

¹ Vivette Girault, Beatrice Riviere*, and Loic Cappanera

² A finite element method for degenerate ³ two-phase flow in porous media. Part I: ⁴ Well-posedness

⁵ <https://doi.org/10.1515/jnma-2020-0004>

⁶ Received January 24, 2020; revised July 27, 2020; accepted December 23, 2020

⁷ **Abstract:** A finite element method with mass-lumping and flux upwinding is formulated for solving the im-
⁸ miscible two-phase flow problem in porous media. The method approximates directly the wetting phase pres-
⁹ sure and saturation, which are the primary unknowns. The discrete saturation satisfies a maximum principle.
¹⁰ Stability of the scheme and existence of a solution are established.

¹¹ **Keywords:** stability, compactness, maximum principle, pressure-saturation

¹² **Classification:** 65M60, 65M12

¹³ 1 Introduction

¹⁴ This work discretizes on a suitable mesh a degenerate two-phase flow system set in a polyhedral domain by
¹⁵ a finite element scheme that directly approximates the wetting phase pressure and saturation, similar to the
¹⁶ formulation proposed in [19]. Mass lumping is used to compute the integrals and a suitable upwinding is used
¹⁷ to compute the flux, guaranteeing that the discrete saturation satisfies a maximum principle. The resulting
¹⁸ system of discrete equations is a finite element analogue of the finite volume scheme introduced and analyzed
¹⁹ by Eymard et al. in the seminal work [16].

²⁰ Finite volume methods are popular discretization methods for solving porous media flow problems be-
²¹ cause they approximate the unknowns by piecewise constants, they are locally mass conservative and they
²² satisfy the maximum principle. From the point of view of implementation, the advantage of finite elements
²³ is that they only use nodal values and a single simplicial mesh. In particular, no orthogonality property is re-
²⁴ quired between the faces and the lines joining the centers of control volumes, as is the case with finite volume
²⁵ methods.

²⁶ From a theoretical point of view, owing that the finite element scheme is based on functions, some steps
²⁷ in its numerical analysis are simpler, but nevertheless the major difficulty in the analysis consists in proving
²⁸ sufficient a priori estimates in spite of the degeneracy. By following closely [16], the degeneracy is remediated
²⁹ by reintroducing in the proofs discrete artificial pressures. But the complete analysis is intricate and lengthy
³⁰ and because of its length it is split into two parts. This paper is part one, dedicated to well-posedness of
³¹ this discrete scheme: stability and existence. The second part, see [20], establishes the convergence of the
³² numerical solutions via a compactness argument.

³³ Incompressible two-phase flow is a popular and important multiphase flow model in reservoirs for the
³⁴ oil and gas industry. Based on conservation laws at the continuum scale, the model assumes the existence of
³⁵ a representative elementary volume. Each wetting phase and non-wetting phase saturation satisfies a mass
³⁶ balance equation and each phase velocity follows the generalized Darcy law [4, 26]. The equations of the

Vivette Girault, Sorbonne-Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions, F-75005 Paris, France; Rice University, Houston, TX 77005, USA

*Corresponding author: Beatrice Riviere, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA. Email: riviere@rice.edu

Loic Cappanera, Department of Mathematics, University of Houston, TX 77204, USA.

37 mathematical model read

$$\begin{aligned}
 38 \quad \partial_t(\varphi s_w) - \nabla \cdot (\eta_w(s_w) \nabla p_w) &= f_w(s_{\text{in}}) \bar{q} - f_w(s_w) \underline{q} \\
 \partial_t(\varphi s_o) - \nabla \cdot (\eta_o(s_w) \nabla p_o) &= f_o(s_{\text{in}}) \bar{q} - f_o(s_w) \underline{q} \\
 p_c(s_w) &= p_o - p_w, \quad s_w + s_o = 1
 \end{aligned} \tag{1.1}$$

39 complemented by initial and boundary conditions. Here p_w , s_w , η_w , f_w (respectively, p_o , s_o , η_o , f_o) are the
 40 pressure, saturation, mobility, and fractional flow of the wetting (respectively non-wetting) phase, φ is the
 41 porosity, s_{in} is a given input saturation, and \bar{q} , \underline{q} are given flow rates. The capillary pressure, p_c , is a given
 42 function that depends nonlinearly on the saturation. This problem is referred to as the degenerate two-phase
 43 flow problem because the coefficients (phase mobilities) are allowed to vanish in some regions of the domain.
 44 This degeneracy makes the theoretical analysis problematic because it creates a loss of ellipticity in these re-
 45 gions. As the phase mobilities are degenerate when they are evaluated at certain values of the saturation
 46 (see (1.8)) and moreover the derivative of the capillary pressure may be unbounded, this system of two cou-
 47 pled nonlinear partial differential equations requires not only a carefully designed discretization preserving
 48 the maximum principle, but also a delicate analysis to circumvent the loss of ellipticity and the unbounded-
 49 ness of some coefficients. The discretization relies on mass lumping and upwinding. The use of mass lumping
 50 and upwinding with finite elements of degree one was introduced in [19] for porous media flows. Under the
 51 assumption that the pressure is known (which simplifies the problem to one equation with saturation as un-
 52 known), the maximum principle is proved for the saturation but no convergence analysis is obtained in [19].
 53 The effects of gravity have been neglected in problem (1.1) as the gravity term further complicates the numer-
 54 ical analysis of the scheme.

55 At the continuous level, problem (1.1) has several equivalent formulations, linked to the choice of pri-
 56 mary unknowns selected among wetting phase and non-wetting phase pressure and saturation, or capillary
 57 pressure [5, 22]. A good state of the art can be found in the reference [2]. Up to our knowledge, the mathe-
 58 matical analysis of the system of equations was first done in [1, 23]. A formulation of the model, based on
 59 Chavent's global pressure [7] that removes the degeneracy, was analyzed in [9, 10]. Since then, the global
 60 pressure formulation has been discretized and analyzed in many references [11, 24, 25], but unfortunately,
 61 this formulation is not equivalent to the original problem and it is not used in engineering practice because
 62 the global pressure is not a physical quantity that can be measured. Otherwise, with one exception, the nu-
 63 matical analysis of the discrete version of (1.1), has always been done under unrealistic assumptions that
 64 cannot be checked at the discrete level [14, 15]. Related to this line of work, the discretization of a degenerate
 65 parabolic equation has been studied in the literature [3, 17, 27, 28]. As far as we know, the only publication
 66 that performs the complete numerical analysis of the discrete degenerate two-phase flow system written as
 67 above (i.e., in the form used by engineers) is the analysis on finite volumes done in reference [16]. This moti-
 68 vates our extension of this work to finite elements.

69 The remaining part of this introduction makes precise problem (1.1) by introducing notation and the weak
 70 variational formulation. The numerical scheme is developed in Section 2 and is written in two equivalent
 71 forms: the first one is discrete and directly involves the nodal values of the unknowns and the second one is
 72 variational and uses the finite element test and trial functions. Because of the nonlinearity and degeneracy
 73 of its equations, existence of a discrete solution requires that the discrete wetting phase saturation satisfies a
 74 maximum principle. This is the first object of Section 3, the second one being basic a priori pressure estimates,
 75 after which existence is shown in Section 4. Numerical results are presented in Section 5. The basic a priori
 76 pressure estimates in Section 3.2 are not strong enough to show convergence of the numerical solution to the
 77 weak solution. Tighter bounds are obtained in the following work [20].

78 1.1 Model problem

79 Let $\Omega \subset \mathbb{R}^d$, $d = 2$ or 3 , be a bounded connected Lipschitz domain with boundary $\partial\Omega$ and unit exterior normal
 80 \mathbf{n} , and let T be a final time. The primary unknowns are the wetting phase pressure and saturation. With the

81 last relation in (1.1), s_w is the only unknown saturation; so we set $s = s_w$, and rewrite (1.1) almost everywhere
 82 in $\Omega \times]0, T[$ as

83
$$\partial_t(\varphi s) - \nabla \cdot (\eta_w(s) \nabla p_w) = f_w(s_{\text{in}}) \bar{q} - f_w(s) \underline{q} \quad (1.2)$$

84
$$-\partial_t(\varphi s) - \nabla \cdot (\eta_o(s) \nabla p_o) = f_o(s_{\text{in}}) \bar{q} - f_o(s) \underline{q} \quad (1.3)$$

85 complemented by a natural boundary condition almost everywhere on $\partial\Omega \times]0, T[$:

86
$$\eta_w(s) \nabla p_w \cdot \mathbf{n} = 0, \quad \eta_o(s) \nabla p_o \cdot \mathbf{n} = 0 \quad (1.4)$$

87 and an initial condition almost everywhere in Ω :

88
$$s(\cdot, 0) = s^0 := s_w^0, \quad 0 \leq s_w^0 \leq 1. \quad (1.5)$$

89 The fractional flows are related to the mobilities by

90
$$\forall 0 \leq s \leq 1, \quad f_w(s) = \frac{\eta_w(s)}{\eta_w(s) + \eta_o(s)}, \quad f_o(s) = 1 - f_w(s). \quad (1.6)$$

91 Recall that the phase saturations sum up to 1 and the phase pressures are related by the capillary pressure,
 92 p_c , which is a function of the saturation:

93
$$\forall 0 \leq s \leq 1, \quad p_c(s) = p_o - p_w. \quad (1.7)$$

94 This work is done under the following basic assumptions.

95 **Assumption 1.1.**

96 – The porosity φ is piecewise constant in space, independent of time, positive, bounded, and uniformly
 97 bounded away from zero.

98 – The mobility of the wetting phase $\eta_w \geq 0$ is continuous and increasing on the interval $[0, 1]$. The mobility
 99 of the non-wetting phase $\eta_o \geq 0$ is continuous and decreasing on the interval $[0, 1]$. This implies that the
 100 function f_w is increasing and the function f_o is decreasing on $[0, 1]$. We also recall that these functions
 101 are degenerate, indeed they satisfy:

102
$$\eta_w(0) = 0, \quad \eta_o(1) = 0. \quad (1.8)$$

103 – There is a positive constant η_* such that

104
$$\eta_w(s) + \eta_o(s) \geq \eta_* \quad \forall s \in [0, 1]. \quad (1.9)$$

105 – The capillary pressure p_c is a continuous, strictly decreasing function in $W^{1,1}(0, 1)$.

106 – The flow rates at the injection and production wells, $\bar{q}, \underline{q} \in L^2(\Omega \times]0, T[)$ satisfy

107
$$\bar{q} \geq 0, \quad \underline{q} \geq 0, \quad \int_{\Omega} \bar{q} = \int_{\Omega} \underline{q}. \quad (1.10)$$

108 – The prescribed input saturation s_{in} satisfies almost everywhere in $\Omega \times]0, T[$

109
$$0 \leq s_{\text{in}} \leq 1. \quad (1.11)$$

110 Since $p_c, \eta_{\alpha}, f_{\alpha}$, $\alpha = w, o$ are bounded above and below, it is convenient to extend them continuously by
 111 constants to \mathbb{R} .

112 Although the numerical scheme studied below does not discretize the global pressure, following [16], its
 113 convergence proof uses a number of auxiliary functions related to the global pressure. First, we introduce the
 114 primitive g_c of p_c ,

115
$$\forall x \in [0, 1], \quad g_c(x) = \int_x^1 p_c(s) \, ds. \quad (1.12)$$

116 Since p_c is a continuous function on $[0, 1]$, the function g_c belongs to $\mathcal{C}^1([0, 1])$. Next, we introduce the
117 auxiliary pressures p_{wg} , p_{wo} , and g ,

$$118 \quad \forall x \in [0, 1], \quad p_{wg}(x) = \int_0^x f_o(s)p'_c(s) \, ds, \quad p_{og}(x) = \int_0^x f_w(s)p'_c(s) \, ds \quad (1.13)$$

$$119 \quad 120 \quad \forall x \in [0, 1], \quad g(x) = - \int_0^x \frac{\eta_w(s)\eta_o(s)}{\eta_w(s) + \eta_o(s)} p'_c(s) \, ds. \quad (1.14)$$

121 Owing to (1.6),

$$122 \quad \forall x \in [0, 1], \quad p_{wg}(x) + p_{og}(x) = \int_0^x p'_c(s) \, ds = p_c(x) - p_c(0). \quad (1.15)$$

123 Moreover, the derivative of g satisfies formally the identities

$$124 \quad \forall x \in [0, 1], \quad \eta_\alpha(x)p'_{\alpha g}(x) + g'(x) = 0, \quad \alpha = w, o. \quad (1.16)$$

125 1.2 Weak variational formulation

126 By multiplying (1.2) and (1.3) with a smooth function v , say $v \in \mathcal{C}^1(\Omega \times [0, T])$ that vanishes at $t = T$, applying
127 Green's formula in time and space, and using the boundary and initial conditions (1.4) and (1.5), we formally
128 derive a weak variational formulation

$$129 \quad - \int_0^T \int_\Omega \varphi s \partial_t v + \int_0^T \int_\Omega \eta_w(s) \nabla p_w \cdot \nabla v = \int_\Omega \varphi s^0 v(0) + \int_0^T \int_\Omega (f_w(s_{in})\bar{q} - f_w(s)\underline{q})v \\ 130 \quad \int_0^T \int_\Omega \varphi s \partial_t v + \int_0^T \int_\Omega \eta_o(s) \nabla p_o \cdot \nabla v = - \int_\Omega \varphi s^0 v(0) + \int_0^T \int_\Omega (f_o(s_{in})\bar{q} - f_o(s)\underline{q})v.$$

131 But in general, the pressures are not sufficiently smooth to make this formulation meaningful and follow-
132 ing [8], by using (1.16), it is rewritten in terms of the artificial pressures,

$$133 \quad - \int_0^T \int_\Omega \varphi s \partial_t v + \int_0^T \int_\Omega (\eta_w(s) \nabla (p_w + p_{wg}(s)) + \nabla g(s)) \cdot \nabla v = \int_\Omega \varphi s^0 v(0) \\ + \int_0^T \int_\Omega (f_w(s_{in})\bar{q} - f_w(s)\underline{q})v \\ \int_0^T \int_\Omega \varphi s \partial_t v + \int_0^T \int_\Omega (\eta_o(s) \nabla (p_o - p_{og}(s)) - \nabla g(s)) \cdot \nabla v = - \int_\Omega \varphi s^0 v(0) \\ + \int_0^T \int_\Omega (f_o(s_{in})\bar{q} - f_o(s)\underline{q})v. \quad (1.17)$$

134 With the above assumptions, problem (1.17) has been analyzed in reference [1], where it is shown that
135 it has a solution s in $L^\infty(\Omega \times [0, T])$ with $g(s)$ in $L^2(0, T; H^1(\Omega))$, p_α , $\alpha = w, o$, in $L^2(\Omega \times [0, T])$ with both
136 $p_w + p_{wg}(s)$ and $p_o - p_{og}(s)$ in $L^2(0, T; H^1(\Omega))$.

137 2 Scheme

138 From now on, we assume that Ω is a polygon ($d = 2$) or Lipschitz polyhedron ($d = 3$) so it can be entirely
139 meshed.

140 2.1 Meshes and discretization spaces

141 The mesh \mathcal{T}_h is a regular family of simplices K , with a constraint on the angle that will be used to enforce the
142 maximum principle: each angle is not larger than $\pi/2$, see [6]. This is easily constructed in 2D. In 3D, since we

143 only investigate convergence we can embed the domain in a triangulated box. Moreover, since the porosity φ
 144 is a piecewise constant, to simplify we also assume that the mesh is such that φ is a constant per element. The
 145 parameter h denotes the mesh size, i.e., the maximum diameter of the simplices. On this mesh, we consider
 146 the standard finite element space of order one

147
$$X_h = \{v_h \in \mathcal{C}^0(\bar{\Omega}); \forall K \in \mathcal{T}_h, v_h|_K \in \mathbb{P}_1\}. \quad (2.1)$$

148 Thus the dimension of X_h is the number of nodes, say M , of \mathcal{T}_h . Let φ_i be the Lagrange basis function, that
 149 is piecewise linear, and takes the value 1 at node i and the value 0 at all other nodes. As usual, the Lagrange
 150 interpolation operator $I_h \in \mathcal{L}(\mathcal{C}^0(\bar{\Omega}); X_h)$ is defined by

151
$$\forall v \in \mathcal{C}^0(\bar{\Omega}), \quad I_h(v) = \sum_{i=1}^M v_i \varphi_i \quad (2.2)$$

152 where v_i is the value of v at the node of index i . It is easy to see that under the mesh condition, we have

153
$$\forall K, \quad \int_K \nabla \varphi_i \cdot \nabla \varphi_j \leq 0 \quad \forall i \neq j. \quad (2.3)$$

154 For a given node i , we denote by Δ_i the union of elements sharing the node i and by $\mathcal{N}(i)$ the set of indices of
 155 all the nodes in Δ_i . In the spirit of [21], we define

156
$$c_{ij} = \int_{\Delta_i \cap \Delta_j} |\nabla \varphi_i \cdot \nabla \varphi_j| \quad \forall i, j. \quad (2.4)$$

157 Recall that the trapezoidal rule on a triangle or a tetrahedron K is

158
$$\int_K f \approx \frac{1}{d+1} |K| \sum_{\ell=1}^{d+1} f_{i_\ell}$$

159 where f_{i_ℓ} is the value of the function f at the ℓ th node (vertex), with global number i_ℓ , of K . For any region \mathcal{O} ,
 160 the notation $|\mathcal{O}|$ means the measure (volume) of \mathcal{O} .

161 We define

162
$$m_i = \frac{1}{d+1} \sum_{K \in \Delta_i} |K| = \frac{1}{d+1} |\Delta_i|$$

163 and taking into account the porosity φ , we define more generally

164
$$\tilde{m}_i(\varphi) = \frac{1}{d+1} \sum_{K \in \Delta_i} \varphi|_K |K|$$

165 so that $m_i = \tilde{m}_i(1)$. It is well-known that the trapezoidal rule defines a norm on X_h , $\|\cdot\|_h$, uniformly equivalent
 166 to L^2 norm. Let $U_h \in X_h$ and write

167
$$U_h = \sum_{i=1}^M U^i \varphi_i.$$

168 The discrete L^2 norm associated with the trapezoidal rule is

169
$$\|U_h\|_h = \left(\sum_{i=1}^M m_i |U^i|^2 \right)^{1/2}.$$

170 There exist positive constants \underline{C} and \bar{C} , independent of h and M , such that

171
$$\forall U_h \in X_h, \quad \underline{C} \|U_h\|_{L^2(\Omega)}^2 \leq \|U_h\|_h^2 \leq \bar{C} \|U_h\|_{L^2(\Omega)}^2. \quad (2.5)$$

172 This is also true for other piecewise polynomial functions, but with possibly different constants. The scalar
 173 product associated with this norm is denoted by $(\cdot, \cdot)_h$,

174
$$\forall U_h, V_h \in X_h, \quad (U_h, V_h)_h = \sum_{i=1}^M m_i U^i V^i. \quad (2.6)$$

175 By analogy, we introduce the notation

$$176 \quad \forall U_h, V_h \in X_h, \quad (U_h, V_h)_h^\varphi = \sum_{i=1}^M \tilde{m}_i(\varphi) U^i V^i. \quad (2.7)$$

177 The assumptions on the porosity φ imply that (2.7) defines a weighted scalar product associated with the
178 weighted norm $\|\cdot\|_h^\varphi$,

$$179 \quad \forall U_h \in X_h, \quad \|U_h\|_h^\varphi = ((U_h, U_h)_h^\varphi)^{1/2}$$

180 that satisfies the analogue of (2.5), with the same constants \underline{C} and \bar{C} ,

$$181 \quad \forall U_h \in X_h, \quad \underline{C}(\min_{\Omega} \varphi) \|U_h\|_{L^2(\Omega)}^2 \leq (\|U_h\|_h^\varphi)^2 \leq \bar{C}(\max_{\Omega} \varphi) \|U_h\|_{L^2(\Omega)}^2. \quad (2.8)$$

182 2.2 Motivation of the space discretization

183 While discretizing the time derivative is fairly straightforward, discretizing the space derivatives is more del-
184 icate because we need a scheme that is consistent and satisfies the maximum principle for the saturation.
185 For the moment, we freeze the time variable and focus on consistency in space. First, we recall a standard
186 property of functions of X_h on meshes satisfying (2.3).

187 **Proposition 2.1.** Under condition (2.3), the following identities holds for all U_h and V_h in X_h , with c_{ij} defined
188 in (2.4):

$$189 \quad \int_{\Omega} \nabla U_h \cdot \nabla V_h = - \sum_{i=1}^M U^i \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} (V^j - V^i) = \frac{1}{2} \sum_{i=1}^M \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} (U^j - U^i) (V^j - V^i). \quad (2.9)$$

190 *Proof.* The first equality is obtained by using (2.3), (2.4) and the fact that

$$191 \quad \sum_{j=1}^M \varphi_j = 1$$

192 as in [18, Sect. 12.1].

193 For the second part, we use the symmetry of c_{ij} and the anti-symmetry of $V^j - V^i$ to deduce that

$$194 \quad - \sum_{i=1}^M U^i \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} (V^j - V^i) = \frac{1}{2} \sum_{i=1}^M \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} (U^j - U^i) (V^j - V^i)$$

195 which is the desired result. \square

196 Note that c_{ij} vanishes when $j \notin \mathcal{N}(i)$. Therefore, when there is no ambiguity it is convenient to write the above
197 double sums on i and j with i and j running from 1 to M .

198 As an immediate consequence of Proposition 2.1, we have, by taking $V_h = U_h$,

$$199 \quad \forall U_h \in X_h, \quad \|\nabla U_h\|_{L^2(\Omega)} = \frac{1}{\sqrt{2}} \left(\sum_{i,j=1}^M c_{ij} |U^j - U^i|^2 \right)^{1/2}. \quad (2.10)$$

200 Now, we consider the case of the product of the gradients by a third function. Beforehand, we introduce
201 the following notation: for indices i and j of two neighboring interior nodes, $\Delta_i \cap \Delta_j$ in two dimensions is
202 the union of two triangles and in three dimensions the union of a number of tetrahedra bounded by a fixed
203 constant, say L , determined by the regularity of the mesh. We shall use the following notation

$$204 \quad c_{ij,K} = \int_K |\nabla \varphi_i \cdot \nabla \varphi_j|, \quad w_K = \frac{1}{|K|} \int_K w. \quad (2.11)$$

205 Note that

$$206 \quad \sum_{K \subset \Delta_i \cap \Delta_j} c_{ij,K} = c_{ij}. \quad (2.12)$$

207 Then we have the following proposition.

208 **Proposition 2.2.** Let (2.3) hold. With the notation (2.11), the following identity holds for all w in $L^1(\Omega)$:

209
$$\forall U_h, V_h \in X_h, \int_{\Omega} w(\nabla U_h \cdot \nabla V_h) = - \sum_{i=1}^M U^i \sum_{j=1}^M \left(\sum_{K \subset \Delta_i \cap \Delta_j} c_{ij,K} w_K \right) (V^j - V^i). \quad (2.13)$$

210 *Proof.* It is easy to prove that

211
$$\int_{\Omega} w(\nabla U_h \cdot \nabla V_h) = \sum_{i,j=1}^M d_{ij} U^i V^j \quad (2.14)$$

212 where

213
$$d_{ij} = \int_{\Delta_i \cap \Delta_j} w(\nabla \varphi_i \cdot \nabla \varphi_j) = \int_{\Omega} w(\nabla \varphi_i \cdot \nabla \varphi_j). \quad (2.15)$$

214 Again, we have for any i ,

215
$$\sum_{j=1}^M d_{ij} = 0, \quad d_{ii} = - \sum_{1 \leq j \leq M, j \neq i} d_{ij}$$

216 and by substituting this equality into (2.14), we obtain

217
$$\int_{\Omega} w(\nabla U_h \cdot \nabla V_h) = \sum_{i,j=1}^M U^i d_{ij} (V^j - V^i). \quad (2.16)$$

218 But, in view of (2.11) and (2.15), and since $\nabla \varphi_i \cdot \nabla \varphi_j$ is a constant in each element K contained in $\Delta_i \cap \Delta_j$,

219
$$d_{ij} = - \sum_{K \subset \Delta_i \cap \Delta_j} c_{ij,K} w_K, \quad (2.17)$$

220 and (2.13) follows by substituting this equation into (2.16). \square

221 Note that $d_{ij} = d_{ji}$ owing to (2.17). The first consequence of Proposition 2.2 is that the right-hand side of (2.13)
222 is a consistent approximation of $(w, \nabla u \cdot \nabla v)$.

223 **Proposition 2.3.** Let (2.3) hold, let u and v belong to $H^2(\Omega)$ and w to $L^\infty(\Omega)$, and let $U_h = I_h u$, $V_h = I_h v$ be
224 defined by (2.2). Then, there exists a constant C , independent of h , M , u , v , and w , such that

225
$$\left| \int_{\Omega} w \nabla u \cdot \nabla v + \sum_{i,j=1}^M U^i \left(\sum_{K \subset \Delta_i \cap \Delta_j} c_{ij,K} w_K \right) (V^j - V^i) \right| \leq C h \|w\|_{L^\infty(\Omega)} \|u\|_{H^2(\Omega)} \|v\|_{H^2(\Omega)}. \quad (2.18)$$

226 *Proof.* In view of the identity (2.13), the left-hand side of (2.18) is bounded as follows:

227
$$\left| \int_{\Omega} w(\nabla u \cdot \nabla v - \nabla U_h \cdot \nabla V_h) \right| \leq \|w\|_{L^\infty(\Omega)} \left(\|\nabla(u - U_h)\|_{L^2(\Omega)} \|\nabla v\|_{L^2(\Omega)} + \|\nabla(v - V_h)\|_{L^2(\Omega)} \|\nabla U_h\|_{L^2(\Omega)} \right).$$

228 From here, (2.18) is a consequence of standard finite element interpolation error. \square

229 Now, if w is in $W^{1,\infty}(\Omega)$, then again, standard finite element approximation shows that there exists a constant
230 C , independent of h , $K \subset \Delta_i \cap \Delta_j$, and w , such that

231
$$\|w_K - w\|_{L^\infty(K)} \leq C h |w|_{W^{1,\infty}(K)} \leq C h |w|_{W^{1,\infty}(\Omega)}. \quad (2.19)$$

232 As a consequence, we will show that in the error formula (2.18), the average w_K can be replaced by any value
233 of w in K . Since all K in $\Delta_i \cap \Delta_j$ share the edge, say e_{ij} , whose end points are the nodes with indices i and j ,
234 then we can pick the value of w at any point, say $\tilde{W}^{i,j}$, of e_{ij} . At this stage, we choose this value freely, but we
235 prescribe that it be symmetrical with respect to i and j , i.e.,

236
$$\tilde{W}^{i,j} = \tilde{W}^{j,i}. \quad (2.20)$$

237 Then we have the following approximation result.

238 **Theorem 2.1.** *With the assumption and notation of Proposition 2.3, there exists a constant C , independent of h
239 and M , such that for all u , and v in $H^2(\Omega)$ and w in $W^{1,\infty}(\Omega)$,*

$$240 \quad \int_{\Omega} w \nabla u \cdot \nabla v = - \sum_{i,j=1}^M U^i c_{ij} \widetilde{W}^{i,j} (V^j - V^i) + R \quad (2.21)$$

241 *for any arbitrary value $\widetilde{W}^{i,j}$ of w in the common edge e_{ij} satisfying (2.20), and the remainder R satisfies*

$$242 \quad |R| \leq C h |w|_{W^{1,\infty}(\Omega)} \|u\|_{H^2(\Omega)} \|v\|_{H^2(\Omega)}. \quad (2.22)$$

243 *Proof.* We infer from (2.12) and (2.13) that

$$244 \quad \int_{\Omega} w (\nabla U_h \cdot \nabla V_h) = - \sum_{i,j=1}^M U^i (V^j - V^i) \sum_{K \subset \Delta_i \cap \Delta_j} c_{ij,K} (w_K - \widetilde{W}^{i,j}) - \sum_{i,j=1}^M U^i c_{ij} (V^j - V^i) \widetilde{W}^{i,j}.$$

245 Let

$$246 \quad R_{ij} = \sum_{K \subset \Delta_i \cap \Delta_j} c_{ij,K} (w_K - \widetilde{W}^{i,j})$$

247 which is symmetric in i and j by assumption (2.20). As in Proposition 2.1, the symmetry of R_{ij} and the anti-
248 symmetry of $V^j - V^i$, imply

$$249 \quad - \sum_{i,j=1}^M U^i R_{ij} (V^j - V^i) \leq \frac{1}{2} \left(\sum_{i,j=1}^M |R_{ij}| (U^j - U^i)^2 \right)^{1/2} \left(\sum_{i,j=1}^M |R_{ij}| (V^j - V^i)^2 \right)^{1/2}. \quad (2.23)$$

250 From the nonnegativity of $c_{ij,K}$, (2.12), and (2.19), we infer that

$$251 \quad |R_{ij}| \leq \left(\sum_{K \subset \Delta_i \cap \Delta_j} c_{ij,K} \right) C h |w|_{W^{1,\infty}(\Omega)} = c_{ij} C h |w|_{W^{1,\infty}(\Omega)}.$$

252 Hence, with (2.10) and standard finite element approximation,

$$253 \quad \left| \sum_{i,j=1}^M U^i R_{ij} (V^j - V^i) \right| \leq C h |w|_{W^{1,\infty}(\Omega)} \|\nabla U_h\|_{L^2(\Omega)} \|\nabla V_h\|_{L^2(\Omega)} \leq C h |w|_{W^{1,\infty}(\Omega)} \|u\|_{H^2(\Omega)} \|v\|_{H^2(\Omega)}.$$

254 The result follows by combining this inequality with (2.18). \square

255 The above considerations show that

$$256 \quad - \sum_{i,j=1}^M U^i c_{ij} \widetilde{W}^{i,j} (V^j - V^i) \text{ is a consistent approximation of order one of } \int_{\Omega} w \nabla u \cdot \nabla v$$

257 for any symmetric choice of $\widetilde{W}^{i,j}$ in e_{ij} , the common edge of $\Delta_i \cap \Delta_j$. This will lead to the upwinded space
258 discretization in the next subsection (see also [24]). Furthermore, for all real numbers V^i and $\widetilde{W}^{i,j}$ satisfy-
259 ing (2.20), $1 \leq i, j \leq M$, the symmetry of c_{ij} and anti-symmetry of $V^j - V^i$ imply

$$260 \quad \sum_{i,j=1}^M c_{ij} \widetilde{W}^{i,j} (V^j - V^i) = 0. \quad (2.24)$$

261 2.3 Fully discrete scheme

262 Let $\tau = T/N$ be the time step, $t_n = n\tau$, the discrete times, $0 \leq n \leq N$. Regarding time, we shall use the standard
263 L^2 projection ρ_τ defined on $]t_{n-1}, t_n]$, for any function f in $L^1(0, T)$, by

$$264 \quad \rho_\tau(f)^n := \rho_\tau(f)|_{]t_{n-1}, t_n]} := \frac{1}{\tau} \int_{t_{n-1}}^{t_n} f. \quad (2.25)$$

265 Regarding space, we shall use a standard element-by-element L^2 projection ρ_h as well as a nodal approxima-
266 tion operator r_h defined at each node x_i for any function $g \in L^1(\Omega)$ by

$$267 \quad r_h(g)(x_i) = \frac{1}{|A_i|} \int_{A_i} g, \quad 1 \leq i \leq M \quad (2.26)$$

268 and extended to Ω by $r_h(g) \in X_h$. The operator ρ_h is defined for any f in $L^1(\Omega)$ by $\rho_h(f)|_K = \rho_K(f)$ where, in
269 any element K ,

$$270 \quad \rho_K(f) = \frac{1}{|K|} \int_K f. \quad (2.27)$$

271 The initial saturation s^0 is approximated by the operator r_h ,

$$272 \quad S_h^0 = r_h(s^0). \quad (2.28)$$

273 The input saturation s_{in} is approximated in space and time by

$$274 \quad s_{\text{in},h,\tau} = \rho_\tau(r_h(s_{\text{in}})) \quad (2.29)$$

275 with space-time nodal values denoted by $s_{\text{in}}^{n,i}$. Clearly, (1.11) implies in space and time

$$276 \quad 0 \leq s_{\text{in},h,\tau} \leq 1.$$

277 In order to preserve (1.10), the functions \bar{q} and \underline{q} are approximated by the functions $\bar{q}_{h,\tau}$ and $\underline{q}_{h,\tau}$ defined with
278 r_h and corrected as follows:

$$279 \quad \bar{q}_{h,\tau} = \rho_\tau \left(r_h(\bar{q}) - \frac{1}{|\Omega|} \int_\Omega (r_h(\bar{q}) - \bar{q}) \right), \quad \underline{q}_{h,\tau} = \rho_\tau \left(r_h(\underline{q}) - \frac{1}{|\Omega|} \int_\Omega (r_h(\underline{q}) - \underline{q}) \right). \quad (2.30)$$

280 Since $\bar{q}_{h,\tau}$ and $\underline{q}_{h,\tau}$ are piecewise linear in space, they are exactly integrated by the trapezoidal rule and we
281 easily derive from (1.10) and (2.30) that we have for all n ,

$$282 \quad (\bar{q}_h^n, 1)_h = (\underline{q}_h^n, 1)_h. \quad (2.31)$$

283 The set of primary unknowns is the discrete wetting phase saturation and the discrete wetting phase pressure,
284 S_h^n and $P_{w,h}^n$, defined pointwise at time t_n by:

$$285 \quad S_h^n = \sum_{i=1}^M S^{n,i} \varphi_i, \quad P_{w,h}^n = \sum_{i=1}^M P_w^{n,i} \varphi_i, \quad 1 \leq n \leq N.$$

286 Then the discrete non-wetting phase pressure $P_{o,h}^n$ defined by

$$287 \quad P_{o,h}^n = \sum_{i=1}^M P_o^{n,i} \varphi_i, \quad 1 \leq n \leq N$$

288 is a secondary unknown. The upwind scheme we propose for discretizing (1.2)–(1.3) is inspired by the control
289 volume finite element approach in [19] and by the finite volume scheme in [16]. For each time step n , $1 \leq n \leq N$,
290 the lines of the discrete equations are

$$291 \quad \frac{\tilde{m}_i(\varphi)}{\tau} (S^{n,i} - S^{n-1,i}) - \sum_{j=1}^M c_{ij} \eta_w (S_w^{n,ij}) (P_w^{n,j} - P_w^{n,i}) = m_i (f_w(s_{\text{in}}^{n,i}) \bar{q}^{n,i} - f_w(S^{n,i}) \underline{q}^{n,i}) \quad (2.32)$$

$$292 \quad -\frac{\tilde{m}_i(\varphi)}{\tau} (S^{n,i} - S^{n-1,i}) - \sum_{j=1}^M c_{ij} \eta_o (S_o^{n,ij}) (P_o^{n,j} - P_o^{n,i}) = m_i (f_o(s_{\text{in}}^{n,i}) \bar{q}^{n,i} - f_o(S^{n,i}) \underline{q}^{n,i}) \quad (2.33)$$

$$293 \quad P_o^{n,i} - P_w^{n,i} = p_c(S^{n,i}), \quad 1 \leq i \leq M \quad (2.34)$$

$$294 \quad \sum_{i=1}^M m_i P_w^{n,i} = 0. \quad (2.35)$$

295 Here i runs from 1 to $M - 1$ in (2.32) and from 1 to M in (2.33); the upwind values $S_w^{n,ij}, S_o^{n,ij}$ are defined by

296

$$S_w^{n,ij} = \begin{cases} S^{n,i}, & P_w^{n,i} > P_w^{n,j} \\ S^{n,j}, & P_w^{n,i} < P_w^{n,j} \\ \max(S^{n,i}, S^{n,j}), & P_w^{n,i} = P_w^{n,j} \end{cases} \quad (2.36)$$

297

$$S_o^{n,ij} = \begin{cases} S^{n,i}, & P_o^{n,i} > P_o^{n,j} \\ S^{n,j}, & P_o^{n,i} < P_o^{n,j} \\ \min(S^{n,i}, S^{n,j}), & P_o^{n,i} = P_o^{n,j} \end{cases} \quad (2.37)$$

298 We observe that

299

$$S_w^{n,ij} = S_w^{n,ji}, \quad S_o^{n,ij} = S_o^{n,ji}$$

300 so that, if we interpret in (2.32) (respectively, (2.33)) $\eta_w(S_w^{n,ij})$ (respectively, $\eta_o(S_o^{n,ij})$) as $\tilde{W}^{i,j}$, then (2.20) and
301 hence (2.24) hold.

302 **Remark 2.1.** Before setting (2.32)–(2.35) in variational form, observe that:

303 1. The scheme (2.32)–(2.35) forms a square system in the primary unknowns, S_h^n and $P_{w,h}^n$.
304 2. Formula (2.32) is also valid for $i = M$. Indeed, we pass to the left-hand side the right-hand side of (2.32)
305 and set A^i the resulting line of index i . Let \tilde{A}^M denote what should be the line of index M , i.e.,

306

$$\begin{aligned} \tilde{A}^M &= \frac{\tilde{m}_M(\varphi)}{\tau} (S^{n,M} - S^{n-1,M}) - \sum_{j=1}^M c_{Mj} \eta_w(S_w^{n,Mj}) (P_w^{n,j} - P_w^{n,M}) \\ 307 &\quad - m_M(f_w(s_{\text{in}}^{n,M}) \bar{q}^{n,M} - f_w(S^{n,M}) \underline{q}^{n,M}). \end{aligned}$$

308 Then, in view of (2.24),

309

$$\tilde{A}^M = \sum_{i=1}^{M-1} A^i + \tilde{A}^M = \sum_{i=1}^M \frac{\tilde{m}_i(\varphi)}{\tau} (S^{n,i} - S^{n-1,i}) - \sum_{i=1}^M m_i(f_w(s_{\text{in}}^{n,i}) \bar{q}^{n,i} - f_w(S^{n,i}) \underline{q}^{n,i}).$$

310 By summing in the same fashion the lines of (2.33), we obtain

311

$$\sum_{i=1}^M \frac{\tilde{m}_i(\varphi)}{\tau} (S^{n,i} - S^{n-1,i}) = - \sum_{i=1}^M m_i(f_o(s_{\text{in}}^{n,i}) \bar{q}^{n,i} - f_o(S^{n,i}) \underline{q}^{n,i}).$$

312 A combination of these two equations yields

313

$$\tilde{A}^M = - \sum_{i=1}^M m_i \left((f_w(s_{\text{in}}^{n,i}) + f_o(s_{\text{in}}^{n,i})) \bar{q}^{n,i} - (f_w(S^{n,i}) + f_o(S^{n,i})) \underline{q}^{n,i} \right) = - \sum_{i=1}^M m_i (\bar{q}^{n,i} - \underline{q}^{n,i}) = 0$$

314 by virtue of (1.6), the definition (2.25), and (1.10).

315 3. In (2.32) (respectively, (2.33)), any constant can be added to P_w (respectively, P_o), but in view of (2.34), the
316 constant must be the same for both pressures. The last equation (2.35) is added to resolve this constant.

317 As usual, it is convenient to associate time functions $S_{h,\tau}, P_{\alpha,h,\tau}$ with the sequences indexed by n . These are
318 piecewise constant in time in $]0, T[$, for instance

319

$$P_{\alpha,h,\tau}(t, x) = P_{\alpha,h}^n(x), \quad \alpha = w, o \quad \forall (t, x) \in \Omega \times]t_{n-1}, t_n]. \quad (2.38)$$

320 In view of the material of the previous subsection, we introduce the following form:

321

$$\forall W_h, U_h, V_h, Z_h \in X_h, \quad [Z_h, W_h; V_h, U_h]_h = \sum_{i,j=1}^M U^i c_{ij} \tilde{W}^{ij} (V^j - V^i) \quad (2.39)$$

322 where the first argument Z_h indicates that the choice of \tilde{W}^{ij} depends on Z_h . Such dependence, used for the up-
323 winding, will be specified further on, but it is assumed from now on that \tilde{W}^{ij} satisfies (2.20). Considering (2.24),

324 the form satisfies the following properties,

$$325 \quad \forall Z_h, W_h, V_h \in X_h, \quad [Z_h, W_h; V_h, 1]_h = 0 \quad (2.40)$$

$$326 \quad \forall Z_h, W_h, V_h \in X_h, \quad [Z_h, W_h; V_h, V_h]_h = -\frac{1}{2} \sum_{i,j=1}^M c_{ij} \bar{W}_{ij} (V^i - V^j)^2. \quad (2.41)$$

327 This last property is derived by the same argument as in proving (2.9).

328 With the above notation, and taking into account that (2.32) extends to $i = M$, the scheme (2.32)–(2.35)
329 has the equivalent variational form. Starting from S_h^0 (see (2.28)): Find $S_h^n, P_{w,h}^n$, and $P_{o,h}^n$ in X_h , for $1 \leq n \leq N$,
330 solution of, for all ϑ_h in X_h ,

$$331 \quad \frac{1}{\tau} (S_h^n - S_h^{n-1}, \vartheta_h)_h^\varphi - [P_{w,h}^n, I_h(\eta_w(S_h^n)); P_{w,h}^n, \vartheta_h]_h = (I_h(f_w(S_{in,h}^n)) \bar{q}_h^n - I_h(f_w(S_h^n)) \underline{q}_h^n, \vartheta_h)_h \quad (2.42)$$

$$332 \quad -\frac{1}{\tau} (S_h^n - S_h^{n-1}, \vartheta_h)_h^\varphi - [P_{o,h}^n, I_h(\eta_o(S_h^n)); P_{o,h}^n, \vartheta_h]_h = (I_h(f_o(S_{in,h}^n)) \bar{q}_h^n - I_h(f_o(S_h^n)) \underline{q}_h^n, \vartheta_h)_h \quad (2.43)$$

$$333 \quad P_{o,h}^n - P_{w,h}^n = I_h(p_c(S_h^n)) \quad (2.44)$$

$$334 \quad (P_{w,h}^n, 1)_h = 0 \quad (2.45)$$

335 where the choice of $\eta_w(S_h^n)$ in the left-hand side of (2.42) (respectively, $\eta_o(S_h^n)$ in the left-hand side of (2.43))
336 is given by (2.36) (respectively (2.37)). Strictly speaking, the interpolation operator I_h is introduced in (2.42)
337 and (2.43) because the forms are defined for functions of X_h , but for the sake of simplicity, since only nodal
338 values are used, it may be dropped further on.

339 We shall see that under the above basic hypotheses, the discrete problem (2.42)–(2.45) has at least one
340 solution. In the sequel, we shall use the following discrete auxiliary pressures:

$$341 \quad U_{w,h,\tau} = P_{w,h,\tau} + I_h(p_{wg}(S_{h,\tau})), \quad U_{o,h,\tau} = P_{o,h,\tau} - I_h(p_{og}(S_{h,\tau})). \quad (2.46)$$

342 3 A priori bounds

343 The present section is devoted to basic a priori bounds used in proving existence of a discrete solution. Ex-
344 istence is fairly technical and will be postponed till Section 4. The first step is a key bound on the discrete
345 saturation. In the second step, this bound will lead to a pressure estimate and in particular to a bound on the
346 discrete analogue of auxiliary pressures.

347 3.1 Maximum principle

348 The scheme (2.32)–(2.35) satisfies the maximum principle property. The proof given below uses a standard
349 argument as in [16].

350 **Theorem 3.1.** *The following bounds hold:*

$$351 \quad 0 \leq S_{h,\tau} \leq 1. \quad (3.1)$$

352 *Proof.* As $0 \leq s^0 \leq 1$ almost everywhere, by construction (2.28), we immediately have

$$353 \quad 0 \leq \min_{\Omega} s^0 \leq S_h^0 \leq \max_{\Omega} s^0 \leq 1.$$

354 Now, the proof proceeds by contradiction. Assume that there is an index $n \geq 1$ such that

$$355 \quad S_h^{n-1} \leq 1$$

356 and that there is a node i such that

$$357 \quad S_h^{n,i} = \|S_h^n\|_{L^\infty(\Omega)} > 1$$

358 and thus

$$359 \quad S^{n,i} > S^{n-1,i}.$$

360 Dropping the index n in the rest of the proof, (2.32) and (2.33) imply

$$361 \quad \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} \eta_w(S_w^{ij}) (P_w^j - P_w^i) + m_i (f_w(s_{in}^i) \bar{q}^i - f_w(S^i) \underline{q}^i) > 0 \quad (3.2)$$

$$362 \quad - \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} \eta_o(S_o^{ij}) (P_o^j - P_o^i) - m_i (f_o(s_{in}^i) \bar{q}^i - f_o(S^i) \underline{q}^i) > 0. \quad (3.3)$$

363 We first show that (3.2) holds true with S_w^{ij} replaced by S^i . Indeed if $P_w^i > P_w^j$, then $S_w^{ij} = S^i$. If $P_w^i < P_w^j$, then
364 $S_w^{ij} = S^j$, and as η_w is increasing and by assumption, $S^j \leq S^i$,

$$365 \quad \eta_w(S_w^{ij}) (P_w^j - P_w^i) \leq \eta_w(S^i) (P_w^j - P_w^i).$$

366 Finally, the term vanishes when $P_w^i = P_w^j$. Therefore we have in all cases

$$367 \quad \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} \eta_w(S^i) (P_w^j - P_w^i) + m_i (f_w(s_{in}^i) \bar{q}^i - f_w(S^i) \underline{q}^i) > 0. \quad (3.4)$$

368 A similar argument gives

$$369 \quad - \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} \eta_o(S^i) (P_o^j - P_o^i) - m_i (f_o(s_{in}^i) \bar{q}^i - f_o(S^i) \underline{q}^i) > 0. \quad (3.5)$$

370 The substitution of (2.34) into (3.5) yields

$$371 \quad - \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} \eta_o(S^i) ((P_w^j - P_w^i) + (p_c(S^j) - p_c(S^i))) - m_i (f_o(s_{in}^i) \bar{q}^i - f_o(S^i) \underline{q}^i) > 0. \quad (3.6)$$

372 Since p_c is decreasing and $S^i \geq S^j$, the second term in the above sum is negative. This implies that

$$373 \quad - \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} \eta_o(S^i) (P_w^j - P_w^i) - m_i (f_o(s_{in}^i) \bar{q}^i - f_o(S^i) \underline{q}^i) > 0. \quad (3.7)$$

374 The sum on j cancels by multiplying (3.4) by $\eta_o(S^i)$, (3.7) by $\eta_w(S^i)$, and adding the two. The sign is unchanged
375 because either $\eta_o(S^i)$ or $\eta_w(S^i)$ is strictly positive. Hence,

$$376 \quad m_i \eta_o(S^i) (f_w(s_{in}^i) \bar{q}^i - f_w(S^i) \underline{q}^i) - m_i \eta_w(S^i) (f_o(s_{in}^i) \bar{q}^i - f_o(S^i) \underline{q}^i) > 0.$$

377 By definition of f_w and f_o , this reduces to

$$378 \quad \eta_o(S^i) f_w(s_{in}^i) - \eta_w(S^i) f_o(s_{in}^i) > 0. \quad (3.8)$$

379 Now consider the function:

$$380 \quad r(s) = \eta_o(s) f_w(s_{in}^i) - \eta_w(s) f_o(s_{in}^i). \quad (3.9)$$

381 It is decreasing and $r(s_{in}^i) = 0$. Then, since $S^i > 1 \geq s_{in}^i$, see (1.11), we have

$$382 \quad r(S^i) \leq r(s_{in}^i) = 0$$

383 which contradicts (3.8). The proof of the lower bound in (3.1) follows the same lines. \square

3.2 Pressure bounds

385 The following properties will be used frequently.

386 **Lemma 3.1.** *The fact that p_c is strictly decreasing and (2.34) yield the following:*

387 $P_w^i > P_o^j$, and $P_o^i \leq P_w^j$ implies $S^i \geq S^j$; (3.10)

388 if $P_w^i = P_o^j$, then $P_o^i \geq P_w^j$ if and only if $S^i \leq S^j$; (3.11)

389 if $P_o^i = P_w^j$, then $P_o^i \leq P_w^j$, if and only if $S^i \leq S^j$. (3.12)

390 Let us start with a lower bound that removes the degeneracy caused by the mobilities when they multiply the
391 discrete pressures.

392 **Lemma 3.2.** *Let $U_{w,h}$ be defined by (2.46) with p_{wg} defined in (1.13). We have for all n and any i and j*

393 $\eta_*(U_w^{n,j} - U_w^{n,i})^2 \leq \eta_w(S_w^{n,ij})(P_w^{n,j} - P_w^{n,i})^2 + \eta_o(S_o^{n,ij})(P_o^{n,j} - P_o^{n,i})^2$. (3.13)

394 *Proof.* To simplify the notation, we drop the superscript n . The second mean formula for integrals gives

395 $p_{wg}(S^j) - p_{wg}(S^i) = \int_{S^i}^{S^j} f_o(s) p'_c(s) ds = f_o(\xi)(p_c(S^j) - p_c(S^i))$ (3.14)

396 for some ξ between S^i and S^j . Using (2.34) we write

397 $U_w^j - U_w^i = (1 - f_o(\xi))(P_w^j - P_w^i) + f_o(\xi)(P_o^j - P_o^i) = f_w(\xi)(P_w^j - P_w^i) + f_o(\xi)(P_o^j - P_o^i)$.

398 Therefore since $f_w + f_o = 1$, we have

399 $(U_w^j - U_w^i)^2 \leq \frac{\eta_w(\xi)}{\eta_w(\xi) + \eta_o(\xi)}(P_w^j - P_w^i)^2 + \frac{\eta_o(\xi)}{\eta_w(\xi) + \eta_o(\xi)}(P_o^j - P_o^i)^2$. (3.15)

400 We now consider the following six cases.

401 1. If $P_w^i > P_w^j$ and $P_o^i \leq P_o^j$, then $\eta_w(S_w^{ij}) = \eta_w(S^i)$ and $\eta_o(S_o^{ij}) = \eta_o(S^j)$ when $P_o^i < P_o^j$; when $P_o^i = P_o^j$, the
402 value of η_o does not matter. From (3.10) we then have $S^i \geq S^j$. Since η_w is increasing, $\eta_w(\xi) \leq \eta_w(S^i)$ and
403 since η_o is decreasing, $\eta_o(\xi) \leq \eta_o(S^j)$. Thus we have

404 $(U_w^j - U_w^i)^2 \leq \frac{\eta_w(S_w^{ij})}{\eta_w(\xi) + \eta_o(\xi)}(P_w^j - P_w^i)^2 + \frac{\eta_o(S_o^{ij})}{\eta_w(\xi) + \eta_o(\xi)}(P_o^j - P_o^i)^2$

405 and with (1.9)

406 $(U_w^j - U_w^i)^2 \leq \frac{1}{\eta_*} \left(\eta_w(S_w^{ij})(P_w^j - P_w^i)^2 + \eta_o(S_o^{ij})(P_o^j - P_o^i)^2 \right)$. (3.16)

407 2. If $P_w^i > P_w^j$ and $P_o^i > P_o^j$, then $\eta_w(S_w^{ij}) = \eta_w(S^i)$ and $\eta_o(S_o^{ij}) = \eta_o(S^i)$. From

408 $\eta_o(S^i)(p_c(S^j) - p_c(S^i)) = (\eta_o(S^i) + \eta_w(S^i)) \int_{S^i}^{S^j} f_o(S^i) p'_c(s) ds$

409 and (3.14), we derive

410 $\eta_o(S^i)(p_c(S^j) - p_c(S^i)) - (\eta_o(S^i) + \eta_w(S^i))(p_{wg}(S^j) - p_{wg}(S^i))$
411 $= (\eta_o(S^i) + \eta_w(S^i)) \int_{S^i}^{S^j} (f_o(S^i) - f_o(s)) p'_c(s) ds$.

412 As p_c and f_o are decreasing, the above right-hand side is negative. Hence

413 $\eta_o(S^i)(p_c(S^j) - p_c(S^i)) - (\eta_o(S^i) + \eta_w(S^i))(p_{wg}(S^j) - p_{wg}(S^i)) \leq 0$. (3.17)

414 We multiply (3.17) by $(P_o^j - P_o^i) + (P_w^j - P_w^i) < 0$ and use (2.34),

415 $(\eta_o(S^i)(p_c(S^j) - p_c(S^i)) - (\eta_o(S^i) + \eta_w(S^i))(p_{wg}(S^j) - p_{wg}(S^i))) \left(2(P_w^j - P_w^i) + p_c(S^j) - p_c(S^i) \right) \geq 0$.

416 By expanding and using the next inequality implied by (3.14), if $f_o(\xi) \neq 0$,

417 $(p_{wg}(S^j) - p_{wg}(S^i))(p_c(S^j) - p_c(S^i)) \geq (p_{wg}(S^j) - p_{wg}(S^i))^2$

418 we obtain

$$\begin{aligned} 419 \quad \eta_o(S^i)(p_c(S^j) - p_c(S^i))^2 + 2\eta_o(S^i)(p_c(S^j) - p_c(S^i))(P_w^j - P_w^i) \\ 420 \quad \geq (\eta_o(S^i) + \eta_w(S^i))(p_{wg}(S^j) - p_{wg}(S^i)) \left(2(P_w^j - P_w^i) + p_{wg}(S^j) - p_{wg}(S^i) \right). \end{aligned}$$

421 When $(\eta_o(S^i) + \eta_w(S^i))(P_w^j - P_w^i)^2$ is added to both sides, this becomes

$$422 \quad \eta_w(S^i)(P_w^j - P_w^i)^2 + \eta_o(S^i)(P_o^j - P_o^i)^2 \geq (\eta_o(S^i) + \eta_w(S^i))(U_w^j - U_w^i)^2$$

423 and (1.9) implies the desired result. It remains to consider the case $f_o(\xi) = 0$, i.e., $p_{wg}(S^j) = p_{wg}(S^i)$. If
424 $\eta_o(S^i) \neq 0$, then (3.17) yields

$$425 \quad p_c(S^j) - p_c(S^i) \leq 0, \text{ which implies } P_o^i - P_o^j \geq P_w^i - P_w^j$$

426 and we deduce immediately

$$427 \quad \eta_w(S^i)(P_w^j - P_w^i)^2 + \eta_o(S^i)(P_o^j - P_o^i)^2 \geq (\eta_w(S^i) + \eta_o(S^i))(P_w^j - P_w^i)^2 \geq \eta_*(P_w^j - P_w^i)^2.$$

428 When $\eta_o(S^i) = 0$, we have trivially

$$429 \quad \eta_w(S^i)(P_w^j - P_w^i)^2 + \eta_o(S^i)(P_o^j - P_o^i)^2 = \eta_w(S^i)(P_w^j - P_w^i)^2 \geq \eta_*(P_w^j - P_w^i)^2.$$

430 3. If $P_w^i \leq P_w^j$ and $P_o^i > P_o^j$, then $\eta_w(S_w^{ij}) = \eta_w(S^j)$ and $\eta_o(S_o^{ij}) = \eta_o(S^i)$ in the case of a strict inequality; also
431 $S^i \leq S^j$. Then (3.15) and the monotonic properties of η_w and η_o yield (3.13). If $P_w^i = P_w^j$, then according
432 to (3.11), $S^i \leq S^j$ and the same conclusion holds.

433 4. If $P_w^i \leq P_w^j$ and $P_o^i = P_o^j$, then from (3.12), we have $S^i \leq S^j$ and with (3.15):

$$434 \quad (U_w^j - U_w^i)^2 \leq \frac{\eta_w(\xi)}{\eta_w(\xi) + \eta_o(\xi)}(P_w^j - P_w^i)^2 \leq \frac{\eta_w(S_w^{ij})}{\eta_w(\xi) + \eta_o(\xi)}(P_w^j - P_w^i)^2$$

435 which is the desired result.

436 5. Similarly, if $P_w^i = P_w^j$ and $P_o^i < P_o^j$, then from (3.11), we have $S^j \leq S^i$ and with (3.15):

$$437 \quad (U_w^j - U_w^i)^2 \leq \frac{\eta_o(\xi)}{\eta_w(\xi) + \eta_o(\xi)}(P_o^j - P_o^i)^2 \leq \frac{\eta_o(S_o^{ij})}{\eta_w(\xi) + \eta_o(\xi)}(P_o^j - P_o^i)^2.$$

438 6. If $P_w^i < P_w^j$ and $P_o^i < P_o^j$, (3.13) follows from the second case by switching i and j .

439 This completes the proof. □

440 The pressure bound in the next theorem is the one that arises naturally from the left-hand side of (2.42)
441 and (2.43).

442 **Theorem 3.2.** *There exists a constant C , independent of h and τ , such that*

$$443 \quad \tau \sum_{n=1}^N \sum_{i,j=1}^M c_{ij} \left(\eta_w(S_w^{n,ij})(P_w^{n,i} - P_w^{n,j})^2 + \eta_o(S_o^{n,ij})(P_o^{n,i} - P_o^{n,j})^2 \right) \leq C. \quad (3.18)$$

444 *Proof.* We test (2.42) by $P_{w,h}^n$, (2.43) by $P_{o,h}^n$, add the two equations, multiply by τ and sum over n from 1 to N .
445 By using (2.44) and (2.41), we obtain

$$\begin{aligned} 446 \quad & - \sum_{n=1}^N (S_h^n - S_h^{n-1}, p_c(S_h^n))_h^\varphi + \frac{1}{2} \sum_{n=1}^N \tau \sum_{\alpha=w,o} \sum_{i,j=1}^M c_{ij} \eta_\alpha(S_\alpha^{n,ij})(P_\alpha^{n,i} - P_\alpha^{n,j})^2 \\ & = \sum_{n=1}^N \tau \sum_{\alpha=w,o} (f_\alpha(s_{in,h}^n) \bar{q}_h^n - f_\alpha(S_h^n) q_h^n, P_{\alpha,h}^n)_h. \end{aligned} \quad (3.19)$$

447 Following [16], the first term in (3.19) is treated with the primitive g_c of p_c , see (1.12). Indeed, by the mean-value
448 theorem, there exists ξ between $S^{n,i}$ and $S^{n-1,i}$ such that

$$449 \quad g_c(S^{n,i}) - g_c(S^{n-1,i}) = -(S^{n,i} - S^{n-1,i})p_c(\xi).$$

450 As the function p_c is decreasing, then $p_c(\xi) \geq p_c(S^{n,i})$ when $S^{n,i} \geq S^{n-1,i}$ and $p_c(\xi) \leq p_c(S^{n,i})$ when $S^{n,i} \leq$
451 $S^{n-1,i}$. In both cases, we have

$$452 \quad g_c(S^{n,i}) - g_c(S^{n-1,i}) \leq -(S^{n,i} - S^{n-1,i})p_c(S^{n,i})$$

453 and owing that φ is positive and constant in time, (3.19) can be replaced by the inequality

$$454 \quad \begin{aligned} (g_c(S_h^N) - g_c(S_h^0), 1)_h^\varphi + \frac{1}{2} \sum_{n=1}^N \tau \sum_{\alpha=w,o} \sum_{i,j=1}^M c_{ij} \eta_\alpha(S_\alpha^{n,ij}) (P_\alpha^{n,i} - P_\alpha^{n,j})^2 \\ \leq \sum_{n=1}^N \tau \sum_{\alpha=w,o} (f_\alpha(s_{\text{in},h}^n) \bar{q}_h^n - f_\alpha(S_h^n) \underline{q}_h^n, P_{\alpha,h}^n)_h. \end{aligned} \quad (3.20)$$

455 As the first term in the above left-hand side is bounded, owing to the continuity of g_c and boundedness of
456 $S_{h,\tau}$, it suffices to handle the right-hand side. Let us drop the superscript n and treat one term in the time
457 sum. Following again [16], in view of Lemma 3.2 we use the auxiliary pressures p_{wg} and p_{wo} , defined in (1.13).
458 Clearly, (1.15) and (2.34) imply

$$459 \quad P_w^i + p_{wg}(S^i) + p_{og}(S^i) + p_c(0) = P_o^i \quad \forall i. \quad (3.21)$$

460 Using this, a generic term, say Y , in the right-hand side of (3.20) can be expressed as

$$461 \quad Y = (\bar{q}_h - \underline{q}_h, U_{w,h})_h + (f_o(s_{\text{in},h}) \bar{q}_h - f_o(S_h) \underline{q}_h, p_c(0))_h \\ 462 \quad + (f_o(s_{\text{in},h}) \bar{q}_h - f_o(S_h) \underline{q}_h, p_{og}(S_h))_h - (f_w(s_{\text{in},h}) \bar{q}_h - f_w(S_h) \underline{q}_h, p_{wg}(S_h))_h = T_1 + \dots + T_4.$$

463 We now bound each term T_i . For T_1 , (2.31) implies that any constant β can be added to $U_{w,h}$, in particular
464 β can be chosen so that the sum has zero mean value in Ω . Hence, considering the generalized Poincaré
465 inequality

$$466 \quad \forall v \in H^1(\Omega), \quad \|v\|_{L^2(\Omega)} \leq C \left(\left| \int_\Omega v \right| + \|\nabla v\|_{L^2(\Omega)} \right) \quad (3.22)$$

467 with a constant C , depending only on the domain Ω , we have

$$468 \quad \|U_{w,h} + \beta\|_h \leq C \|U_{w,h} + \beta\|_{L^2(\Omega)} \leq C \|\nabla U_{w,h}\|_{L^2(\Omega)}$$

469 with another constant C . Then Young's inequality yields

$$470 \quad |T_1| \leq \frac{C^2}{2\eta_*} \|\bar{q}_h - \underline{q}_h\|_h^2 + \frac{\eta_*}{4} \|\nabla U_{w,h}\|_{L^2(\Omega)}^2$$

471 and with Lemma 3.2, this becomes

$$472 \quad |T_1| \leq \frac{C^2}{2\eta_*} \|\bar{q}_h - \underline{q}_h\|_h^2 + \frac{1}{4} \sum_{i,j=1}^M c_{ij} \left(\eta_w(S^{ij}) (P_w^j - P_w^i)^2 + \eta_o(S^{ij}) (P_o^j - P_o^i)^2 \right).$$

473 The term T_2 is easily bounded since $p_c(0)$ is a number, and so are the terms T_3 and T_4 , in view of the bound-
474 edness of the saturation and the continuity of p_{og} and p_{wg} . We thus have

$$475 \quad |T_2 + T_3 + T_4| \leq C (\|\bar{q}_h\|_{L^1(\Omega)} + \|\underline{q}_h\|_{L^1(\Omega)}).$$

476 Then substituting these bounds for each n into (3.20), we obtain

$$477 \quad \begin{aligned} \frac{1}{4} \tau \sum_{n=1}^N \sum_{i,j=1}^M c_{ij} (\eta_w(S_w^{n,ij}) (P_w^{n,i} - P_w^{n,j})^2 + \eta_o(S_o^{n,ij}) (P_o^{n,i} - P_o^{n,j})^2) \\ 478 \leq C (\|\bar{q}_{h,\tau} - \underline{q}_{h,\tau}\|_{L^2(\Omega \times [0, T])}^2 + \|\bar{q}_{h,\tau}\|_{L^1(\Omega \times [0, T])} + \|\underline{q}_{h,\tau}\|_{L^1(\Omega \times [0, T])}) \end{aligned}$$

479 thus proving (3.18). \square

480 By combining Theorem 3.2 with Lemma 3.2, we immediately derive a bound on the discrete auxiliary pres-
481 sures. The bound (3.23) with $\alpha = o$ follows from the same with $\alpha = w$, (1.15), and (2.34).

482 **Theorem 3.3.** *For $\alpha = w, o$ we have*

$$483 \quad \eta_* \|\nabla U_{\alpha, h, \tau}\|_{L^2(\Omega \times [0, T])}^2 \leq C \quad (3.23)$$

484 *with the constant C of (3.18).*

485 4 Existence of numerical solution

486 We fix $n \geq 1$ and assume there exists a solution $(S_h^{n-1}, P_{w,h}^{n-1})$ at time t^{n-1} with $0 \leq S_h^{n-1} \leq 1$. We want to show
487 existence of a solution $(S_h^n, P_{w,h}^n)$ by means of the topological degree [12, 13].

488 Let ϑ be a constant parameter in $[0, 1]$. For any continuous function $f : [0, 1] \rightarrow \mathbb{R}$ and any $t \in [0, 1]$, we
489 define the transformed function $\tilde{f} : [0, 1] \rightarrow \mathbb{R}$ by

$$490 \quad \forall s \in [0, 1], \quad \tilde{f}(s) = f(ts + (1 - t)\vartheta).$$

491 Since ϑ is fixed, when $t = 0$, $\tilde{f}(s) = f(\vartheta)$, a constant independent of s . Now, (2.45) implies that any solution
492 $P_{w,h,\tau}$ of (2.42)–(2.45) belongs to the following subspace $X_{0,h}$ of X_h ,

$$493 \quad X_{0,h} = \left\{ \Lambda_h \in X_h; \int_{\Omega} \Lambda_h = 0 \right\}. \quad (4.1)$$

494 This suggests to define the mapping $\mathcal{F} : [0, 1] \times X_h \times X_{0,h} \rightarrow X_h \times X_{0,h}$ by

$$495 \quad \mathcal{F}(t, \zeta, \Lambda) = (A_h, A_h + B_h)$$

496 where A_h , respectively B_h , solves for all $\Theta_h \in X_h$,

$$497 \quad (A_h, \Theta_h) = \frac{1}{\tau} (\zeta_h - S_h^{n-1}, \Theta_h)_h^{\varphi} - [\Lambda_h, I_h(\widetilde{\eta_w}(\zeta_h)); \Lambda_h, \Theta_h]_h \\ 498 \quad - (I_h(\widetilde{f_w}(s_{in,h}^n)) t \bar{q}_h^n - I_h(\widetilde{f_w}(\zeta_h)) t \underline{q}_h^n, \Theta_h)_h \quad (4.2)$$

$$499 \quad (B_h, \Theta_h) = -\frac{1}{\tau} (\zeta_h - S_h^{n-1}, \Theta_h)_h^{\varphi} - [P_{o,h}, I_h(\widetilde{\eta_o}(\zeta_h)); P_{o,h}, \Theta_h]_h \\ 500 \quad - (I_h(\widetilde{f_o}(s_{in,h}^n)) t \bar{q}_h^n - I_h(\widetilde{f_o}(\zeta_h)) t \underline{q}_h^n, \Theta_h)_h \quad (4.3)$$

501 and $P_{o,h}$ is defined by

$$502 \quad P_{o,h} = \Lambda_h - I_h(\widetilde{p_c}(\zeta_h)). \quad (4.4)$$

503 The choice of $\widetilde{\eta_w}(\zeta_h)$ in (4.2) (respectively $\widetilde{\eta_o}(\zeta_h)$ in (4.3)) is given by (2.36) (respectively (2.37)) where Λ_h plays
504 the role of $P_{w,h}$ and $P_{o,h}$ is defined in (4.4). As in (2.36) and (2.37), it leads us to introduce the variables ζ_w^{ij} and
505 ζ_o^{ij} for all $1 \leq i, j \leq M$. Clearly, (4.2)–(4.4) determine uniquely A_h and B_h , and it is easy to check that $A_h + B_h$
506 belongs to $X_{0,h}$.

507 The mapping $t \mapsto \mathcal{F}(t, \zeta_h, \Lambda_h)$ is continuous. Indeed, since the space has finite dimension, we only need
508 to check continuity of the upwinding. By splitting x into its positive and negative part, $x = x^+ + x^-$, the upwind
509 term, say $\widetilde{\eta_w}(\zeta_w^{ij})(P_w^j - P_w^i)$ reads

$$510 \quad \widetilde{\eta_w}(\zeta_w^{ij})(P_w^j - P_w^i) = \eta_w(t\zeta^i + (1 - t)\vartheta)((P_w^j - P_w^i)_-) + \eta_w(t\zeta^j + (1 - t)\vartheta)((P_w^j - P_w^i)_+)$$

511 which is continuous with respect to t .

512 We remark that $\mathcal{F}(1, \zeta_h, \Lambda_h) = \mathbf{0}$ implies that (ζ_h, Λ_h) solves (2.42)–(2.45). Conversely, if (ζ_h, Λ_h) solves
513 (2.42)–(2.45) then $\mathcal{F}(1, \zeta_h, \Lambda_h) = \mathbf{0}$. Thus, showing existence of a solution to the problem (2.42)–(2.45) is equiv-
514 alent to showing existence of a zero of $\mathcal{F}(1, \zeta_h, \Lambda_h)$. Before proving existence of a zero, we use the estimates
515 established in the previous section to determine an a priori bound of any zero (ζ_h, Λ_h) of $\mathcal{F}(1, \zeta_h, \Lambda_h)$.

516 **4.1 A priori bounds on (ζ_h, Λ_h)** 517 In the following we consider $t \in [0, 1]$ and $(\zeta_h, \Lambda_h) \in X_h \times X_{0,h}$ that satisfy

518
$$\mathcal{F}(t, \zeta_h, \Lambda_h) = \mathbf{0}. \quad (4.5)$$

519 We first show that ζ_h satisfies a maximum principle.520 **Proposition 4.1.** The following bounds hold for all (t, ζ_h, Λ_h) satisfying (4.5):

521
$$0 \leq \zeta_h \leq 1. \quad (4.6)$$

522 *Proof.* Either $t \in]0, 1]$ or $t = 0$. The proof for $t \in]0, 1]$ follows closely the argument used in proving Theorem 3.1 and is left to the reader. For $t = 0$ we proceed again by contradiction. Assume first that $\|\zeta_h\|_{L^\infty(\Omega)} > 1$, i.e., there is a node i such that

525
$$\zeta^i = \|\zeta_h\|_{L^\infty(\Omega)} > 1 \geq S^{n-1,i}.$$

526 As $t = 0$, (4.5) reduces to

527
$$\sum_{j \neq i} c_{ij} \eta_w(\vartheta)(\Lambda^i - \Lambda^j) > 0, \quad - \sum_{j \neq i} c_{ij} \eta_o(\vartheta)(\Lambda^i - \Lambda^j) > 0 \quad \forall 1 \leq i \leq M.$$

528 Since η_o and η_w are non-negative functions satisfying (1.9), the inequalities above yield a contradiction. A similar argument is used to show that $\zeta_h \geq 0$. \square 530 Next we show the following bound on Λ_h .531 **Proposition 4.2.** There is a constant C such that for all $t \in [0, 1]$ we have

532
$$\eta_* \sum_{i,j=1}^M c_{ij} (\Lambda^j - \Lambda^i + p_{wg}(t\zeta^j + (1-t)\vartheta) - p_{wg}(t\zeta^i + (1-t)\vartheta))^2 \leq C. \quad (4.7)$$

533 *Proof.* The proof follows closely that of Theorem 3.2. First we show there exists a constant C_1 independent of t such that

535
$$\sum_{i,j=1}^M c_{ij} (\eta_w(t\zeta_w^{ij} + (1-t)\vartheta)(\Lambda^j - \Lambda^i)^2 + \eta_o(t\zeta_o^{ij} + (1-t)\vartheta)(P_{o,h}^j - P_{o,h}^i)^2) \leq C_1$$

536 with $P_{o,h}$ defined in (4.4). This bound is obtained via arguments similar to those used in proving Theorem 3.2. 537 The main difference is that the formula is neither summed over n nor multiplied by the time step τ . As a 538 consequence, the constant C_1 includes a term of the form $\tau^{-1} \|g_c\|_{L^\infty(\Omega)}$ arising from the bound of the discrete 539 time derivative. To finish the proof we must show that

540
$$\begin{aligned} \eta_* (\Lambda^j - \Lambda^i + p_{wg}(t\zeta^j + (1-t)\vartheta) - p_{wg}(t\zeta^i + (1-t)\vartheta))^2 \\ \leq \eta_w(t\zeta_w^{ij} + (1-t)\vartheta)(\Lambda^j - \Lambda^i)^2 + \eta_o(t\zeta_o^{ij} + (1-t)\vartheta)(P_o^j - P_o^i)^2. \end{aligned}$$

542 By (1.9), this is trivially satisfied when $t = 0$. When $t \in]0, 1]$, the argument is the same as in the proof of 543 Lemma 3.2. \square 544 Propositions 4.1 and 4.2 are combined to obtain a bound on $\|\zeta_h\|_h + \|\Lambda_h\|_h$.545 **Proposition 4.3.** There exists a constant $R_1 > 0$, independent of $t \in [0, 1]$, such that any solution (ζ_h, Λ_h) 546 of (4.5) satisfies

547
$$\|\zeta_h\|_h + \|\Lambda_h\|_h \leq R_1. \quad (4.8)$$

548 *Proof.* According to Proposition 4.1, there exists a constant C_1 independent of t such that

549
$$\|\zeta_h\|_h \leq C_1.$$

550 To establish a bound on $\|\Lambda_h\|_h$, we infer from (1.13) that the function $|p_{wg}|$ is bounded by $p_c(0) - p_c(1)$ be-
 551 cause f_o is bounded by one and p_c is a decreasing function. Thus (4.7) implies that there exists a constant C_2
 552 independent of t that satisfies

$$553 \quad \sum_{i,j=1}^M c_{ij} (\Lambda^j - \Lambda^i)^2 \leq C_2, \quad \text{i.e., } \|\nabla \Lambda_h\|_{L^2(\Omega)} \leq \frac{\sqrt{C_2}}{\sqrt{2}} \quad (4.9)$$

554 owing to (2.10). As $\Lambda_h \in X_{0,h}$, the generalized Poincaré inequality (3.22) shows there exists a constant C_3
 555 independent of t such that

$$556 \quad \|\Lambda_h\|_{L^2(\Omega)} \leq C_3.$$

557 Then the equivalence of norm (2.5) yields

$$558 \quad \|\Lambda_h\|_h \leq C_4$$

559 and (4.8) follows by setting $R_1 = C_1 + C_4$, a constant independent of t . \square

560 4.2 Proof of existence

561 For any $R > 0$, let B_R denote the ball

$$562 \quad B_R = \{(\zeta_h, \Lambda_h) \in X_h \times X_{0,h}; \|\zeta_h\|_h + \|\Lambda_h\|_h \leq R\} \quad (4.10)$$

563 and let $R_0 = R_1 + 1$, where R_1 is the constant of (4.8). Since all solutions (ζ_h, Λ_h) of (4.5) are in the ball B_{R_1} , this
 564 function has no zero on the boundary ∂B_{R_0} . Existence of a solution of (2.42)–(2.45) follows from the following
 565 result.

566 **Theorem 4.1.** *The equation $\mathcal{F}(1, \zeta_h, \Lambda_h) = \mathbf{0}$ has at least one solution $(\zeta_h, \Lambda_h) \in B_{R_0}$.*

567 *Proof.* The proof proceeds in two steps. First, we show that the system with $t = 0$ has a solution:

$$568 \quad \mathcal{F}(0, \zeta_h, \Lambda_h) = \mathbf{0}.$$

569 This is a square linear system in finite dimension, so existence is equivalent to uniqueness. Thus we assume
 570 that it has two solutions, and for convenience, we still denote by (ζ_h, Λ_h) the difference between the two
 571 solutions. The system reads

$$572 \quad \frac{\tilde{m}_i}{\tau} \zeta_h^i - \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} \eta_w(\vartheta) (\Lambda^j - \Lambda^i) = 0, \quad 1 \leq i \leq M \quad (4.11)$$

$$573 \quad -\frac{\tilde{m}_i}{\tau} \zeta_h^i - \sum_{j \neq i, j \in \mathcal{N}(i)} c_{ij} \eta_o(\vartheta) (\Lambda^j - \Lambda^i) = 0, \quad 1 \leq i \leq M \quad (4.12)$$

$$574 \quad \sum_i m_i \Lambda^i = 0. \quad (4.13)$$

575 We add the first two equations, multiply by Λ^i , and sum over i . Then (2.10) and (2.41) imply that Λ_h is a
 576 constant and finally (4.13) shows that this constant is zero. This yields $\zeta_h = \mathbf{0}$.

577 Next, we argue on the topological degree. Since the topological degree of a linear map is the sign of its
 578 determinant, we have, by denoting d the degree,

$$579 \quad d(\mathcal{F}(0, \zeta_h, \Lambda_h), B_{R_0}, \mathbf{0}) \neq 0.$$

580 We also know that $d(\mathcal{F}(t, \zeta_h, \Lambda_h), B_{R_0}, \mathbf{0})$ is independent of t since the mapping $t \mapsto \mathcal{F}(t, \zeta_h, \Lambda_h)$ is continuous
 581 and for every $t \in [0, 1]$, if $\mathcal{F}(t, \zeta_h, \Lambda_h) = \mathbf{0}$, then (ζ_h, Λ_h) does not belong to ∂B_{R_0} . Therefore we have

$$582 \quad d(\mathcal{F}(1, \zeta_h, \Lambda_h), B_{R_0}, \mathbf{0}) = d(\mathcal{F}(0, \zeta_h, \Lambda_h), B_{R_0}, \mathbf{0}) \neq 0.$$

583 This implies that $\mathcal{F}(1, \zeta_h, \Lambda_h)$ has a zero $(\zeta_h, \Lambda_h) \in B_{R_0}$. \square

584

5 Numerical validation

585 The present section proposes a numerical validation of our algorithm with a two dimensional finite difference code. Details on the algorithm implemented are given. A problem with manufactured solutions is then
 586 considered to study the convergence properties of our algorithm.
 587

588

5.1 Implementation of the model

589 The scheme developed in Section 2.3 is linearized by time lagging the saturation, by using (2.34) to eliminate
 590 P_o and by approximating p_c^{n+1} by a first order Taylor expansion. More precisely, p_c^{n+1} is approximated by

$$591 \quad p_c^{*,n+1} = p_c^n + \left(\frac{\partial p_c}{\partial S} \right)^n (S^{n+1} - S^n). \quad (5.1)$$

592 Thus, for each node $1 \leq i \leq M$, the unknowns $(S^{n+1,i}, P_w^{n+1,i})$ are computed as the solution of the following
 593 problem:

$$594 \quad \frac{\tilde{m}_i}{\tau} (S^{n+1,i} - S^{n,i}) - \sum_{j \neq i, j \in N(i)} c_{ij} \eta_w (S_w^{n,ij}) (P_w^{n+1,j} - P_w^{n+1,i}) = m_i f_1^{n+1,i}, \quad 1 \leq i \leq M$$

595
 596

$$597 \quad - \frac{\tilde{m}_i}{\tau} (S^{n+1,i} - S^{n,i}) - \sum_{j \neq i, j \in N(i)} c_{ij} \eta_o (S_o^{n,ij}) (P_w^{n+1,j} - P_w^{n+1,i}) - \sum_{j \neq i, j \in N(i)} c_{ij} \eta_o (S_o^{n,ij}) (p_c^{*,n+1,j} - p_c^{*,n+1,i}) = m_i f_2^{n+1,i}, \quad 1 \leq i \leq M$$

598
 599 We note that to facilitate the implementation of this algorithm in a two dimensional finite difference code,
 600 the source terms of the equations (2.32)–(2.33) have been replaced by functions denoted by f_1 and f_2 .

601

5.2 Numerical test with a manufactured solution

602 The numerical validation of the algorithm is done by approximating the analytical solutions defined by

$$603 \quad P_w(t, x, y) = 2 + x^2 y - y^2 + x^2 \sin(t + y) \quad (5.2)$$

$$604 \quad S(t, x, y) = 0.2(2 + 2xy + \cos(t + x)) \quad (5.3)$$

605 on the computational domain $\Omega = [0, 1]^2$. Dirichlet boundary conditions are applied on $\partial\Omega$ on both un-
 606 knowns P_w and S . The initial conditions of the problem satisfy (5.2)–(5.3). The porosity of the domain is set
 607 to:

$$608 \quad \varphi(t, x, y) = 0.2(1 + xy). \quad (5.4)$$

609 The mobilities η_w and η_o , introduced in Section 1.1, are defined as follows:

$$610 \quad \eta_w(s) = 4s^2, \quad \eta_o(s) = 0.4(1 - s)^2. \quad (5.5)$$

611 The capillary pressure is based on the Brooks–Corey model, it reads:

$$612 \quad p_c(s) = \begin{cases} 50s^{-1/2} & \text{if } s > 0.05 \\ 25(0.05)^{-1/2}(3 - s/0.05) & \text{otherwise.} \end{cases} \quad (5.6)$$

613 The term sources f_1 and f_2 are computed accordingly. The convergence tests are performed on a set of six
 614 structured grids. The coarsest grid is made of 5×5 squares and each square is divided into 2 triangles. Then,

L^2 -norm of error		Water pressure P_w		Water saturation S	
$h/\sqrt{2}$	n_{df}	Error	Rate	Error	Rate
0.2	36	8.50E-3	—	4.21E-3	—
0.1	121	4.15E-3	1.03	2.30E-3	0.87
0.05	441	2.08E-3	1.00	1.14E-4	1.01
0.025	1681	1.04E-3	1.00	5.57E-4	1.03
0.0125	6561	5.23E-4	0.99	2.75E-4	1.02

Tab. 1: Results of convergence tests where the mesh size is denoted by h and the number of degrees of freedom per unknown by n_{df} . The time step τ is set to h and errors are computed at final time $T = 1$.

615 we uniformly refine the mesh by dividing each into four triangles to obtain the second structured grid. We
616 continue this process until all the six grids have been constructed. The convergence properties are evaluated
617 by using a time step τ set to the mesh size h with a final time $T = 1$. As the time derivatives and the saturations
618 $S_w^{n+1,ij}, S_o^{n+1,ij}$ are computed with first order time approximation, we expect the convergence rate in the L^2
619 norm to be of order one.

620 The results of the convergence tests are presented in Table 1. The theoretical order of convergence, equal
621 to one, is recovered for both unknowns which confirms the correct behavior of the algorithm.

622 6 Conclusions

623 This paper formulates a \mathbb{P}_1 finite element method to solve the immiscible two-phase flow problem in porous
624 media. The unknowns are the phase pressure and saturation, which are the preferred unknowns in industrial
625 reservoir simulators. The numerical method employs mass lumping for integration and an upwind flux tech-
626 nique. In this paper, we prove existence of the numerical solutions and some stability bounds. We also show
627 that the numerical saturation is bounded between zero and one. The convergence analysis is to be presented
628 in the second part of the paper.

629 **Funding:** The work of the second author was supported in part by NSF-DMS 1913291.

630 References

- 631 [1] H. W. Alt and E. Di Benedetto, Nonsteady flow of water and oil through inhomogeneous porous media, *Annali della Scuola
632 Normale Superiore di Pisa-Classe di Scienze* **12** (1985), No. 3, 335–392.
- 633 [2] T. Arbogast, The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incom-
634 pressible flow, *Nonlinear Analysis, Theory, Models & Applications* **19** (1992), No. 11, 1009–1031.
- 635 [3] T. Arbogast and M. F. Wheeler, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow
636 in porous media, *SIAM J. Numer. Anal.* **33** (1996), No. 4, 1669–1687.
- 637 [4] K. Aziz and A. Settari, *Petroleum Reservoir Simulation*, Appl. Sci. Publ. Ltd., London, 1979.
- 638 [5] P. Bastian, A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capil-
639 lary pressure, *Comput. Geosci.* **18** (2014), No. 5, 779–796.
- 640 [6] J. Casado-Díaz, T. Chacón Rebollo, V. Girault, M. Gómez Marmol, and F. Murat, Finite elements approximation of second
641 order linear elliptic equations in divergence form with right-hand side in L^1 , *Numerische Mathematik* **105** (2007), No. 3,
642 337–374.
- 643 [7] G. Chavent, A new formulation of diphasic incompressible flows in porous media, In: *Applications of Methods of Func-
644 tional Analysis to Problems in Mechanics*, Vol. 503, Springer, Berlin–Heidelberg, 1976, pp. 258–270.
- 645 [8] G. Chavent and J. Jaffré, *Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and
646 Multicomponent Flows Through Porous Media*, Elsevier, 1986.
- 647 [9] Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution, *J. Differ.
648 Equ.*, **171** (2001), No. 2, 203–232.
- 649 [10] Z. Chen and R. Ewing, Mathematical analysis for reservoir models, *SIAM J. Numer. Anal.*, **30** (1999), No. 2, 431–453.

650 [11] Z. Chen and R.E. Ewing, Degenerate two-phase incompressible flow, III. Sharp error estimates, *Numerische Mathematik*
651 **90** (2001), No. 2, 215–240.

652 [12] K. Deimling, *Nonlinear Functional Analysis*, Dover Publications, Mineola, New York, 1985.

653 [13] G. Dinca and J. Mawhin, *Brouwer Degree and Applications*, Laboratoire Jacques-Louis Lions, Université Paris VI, Report,
654 2009.

655 [14] J. Douglas, Jr., Finite difference methods for two-phase incompressible flow in porous media, *SIAM J. Numer. Anal.* **20**
656 (1983), No. 4, 681–696.

657 [15] Y. Epshteyn and B. Riviere, Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow, *J. Comput.*
658 *Appl. Math.*, **225** (2009), 487–509.

659 [16] R. Eymard, R. Herbin, and A. Michel, Mathematical study of a petroleum-engineering scheme, *ESAIM: Math. Modelling*
660 *Numer. Anal.*, **37** (2003), No. 6, 937–972.

661 [17] R. Eymard, D. Hilhorst, and M. Vohralík, A combined finite volume–nonconforming/mixed-hybrid finite element scheme
662 for degenerate parabolic problems, *Numerische Mathematik*, **105** (2006), No. 1, 73–131.

663 [18] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, *Handbook of Numerical Analysis*, **7** (2000), 713–1018.

664 [19] P. A. Forsyth, A control volume finite element approach to NAPL groundwater contamination, *SIAM J. Sci. Stat. Comp.*, **12**
665 (1991), No. 5, 1029–1057.

666 [20] V. Girault, B. Riviere, and L. Cappanera, A finite element method for degenerate two-phase flow in porous media. Part II:
667 Convergence, *J. Numer. Math.*, **29** (2021), No. 3 (to appear).

668 [21] J.-L. Guermond and B. Popov, Invariant domains and first-order continuous finite element approximations for hyperbolic
669 systems, *SIAM J. Numer. Anal.* **54** (2016), No. 4, 2466–2489.

670 [22] R. Helmig, *Multiphase Flow and Transport Processes in the Subsurface: a Contribution to the Modeling of Hydrosystems*,
671 Springer-Verlag, 1997.

672 [23] D. Kroener and S. Luckhaus, Flow of oil and water in a porous medium, *J. Differ. Equ.*, **55** (1984), 276–288.

673 [24] A. Michel, A finite volume scheme for two-phase incompressible flow in porous media, *SIAM J. Numer. Anal.*, **41** (2003),
674 No. 4, 1301–1317.

675 [25] M. Ohlberger, Convergence of a mixed finite element: Finite volume method for the two phase flow in porous media, *East*
676 *West J. Numer. Math.*, **5** (1997), 183–210.

677 [26] D. W. Peaceman, *Fundamentals of Numerical Reservoir Simulation*, Elsevier, 2000.

678 [27] C. S. Woodward and C. N. Dawson, Analysis of expanded mixed finite element methods for a nonlinear parabolic equation
679 modeling flow into variably saturated porous media, *SIAM J. Numer. Anal.*, **37** (2000), No. 3, 701–724.

680 [28] I. Yotov, A mixed finite element discretization on non-matching multiblock grids for a degenerate parabolic equation arising
681 in porous media flow, *East West J. Numer. Math.* **5** (1997), 211–230.