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Abstract: A finite element method with mass-lumping and flux upwinding is formulated for solving the im-

8 miscible two-phase flow problem in porous media. The method approximates directly the wetting phase pres-
9 sure and saturation, which are the primary unknowns. The discrete saturation satisfies a maximum principle.
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Stability of the scheme and existence of a solution are established.
Keywords: stability, compactness, maximum principle, pressure-saturation

Classification: 65M60, 65M12

1 Introduction

This work discretizes on a suitable mesh a degenerate two-phase flow system set in a polyhedral domain by
a finite element scheme that directly approximates the wetting phase pressure and saturation, similar to the
formulation proposed in [19]. Mass lumping is used to compute the integrals and a suitable upwinding is used
to compute the flux, guaranteeing that the discrete saturation satisfies a maximum principle. The resulting
system of discrete equations is a finite element analogue of the finite volume scheme introduced and analyzed
by Eymard et al. in the seminal work [16].

Finite volume methods are popular discretization methods for solving porous media flow problems be-
cause they approximate the unknowns by piecewise constants, they are locally mass conservative and they
satisfy the maximum principle. From the point of view of implementation, the advantage of finite elements
is that they only use nodal values and a single simplicial mesh. In particular, no orthogonality property is re-
quired between the faces and the lines joining the centers of control volumes, as is the case with finite volume
methods.

From a theoretical point of view, owing that the finite element scheme is based on functions, some steps
in its numerical analysis are simpler, but nevertheless the major difficulty in the analysis consists in proving
sufficient a priori estimates in spite of the degeneracy. By following closely [16], the degeneracy is remediated
by reintroducing in the proofs discrete artificial pressures. But the complete analysis is intricate and lengthy
and because of its length it is split into two parts. This paper is part one, dedicated to well-posedness of
this discrete scheme: stability and existence. The second part, see [20], establishes the convergence of the
numerical solutions via a compactness argument.

Incompressible two-phase flow is a popular and important multiphase flow model in reservoirs for the
oil and gas industry. Based on conservation laws at the continuum scale, the model assumes the existence of
a representative elementary volume. Each wetting phase and non-wetting phase saturation satisfies a mass
balance equation and each phase velocity follows the generalized Darcy law [4, 26]. The equations of the
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mathematical model read

0t(@sw) = V- (Mw(Sw)VPw) = fw(Sin)G _fw(sw)g
0t(9So) = V- (No(sw)VDPo) = fo(sin)q — fo(sw)q
Pc(Sw) =Po—Pw, Swt+So=1 (1.1)

complemented by initial and boundary conditions. Here py,, Sy, Nw, fw (tespectively, po, So, Mo, fo) are the
pressure, saturation, mobility, and fractional flow of the wetting (respectively non-wetting) phase, ¢ is the
porosity, sin is a given input saturation, and g, g are given flow rates. The capillary pressure, pc, is a given
function that depends nonlinearly on the saturation. This problem is referred to as the degenerate two-phase
flow problem because the coefficients (phase mobilities) are allowed to vanish in some regions of the domain.
This degeneracy makes the theoretical analysis problematic because it creates a loss of ellipticity in these re-
gions. As the phase mobilities are degenerate when they are evaluated at certain values of the saturation
(see (1.8)) and moreover the derivative of the capillary pressure may be unbounded, this system of two cou-
pled nonlinear partial differential equations requires not only a carefully designed discretization preserving
the maximum principle, but also a delicate analysis to circumvent the loss of ellipticity and the unbounded-
ness of some coefficients. The discretization relies on mass lumping and upwinding. The use of mass lumping
and upwinding with finite elements of degree one was introduced in [19] for porous media flows. Under the
assumption that the pressure is known (which simplifies the problem to one equation with saturation as un-
known), the maximum principle is proved for the saturation but no convergence analysis is obtained in [19].
The effects of gravity have been neglected in problem (1.1) as the gravity term further complicates the numer-
ical analysis of the scheme.

At the continuous level, problem (1.1) has several equivalent formulations, linked to the choice of pri-
mary unknowns selected among wetting phase and non-wetting phase pressure and saturation, or capillary
pressure [5, 22]. A good state of the art can be found in the reference [2]. Up to our knowledge, the mathe-
matical analysis of the system of equations was first done in [1, 23]. A formulation of the model, based on
Chavent’s global pressure [7] that removes the degeneracy, was analyzed in [9, 10]. Since then, the global
pressure formulation has been discretized and analyzed in many references [11, 24, 25], but unfortunately,
this formulation is not equivalent to the original problem and it is not used in engineering practice because
the global pressure is not a physical quantity that can be measured. Otherwise, with one exception, the nu-
merical analysis of the discrete version of (1.1), has always been done under unrealistic assumptions that
cannot be checked at the discrete level [14, 15]. Related to this line of work, the discretization of a degenerate
parabolic equation has been studied in the literature [3, 17, 27, 28]. As far as we know, the only publication
that performs the complete numerical analysis of the discrete degenerate two-phase flow system written as
above (i.e., in the form used by engineers) is the analysis on finite volumes done in reference [16]. This moti-
vates our extension of this work to finite elements.

The remaining part of this introduction makes precise problem (1.1) by introducing notation and the weak
variational formulation. The numerical scheme is developed in Section 2 and is written in two equivalent
forms: the first one is discrete and directly involves the nodal values of the unknowns and the second one is
variational and uses the finite element test and trial functions. Because of the nonlinearity and degeneracy
of its equations, existence of a discrete solution requires that the discrete wetting phase saturation satisfies a
maximum principle. This is the first object of Section 3, the second one being basic a priori pressure estimates,
after which existence is shown in Section 4. Numerical results are presented in Section 5. The basic a priori
pressure estimates in Section 3.2 are not strong enough to show convergence of the numerical solution to the
weak solution. Tighter bounds are obtained in the following work [20].

1.1 Model problem

Let Q ¢ R4, d = 2 or 3, be a bounded connected Lipschitz domain with boundary 0Q and unit exterior normal
n, and let T be a final time. The primary unknowns are the wetting phase pressure and saturation. With the
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last relation in (1.1), s,, is the only unknown saturation; so we set s = s,,, and rewrite (1.1) almost everywhere
in Qx 10, T[ as

0t(@s) = V- (Mw(s)VpPw) = fuw(sin)q - fuw(s)g (1.2)
=0¢(9s) = V- (Mo(S)VDo) = fo(sin) — fo()q (1.3)
complemented by a natural boundary condition almost everywhere on 00Qx 0, T[:
Mw(S)Vpw -n =0, 1o(s)Vpo-n =0 (1.4)
and an initial condition almost everywhere in Q:
s(,0)=5%:=52, 0<s?<1. (1.5)
The fractional flows are related to the mobilities by

Nw(s)

VOos<s<1, fw(s):m’

fo(s) =1 —fu(s). (1.6)

Recall that the phase saturations sum up to 1 and the phase pressures are related by the capillary pressure,
Pc, which is a function of the saturation:

VYO<s<1, pcs)=po-Dpw. (1.7)

This work is done under the following basic assumptions.

Assumption 1.1.

— The porosity ¢ is piecewise constant in space, independent of time, positive, bounded, and uniformly
bounded away from zero.

— The mobility of the wetting phase n,, > 0 is continuous and increasing on the interval [0, 1]. The mobility
of the non-wetting phase 1, > 0 is continuous and decreasing on the interval [0, 1]. This implies that the
function f,, is increasing and the function f, is decreasing on [0, 1]. We also recall that these functions
are degenerate, indeed they satisfy:

nw(0) =0, 1n0(1) =0. (1.8)
— There is a positive constant 1. such that
Nw(s) +Mo(s) = n. Vs € [0, 1]. (1.9)

—  The capillary pressure p. is a continuous, strictly decreasing function in W%1(0, 1).
— The flow rates at the injection and production wells, g, g € L?(0Qx]0, T) satisfy

g=0, g=0, jqzjq. (1.10)
Q Q=
— The prescribed input saturation s, satisfies almost everywhere in Qx ]0, T
0<sip < 1. (1.11)

Since p¢, Na, fas @ = w, 0 are bounded above and below, it is convenient to extend them continuously by
constants to R.

Although the numerical scheme studied below does not discretize the global pressure, following [16], its
convergence proof uses a number of auxiliary functions related to the global pressure. First, we introduce the
primitive g. of p,

1
vx e [0,1], gcx)= J pc(s)ds. (112)
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Since p. is a continuous function on [0, 1], the function g, belongs to C1([0, 1]). Next, we introduce the
auxiliary pressures pyg, Pwo, and g,

X X
vx €[0,1], pug(x) = L fo(S)pe(s)ds,  Ppog(x) = IO fuw(s)pe(s)ds (1.13)
X nw(SNoe(s)
Vx € [0,1], x=—l— s)ds. 1.14
e T TGET EGi (114
Owing to (1.6),

X
VX €10, 1), Push) +Pos(x) = || pLS)ds = pe(x) - pel0). (115)

Moreover, the derivative of g satisfies formally the identities
Vx €[0,1], na()pug(x) +g'(x)=0, a=w,o. (1.16)

1.2 Weak variational formulation

By multiplying (1.2) and (1.3) with a smooth function v, say v € @1(Q x [0, T]) that vanishes at t = T, applying
Green’s formula in time and space, and using the boundary and initial conditions (1.4) and (1.5), we formally
derive a weak variational formulation

_ JT L) QSO+ LT L} Nw(S)Vpyw-Vv= JQ ¢ s°v(0) + JOT JQ (fw(sin)g —fw(s)g)v

0

jT [ oso+ jOT [ no@¥po v == 95w+ LT |, fotswa— fotsa)v.

0

But in general, the pressures are not sufficiently smooth to make this formulation meaningful and follow-
ing [8], by using (1.16), it is rewritten in terms of the artificial pressures,

T T o
[ [ esom s || 9w+ puse) + Va(s) - Vv = [ 0sv0)
T
+ .[O L} (fw(sin)q —fW(S)g)V
T T
_ _ . - _ 0
[, [ osows | | (Vo - posts) - ve(s)- vy = - [ psov(0)
T
o[ | Catswa-fasran (117)
With the above assumptions, problem (1.17) has been analyzed in reference [1], where it is shown that

it has a solution s in L>(Qx ]0, T[) with g(s) in L2(0, T; HX(Q)), pa, @ = w, 0, in L2(Qx]0, T[) with both
Pw + Pwg(s) and p, — pog(s) in L(0, T; HY(Q)).

2 Scheme

From now on, we assume that Q is a polygon (d = 2) or Lipschitz polyhedron (d = 3) so it can be entirely
meshed.

2.1 Meshes and discretization spaces

The mesh T}, is a regular family of simplices K, with a constraint on the angle that will be used to enforce the
maximum principle: each angle is not larger than 71/2, see [6]. This is easily constructed in 2D. In 3D, since we
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only investigate convergence we can embed the domain in a triangulated box. Moreover, since the porosity ¢
is a piecewise constant, to simplify we also assume that the mesh is such that ¢ is a constant per element. The
parameter h denotes the mesh size, i.e., the maximum diameter of the simplices. On this mesh, we consider
the standard finite element space of order one

Xp = {vn € C°(Q); VK € Th, valx € P1}. 1)

Thus the dimension of X}, is the number of nodes, say M, of 7. Let ¢; be the Lagrange basis function, that
is piecewise linear, and takes the value 1 at node i and the value O at all other nodes. As usual, the Lagrange
interpolation operator I, € £(€°(Q); Xp,) is defined by

M
W e @), Inv) =) vigi 22
i=1

where v; is the value of v at the node of index i. It is easy to see that under the mesh condition, we have
VK, J Vi V<0 Vi#]. 23)
K

For a given node i, we denote by A; the union of elements sharing the node i and by N(i) the set of indices of
all the nodes in A;. In the spirit of [21], we define

cy= | 1vpi-veil vij. 2.4)
AiﬂA}'

Recall that the trapezoidal rule on a triangle or a tetrahedron K is

d+1

1
[ = 51K pye

where f;, is the value of the function f at the £th node (vertex), with global number i,, of K. For any region O,
the notation |O| means the measure (volume) of O.
We define

1 1
= — E K| = ——|4;
i d+1K6A| ! d+1I il

and taking into account the porosity ¢, we define more generally

1
7.7 2 ¢l

KeA;

mi(p) =

so that m; = m;(1). It is well-known that the trapezoidal rule defines a norm on Xy, || - |5, uniformly equivalent
to L2 norm. Let Uy, € Xy, and write

M .
Up=) Ul
i=1

The discrete L2 norm associated with the trapezoidal rule is
u 1/2
1UnlIn = (mewz) :
i=1
There exist positive constants C and C, independent of h and M, such that
YUn € Xn,  CIUnlF2 gy < 10N < ClURN - (2.5)

This is also true for other piecewise polynomial functions, but with possibly different constants. The scalar
product associated with this norm is denoted by (-, -)p,
M

VUn, Vi € Xn, (U, Vidn = ), miU'V". 26)
i=1
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By analogy, we introduce the notation
M . .
YUn, Vi € Xn,  (Un, Va)y = ) (@)U V. 2.7)
i=1
The assumptions on the porosity ¢ imply that (2.7) defines a weighted scalar product associated with the

weighted norm || - IIf,
YUp € Xn, Ul = (U, UDG)

that satisfies the analogue of (2.5), with the same constants C and C,

VUh € Xh, g(mén (p) ” Uh”%Z(Q) < ("Uh"f)z < E(mgX‘P) " Uh”%Z(Q)- (28)

2.2 Motivation of the space discretization

While discretizing the time derivative is fairly straightforward, discretizing the space derivatives is more del-
icate because we need a scheme that is consistent and satisfies the maximum principle for the saturation.
For the moment, we freeze the time variable and focus on consistency in space. First, we recall a standard
property of functions of X on meshes satisfying (2.3).

Proposition 2.1. Under condition (2.3), the following identities holds for all U and Vj in Xy, with c;; defined
in (2.4):

M M
J VU -VVa=-Y U Y cy(V-V)==) Y c5(U-U)V-V). 29)
Q i=1  j#iL,jEN(®D) 2 i=1 j#i,jeN(i)

Proof. The first equality is obtained by using (2.3), (2.4) and the fact that

M
Yei=1
i1

as in [18, Sect. 12.1].

For the second part, we use the symmetry of ¢;; and the anti-symmetry of VJ — V! to deduce that
—fU" Y V-V = 3% Y (U - U)WV -V
i=1  j#i,jeN() ’ 25 jHL,JEN() !
which is the desired result. O
Note that c;; vanishes when j ¢ N(i). Therefore, when there is no ambiguity it is convenient to write the above

double sums on i and j with i and j running from 1 to M.
As an immediate consequence of Proposition 2.1, we have, by taking Vj = Up,

o 1/2
YUy € Xn, IV Unlizq) = L ( > clt - U"|2> . (2.10)
V2 i,j=1
Now, we consider the case of the product of the gradients by a third function. Beforehand, we introduce
the following notation: for indices i and j of two neighboring interior nodes, A; N 4; in two dimensions is
the union of two triangles and in three dimensions the union of a number of tetrahedra bounded by a fixed
constant, say L, determined by the regularity of the mesh. We shall use the following notation

1
Ciik = Voi-Voil, w =—J w. 2.11
ij,K L(' Pi (P]| K K] Jx (2.11)

Note that

Z Cij,k = Cij- (2.12)
KCAiﬂA;

Then we have the following proposition.
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Proposition 2.2. Let (2.3) hold. With the notation (2.11), the following identity holds for all w in L(Q):

M M
YUp, Vi € X, J WVUR-VVp) ==Y T < Y cij,KwK> (Vi - V). (2.13)
Q i=1  j=1 \KcAna;
Proof. Itis easy to prove that
M
J w(VUR-VVy) = Z dijUiVi (2.14)
Q ij=1
where
dij = j w(V ;i V)= J w(V @i -V ;). (2.15)
AiﬂA; Q
Again, we have for any i,

M
Y dij =0, dii=- ) dy
j=1 1<j<M, j#i

and by substituting this equality into (2.14), we obtain

M
J w(VU-V Vi)=Y Uldg(V - V). (2.16)
Q

ij=1

But, in view of (2.11) and (2.15), and since V ¢; - V ¢; is a constant in each element K contained in 4; N 4;,

dij = - Z Cij, KWK, (2.17)

KcA,-nA,—
and (2.13) follows by substituting this equation into (2.16). O
Note that d;; = d;; owing to (2.17). The first consequence of Proposition 2.2 is that the right-hand side of (2.13)

is a consistent approximation of (w, Vu - Vv).

Proposition 2.3. Let (2.3) hold, let u and v belong to H?>(Q) and w to L®(Q), and let Uy = Inu, Vi = Iyv be
defined by (2.2). Then, there exists a constant C, independent of h, M, u, v, and w, such that

M
1JQqu-Vv+ Z U’( Z Ci]')KWK)(V]—Vl)

i,j=1 KcAing;

< Ch|wlreo@llullmz @ IVIE g)- (2.18)

Proof. In view of the identity (2.13), the left-hand side of (2.18) is bounded as follows:

HQ WUV =V Uy ¥ V)| < Il (191 = Un)lia) IV Vi) + V0 = Vil ¥ Unliaca) -
From here, (2.18) is a consequence of standard finite element interpolation error. O
Now, if wisin W1-%°(Q), then again, standard finite element approximation shows that there exists a constant

C, independent of h, K c A; n 4;, and w, such that
"WK - WuL‘X’(K) <Ch |W|W1,00(K) <Ch |W|W1,oo(Q). (2.19)

As a consequence, we will show that in the error formula (2.18), the average wg can be replaced by any value
of win K. Since all K in A; n A; share the edge, say e;j;, whose end points are the nodes with indices i and j,
then we can pick the value of w at any point, say W'/, of ejj. At this stage, we choose this value freely, but we
prescribe that it be symmetrical with respect to i and j, i.e.,

whi = Whi, (2.20)

Then we have the following approximation result.
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Theorem 2.1. With the assumption and notation of Proposition 2.3, there exists a constant C, independent of h

and M, such that for all u, and v in H%(Q) and w in WH-*°(Q),
M . — s . .
j wVu-Vv=- Z Uc; W (V' -V')+R (2.21)
Q ij=1

241 for any arbitrary value W' of w in the common edge ejj satisfying (2.20), and the remainder R satisfies

242
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250
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252

253

254

255

256

258
259

260

261

262
263

264

[R| < Ch Wlwro@yllullgz)lvlaz ). (2.22)

Proof. We infer from (2.12) and (2.13) that

M M
j w(VUR-VVp) ==Y UV -V) Y cyxlwg-W)- Y Uley(V - V)W,
Q

i,j=1 KcAina; i,j=1
Let
Rjj = z Cij,K(WK - W)
KCAI‘DA]*
which is symmetric in i and j by assumption (2.20). As in Proposition 2.1, the symmetry of R;; and the anti-
symmetry of V/ — Vi, imply
M ) ) 1/ M ) ] 12, M ) ] 1/2
- Y URG(V - V) < E( Y IRyI(U - U’)2> ( Y IRsI(VI - V’)2> : (2.23)

i,j=1 i,j=1 i,j=1

From the nonnegativity of c;; x, (2.12), and (2.19), we infer that
IRl < < Z CijJ()Ch [WIiwro() = CiiC h [Wlwro(q).
KcAinA;

Hence, with (2.10) and standard finite element approximation,

M
Z U'Rii(V = V')| < ChWlwreo@) IV UnllLz@y IV Villz2(q) < ChIwlwre @y lullzz@)lvigz ) -

ij=1

The result follows by combining this inequality with (2.18). O

The above considerations show that

M
- Z U'c;;W" (VI — V') is a consistent approximation of order one of J wVu-vv
ij=1 Q

for any symmetric choice of Wi/ in ejj, the common edge of A; N A;. This will lead to the upwinded space

discretization in the next subsection (see also [24]). Furthermore, for all real numbers Vi and W satisfy-
ing (2.20), 1 < 1, j < M, the symmetry of ¢;; and anti-symmetry of V/ — V! imply
M — s . .
Y WV -V =o. (2.24)
ij=1

2.3 Fully discrete scheme

Let 7 = T/N be the time step, t,, = nt, the discrete times, 0 < n < N. Regarding time, we shall use the standard
L? projection p, defined on ]t,_1, t,], for any function f in L1(0, T), by

1 [t
peP" = prPlty syt 1= — L f (2.25)
n-1

T
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Regarding space, we shall use a standard element-by-element L? projection pj, as well as a nodal approxima-
tion operator rj, defined at each node x; for any function g € L1(Q) by

rn(g)(xi) = |j| J g 1l<isM (2.26)

and extended to Q by r,(g) € Xp. The operator py, is defined for any f in L' (Q) by pr(f)|x = px(f) where, in
any element K,

px(f) = % L{f- (2.27)
The initial saturation s° is approximated by the operator ry,
S = ra(s). (2.28)
The input saturation sj, is approximated in space and time by
Sin,h,r = Pr("r(Sin)) (2.29)
with space-time nodal values denoted by si"n’i. Clearly, (1.11) implies in space and time

0 < Sin,h,r < 1.

In order to preserve (1.10), the functions g and g are approximated by the functions gn,r and g e defined with
ry and corrected as follows: ’

G =pe(n@- 5 [ 0 @-2). g, =pr(n@- g [ m@-0). 230)

Since gp,r and q,  are piecewise linears in space, they are exactly integrated by the trapezoidal rule and we
easily derive from (1.10) and (2.30) that we have for all n,

(@n> 1)y = (4> Dy (2.31)

The set of primary unknowns is the discrete wetting phase saturation and the discrete wetting phase pressure,
Sy and P} ,, defined pointwise at time ¢, by:

M M ]
Sp=> "o, P,,=Y Py, l<ns<N.
i=1 i=1
Then the discrete non-wetting phase pressure P}, , defined by
oh_zpo @i, 1l<n<N

is a secondary unknown. The upwind scheme we propose for discretizing (1.2)—(1.3) is inspired by the control
volume finite element approach in [19] and by the finite volume scheme in [16]. For each time stepn, 1 < n <
N, the lines of the discrete equations are

M) (g ny - 3 comu(SEPL — PL) = my (fu(sIHT™ ~ fu(S™g™) 232
j=1

_m (QD) (Sn M _§n- 1, z) z Cl]r[o(sn u)(Pn} Pn 1) m; (fo(sinr;i)qn,i _fo(sn,i)gn,i) (2-33)
j=1

Py - Pl = pe(S™), 1<is<M (2.34)

M .
Z miP' = 0. (2.35)
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295 Here i runs from 1 to M — 1 in (2.32) and from 1 to M in (2.33); the upwind values S-7, ™" are defined by
smi, Pyt > P

296 sl = {4 gni, Pyl < pl (2.36)
max(S™i, Sv), PLi= pbt
s, pris p

297 swi = § gni, pricpp (2.37)

min(S™1, S, Py = Py,
298 We observe that
500 Sn Jij _sm Jji Sn,ii _ S"’ﬁ
w [ - Yo
300 so that, if we interpret in (2.32) (respectively, (2.33)) n.(Sk”) (respectively, 7,(S™”)) as Wi/, then (2.20) and
301 hence (2.24) hold.

302 Remark 2.1. Before setting (2.32)—(2.35) in variational form, observe that:
303 1. The scheme (2.32)-(2.35) forms a square system in the primary unknowns, Sy and P"}V’ h
304 2. Formula (2.32) is also valid for i = M. Indeed, we pass to the left-hand side the right-hand side of (2.32)

305 and set A! the resulting line of index i. Let AM denote what should be the line of index M, i.e.,
306 M = mM("’) —E (S M g1 M) Z cuinw(Sw )Py - P
j=1
307 - mu(fu (s - fi(STM)gm M),
308 Then, in view of (2.24),
"‘M_IVF1 i, AM m((p) n,i n-1,i n,iy—=n,i n,iy ,n,i
309 AM - ZA +A Z — (8™ -8 — Zmz fuw(sip)g™" = fw(S™Hg™").
-1 i T i
310 By summing in the same fashion the lines of (2.33), we obtain
M = M
m; . s R . .
311 Z 11(—90) (Sn,z _gn 1,1) - _ Z mi(fo(sinn,l)qn,l —fo(sn’l)gn’l)-
i=1 i=1
312 A combination of these two equations yields
—_— M 3 5 . . . . M . .
313 AM == N mi((Fu () + fo(SNT™ = (Fu(S™) + fo(S™))g™ ) = - Y mi@™* - ') =0
i=1 i=1

314 by virtue of (1.6), the definition (2.25), and (1.10).
315 3. In(2.32) (respectively, (2.33)), any constant can be added to P,, (respectively, P,), but in view of (2.34), the
316 constant must be the same for both pressures. The last equation (2.35) is added to resolve this constant.

317 Asusual, it is convenient to associate time functions Sy ¢, Pa,n,r With the sequences indexed by n. These are
318 piecewise constant in time in ]0, T, for instance

319 Ponc(t, x) = Pg,h(x), a=w,0 V(tx)eQx]tn-1, tnl. (2.38)
320 In view of the material of the previous subsection, we introduce the following form:
M . — s . .
321 VYWhn, Un, Vi, Zn € Xn,  [Zn, Wh; Vi, Unln = Z Ulei WI(V - V) (2.39)
ij=1

322 where the first argument Zj, indicates that the choice of WY depends on Zj. Such dependence, used for the up-
323 winding, will be specified further on, but it is assumed from now on that W satisfies (2.20). Considering (2.24),
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the form satisfies the following properties,

VZn, Wh, Vi € Xn,  [Zn, Wp; Vi, 1] = O (2.40)

VZp, Wi, Vi € X,  [Zn, Whs Vi, Vil

M
- % Z ci,-W,-j(V" - Vj)z. (2.41)
i,j=1
This last property is derived by the same argument as in proving (2.9).
With the above notation, and taking into account that (2.32) extends to i = M, the scheme (2.32)—(2.35)
has the equivalent variational form. Starting from Sg (see (2.28)): Find S7%, P@) rand Pg’ pinXp, for1 <n <N,
solution of, for all 93, in X},

1 _
—(Sh = SiL O] [P s TnCw(S}); Pl s Ol = (i )VTh — InFu (SRS )y (242)

1 _

——(Sh = Sp O = [P s In(o(SR)s P s O]y = (InFo(sfy )Th ~ o (SRR On)y  (243)
Py = Pop = In(pe(Sp) Q.44)
(Pyp1), =0 (2.45)
where the choice of 17,,(Sy) in the left-hand side of (2.42) (respectively, 17,(Sy) in the left-hand side of (2.43))
is given by (2.36) (respectively (2.37)). Strictly speaking, the interpolation operator I}, is introduced in (2.42)
and (2.43) because the forms are defined for functions of Xy, but for the sake of simplicity, since only nodal

values are used, it may be dropped further on.

We shall see that under the above basic hypotheses, the discrete problem (2.42)—(2.45) has at least one
solution. In the sequel, we shall use the following discrete auxiliary pressures:

Uw,h,‘r = Pw,h,r + Ih(pwg(sh,r)): Uo,h,‘r = Po,h,r - Ih(pog(sh,‘r))- (2-46)

3 A priori bounds

The present section is devoted to basic a priori bounds used in proving existence of a discrete solution. Ex-
istence is fairly technical and will be postponed till Section 4. The first step is a key bound on the discrete
saturation. In the second step, this bound will lead to a pressure estimate and in particular to a bound on the
discrete analogue of auxiliary pressures.

3.1 Maximum principle

The scheme (2.32)-(2.35) satisfies the maximum principle property. The proof given below uses a standard
argument as in [16].

Theorem 3.1. The following bounds hold:
0<Spr<1. (ER))]

Proof. As 0 < s° < 1 almost everywhere, by construction (2.28), we immediately have

0

0 <mins® < S < maxs®< 1.

Q Q

Now, the proof proceeds by contradiction. Assume that there is an index n > 1 such that
n-1
S, =<1

and that there is a node i such that
ST = |IShleo() > 1
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and thus
Sn,i S Snfl,l'.

Dropping the index n in the rest of the proof, (2.32) and (2.33) imply

Y cimw(SPy — Pl + my (fu(sh)d ~ fu(SHg') > 0 (.2)
J#L,jEN(D)
- Y ciino(So)(P, — Ph) - mi (fo(sk)q - fo(S)g') > 0. (33)
j#i,jeN(i)

We first show that (3.2) holds true with S replaced by S'. Indeed if Pi, > P, then SU = i If Pi, < P, then
Sy =S, and as n,, is increasing and by assumption, S/ < Si,

Mw(SW)(Py — PL) < 0y (S)(P), — PL).
Finally, the term vanishes when Pf,v = P".,v. Therefore we have in all cases

Y cinw(SH(Ply ~ P + mi (fu(si)F - fu(SHa') > 0. (3.4)
J#LjEN(D)

A similar argument gives

Y cino(SHP, ~ Ph) — my (fo(sh)T ~ fo(SHg') > 0. (3.5)
j#i,jeN()

The substitution of (2.34) into (3.5) yields

Y cinoSH((Py ~ PL) + 0e(S) — pe(S)) - mi (fo(sL)T ~ fo(SHg) > 0. (3.6)
J#LJEN(D)

Since p. is decreasing and S' > S/, the second term in the above sum is negative. This implies that

Y cino(SHPYy - PL) - mi (fo(si)T - fo(S)g') > 0. €¥)

J#LjEN(D)

The sum on j cancels by multiplying (3.4) by 11,(S?), (3.7) by n,,(S?), and adding the two. The sign is unchanged
because either no(Si) or nW(Si) is strictly positive. Hence,

mino(S) (fuw(sh)T' - fu(S)g") = minu(S)) (fo(sly)q - fo(S)g') > 0.
By definition of f,, and f,, this reduces to
Mo (SHfw(sk,) = nw(SHfo(sk,) > 0. (3.8)

Now consider the function:
1(s) = No(S)fw(siy) — Nw(S)fo(siy)- (3.9)

It is decreasing and r(s!_ ) = 0. Then, since S' > 1 > s! , see (1.11), we have

r(Sh<r(si)=0

which contradicts (3.8). The proof of the lower bound in (3.1) follows the same lines. O

3.2 Pressure bounds

The following properties will be used frequently.
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Lemma 3.1. The fact that p. is strictly decreasing and (2.34) yield the following:
Pl > Pl,, and Pi < P, implies S' > §; (3.10)
if Pi =P, then Pi > P, ifandonlyif S' < S; (3.11)
if Pi =P, then Pi <P, ifandonlyif Si<S$. (.12)

Let us start with a lower bound that removes the degeneracy caused by the mobilities when they multiply the
discrete pressures.

Lemma 3.2. Let Uy, be defined by (2.46) with p. defined in (1.13). We have for all n and any i and j
n.(UY = U < m(Su )PV = P + oS5 ") (P57 - Py G.13)
Proof. To simplify the notation, we drop the superscript n. The second mean formula for integrals gives
. . s . .
Pwg(8) — Pwg(S") = Li fo(s)pe(s)ds = fo(O)(@c(S) - pe(S)) (3.14)
for some & between S' and S'. Using (2.34) we write
Ul - UL, = (1= fo(O)(Ply = PL) + fo(O)(Ph - PL) = fu(§)(Ply = PL,) + fo()(Ph - Ph).
Therefore since f,, + f, = 1, we have
U, —uiyp e @& i _piay M@ i piyy 3.15)
( w w) rlw({)‘Frlo(g)( w w) rlw({)"'no({)( o o) (

We now consider the following six cases.

1. IfPi > Pl and Pi < P, then n,,(S)) = ny(S') and no(SY) = no(S’) when Pi < P.; when P, = P}, the
value of 1, does not matter. From (3.10) we then have St > 9. Since nw is increasing, 1,,(¢) < nW(Si) and
since 1, is decreasing, 1,(¢) < rlo(Sj ). Thus we have

i o) (pl_pi oS8 b p
U, - U ZSMPI _piy2, __towo) (pl _ pi)y?
GO s e @ ™ ™ @ e o
and with (1.9)
U= U < = (1SIPY = P+ 16(SD(Po - Py)?). (3.16)

2. IfP > P, and Pi > Pl then 0, (SY) = ny(S") and 1,(SY) = no(S?). From

No(SH(Pe(S) = pe(SH) = (16(S) + Mw(SH) jss fo(SHpe(s)ds
and (3.14), we derive
N10(S)Dc(S) = Pe(SH))=(10(S") + M (S)) (Dwg(S) — Pug(SH)
= (10(S") + Nuw(S") j: (fo(S") = fo(s))pe(s) ds.
As p. and f, are decreasing, the above right-hand side is negative. Hence
No(SHPc(S) = Pe(S)) = (76(ST) + Muw(SH) (Pwg(S) - Pug(SH) < 0. (317)
We multiply (3.17) by (P}, - Pi) + (P}, - Pl ) < 0 and use (2.34),
(Mo(SHPe(S) = Pe(Sh) = (Mo(S) + M (SN Pug(S) = Pug(8D)) (2(Phy = PLy) + Pe(S) - pe(S)) = 0.
By expanding and using the next inequality implied by (3.14), if f, (&) + O,

(Pwg(S) — Pwg(SND(S) = Pe(S)) = (Puwg(S) — Puwg(SH)?
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418 we obtain
419 Mo(SHP(S) = Pe(SN)? + 216(SH(Pe(S) - pe(SH)(P, - PL)
420 > (16(S) + () (Pug(5)) ~ Pug(S) (2(Ph = Pi) + pug(S) - Pug(SH) -

421 When (o(S) + w(S))(P, - Pi)? is added to both sides, this becomes
422 Nw(SH(Py = PL)? + 16(S)(Py = PL)? = (16(S) + nu(SH)(U), - U3,)?

423 and (1.9) implies the desired result. It remains to consider the case fo(&) = 0, i.e., pwg(S') = Pwg(S)). If
424 10(S?) # 0, then (3.17) yields

425 pe(S) - pe(S) < 0, which implies P, — P, > P. — P,
426 and we deduce immediately
427 Mw(S)(P)y = PL)2 + 16(SH(P) = P)? > (7w(S') + no(SH)(P)y - PL)? = 0. (P, - Pi,)2.

428 When 1,(S?) = 0, we have trivially
429 Mw(SHP)y = PL)2 + no(SH(P) - PLY? = ny(SH(P)y - PL)2 = n.(P), — PL)2.

430 3. IfPi < Pl and Pi > P, then ny,(SU) = nw(S’) and 1o(SY) = no(S') in the case of a strict inequality; also
431 S' < §J. Then (3.15) and the monotonic properties of ,, and 1, yield (3.13). If P, = P/, then according
432 to (3.11), Si < 9 and the same conclusion holds.

433 4. If Pl < P}, and Pi = P}, then from (3.12), we have S! < §/ and with (3.15):

. _ S sl S
434 U, - Ut zg—rlw(f) Pl - piyz < MW pj _ piy2
( w w) rlw(g)‘l'no({)( w w) rlw(g)‘l'no(f)( w w)
435 which is the desire(_i result. .
436 5. Similarly, if P, = P}, and P < P}, then from (3.11), we have S < S' and with (3.15):
10(S)

— 220 (P), - PL)2.
Hw(f)ﬂlo(f)( )

j iy2 1M0($) i _ piy2
437 (Uw_Uw) gm(f)}o—Po) <

438 6. IfPL < P, and Pi < Pl (3.13) follows from the second case by switching i and j.

439 This completes the proof. O

440 The pressure bound in the next theorem is the one that arises naturally from the left-hand side of (2.42)
441 and (2.43).

442 Theorem 3.2. There exists a constant C, independent of h and t, such that
N M o . . . . .
443 Ty Y cij(qw(sﬁ"’)(P@" - Py +10(Se) (P - Py’ )2) <C. (3.18)
n=11i,j=1

444 Proof. We test (2.42) by PJL . (2.43) by P7 ;, add the two equations, multiply by 7 and sum over n from 1 to N.
445 By using (2.44) and (2.41), we obtain

N N M
B 1 +e . :
=Y (Sh-SE LS+ 5 X T Y Y cyna(Sa)PE — Py)
n=1 n=1 @=w,0j;j=1

446
N
=YY (falsh )Tk - fa(SP}, Pr ) (3.19)

n=1 a=w,o
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Following [16], the first term in (3.19) is treated with the primitive g. of p., see (1.12). Indeed, by the mean-value
theorem, there exists & between S™! and S"~" such that

8e(S™) —ge(S" ) = — (§™ = S H)pe(8).

As the function p. is decreasing, then p.(§) > p.(S™!) when S™! > S" LI and p.(§) < pc(S™!) when S™! <
Sn-Li In both cases, we have

8e(S™) ~ge(8" ) < — (8™ = ST H)pe(s™)

and owing that ¢ is positive and constant in time, (3.19) can be replaced by the inequality

N M " . .
(8c(SN) - 8c(SM 1)y += Y T Y Y cijna(Sa”) (P - Pg’)?

n=1 a=w,0ij=1
N
<Y T Y (falsh )Tk - fa(SP), PR ) (3.20)

n=1 a=w,o

N[ =

As the first term in the above left-hand side is bounded, owing to the continuity of g, and boundedness of
Sh,z, it suffices to handle the right-hand side. Let us drop the superscript n and treat one term in the time
sum. Following again [16], in view of Lemma 3.2 we use the auxiliary pressures pyg and py,, defined in (1.13).
Clearly, (1.15) and (2.34) imply

Pi, + Pug(S) + Pog(S) + pc(0) = Py Vi (321
Using this, a generic term, say Y, in the right-hand side of (3.20) can be expressed as
Y =(qn - q,, Unn)y + (fo(Sin,))@n — fo(Sn)q,, Pc(0)),,
+ (fo(Sin,h)qn = fo(Sh)Q, > Pog(Sk))p = (fw(Sin,n)qh — fw(Sh)G,» Pwg(S))y = T + -+ + Ta.

We now bound each term T;. For Ty, (2.31) implies that any constant 8 can be added to Uy, in particular
B can be chosen so that the sum has zero mean value in Q. Hence, considering the generalized Poincaré

inequality
v
I

with a constant C, depending only on the domain Q, we have

Yv e Hl(.Q), "V”LZ(Q) < C( + "V V”LZ(Q)> (322)

|Uw,n + Blln < ClUw,n + Bllz2(@) < CIV Uw,nllz2c0)

with another constant C. Then Young’s inequality yields

1< Coign-q 12 + TV Uyal?
11 X 271* dhn gh h 4 w,h L2(Q)
and with Lemma 3.2, this becomes
c 2.1 & iy ol i 2 iivep)  piy2
Til< o -lan-a,li+ 3 ¥ cij (Mw(ST)(Ply = Piy)? + no(ST)(P) - PL)?).

ij=1
The term T, is easily bounded since p(0) is a number, and so are the terms T3 and T4, in view of the bound-
edness of the saturation and the continuity of p,¢ and p¢. We thus have

T2 + T3 + To| < C(IGnlzr @) + 19, 21 (@)-

Then substituting these bounds for each n into (3.20), we obtain

IS

N M . . . s . .
T Y cij(nuwSw )P = P +10(So) (PG - Po”)?)
n=11i,j=1

< C(I1gn,z _Qh,T”iZ(Qx]o,T[) +1gn,zllL1@x10,TD + "gh’T”Ll(Qx]O,T[))

thus proving (3.18). O
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By combining Theorem 3.2 with Lemma 3.2, we immediately derive a bound on the discrete auxiliary pres-
sures. The bound (3.23) with a = o follows from the same with a = w, (1.15), and (2.34).

Theorem 3.3. For a = w, o we have
NV Ua el g jo,1p) < € (3.23)

with the constant C of (3.18).

4 Existence of numerical solution

We fix n > 1 and assume there exists a solution (SZ‘l, P;’V,‘}}) at time "1 with 0 < SZ‘l < 1. We want to show
existence of a solution (S, Pﬁv’ ») by means of the topological degree [12, 13].

Let 9 be a constant parameter in [0, 1]. For any continuous function f: [0, 1] - Randany t € [0, 1], we
define the transformed function f : [0, 1] — R by

Vs € [0,1], f(s)=f(ts+(1-1)9).

Since 9 is fixed, when t = 0, f(s) = f(9), a constant independent of s. Now, (2.45) implies that any solution
Py n,r of (2.42)-(2.45) belongs to the following subspace Xo , of X,

Xo,n = {Ah € Xn; J Ap = O}. (4.1)
Q

This suggests to define the mapping JF : [0, 1] x X x Xo,n — Xn % Xo,n by
F(t,§, A) = (Ap, An + Bp)

where Ap, respectively By, solves for all @y € Xy,

1 _
(An, On) = —(Gh - SEY, 0n)Y — [An, In(w(n)); An, On),,

- (In(Fu(shy WDta5 - In(Fw(Gn)tar, On), (4.2)
(B, O4) = ~ = (G~ S, 00 ~ [Pors InCT5(G); Pt €1
= (In(fo(siy, Nt@y — In(fo($))t,, On)y (4.3)
and P, j is defined by
Pon = Ap = In(pe($n)). (4.4)

The choice of 7, (¢n) in (4.2) (respectively 77,({x) in (4.3)) is given by (2.36) (respectively (2.37)) where Ay, plays
the role of Py, , and P, is defined in (4.4). Asin (2.36) and (2.37), it leads us to introduce the variables {,, and
J forall 1 < i,j < M. Clearly, (4.2)-(4.4) determine uniquely A, and By, and it is easy to check that Ap, + By,
belongs to Xo, .
The mapping t — F(t, {x, Ap) is continuous. Indeed, since the space has finite dimension, we only need
to check continuity of the upwinding. By splitting x into its positive and negative part, x = x* +x~, the upwind
term, say 7w () (P, — PL,) reads

TGP, = PL) = 0 (t¢F+ (1 = 9)((P)y - P)_) + nu(td + (1 - H9)((Py - PL,),)

which is continuous with respect to t.

We remark that F(1, {, Ap) = 0 implies that ({y, Ap) solves (2.42)—(2.45). Conversely, if ({n, An) solves
(2.42)-(2.45) then F(1, ¢, Ap) = 0. Thus, showing existence of a solution to the problem (2.42)-(2.45) is equiv-
alent to showing existence of a zero of F(1, {,, Ap). Before proving existence of a zero, we use the estimates
established in the previous section to determine an a priori bound of any zero ({x, Ap) of F(1, ¢, Ap).
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4.1 A priori bounds on ({s, Ap)

In the following we consider ¢ € [0, 1] and ({n, An) € Xn x Xo,n that satisfy
F(t, {ny Ap) = 0. (4.5)

We first show that {} satisfies a maximum principle.

Proposition 4.1. The following bounds hold for all (¢, ¢, Ap) satisfying (4.5):
o< ¢ <1, (4.6)

Proof. Eithert €]0, 1] or t = 0. The proof for t €]0, 1] follows closely the argument used in proving Theo-
rem 3.1 and is left to the reader. For ¢ = 0 we proceed again by contradiction. Assume first that ||(xll~q) > 1,
i.e., there is a node i such that

"= Inllo) > 12 S

As t = 0, (4.5) reduces to

Y cimw@A =) >0, =) cino(9)(AT-A)>0 VI<i<M.

j#i j#i
Since 1, and 1, are non-negative functions satisfying (1.9), the inequalities above yield a contradiction. A
similar argument is used to show that {j > 0. O
Next we show the following bound on Ap,.

Proposition 4.2. There is a constant C such that for all t € [0, 1] we have

M
e Y i (W = A+ pug(td + (1 - D) - pug(t¢’ + (1 - H9)” < C. “.7)

ij=1

Proof. The proof follows closely that of Theorem 3.2. First we show there exists a constant C; independent of
t such that

Y. ci(multd + (1= DA = AN + no(t8] + (1= H(P, , — P 1)) < 1
i,j=1

with P, j defined in (4.4). This bound is obtained via arguments similar to those used in proving Theorem 3.2.
The main difference is that the formula is neither summed over n nor multiplied by the time step 7. As a
consequence, the constant C; includes a term of the form 771 ||g.|| Leo(q) arising from the bound of the discrete
time derivative. To finish the proof we must show that
C . ; 2
N (A = AT+ Pug(td + (1= 09) — pug(tS' + (1 - 1)9))
< Nty + (1= DA = A + (85 + (1 - )P, - P)>.
By (1.9), this is trivially satisfied when t = 0. When ¢ €]0, 1], the argument is the same as in the proof of
Lemma 3.2. O

Propositions 4.1 and 4.2 are combined to obtain a bound on {4l + [|An|l-

Proposition 4.3. There exists a constant R; > 0, independent of ¢ € [0, 1], such that any solution ({j, Ap)
of (4.5) satisfies
Snlln + IARNIR < R1. (4.8)

Proof. According to Proposition 4.1, there exists a constant C; independent of ¢ such that

IShlln < C1.
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To establish a bound on | Ap|ln, we infer from (1.13) that the function |pw,| is bounded by p.(0) — p.(1) be-

cause f, is bounded by one and p. is a decreasing function. Thus (4.7) implies that there exists a constant C;
independent of ¢ that satisfies
M
; i\2 . Ve
z Cij (AJ —Al) <Cy, e, |VAnl2 < X2 (4.9)
i,j=1 V2

owing to (2.10). As Ap € Xo.n, the generalized Poincaré inequality (3.22) shows there exists a constant Cs
independent of ¢ such that
|Anllz2) < C3.
Then the equivalence of norm (2.5) yields
[Anlln < Ca

and (4.8) follows by setting Ry = C; + C4, a constant independent of t. O
4.2 Proof of existence
For any R > 0, let Bg denote the ball

Br = {(¢n, An) € Xn x Xo,n; I¢nlln + IAnln < R} (4.10)

andlet Ry = Ry +1, where R; is the constant of (4.8). Since all solutions (¢, Ap) of (4.5) are in the ball B, , this
function has no zero on the boundary 0Bg, . Existence of a solution of (2.42)-(2.45) follows from the following
result.

Theorem 4.1. The equation F(1, {n, An) = 0 has at least one solution ({n, An) € Bg,.
Proof. The proof proceeds in two steps. First, we show that the system with ¢ = 0 has a solution:
F(0, ¢p, Ap) = 0.

This is a square linear system in finite dimension, so existence is equivalent to uniqueness. Thus we assume

that it has two solutions, and for convenience, we still denote by ({x, Ap) the difference between the two
solutions. The system reads

T Y @@ -A) =0, 1<i<M (4.11)

T =

JHLJEN(D)
SBid Y cpme@@ - =0, 1<i<M (4.12)

T e

J#,JEN(D)

Y miA' = 0. (4.13)
i

We add the first two equations, multiply by A!, and sum over i. Then (2.10) and (2.41) imply that Ay, is a
constant and finally (4.13) shows that this constant is zero. This yields ¢ = 0.

Next, we argue on the topological degree. Since the topological degree of a linear map is the sign of its
determinant, we have, by denoting d the degree,

d(ff((), (h) Ah)y BRO) 0) # 0.

We also know that d(F (¢, {x, An), Br,, 0) is independent of ¢ since the mapping t — (¢, {, Ay) is continuous
and for every t € [0, 1], if F(t, ¢(n, An) = O, then ({, Ap) does not belong to 0Bg,. Therefore we have

d(?(ly (hs Ah)’ BR(); 0) = d(f}“(O, (h: Ah)s BRoa 0) #0.

This implies that F(1, {;, Ax) has a zero ({n, An) € Bg,. O
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5 Numerical validation

The present section proposes a numerical validation of our algorithm with a two dimensional finite differ-
ence code. Details on the algorithm implemented are given. A problem with manufactured solutions is then
considered to study the convergence properties of our algorithm.

5.1 Implementation of the model

The scheme developed in Section 2.3 is linearized by time lagging the saturation, by using (2.34) to eliminate
P, and by approximating p”*! by a first order Taylor expansion. More precisely, p**! is approximated by

) opc\"
pet = pra (2B (smtogmy, (5.1)
oS
Thus, for each node 1 < i < M, the unknowns (S"*1+{, P11} are computed as the solution of the following

problem:

_I(Sn+1,l _ Sn,l) _ Z Cijnw(swll)(P3V+1’] _ Pw"l’l) =m; {H'l,l’ 1<isM
T j#iJENG)
_ ?I(Snﬂ,l _ Sn,l) _ Z Cimo(Sg’”)(Pﬁ”’] _ Pwl,l)

Jj#i,jeN(i)

n,ijy . *,n+1,j *,n+1,1 n+1,i .
- Y cino(Se)pe —p™tY = mifyth, 1<isM
j#i,jeN(i)

We note that to facilitate the implementation of this algorithm in a two dimensional finite difference code,
the source terms of the equations (2.32)-(2.33) have been replaced by functions denoted by f; and f>.

5.2 Numerical test with a manufactured solution

The numerical validation of the algorithm is done by approximating the analytical solutions defined by

Py(t,x,y) = 2+ X’y —y* + xX*sin(t + y) (5.2)
S(t, x,y) = 0.2(2 + 2xy + cos(t + x)) (5.3)

on the computational domain Q = [0, 1]2. Dirichlet boundary conditions are applied on dQ on both un-
knowns Py, and S. The initial conditions of the problem satisfy (5.2)—(5.3). The porosity of the domain is set
to:

o(t, x,y) = 0.2(1 + xy). (5.4)

The mobilities 7, and 7,, introduced in Section 1.1, are defined as follows:
Nw(s) = 4s2, No(s) = 0.4(1 - s)%. (5.5)

The capillary pressure is based on the Brooks—Corey model, it reads:

50s71/2 if s > 0.05
pe(s) = { s ns (5.6)

25(0.05)"1/2(3 - 5/0.05) otherwise.

The term sources f; and f, are computed accordingly. The convergence tests are performed on a set of six
structured grids. The coarsest grid is made of 5 x 5 squares and each square is divided into 2 triangles. Then,
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L2-norm of error  Water pressure P,  Water saturation S

h/V2 ngf Error Rate Error Rate
0.2 36 8.50E-3 - 4.21E-3 -
0.1 121 4.15E-3 1.03 2.30E-3 0.87
0.05 441 2.08E-3 1.00 1.14E-4 1.01

0.025 1681 1.04E-3 1.00 5.57E-4 1.03
0.0125 6561 5.23E-4 0.99 2.75E-4 1.02

Tab. 1: Results of convergence tests where the mesh size is denoted by h and the number of degrees of freedom per unknown
by nqs. The time step Tis set to h and errors are computed at final time T = 1.

615 we uniformly refine the mesh by dividing each into four triangles to obtain the second structured grid. We
616 continue this process until all the six grids have been constructed. The convergence properties are evaluated
617 by using a time step 7 set to the mesh size h with a final time T = 1. As the time derivatives and the saturations

n+1,ij on+1,ij
618 Sy 0, Sg Y

are computed with first order time approximation, we expect the convergence rate in the L2

619 norm to be of order one.

620

The results of the convergence tests are presented in Table 1. The theoretical order of convergence, equal

621 to one, is recovered for both unknowns which confirms the correct behavior of the algorithm.

«> 6 Conclusions

623 This paper formulates a IP; finite element method to solve the immiscible two-phase flow problem in porous
624 media. The unknowns are the phase pressure and saturation, which are the preferred unknowns in industrial
625 reservoir simulators. The numerical method employs mass lumping for integration and an upwind flux tech-
626 nique. In this paper, we prove existence of the numerical solutions and some stability bounds. We also show
627 that the numerical saturation is bounded between zero and one. The convergence analysis is to be presented
628 in the second part of the paper.

629 Funding: The work of the second author was supported in part by NSF-DMS 1913291.
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