomicrobiol. J.* **25**,
847 149–156.

848 Hendrickson, E. L., A. K. Haydock, B. C. Moore, W. B. Whitman, and J. A. Leigh (2007) Functionally
849 distinct genes regulated by hydrogen limitation and growth rate in methanogenic archaea.
850 *Proc Natl Acad Sci.* **104**, 8930–8934.

852 Hermes J. D., Morrical S. W., O'Leary M. H. and Cleland W. W. (1984) Variation of Transition-State
853 Structure as a Function of the Nucleotide in Reactions Catalyzed by Dehydrogenases. 2.
854 Formate Dehydrogenase. *Biochemistry* **23**, 5479–5488.

855 Hoehler T. M. (2004) Biological energy requirements as quantitative boundary conditions for life
856 in the subsurface. *Geobiology* **2**, 205–215.

857 Hoehler T. M., Alperin M. J., Albert D. B. and Martens C. S. (2001) Apparent minimum free energy
858 requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine
859 sediment. *FEMS Microbiol. Ecol.* **38**, 33–41.

860 Horibe, Y., Craig, H. (1995) D/H fractionation in the system methane-hydrogen-water.
861 *Geochimica et Cosmochimica Acta* **59**, 5209–5217.

862 Horita, J. (2001) Carbon isotope exchange in the system CO₂-CH₄ at elevated temperatures.
863 *Geochimica et Cosmochimica Acta* **65**, 1907–1919.

864 House C. H., Orphan V. J., Turk K. A., Thomas B., Pernthaler A., Vrentas J. M. and Joye S. B. (2009)
865 Extensive carbon isotopic heterogeneity among methane seep microbiota. *Environ.*
866 *Microbiol.* **11**, 2207–2215.

867 Jagersma C. G., Meulepas R. J. W., Timmers P. H. A., Szperl A., Lens P. N. L. and Stams A. J. M.
868 (2012) Enrichment of ANME-1 from Eckernförde Bay sediment on thiosulfate, methane and
869 short-chain fatty acids. *J. Biotechnol.* **157**, 482–489.

870 Jautzy, J. J., Douglas, P. M. J., Xie, H., Eiler, J. M., & Clark, I. D. (2021). CH₄ isotopic ordering records
871 ultra-slow hydrocarbon biodegradation in the deep subsurface. *Earth and Planetary*
872 *Science Letters*, **562**, 116841.

873 Jud G., Schneider K. and Bachofen R. (1997) The role of hydrogen mass transfer for the growth
874 kinetics of *Methanobacterium thermoautotrophicum* in batch and chemostat cultures. *J.*
875 *Ind. Microbiol. Biotechnol.* **19**, 246–251.

876 Kawagucci S., Kobayashi M., Hattori S., Yamada K., Ueno Y., Takai K. and Yoshida N. (2014)
877 Hydrogen isotope systematics among H₂-H₂O-CH₄ during the growth of the
878 hydrogenotrophic methanogen *Methanothermobacter thermautotrophicus* strain δH.
879 *Geochim. Cosmochim. Acta* **142**, 601–614.

880 Kevorkian R. T., Callahan S., Winstead R. and Lloyd K. G. (2021) ANME-1 archaea may drive
881 methane accumulation and removal in estuarine sediments. *Environ. Microbiol. Rep.* **13**,
882 185–194.

883 Klein A. R. and Thauer R. K. (1995) Re-Face Specificity at C14a of
884 Methylenetetrahydromenopterin and Si-Face Specificity at C5 of Coenzyme F₄₂₀ for
885 Coenzyme F₄₂₀-Dependent Methylenetetrahydromenopterin Dehydrogenase from
886 Methanogenic Archaea. *Eur. J. Biochem.* **227**, 169–174.

887 Kueter N., Schmidt M. W., Lilley M. D. and Bernasconi S. M. (2019) Experimental determination
888 of equilibrium CH₄-CO₂-CO carbon isotope fractionation factors (300–1200 C). *Earth Planet.*
889 *Sci. Lett.* **506**, 64–75.

890 Krzycki, J.A., Kenealy, W.R., DeNiro, M.J., Zeikus, J.G. (1987) Stable Carbon Isotope Fractionation
891 by *Methanosarcina barkeri* during Methanogenesis from Acetate, Methanol, or Carbon
892 Dioxide-Hydrogen. *Appl Environ Microbiol* **53**, 2597–2599.

893 Leavitt W. D., Halevy I., Bradley A. S. and Johnston D. T. (2013) Influence of sulfate reduction rates
894 on the Phanerozoic sulfur isotope record. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 11244–11249.

895 Livingston D. J., Fox J. A., Orme-Johnson W. H. and Walsh C. T. (1987) 8-Hydroxy-5-deazaflavin-
896 reducing hydrogenase from *Methanobacterium thermoautotrophicum*: 2. Kinetic and
897 hydrogen-transfer studies. *Biochemistry* **26**, 4228–37.

898 Lloyd K. G., Alperin M. J. and Teske A. (2011) Environmental evidence for net methane production
899 and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea. *Environ. Microbiol.*
900 **13**, 2548–2564.

901 Meister, P., Liu, B., Khalili, A., Böttcher, M.E., Jørgensen, B.B. (2019) Factors controlling the
902 carbon isotope composition of dissolved inorganic carbon and methane in marine
903 porewater: An evaluation by reaction-transport modelling. *Journal of Marine Systems*, **200**,
904 103227.

905 Miller, H. M., Chaudhry, N., Conrad, M. E., Bill, M., Kopf, S. H., & Templeton, A. S. (2018). Large
906 carbon isotope variability during methanogenesis under alkaline conditions. *Geochimica et*
907 *Cosmochimica Acta*, **237**, 18–31.

908 Morgan, R. M., T. D. Pihl, J. Nölling, and J. N. Reeve (1997) Hydrogen regulation of growth, growth
909 yields, and methane gene transcription in *Methanobacterium thermoautotrophicum*. *J.*
910 *Bacteriol.* **179**, 889–898.

911 Müller A. L., Gu W., Patsalo V., Deutzmann J. S., Williamson J. R. and Spormann A. M. (2021) An
912 alternative resource allocation strategy in the chemolithoautotrophic archaeon
913 *Methanococcus maripaludis*. *Proc. Natl. Acad. Sci.* **118**, e2025854118.

914 Nölling, J., T. D. Pihl, A. Vriesema, and J. N. Reeve (1995) Organization and growth phase-
915 dependent transcription of methane genes in two regions of the *Methanobacterium*
916 *thermoautotrophicum* genome. *J. Bacteriol.* **177**, 2460–2468.

917 Noor E., Bar-Even A., Flamholz A., Reznik E., Liebermeister W. and Milo R. (2014) Pathway
918 Thermodynamics Highlights Kinetic Obstacles in Central Metabolism. *PLoS Comput. Biol.* **10**.

919 Okumura T., Kawagucci S., Saito Y., Matsui Y., Takai K. and Imachi H. (2016) Hydrogen and carbon
920 isotope systematics in hydrogenotrophic methanogenesis under H₂-limited and H₂-
921 enriched conditions: implications for the origin of methane and its isotopic diagnosis. *Prog.*
922 *Earth Planet. Sci.* **3**, 2–15.

923 Ono S., Rhim J. H., Gruen D. S., Taubner H., Kölling M. and Wegener G. (2021) Clumped
924 isotopologue fractionation by microbial cultures performing the anaerobic oxidation of
925 methane. *Geochim. Cosmochim. Acta* **293**, 70–85.

926 Ono, S., Rhim, J. H., Gruen, D. S., Taubner, H., Kölling, M., & Wegener, G. (2021). Clumped
927 isotopologue fractionation by microbial cultures performing the anaerobic oxidation of
928 methane. *Geochimica et Cosmochimica Acta*, **293**, 70–85.

929 Orcutt B., Boetius A., Elvert M., Samarkin V. and Joye S. B. (2005) Molecular biogeochemistry of
930 sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of
931 Mexico cold seeps. *Geochim. Cosmochim. Acta* **69**, 4267–4281.

932 Pauss A., Andre G., Perrier M. and Guiot S. R. (1990) Liquid-to-Gas Mass Transfer in Anaerobic
933 Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation
934 Process. *Appl. Environ. Microbiol.* **56**, 1636–44.

935 Penning H., Plugge C. M., Galand P. E. and Conrad R. (2005) Variation of carbon isotope
936 fractionation in hydrogenotrophic methanogenic microbial cultures and environmental
937 samples at different energy status. *Glob. Chang. Biol.* **11**, 2103–2113.

938 Peterson J. R., Labhsetwar P., Ellermeier J. R., Kohler P. R. A., Jain A., Ha T., Metcalf W. W. and
939 Luthey-Schulten Z. (2014) Towards a computational model of a methane producing
940 archaeum. *Archaea* **2014**.

941 Rees C. E. (1973) A steady-state model for sulphur isotope fractionation in bacterial reduction
942 processes. *Geochim. Cosmochim. Acta* **37**, 1141–1162.

943 Röckmann T., Popa M. E., Krol M. C. and Hofmann M. E. G. (2016) Statistical clumped isotope
944 signatures. *Sci. Rep.* **6**.

945 Roston D. and Kohen A. (2010) Elusive transition state of alcohol dehydrogenase unveiled. *Proc.*
946 *Natl. Acad. Sci. U. S. A.* **107**, 9572–9577.

947 Rucker J. and Klinman J. P. (1999) Computational study of tunneling and coupled motion in
948 alcohol dehydrogenase-catalyzed reactions: Implication for measured hydrogen and
949 carbon isotope effects. *J. Am. Chem. Soc.* **121**, 1997–2006.

950 Scharschmidt M., Fisher M. A. and Cleland W. W. (1984) Variation of Transition-State Structure
951 as a Function of the Nucleotide in Reactions Catalyzed by Dehydrogenases. 1. Liver Alcohol
952 Dehydrogenase with Benzyl Alcohol and Yeast Aldehyde Dehydrogenase with
953 Benzaldehyde. *Biochemistry* **23**, 5471–5478.

954 Scheller S., Goenrich M., Boecker R., Thauer R. K. and Jaun B. (2010) The key nickel enzyme of
955 methanogenesis catalyses the anaerobic oxidation of methane. *Nature* **465**, 606–608.

956 Scheller S., Goenrich M., Thauer R. K. and Jaun B. (2013) Methyl-coenzyme M reductase from
957 methanogenic archaea: Isotope effects on the formation and anaerobic oxidation of
958 methane. *J. Am. Chem. Soc.* **135**, 14975–14984.

959 Sim M. S., Bosak T. and Ono S. (2011) Large sulfur isotope fractionation does not require
960 disproportionation. *Science* **333**, 74–77.

961 Stolper, D. A., Lawson, M., Davis, C. L., Ferreira, A. A., Santos Neto, E. v., Ellis, G. S., Lewan, M. D.,
962 Martini, A. M., Tang, Y., Schoell, M., Sessions, A. L., & Eiler, J. M. (2014). Formation
963 temperatures of thermogenic and biogenic methane. *Science* **344**, 1500–1503.

964 Stolper D. A., Martini A. M., Clog M., Douglas P. M., Shusta S. S., Valentine D. L., Sessions A. L. and
965 Eiler J. M. (2015) Distinguishing and understanding thermogenic and biogenic sources of
966 methane using multiply substituted isotopologues. *Geochim. Cosmochim. Acta* **161**, 219–
967 247.

968 Thauer R. K., Kaster A. K., Seedorf H., Buckel W. and Hedderich R. (2008) Methanogenic archaea:
969 Ecologically relevant differences in energy conservation. *Nat. Rev. Microbiol.* **6**, 579–591.

970 Thauer R. K., Kaster A.-K., Goenrich M., Schick M., Hiromoto T. and Shima S. (2010) Hydrogenases
971 from Methanogenic Archaea, Nickel, a Novel Cofactor, and H₂ Storage. *Annu. Rev. Biochem.*
972 **79**, 507–536.

973 Topcuoglu B. D., Meydan C., Nguyen T. B., Lang S. Q. and Holden J. F. (2019) Growth kinetics,
974 carbon isotope fractionation, and gene expression in the hyperthermophile
975 *Methanocaldococcus jannaschii* during hydrogen-limited growth and interspecies
976 hydrogen transfer. *Appl. Environ. Microbiol.* **85**, 1–14.

977 Trembath-Reichert E., Morono Y., Ijiri A., Hoshino T., Dawson K. S., Inagaki F. and Orphan V. J.
978 (2017) Methyl-compound use and slow growth characterize microbial life in 2-km-deep
979 subseafloor coal and shale beds. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E9206–E9215.

980 Turner, A. C., Korol, R., Eldridge, D. L., Bill, M., Conrad, M. E., Miller, T. F., & Stolper, D. A. (2021).
981 Experimental and theoretical determinations of hydrogen isotopic equilibrium in the
982 system CH₄-H₂-H₂O from 3 to 200 °C. *Geochimica et Cosmochimica Acta*. **314**, 223-269

983 Valentine D. L., Blanton D. C. and Reeburgh W. S. (2000) Hydrogen production by methanogens
984 under low-hydrogen conditions. *Arch. Microbiol.* **174**, 415–421.

985 Valentine D. L., Reeburgh W. S. and Blanton D. C. (2000) A culture apparatus for maintaining H₂
986 at sub-nanomolar concentrations. *J. Microbiol. Methods* **39**, 243–251.

987 Waldron S., Lansdown J. M., Scott E. M., Fallick A. E. and Hall A. J. (1999) The global influence of
988 the hydrogen isotope composition of water on that of bacteriogenic methane from shallow
989 freshwater environments. *Geochim. Cosmochim. Acta* **63**, 2237–2245.

990 Wang D. T., Gruen D. S., Sherwood Lollar B., Hinrichs K.-U., Stewart L. C., Holden J. F., Hristov A.
991 N., Pohlman J. W., Morrill P. L., Könneke M., Delwiche K. B., Reeves E. P., Sutcliffe C. N.,
992 Ritter D. J., Seewald J. S., McIntosh J. C., Hemond H. F., Kubo M. D., Cardace D., Hoehler T.
993 M. and Ono S. (2015) Nonequilibrium clumped isotope signals in microbial methane.
994 *Science* **348**.

995 Warr, O., Young, E.D., Giunta, T., Kohl, I.E., Ash, J.L., Lollar, B.S. (2021) High-resolution, long-term
996 isotopic and isotopologue variation identifies the sources and sinks of methane in a deep
997 subsurface carbon cycle. *Geochimica et Cosmochimica Acta* **294**, 315–334.

998 Wegener G., Gropp J., Taubner H., Halevy I. and Elvert M. (2021) Sulfate-dependent reversibility
999 of intracellular reactions explains the opposing isotope effects in the anaerobic oxidation
1000 of methane. *Sci. Adv.* **7**, 1–14.

1001 Whitehill A. R., Joelson L. M. T., Schmidt J. A., Wang D. T., Johnson M. S. and Ono S. (2017)
1002 Clumped isotope effects during OH and Cl oxidation of methane. *Geochim. Cosmochim.
1003 Acta* **196**, 307–325.

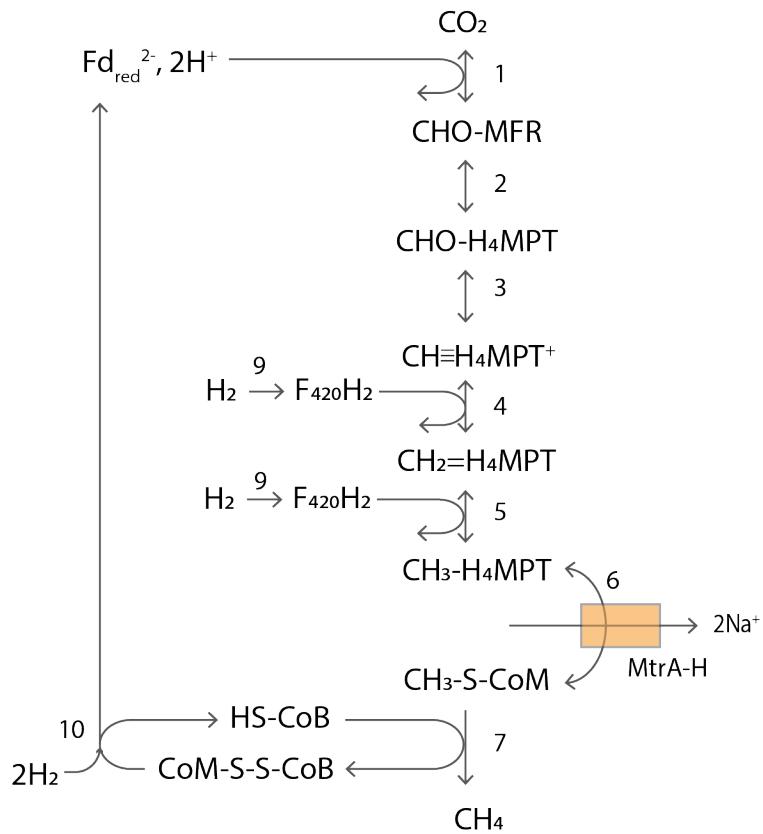
1004 Whiticar M. J. (1999) Carbon and hydrogen isotope systematics of bacterial formation and
1005 oxidation of methane. *Chem. Geol.* **161**, 291–314.

1006 Whiticar, M. J., Faber, E., & Schoell, M. (1986). Biogenic methane formation in marine and
1007 freshwater environments: CO₂ reduction vs. acetate fermentation—Isotope evidence.
1008 *Geochimica et Cosmochimica Acta*, **50**, 693–709.

1009 Wing B. A. and Halevy I. (2014) Intracellular metabolite levels shape sulfur isotope fractionation
1010 during microbial sulfate respiration. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 18116–18125.

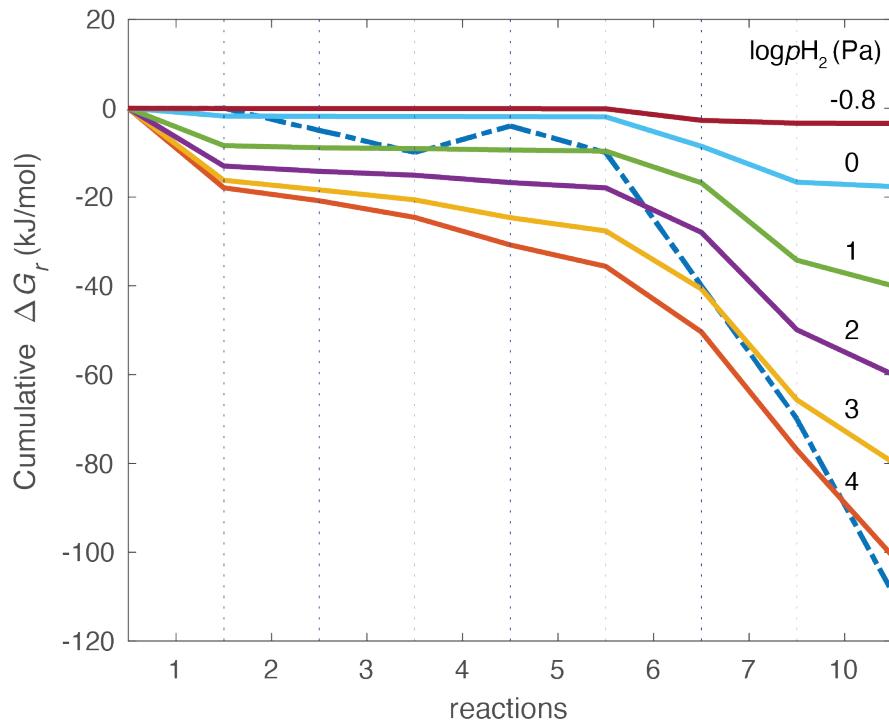
1011 Yeung L. Y. (2016) Combinatorial effects on clumped isotopes and their significance in
1012 biogeochemistry. *Geochim. Cosmochim. Acta* **172**, 22–38.

1013 Young E. D., Kohl I. E., Lollar B. S., Etiope G., Rumble D., Li (李姝宁) S., Haghnegahdar M. A.,
1014 Schauble E. A., McCain K. A., Foustoukos D. I., Sutcliffe C., Warr O., Ballentine C. J., Onstott
1015 T. C., Hosgomez H., Neubeck A., Marques J. M., Pérez-Rodríguez I., Rowe A. R., LaRowe D.
1016 E., Magnabosco C., Yeung L. Y., Ash J. L. and Bryndzia L. T. (2017) The relative abundances
1017 of resolved ¹²CH₂D₂ and ¹³CH₃D and mechanisms controlling isotopic bond ordering in
1018 abiotic and biotic methane gases. *Geochim. Cosmochim. Acta* **203**, 235–264.


1019 Yoshioka, H., Sakata, S., Kamagata, Y., (2008) Hydrogen isotope fractionation by
1020 Methanothermobacter thermoautotrophicus in coculture and pure culture conditions.
1021 *Geochimica et Cosmochimica Acta* **72**, 2687–2694.

1022 Zinder S. H. (1993) Physiological Ecology of Methanogens. In Methanogenesis Springer US,
1023 Boston, MA. pp. 128–206.

1024 Zirngibl C., Dongen W., Schworer B., Bunau R., Richter M., Klein A., & Thauer R.K. (1992) H₂-
1025 forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase
1026 without iron-sulfur clusters in methanogenic archaea. European Journal of Biochemistry 208,
1027 511–520.
1028


1029
1030
1031

Figures

1032
1033
1034

1035 Figure 1: Pathway for hydrogenotrophic methanogens without cytochromes based on Thauer et al. (2008).
1036 Reactions and abbreviations for cofactors are listed in Table 1. Numbers by the arrows correspond to the
1037 reaction numbers in Table 1. Reaction-6 is coupled with Na^+ translocation by enzyme MtrA-H .

1038
1039

1040 Figure 2: Pathway protein cost model results for cumulative free energy yields for methanogenic reactions
 1041 under 10^4 to $10^{-0.8}$ Pa pH₂ (solid lines). Dashed line corresponds to free energy yields at standard conditions
 1042 (i.e., concentrations at 1 M for dissolved and 1 bar for gaseous species at 25 °C and pH 7). Reactions are
 1043 listed in Table 1. Methanogenesis (equation-1) yields -131 kJ/mol at standard conditions. The diagram
 1044 shows -109 kJ/mol at the standard condition because reaction-8 and 9 are reactions for co-factors and
 1045 not included in the protein cost model.

1046

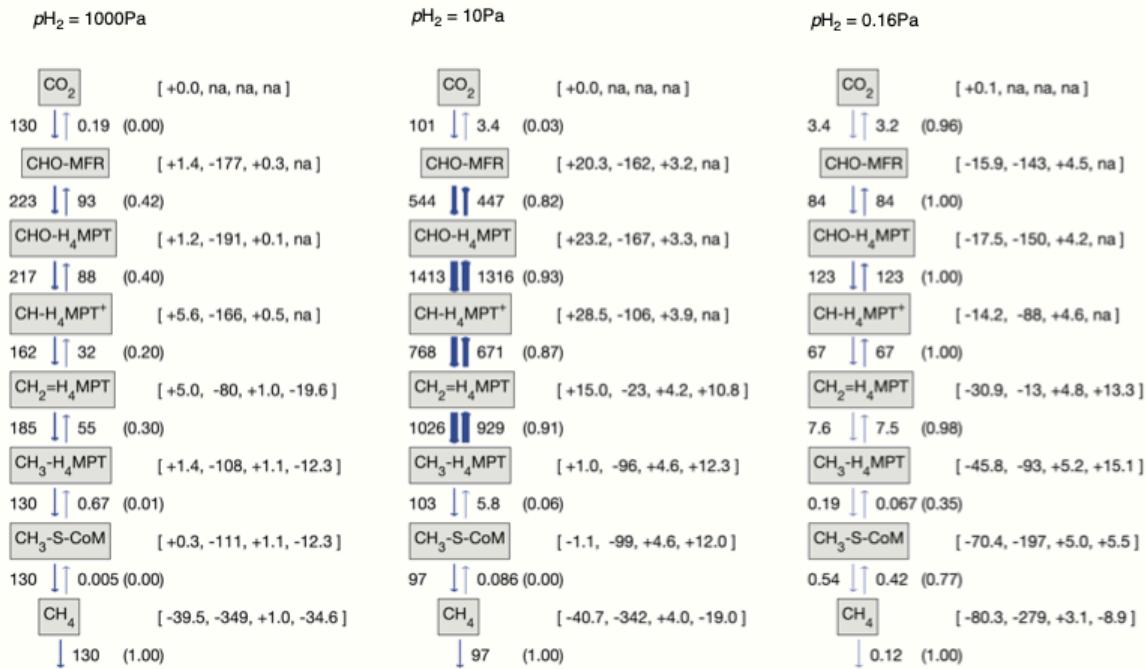
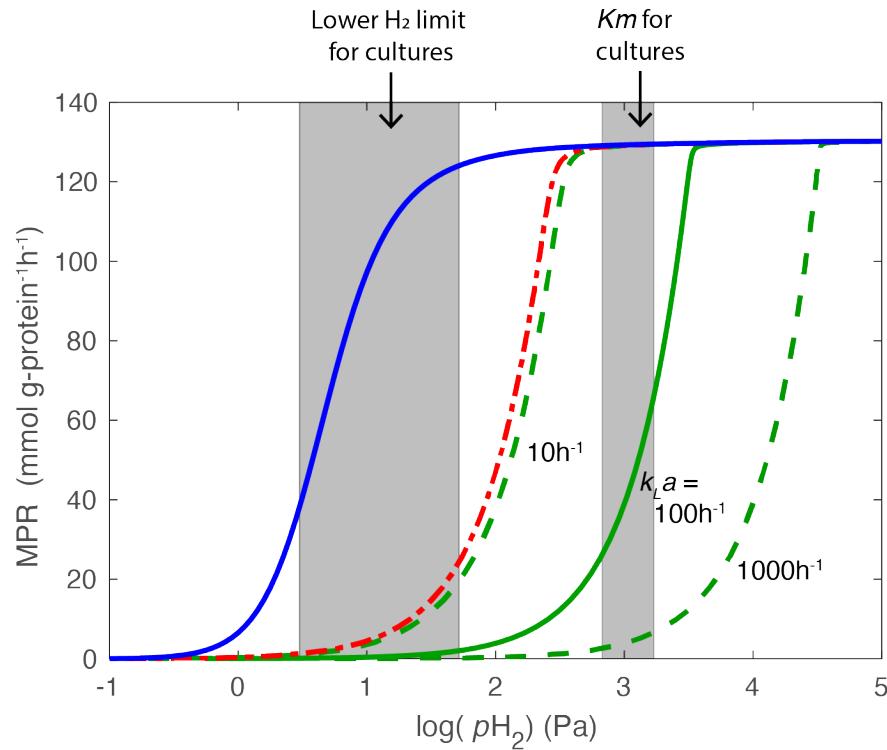
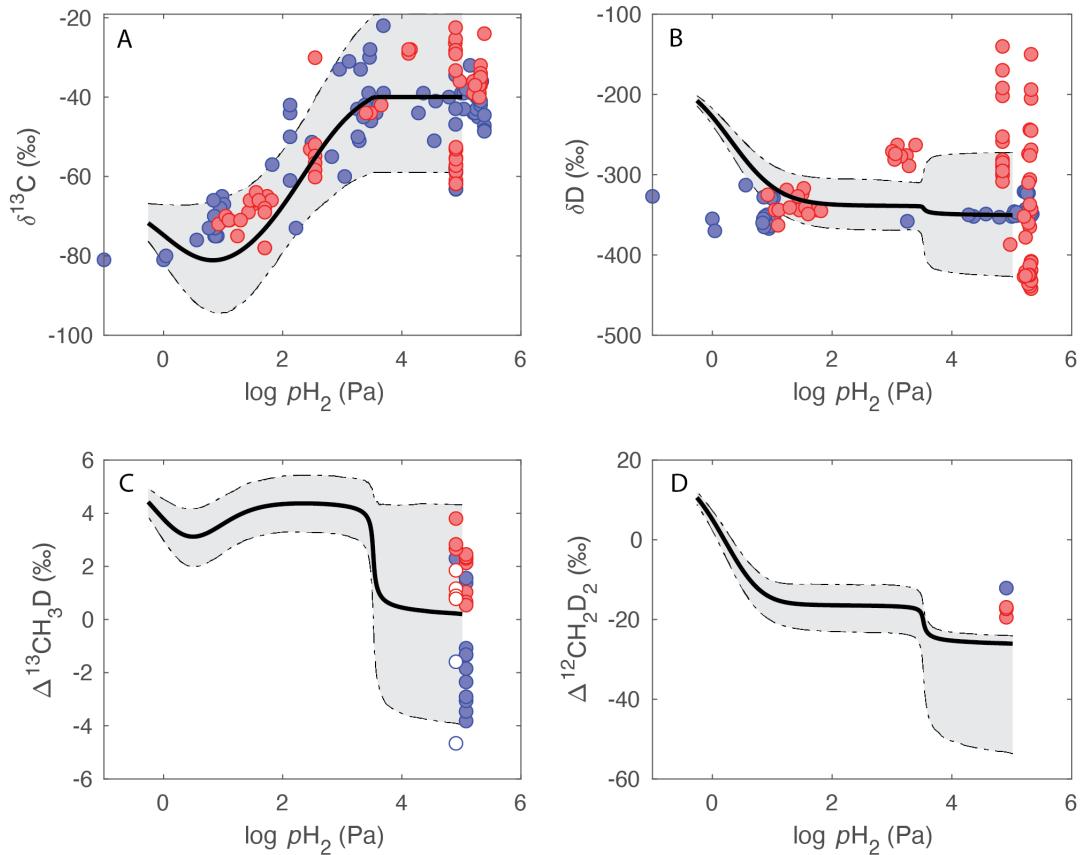
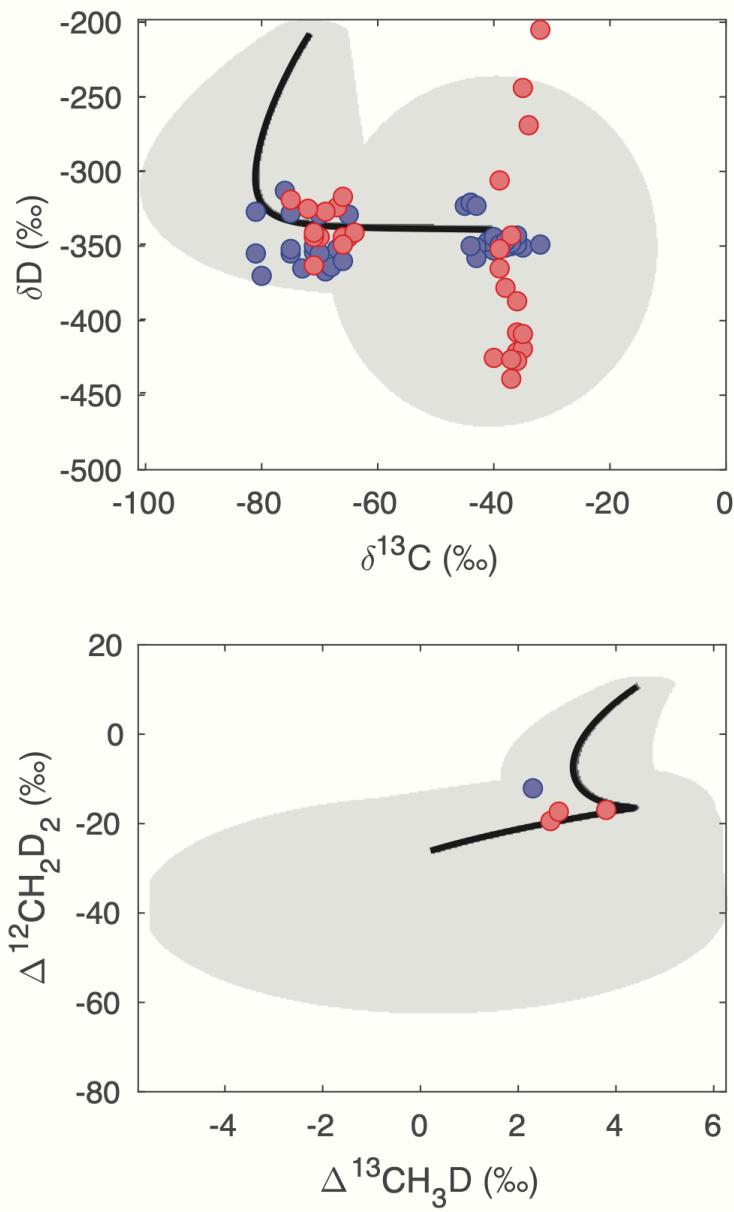



1047
1048
1049
1050
1051
1052
1053
1054
1055

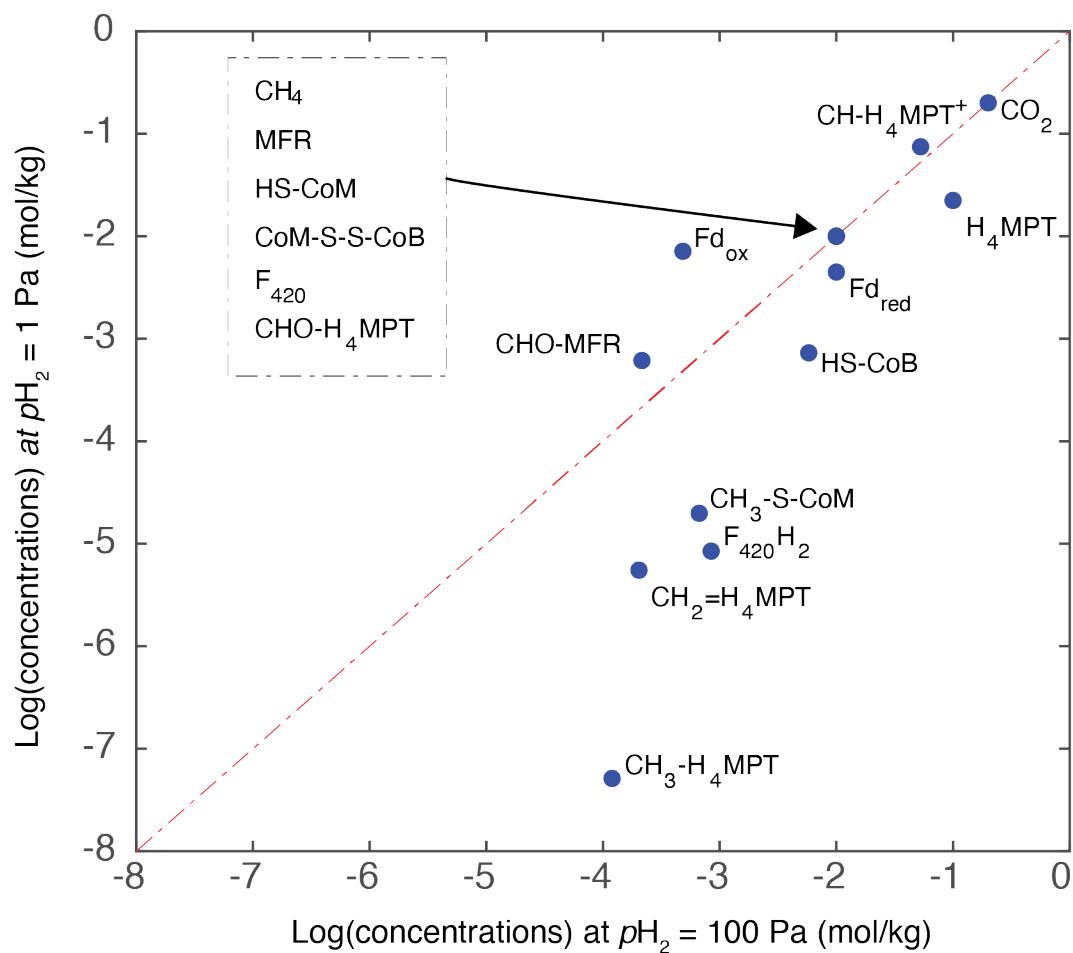
Figure 3: Pathway fluxes and isotopologue compositions for metabolites involved in hydrogenotrophic methanogenesis at three pH_2 conditions. Pathway fluxes are in $\text{mmol g-protein}^{-1} \text{hour}^{-1}$, reversibility are shown in round brackets, and isotopologue compositions (in %) are listed in square brackets as $[\delta^{13}\text{C}, \delta\text{D}, \Delta^{13}\text{CD}, \Delta\text{D}_2]$. The isotope ratios are normalized by $\delta^{13}\text{C}-\text{CO}_{2(\text{gas})}$ and $\delta\text{D}-\text{H}_2\text{O}_{(\text{l})}$ as 0 %. Thickness of the arrows corresponds (by a non-linear function) to the relative size of the fluxes. The model solution does not change significantly at pH_2 above 1000Pa.

1056
1057
1058 Figure 4: Methane production rate (MPR) as a function of pH2 predicted by the protein cost model. Blue
1059 line shows the model result without transport limits, red and green lines are the results including diffusion
1060 (equation-4) and dissolution (equation-6) limits, respectively. The observed ranges for apparent half
1061 saturation constant (K_m) and lower H₂ limit of methanogenesis for batch cultures are also shown in grey
1062 shaded areas (Cord-Ruswisch et al., 1988; Zinder, 1993).


1063

1064
1065
1066

1067 Figure 5: Results of isotopologue flow network model showing the isotope and isotopologue compositions
 1068 of the final product CH₄. The model was run with $k_L a = 100 \text{ h}^{-1}$ and cell density of 10^7 cells/mL . The solid
 1069 line shows the model with default values of fractionation factors. The grey area shows the results of
 1070 Monte Carlo simulation ($n=1000$, 67 percentile) using a range of fractionation factors shown in Table 6.
 1071 Data from laboratory cultures are also plotted for thermophilic (red circles) and mesophilic methanogens
 1072 (blue circles). Data source for culture studies are Okumura et al., (2016), Penning et al. (2005), Topçuoğlu
 1073 et al., (2019), Valentine et al. (2004), Games et al. (1978), Belyaev et al. (1983), Krzycki et al. (1987),
 1074 Balabane et al. (1987), Botz et al. (1996), Yoshioka et al. (2008) for $\delta^{13}\text{C}$ and δD , and Gruen et al. (2018),
 1075 Stolper et al. (2015), Giunta et al. (2021), and Young et al. (2017) for $\Delta^{13}\text{CH}_3\text{D}$ and $\Delta^{12}\text{CH}_2\text{D}_2$. Botz et al.
 1076 (1996) reported relatively small ¹³C-fractionations during log-phase growth; these data were excluded in
 1077 the plot. Stolper et al. (2015) reported Δ_{18} values (combined ¹³CH₃D and ¹²CH₂D₂); their values are shown
 1078 in open red and blue circles for thermophilic and mesophilic methanogens, respectively. These Δ_{18} values
 1079 can be different from $\Delta^{13}\text{CH}_3\text{D}$ by up to 0.5‰ depending upon their $\Delta^{12}\text{CH}_2\text{D}_2$ values.


1080
1081

1082
 1083
 1084
 1085
 1086

Figure 6: Results of isotopologue flow network model plotted in $\delta^{13}\text{C}$ versus δD (A) and $\Delta^{13}\text{CH}_3\text{D}$ versus $\Delta^{12}\text{CH}_2\text{D}_2$ (B), using the same model results as Figure 5. The grey area shows the results of Monte Carlo simulation ($n=1000$) for 67% confidence interval calculated from covariance matrix. Data from laboratory cultures are the same as those in Figure 5.

1087

1088

1089 Figure 7: Results of the protein cost model for *in vivo* metabolite concentrations at pH_2 of 100 Pa and 1
 1090 Pa. Red line is the 1:1 line, and blue circles are the estimated metabolite and cofactor concentrations.
 1091 Acronyms for chemical species are found in Table 1.

1092

1093

1094

1095 Tables

1096

1097 Table 1: The reactions for the pathway of hydrogenotrophic methanogenesis considered in the model.
 1098 The standard free energy change of the reaction (ΔG^0) is for temperature at 25°C, H₂, CO₂, and CH₄ in the
 1099 gaseous state at 1 bar, pH at 7, and dissolved compounds at 1 molar activity. The values for ΔG^0 were
 1100 taken from Thauer et al (2008).

<i>i</i>	Reaction	ΔG^0 (kJ/mol)
1	CO ₂ + MFR + Fd _{red} + 2H ⁺ = CHO-MFR + Fd _{ox} + H ₂ O	0
2	CHO-MFR + H ₄ MPT = CHO-H ₄ MPT + MFR	-5
3	CHO-H ₄ MPT + H ⁺ = CH≡H ₄ MPT ⁺ + H ₂ O	-5
4	CH≡H ₄ MPT ⁺ + F ₄₂₀ H ₂ = CH ₂ =H ₄ MPT + F ₄₂₀ + H ⁺	6
5	CH ₂ =H ₄ MPT + F ₄₂₀ H ₂ = CH ₃ -H ₄ MPT + F ₄₂₀	-6
6	CH ₃ -H ₄ MPT + HS-CoM = CH ₃ -S-CoM + H ₄ MPT	-30
7	CH ₃ -S-CoM + HS-CoB = CH ₄ + CoM-S-S-CoB	-30
8	H ₂ + Fd _{ox} = Fd _{red} + 2H ⁺	16
9	H ₂ + F ₄₂₀ = F ₄₂₀ H ₂	-11
10	2H ₂ + CoM-S-S-CoB + Fd _{ox} = HS-CoM + HS-CoB + Fd _{red} + 2H ⁺	-39

1101 F_{420} : coenzyme F_{420} , Fd: ferredoxin, H₄MPT: tetrahydromethanopterin, CoB: coenzyme B, CoM:
 1102 coenzyme M, MFR: methanofuran

1103

1104 Table 2: Notations and symbols used in this study

Symbols	Description and typical unit
<i>Protein pathway model</i>	
M_i	Molecular mass of enzyme that catalyzes the reaction <i>i</i> (kDa=kg/mol)
$k_{cat,i}$	Turnover number for enzyme that catalyze the reaction <i>i</i> (s ⁻¹)
$K_{m,kj}$	Half saturation constant for substrate <i>k</i> in reaction <i>i</i> (mol/kg)
$\Delta G_{r,i}$	Free energy of reaction <i>i</i> (kJ/mol)
J_{net}, J^+, J^-	Pathway flux (net, forward, and reverse) for reaction <i>i</i> (mol g-protein ⁻¹ s ⁻¹)
Λ	Cost function of PPM (g-protein sec mol ⁻¹)
N_{cell}/V	Cell density (cells/mL)
$cSMPR$	Cell specific methane production rate (mol CH ₄ cell ⁻¹ h ⁻¹)
k_{La}	Volumetric mass transfer coefficient (h ⁻¹)
K_H	Henry's law constant (mol kg ⁻¹ Pa ⁻¹)
pH_2	Partial pressure of hydrogen (Pa)
mH_2	Dissolved hydrogen concentration (mol/kg)
ϕ_i	Reversibility of reaction <i>i</i> ($\phi_i = J_i^+/J_i^-$)
<i>Isotopologue flow network model</i>	
r_j, d_j, q_j, u_j	Isotopologue ratios (¹³ C/ ¹² C, D/H, ¹³ CD/ ¹² CH, and D ₂ /H ₂) for substrate <i>j</i>
r_0, d_H	¹³ C/ ¹² C ratio of CO _{2(g)} and D/H ratio of water
$(x\sigma/\sigma)_j$	Symmetry ratios for ¹³ C and/or D isotopologues (<i>x=d, q</i> or <i>u</i>) relative to ¹² C-H isotopologue for substrate <i>j</i>
$\alpha_{i^+}, \alpha_{i^-}$	¹³ C/ ¹² C KIE (forward and backward) for reaction <i>i</i>
$\alpha_{pi^+}, \alpha_{pi^-}$	Primary D/H KIE
$\alpha_{si^+}, \alpha_{si^-}$	Secondary D/H KIE
$\alpha_{cpi^+}, \alpha_{cpi^-}$	Primary KIE for clumped ¹³ C-D substrate for reaction <i>i</i> ($\alpha_{cpi^+} = \gamma_{cpi^+} \alpha_i \alpha_{pi}$)
$\alpha_{csi^+}, \alpha_{csi^-}$	Secondary KIE for clumped ¹³ C-D substrate for reaction <i>i</i> ($\alpha_{csi^+} = \gamma_{csi^+} \alpha_i \alpha_{si}$)
$\alpha_{dp_i^+}, \alpha_{dp_i^-}$	Primary KIE for clumped D ₂ substrate for reaction <i>i</i> ($\alpha_{dp_i^+} = \gamma_{dp_i^+} \alpha_{pi} \alpha_{si}$)
$\alpha_{ds_i^+}, \alpha_{ds_i^-}$	Secondary KIE for D ₂ substrate for reaction <i>i</i> ($\alpha_{ds_i^+} = \gamma_{ds_i^+} \alpha_{si}^2$)
$\gamma_{xi^+}, \gamma_{xi^-}$	Clumped KIE (<i>x=cp, cs, dp, ds</i>) for reaction <i>i</i>
α_{xi}^{eq}	Equilibrium fractionation factor (<i>x=none, p, s, cp, cs, dp, or ds</i>)

1105

1106
1107
1108
1109
1110

Table 3: Kinetic parameters for enzymes used in this study and their reference sources. Most enzymes were assayed at 37°C except for reactions-1, -3, and -5, which were assayed at 55 or 65 °C. The turnover rate (k_{cat}) for reaction-5 is corrected with reported activation energy of 34 kJ/mol. Reactions-1 and -3 are used without temperature corrections. Reactions-3 and -4 are only assayed in the reverse direction.

<i>i</i>	Enzyme	E.C. number	Mass (kDa)	k_{cat} (s ⁻¹)	K_{m1} (mM)	K_{m2} (mM)	Note	Ref.
1	CHO-MFR dehydrogenase	1.2.7.12	145	15	0.10		K_{m1} for MFR	1
2	CHO-MFR:H ₄ MPT formyltransferase	2.3.1.101	35	2158	0.4	0.4	K_{m1} for COH-MFR, K_{m2} for H ₄ MPT	2
3	CH≡H ₄ MPT ⁺ cyclohydrolase	3.5.4.27	42	1400	0.1		K_{m1} for CHO-H ₄ MPT	3
4	CH ₂ =H ₄ MPT dehydrogenase	1.5.98.1	35	320	0.006	0.018	K_{m1} for CH ₂ =H ₄ MPT, K_{m2} for F ₄₂₀	4
5	CH ₂ =H ₄ MPT reductase	1.5.98.2	36	641	0.015	0.012	K_{m1} for CH ₂ =H ₄ MPT, K_{m2} for F ₄₂₀ H ₂	5
6	CH ₃ -H ₄ MPT: CoM methyltransferase	2.1.1.86	380	65	0.135	0.277	K_{m1} of CH ₃ -H ₄ MPT and K_{m2} for HS-CoM	6
7	CH ₃ -CoM reductase	2.8.4.1	270	31	0.17	0.17	K_{m1} for CH ₃ -S-CoM, K_{m2} for CoB	7,8
10	H ₂ :CoB-CoM heterodisulfide, ferredoxin reductase	1.8.98.5	229	76	0.5	0.015	K_{m1} for CoM-S-S-CoB, K_{m2} for Fd _{oxi}	9

1111 reference: 1, Bertram and Thauer (1994), 2:Beritung and Thauer (1990), 3: Beritung et al.(1991),
1112 4:Brommelstroet et al. (1990), 5:Ma and Thauer (1990), 6: Lienard et al. (1996), 7: Wongate and Ragsdale
1113 2015, 8: Dey et al.(2010), 9: Kaster et al. (2011).

1114
1115
1116
1117
1118

Table 4: Isotopologue ratios for carbon ($\delta^{13}\text{C}$), hydrogen (δD), $\Delta^{13}\text{CD}$ and ΔD_2 values expected for equilibrium at 25°C based on equilibrium fractionation factors from Groppe et al. (2020) and Horita and Wesolowski (1994). Carbon and hydrogen isotope fractionation factors are referenced against gaseous CO₂ and liquid water, respectively.

<i>j</i>	Species	$\delta^{13}\text{C}$	δD	$\Delta^{13}\text{CD}$	ΔD_2
1	CO _{2(g)}	0.00	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>
2	CHO-MFR	-17.57	-142.20	4.48	<i>n.a.</i>
3	CHO-H ₄ MPT	-19.23	-149.40	4.21	<i>n.a.</i>
4	CH≡H ₄ MPT ⁺	-15.95	-87.16	4.56	<i>n.a.</i>
5	CH ₂ =H ₄ MPT	-32.66	-12.85	4.76	13.37
6	CH ₃ -H ₄ MPT	-47.67	-92.61	5.22	15.61
7	CH ₃ -S-CoM	-64.61	-130.82	5.49	15.61
8	CH ₄	-66.34	-177.82	5.74	18.50
	H ₂ O _(v)	<i>n.a.</i>	-73.00	<i>n.a.</i>	<i>n.a.</i>
	H ₂ O _(l)	<i>n.a.</i>	0.00	<i>n.a.</i>	<i>n.a.</i>

1119 n.a., not applicable.
1120
1121

Table 5: Isotopologue reactions considered for the last step of methanogenesis (reaction-7).

Reaction	Forward KIE	Reverse KIE
¹² CH ₃ -R + H \leftrightarrow ¹² CH ₄ + R	1	1
¹³ CH ₃ -R + H \leftrightarrow ¹³ CH ₄ + R	α_{γ^+}	α_{γ^-}
¹² CH ₃ -R + D \leftrightarrow ¹² CH ₃ D + R	$\alpha_{p\gamma^+}$	$\frac{1}{4} \alpha_{p\gamma^-}$
¹² CH ₂ D-R + H \leftrightarrow ¹² CH ₃ D + R	$\alpha_{s\gamma^+}$	$\frac{3}{4} \alpha_{s\gamma^-}$
¹³ CH ₃ -R + D \leftrightarrow ¹³ CH ₃ D + R	$\alpha_{cp\gamma^+} = \gamma_{cp\gamma^+} \alpha_{\gamma^+} \alpha_{p\gamma^+}$	$\frac{1}{4} \alpha_{cp\gamma^-} = \frac{1}{4} \gamma_{cp\gamma^-} \alpha_{\gamma^-} \alpha_{p\gamma^-}$
¹³ CH ₂ D-R + H \leftrightarrow ¹³ CH ₃ D + R	$\alpha_{cs\gamma^+} = \gamma_{cp\gamma^+} \alpha_{\gamma^+} \alpha_{s\gamma^+}$	$\frac{3}{4} \alpha_{cs^-} = \frac{3}{4} \gamma_{cp\gamma^-} \alpha_{\gamma^-} \alpha_{s\gamma^-}$
¹² CH ₂ D-R + D \leftrightarrow ¹² CH ₂ D ₂ + R	$\alpha_{dp\gamma^+} = \gamma_{dp\gamma^+} \alpha_{\gamma^+} \alpha_{s\gamma^+}$	$\frac{1}{2} \alpha_{dp\gamma^-} = \frac{1}{2} \gamma_{dp\gamma^-} \alpha_{\gamma^-} \alpha_{s\gamma^-}$
¹² CHD ₂ -R + D \leftrightarrow ¹² CH ₂ D ₂ + R	$\alpha_{dp\gamma^+} = \gamma_{dp\gamma^+} (\alpha_{s\gamma^+})^2$	$\frac{1}{2} \alpha_{dp\gamma^-} = \frac{1}{2} \gamma_{dp\gamma^-} (\alpha_{s\gamma^-})^2$

1122
1123

1124 Table 6: $^{13}\text{C}/^{12}\text{C}$ and D/H KIE values used in this study. *See Table 2 for description of the notation.* Values
 1125 shown in italic letters are prescribed fractionation factors (and 1σ values). Values shown in non-italic
 1126 letters are derived values using equation-18 and -19.

Reactions	α^+	α^-	α_{ip}^+	α_{ip}^-	α_{is}^+	α_{is}^-
1	<i>0.960 ± 0.02</i>	0.9772	0.703	<i>0.82 ± 0.20</i>	<i>n.a.</i>	<i>n.a.</i>
2	<i>0.960 ± 0.02</i>	0.9616	<i>n.a.</i>	<i>n.a.</i>	<i>0.85 ± 0.05</i>	0.857
3	<i>0.960 ± 0.02</i>	0.9568	<i>n.a.</i>	<i>n.a.</i>	<i>0.85 ± 0.05</i>	0.792
4	<i>0.960 ± 0.02</i>	0.9766	0.810	<i>0.82 ± 0.20</i>	<i>0.85 ± 0.05</i>	0.786
5	<i>0.960 ± 0.02</i>	0.9751	0.744	<i>0.82 ± 0.20</i>	<i>0.85 ± 0.05</i>	0.925
6	<i>0.960 ± 0.02</i>	0.9774	<i>n.a.</i>	<i>n.a.</i>	<i>0.85 ± 0.05</i>	0.887
7	<i>0.960 ± 0.01</i>	0.9618	0.337	<i>0.41 ± 0.04</i>	<i>0.85 ± 0.01</i>	0.899

1127 *n.a.*, not applicable.

1128

1129 Table 7: Clumped KIE values used in this study. *See Table 2 for a description of the notation.* Values shown
 1130 in italic letters are prescribed fractionation factors (and 1σ values). Values shown in non-italic letters are
 1131 derived values using equation-20.

Reactions	γ_{cp}^+	γ_{cp}^-	γ_{cs}^+	γ_{cs}^-	γ_{dp}^+	γ_{dp}^-	γ_{ds}^+	γ_{ds}^-
1	<i>1.000 ± 0.008</i>	0.9955	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>
2	<i>1.000 ± 0.008</i>	0.9958	<i>1.0000</i>	1.0003	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>
3	<i>1.000 ± 0.008</i>	0.9955	<i>1.0000</i>	0.9997	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>
4	<i>1.000 ± 0.008</i>	0.9953	<i>1.0000</i>	0.9998	<i>1.000 ± 0.010</i>	0.9868	<i>n.a.</i>	<i>n.a.</i>
5	<i>1.000 ± 0.008</i>	0.9948	<i>1.0000</i>	0.9995	<i>1.000 ± 0.010</i>	0.9846	<i>1.0000</i>	0.9978
6	<i>1.000 ± 0.008</i>	0.9945	<i>1.0000</i>	0.9997	<i>1.000 ± 0.010</i>	0.9846	<i>1.0000</i>	1.0000
7	<i>1.000 ± 0.008</i>	0.9943	<i>1.0000</i>	0.9998	<i>1.000 ± 0.010</i>	0.9818	<i>1.0000</i>	0.9972

1132 *n.a.*, not applicable.

1133