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Abstract: Convergence of a finite element method with mass-lumping and flux upwinding is formulated for
solving the immiscible two-phase flow problem in porous media. The method approximates directly the
wetting phase pressure and saturation, which are the primary unknowns. Well-posedness is obtained in
[J. Numer. Math., 29(2), 2021]. Theoretical convergence is proved via a compactness argument. The numeri-
cal phase saturation converges strongly to a weak solution in L? in space and in time whereas the numerical
phase pressures converge strongly to weak solutions in L? in space almost everywhere in time. The proof
is not straightforward because of the degeneracy of the phase mobilities and the unboundedness of the
derivative of the capillary pressure.
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1 Introduction

This work establishes convergence via a compactness argument of a simplicial, first order finite element
scheme for an immiscible two-phase flow problem in porous media. This scheme, set in a polyhedral domain,
directly approximates the wetting phase pressure and saturation. The numerical method uses mass lumping
to compute the integrals, in a fashion similar to that of the formulation proposed in [5]. The relationship be-
tween the mass lumped finite element method and finite volume methods has been highlighted in [4]. The
finite element method with mass lumping allows for structured or unstructured finite element triangulations
with the restriction that each angle be not larger than 77/2 in view of preserving the maximum principle. In
contrast to finite volume methods, no orthogonality constraint is required on the mesh. Our scheme utilizes
a special upwinding to compute the fluxes, based on the nodal values of solutions.

Because of the generality of the problem (degeneracy of the phase mobilities and unboundedness of the
derivative of the capillary pressure), the numerical analysis of the scheme is convoluted and technical and it
is presented in two parts. The well-posedness of the scheme and the maximum principle for the saturation
were shown in [7] thanks to upwinding. This present work is the second part of the analysis and its objective
is to show strong convergence of the discrete saturation in L? in space and time, and strong convergence
of the discrete pressures in L? in space, almost everywhere in time, to the weak solutions of the problem
(see Theorem 1.1). A priori bounds on the phase pressures are difficult to obtain because of the degeneracy
of the coefficients (phase mobilities) and the unboundedness of the capillary pressure. The argument is to
first bound the sum of the phase pressure and an intermediate function g, which is a weighted primitive of
the capillary pressure. Next a priori bounds for g are derived: the proof is technical and given in Section 2.
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Section 3 presents weak convergence, compactness in time and convergence of the numerical solutions. The
last step of the convergence proof is to pass to the limit in the scheme, which is done in Section 4.

1.1 Statement of the problem

We consider the two-phase flow problem, with unknowns s and p,, as wetting phase saturation and pressure,
in a domain Q (polygon in 2D or polyhedron in 3D) and over the time interval (0, T):

0t(ps) = V- (Mw($)VPw) = fuw(sin)q - fw(s)g 1.1
—0¢(9s) = V- (Mo(S)VPo) = fo(sin)q — fo($)q 1.2)

complemented by a natural boundary condition, ny(s)Vpy - n = 0, no(s)Vp, - n = 0, almost everywhere on
00 x 10, T[, and an initial condition, s(-, 0) = s almost everywhere in Q, with 0 < s° < 1. The wetting (resp.,
non-wetting) phase pressure, mobility and fractional flow are p,,, nw, and f,, (resp., po, 1o, and f,). The given
flow rates are g, g; ¢ is the porosity and sj, is a given input saturation satisfying O < si, < 1. The capillary
pressure and fractional flows are defined by

Nw(s)
Nw(s) + 1o(s)’
Because the phase mobilities are degenerate when they are evaluated at some values of the saturations and
the derivative of the capillary pressure is unbounded, this system of two coupled nonlinear partial differential
equations has coefficients that vanish in parts of the domain, resulting in a loss of ellipticity; this degeneracy
makes the numerical analysis challenging.

We present the assumptions made on the data. The porosity ¢ is piecewise constant in space, indepen-
dent of time, positive, bounded and uniformly bounded away from zero. The mobility of the wetting phase
Nw = O (resp., non-wetting phase 1, > 0) is continuous and increasing (resp., decreasing) over the interval
[0,1]. This implies that the function f,, is increasing and the function f, is decreasing. The capillary pressure
De is a continuous, strictly decreasing function in W1(0, 1). The flow rates at the injection and production
wells, g, g € L*(Qx 0, T[) satisfy

Vs €[0,1], pc(s)=po—DPw, fw(s)= fo(s) =1 - fu(s). (13)

3>0, g>0, Jq:Jq. (14)
4 0 ot
In addition, the mobilities , € W>*°(0, 1), @ = w, o, satisfy 17,,(0) = (1) = 0,
Nw(s) +1Mo(s) 2. Vs €[0,1] (1.5)

for a positive constant 1. Furthermore, we assume that there are constants, a,, &y, a3 in the interval ]0, 1],
positive constants 33, B4, and constants 9, > 1 and 9y, > 1 such that for all x €]0, 1],

1
ayxP 1 <l (x) < —x%1 (1.6)
Qw
1
ap(1-x)% 1 < —nl(x) < a_(l - x)%1 .7
o
LBt - Pt s pl) > P - )bt (1.8)

as
From (1.6) and (1.7), we deduce, respectively, for all x € ]0, 1],
1
a9,
We sum these two inequalities and denote by ¢ the resulting lower bound. It is easy to check that £ is a non-

negative continuous function of x on [0, 1], hence uniformly continuous, therefore bounded away from zero.
Thus there exists a positive constant Cp,j, such that

Qw g 1 5 @ 9
—x" < X) < ——xv, —(1-x)"% < X) <
M) < — g (L =0% <o)

w w¥w

(1-x%. 1.9)

1 1
Vx €[0,1], Cpin < €(X) < Crax, Crax = max ( x4 1- X)'90>- (1.10)

m
xe[0,1] \ &y 9w a9,
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Although the numerical scheme studied below does not discretize the global pressure, following [3], its con-
vergence proof uses a number of auxiliary functions related to the global pressure. We introduce the primitive
gcof pe, gc € C1([0, 1]), g and the auxiliary pressures Dwg> Pwo, forall x € [0, 1]:

JX er(S)rlo(S) pé(S)dS (],11)

1
2c(x) = j pels)ds, g0 =-] SRS

Pug() = jo fo(S)DL(s)ds,  Poglx) = jo fu(S)pL(s) ds. (L12)

Let Q = Qx]0, T[. In [2], the weak problem is formally: Find s in L®(Q) with g(s) in L2(0, T; HX(Q)), Pa,
a = w, o, in L?(Q) with both py, + pwg(s) and p, — pog(s) in L2(0, T; H1(Q)), satisfying for all v € C?(Q) that
vanishatt=T,

- J Psov+ J (Mw(S)V(pw + Pwg(s)) + Vg(s)) - Vv J @ s°v(0) + J (fw(sin)q - fuw(s)qQ)v
Q Q Q Q

| 950w+ | (Mo©po - pogts) - Ve()- W = = [ 95O+ | (falswa - fo@v.  (113)
Q Q o} Q

1.2 Scheme

Let Q be a Lipschitz polyhedron and 73 a regular simplicial mesh, with h denoting the mesh size. Let Xy,
denote the finite element space of order one,

Xn = {vn € C°(Q); VK € Th, valx € P1}. (1.14)

Let M be the dimension of X5, and let ¢; be the Lagrange basis function that takes the value 1 at node i and
the value O at the other nodes. For any function Vj € Xj, we write Vi = ) ; Vi(pi, where V' is the nodal value
atnodei.Let I, € £(€°(Q); Xp) denote the Lagrange interpolation operator. Let T = T/N be the time step, and
tn = nt, the discrete times, 0 < n < N. The set of primary unknowns is the discrete wetting phase saturation
and the discrete wetting phase pressure, Sy and P;’V’ y» defined pointwise at time t,, by:

M M
Si=Y S*g;, PL,=YPyg, 1<n<N
i=1 i=1
where $™ and P"},’i are the nodal values of the discrete saturation and wetting phase pressure. Then the
discrete non-wetting phase pressure Pg, , defined by
M . . . .
Py, = Y Polgi, 1<n<N, Pg'=p.(St)+Py Vi
i=1
is a secondary unknown. As usual, it is convenient to associate time functions Sp ¢, Pq,n,r with the sequences
indexed by n. These are piecewise constant in time in ]0, T[, for instance
Pyn,z(t, x) = Pg’h(x), a=w,0 V(x,t)eQx]th_1,tn]. (1.15)
To enforce the maximum principle, the mesh is assumed to satisfy the property [1]:

VK, JV(pi~V(pj<0 Vi#j. (1.16)
K

For a given node i, we denote by A; the union of elements sharing the node i and by N(i) the set of indices of
all the nodes in A;. In the spirit of [8], we define

Cii:L Vi - Voj| Vi, j. (1.17)

]



190 — V.Girault, B.Riviere, and L. Cappanera, Degenerate two-phase flow II: Convergence DE GRUYTER

We introduce the following form:
M
VWi, Un, Vi, Zn € Xn,  [Zn, Was Vi, Upln = Y, Uleyy WI(V/ = V') (1.18)
i,j=1
where WY is either equal to W or to W/, depending on Zj, as follows:
Wi, AR/
Wi =13 w, Zi< 7 (1.19)
max(Wi, Wi, Zzi=27.
With the above notation, the finite element scheme is: Find S” pr

wh’
of, for all 95 in X},

1
;(SZ = Sp 905 = [P s TnO1w(SR); Py s Only, = (In(Fuw(sfh ) ~In(fw (S} On)y,  (1.20)

and P} , in Xy, for 1 < n < N, solution

1
—;(SZ = Sp 90 = [Pl Tn(Mo(Sp); Py, 9n)y = (In(fo(shy )T = In(fo(S)a}, In)y, (1.21)

Pr =Pl = In(pe(Sh)) (1.22)
(Pyp> Dy = 0. (1.23)
The inner-products are defined by:
M . . M . .
YU, Vi € Xn,  (Un, Vi)n Z mU' V', (Un, Va)y = ) (@)U V! (1.24)

i=1 i=1

with (using the notation |O| for the measure of any region O)

m; =

—14il, mi(p) = o|kIK].
d +1 d+ KGZAI

The initial saturation is Sg = ru(s®), where ry, is a nodal approximation operator defined at each node i for
any function g € L1(Q) by

1
(rn(g)) = 7 |J g 1l<isM. (1.25)
We define the time and space average operators p and py by:

1 (b
PP = PPl st = —j £ palk = px() = j . (1.26)
T )i, K|

The input saturation s;, is approximated in space and time by Sin h,r = pr(rn(Sin)). In order to preserve (1.4),
the functions g and g are approximated as follows

Gnr = pe (1@ - i [ m@- D). a,,-p(n@- i | -9). 1.27)
The main result of this paper is the following convergence theorem. For this, we define
Uw,h,r = Pw,h,r + Ih(pwg(sh,r))a Uo,h,r = Po,h,r - Ih(pog(sh,r))- (1-28)

Theorem 1.1 (main result). The discrete solutions converge up to subsequences as follows:

lim Sp:=s stronglyinL’(Q), 2<r<oco
ham St gly (Q

lim Pypr=pg StronglyinLl'(Q), a.e.in]0,T[, a=w,0, 2<r<6
(h,1)—(0,0)

lim P = weakly in L*(Q), a = w, 0
(.0 00.0) a,h, 1 = Pa y (Q

where py, + Pwg(S), Do — Pwg(S), and s solve the weak formulation (1.13). In addition,

lim U =Py + s), lim U =p, - s), weaklyinL*(0, T; H-(Q
(h7)5(0.0) w,h,t = Pw + Pwg(S) (R Oa(0.0) 0,h,T = Po = Pog(S) y ( Q)

and Uy, n,r (resp., Uy, n,7) converges strongly in L"(Q) for almost every tin 0, T[,2 <1 < 6.
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The proof of the theorem requires several steps that are covered in the remaining of this work. All constants
below are independent of h and 7.

2 Apriori pressure bounds

First a priori bounds were shown in [7]:
)1*||VUa,h,T||%2(Q) <C, a=w,o. (21)

In view of (1.13), it remains to derive a bound for the gradient of g(Sp,r). More precisely, we will prove the
following theorem.

Theorem 2.1. There exists a constant C, independent of h and 1, such that
IV(In(8(Sh,o)) 20 < C. 2.2)
Estimating the gradient of g(Sn,;) is a long and intricate process; it is based on the fact that
18(S™) — g(S™NI” < C(fuw(S™) ~ f(S™)(g(S™) - 8(S™))

see (2.54). Therefore, we must derive a bound for the product of the gradients of g and f,,. This is split into
several steps.

2.1 Apreliminary inequality
Our starting step is the following inequality.
Proposition 2.1. There exists a constant C; independent of h and 1 such that

N
Ri= =Y T Y (P2 (S fa(S, P, 23)

n=1 a=0,w
satisfies |Ry| < C;.
Proof. By testing (1.20) with Iy, (fW(SZ)) and (1.21) with I, (fo(SZ)), adding the resulting equalities, and multi-
plying by 1, we obtain

N N
Y (SE=SEL fuSH = foSP)R = Y T Y [Ph o na(SE )i fa(S}), P21,
n=1 «

n=1 =0,w

T
=j (@nes Y falsinnfalSn)y = (@, Y f2Sh)y) <4l (24)

0 a=o,w
in view of (1.3) and (1.4). To control the time difference of Sy, ;, we introduce the global flux defined by
X
vxel0. 1, 600 = [ (fuls)~fols))ds 25)
and we write
(Sh=SEH(fw(SH = fo(SP)) = (S - SpHG'(SP).
But by (1.3), G'(x) = 2fw(x) — 1 is increasing. Hence, we easily check that
G(Sy) - G(Sﬁ‘l) <(Sp - Sﬁ‘l)G’(S;l').

Thus, the properties of ¢ imply

N

Y (Sh=Sph (SR = fo(SP)y = (G(SY), D)y = (G(Sp), 1)y, -

n=1
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But the boundedness of Sy, r, the continuity of f,, and the properties of ¢ imply
[(G(SY), Dy = (G(S)), Dy | < C'

with a constant C’ independent of h and 7. By substituting these inequalities into (2.4) we derive (2.3) with
C1 =4 ”q”Ll(Q) + C’. O
2.2 Some discrete total flux inequalities

In this section, it is convenient to rewrite (1.20) and (1.21) as an equivalent formulation that involves the nodal
values S and P};* (see [7]):

= _ M . . . — i i

TP (gt s710) = 3" cimu S P ~ P = mi (fusa™ — ™) 26
j=1

m;(p) n,i n-1,i < n,ijy  phsj n,iy _ n,iy=n,i n,iy . n,i

—— ST STED = ) cino(So ) (Po” — Po) = mi (fo(s[ g™ - fo(S™Dg™) @7
j=1

Here i runs from 1 to M — 1 in (2.6) and from 1 to M in (2.7). Following [3], the sum of the equations (2.6)
and (2.7) suggests defining a discrete anti-symmetric upwinded total flux,

Fn,ij — _nw(sc:/’l])(P\r/lV’] _P\r,lv’i) _ rlo(sg,l])(Pga] _ngi) (2.8)
that satisfies
z Cian,I] - ml_(‘—]n,l _ qn,l). (2.9)
j#ijEN() a

By multiplying (2.9) with T fé(S”’i), and summing, we obtain for « = w, o:
N M . .
YTy faSHeFMI | < 21l g)- (2.10)
n=1 ij=1

To simplify some of the calculations below, it is convenient to drop the time superscript n, when there is no
ambiguity, and restore it when needed. By using the relation (1.22), F' i.j can also be written as

FU = — (qu(S) + 10(SH)(P)y — Pi,) = 16(SH(pe(S) - pe(SH)
=~ (Mw(SY) + No(SD)(Ph = PL) + u(Sw)(Pc(S) - pe(SH). (2.11)

In order to insert it into (2.3), we bring forward F¥ in the expressions for na(Sg)(P"', - Pf)l), a = w, 0. Starting
from the identity

w(SI(Phy = Ply) = FulS)[ (1w(Si) + 1o(SD)(Ply = Py) + 16(SD(Pe(S) - pe(S)
= No(SNP(S) = Pe(S) + (6(SW) = (S (P - Piy)]

the expression (2.11) leads to

(Sl = Ply) = fu(S] = FT = no(SD(Pe(S) = Pe(S)) + (o(SW) = no(SD)Ply - P (212)
Similarly,
No(SD(P = Pb) = fo(S)[ = F + nu(Si)(Pe(S) = Pe(S) + (u(S0) = mu(Si))(Ph = P)]- (213)

We also introduce the anti-symmetric quantities that collect the terms other than F¥ in (2.12) and (2.13),

Ci = 1o(S)(Pe(S') = Pe(SH)) = (10(S0) = 10(S) (Pl ~ Piy) (2:14)
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Co = ~Mu(Sw)(Pe(S) = pe(SH) = (1w (Se) = Mw(Su) (P ~ P). (2:15)
With this notation, we have
Na(SD(PL ~ PL) = fulSD - FI - CJ), a=w,o0.
Thus, the term that is summed over i in (2.3) has the expression

= Y fulS) Y cinaSDEPL-PY) = Y falS) Y ciufalSOET +CJ). (2.6)

a=w,0 J#1L,jEN() a=w,0 J#i,jeN()

Now, we reintroduce the superscript n and to simplify, we set

M s ..
Atin = Z fa(Sn’l)Zcijfa(sz’u)Fn’u (2.17)
a=w,o0 j:l
. n,ij\ ~n,ij
Agin = fa(S™) Y cijfa(Sa”)Ca”. (2.18)
j=1

With this notation, our next proposition is derived by substituting (2.16)—(2.18) into (2.3).

Proposition 2.2. We have, with the quantity R; of (2.3),

N M N M
YTY Apin+ Y TY Agin=Ri. (219)
i=1 n=1 i=1

n=1 |i= a=w,o

We must transform suitably each term in this sum to bring forward g. Let us start with the first term of (2.19),
i.e., the combination of the discrete total flux.

2.3 Combination of the discrete total flux

To simplify, let A; denote the first term,

=

A=Y Y Y [falS™eyfulSy ],
1 gj=14a

n =W,0
Inspired by (2.10), we introduce the difference
N M . . Iy
Ay =Ar =) T Y (fa(S™) +f2(S™))ciF™Y.
n=1 ij=1
Clearly, A, collects the discrepancies arising from the upwinding,

N M 11 . )
Y Y [fal™hey(faSe”) - fuls™H)FH]. (2.20)

n=1 i,j=10a=w,0

A,

As (2.10) yields
A=Ay +Ry, |R2| <414ll(q (2.21)

abound for A; stems from a bound for A,. To this end, in view of (2.20), it is useful to consider the five subsets
of indices j € N(i), j # i, union and intersection:

Nuw(i) = §j e N(i); Py > PR}, No(i) = {j e NG); Py > P}
Nu,s(D) = {j € NG), j#1; Py = Ply', " > s™i}
Nos(i) = {j € N(i), j # i3 P}’ = Py, S < ™1}
UN(T) = Ny (i) U No (i) U Ny, s(i) U N, s(i)
N(i) = {j € N(@); P&' > PlJ, pois pl/y, 2.22)

Strictly speaking, these subsets should we written with the superscript n, but we omit it for the sake of sim-
plicity. Then we have the following estimate for A5.
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Proposition 2.3. We have,

1N M ) ) .
A== Y)Y ci(fulS™) — SO F 4 Ry (2.23)
=1 i=1jeUN()

=

where the remainder Rs satisfies |[R3| < 2 [1gll1(q

Proof. Let us drop the superscript n. By definition, fW(Sw) —fw(S') = Owhen P}, > P’ and when P, P{,,, and
St > . Similarly, £,(S7) - f,(S) = 0 when P > P} and when P! = Pl and St < /. Therefore, the nth term in
A, say a,, reduces to

M
Z Y fuSH Y cy(falS) - fa(SH)F.
i=1 a=w,0 JENQ(I)UN s (1)

By expanding the products, this can be written
1 . : ; . .
=-3, Z D Y ci(f2(S) = f2(S) + (fo(S) — fa(§)?)FY. (2.24)
i=1 a=w,0 jeN()UNg s (i)

Since c;j vanishes when j is not a neighbor of i, we have, by interchanging i and j and using the anti-symmetry
of FU and the symmetry of cj;,

M M
=Y Y cfaOFI =Y cyfa(SHFY. (2.25)
i=1jeNy (i) i=1,j=1,P}, <P,
Similarly,
M . s M . s
—Z Y cifa(SHFT = Y ciif2(SHFY. (2.26)
i=1j€Ny,s(i) i=1,j=1,Pi,=P),,Si>S/
Hence y "
1 . L 1 -
EZ Z ci(fuS) - fa&DF = == ¥ cyfg(SHFY
i=1 jeN (i) i=1,j=1,P,#P,,
and
(f20ciy _ f2ocingi L & 2 iy i
-—z Y G(fa@)-faNF = -— ¥ cyfy(SHF
i=1 jeNw,s(i) i=1,j=1,P},=P},

because there is no contribution from the indices i, j such that P{'A, = P’,.A,, St = §J since in this case the factor
FU = 0. The same is true for the non-wetting phase. Thus

M

Z Z Y lfaE)-fa@NF = -5 ¥ ) cyfa(SHFY.
A=W,0 j=1 je Ny ({)UNy s(i) a=W,0 j=1,j=1
By comparing with (2.10), we see that
1 ; R _
5 Z z > Y cii(fz(S™) = fR(S™))F™ | < 2|[gllL1(q)- 2.27)
n=1 i=10a=W,0 jeNy(i)UNg,s(i)
This and the equality
(fo(S™) = fo(S™))? = (fu(S™) - fu(S™)?
readily imply (2.23). O
Now, we set
. ) ) . 1M .
AV = ci(fu(8) - fu(SH)’FI,  as=-3Y ) Al (2.28)
2 i=1 jeUN()

The next proposition simplifies the expression for as.
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Proposition 2.4. We have
M
Z Y ci(fw(S) = ful(SH) FU. (2.29)

1jeNg()

Proof. By expanding the indices in the set UN(i), interchanging the indices i and j, and using the anti-
symmetry of AU, we derive

a3 (( y ¥ A”) Y ais Y Aij).
a=W.0 pi pl Pi,=P,,Si<S! Pi=P},Si<S)
Now, we split the first two sums above as follows:
Y Yai-2 Y A+ Y Ay Y o4,
a=W,0 pi . pl Pi,>Pl,,Pi>P) Pi,>Pl,,Pi<Pl P.>P) Pi,<P),
This leads to
_ i, = ij ij ij ij
a3—.Z.A+2<lZ. ,A+,Z, VA+'ZA‘A+lZ.AA).
JENz (D Pi,>P),,PL<P, P.>P),Pi<P), Pi,=P},,Si<S! PL=P)},Si<Si
The anti-symmetry of AV gives
Y ai-- Y Ao Y ol
Pi,>P, Pi<P) Pl,>Pi, P, <Pl Pl,>Pi, Pl =pi
By substituting and applying twice again the anti-symmetry of AY, we derive

as = ZAif+%( Y ooAT+ Y oAT- Yy Al- Yy A"f). (2.30)

JeNg (D) P.>P) pi=pl, Pi,>P, pi-pl Pi,=Pl, Si<Si Pi=P) SixSi

Y - Y a4

Pi,>P),,P},=P), Pi>P),,Pi,=P),
since the additional term is zero. Therefore, the fact that p. is strictly decreasing yields

Y ai- Y Ay, Y ai- Y oab

Pi>P. pi=pl, Pi,=Pl, Si<Si Pi,>P, Pi=pl P.=P Si>Si

Note that

Thus all terms multiplying 1/2 in (2.30) are cancelled and we recover (2.29). O
By applying (2.21) and Propositions 2.3 and 2.4, A; has the following expression.
Proposition 2.5. We have
) L N M
Z Z Y [faS™heufaSEHE ] =Y 1Y N c(fulS™) - fulSVH) M 4 Ry (2:31)
n=1 ij=1a=w,0 n=1 i=1jeNg(i)

where
R4l < 6119l11(q)- (2.32)

This settles the contribution of the first term of (2.19); the second terms are handled in the next subsection.

2.4 Terms involving the capillary pressure and mobility

These are the terms A, ;,, defined in (2.18). By virtue of the anti-symmetry of Cij, we can write for a = w, o0:

M L M ) ) L
Y fa(S)cijfu(Sa) Co = —% Y (fa(S) = fa(SH)ciifu(S2) Ca. (2.33)

i,j=1 i,j=1



196 —— V.Girault, B.Riviere, and L. Cappanera, Degenerate two-phase flow Il: Convergence DE GRUYTER
Owing to (1.3), the term with & = o in the right-hand side is § 2%21 (fw(9) - fW(Si))cijfo(Sg) cY. Therefore,

M
z Z Aa,i,n =

aA=Ww,0 j=1

Z i(fuw(S™) = fu(S™H)( = fuw(Sw”) Cw” + fo(S5"7) Co™¥). (2.34)

NI»—\

Let K¥ denote the symmetric term
KU 2= cij(fu(S™) - fu(S™))(~ Sk C7 + fo(S57) €37
by virtue of this symmetry, we have

z ZAmn_ Z K””+ Z K™, (2.35)

a=w,0 j=1 Pn1>Pn] an_Pn}

2.5 Combining all terms

The next lemma follows by substituting (2.31) and (2.35) into (2.19).

Lemma 2.1. We have
N N M . O
=T Y [P nalST s falSE), PT L] = ZT[Z( Y cii(fu(S™) — fu(S™D)2FmY
n=1 a=o,w n=1 Liz1 \jeNg()

= Y c(fulS™) = fulS ) (s €7 - oS5 €57)
Py'>Py)

—% Y ci(Fu(S™) ~ (S D) (Fu(Sw™) €7 - fo(SeY) cﬁ’”))] + Ry (2.36)

Pli=pl)

with R4 bounded by (2.32).
Thus, to bring forward g, we must suitably combine the terms of the above sum over i, and this is done by
examining all pairs of indices (i, j) involved in (2.36), i.e., the palrs of indices in the following sets: (i) P, > P’
and Pi > P{,, (i) Pi, > P}, and Pi < P, (iii) Pi, > P/, and Pi = = P, (iv) Pi, = P}, and Pi > P, (v) Pi, = P,
and Pi < P). Note that the sixth case that would be Pi, P’ and P = P’ brings no information because it
implies that St = §/.

For the argument below, we shall use the following proposition, due to the continuity of n,f,, and nf,
and the fact they do not change sign between St and §/.

Proposition 2.6. For each indices i and j, there exist (non unique) points a and a' between St and S/ such
that

8(8) - g(8) = —no(@fw(@)(pc(S) = pe(S)) = —nw(@ o (@) (pe(S) — pe(SH). (2.37)

To simplify, the superscript n is dropped. We now state several propositions. For brevity, their proofs are
skipped and can be found in report [6].

Proposition 2.7. Let P!, > P, and Pi > P.; then the factor of T in (2.36) satisfies
cii( Fu(S) = Fu(SH)((fulS) — fuSHFT — (ful(SHCI - fo(SHCY))
> ci( () = fu(SH)(8(5)) - 8(SH). (2:38)
Proposition 2.8. Let P, > P}, and Pi < P/; then the factor of 7 in (2.36) satisfies

= Cii(fuw(S) = fu(SH) fuw(SHCY ~ fo(SHCI) = cij(fu(S) - fuw(SH)(8(S)) - g(S1). (2.39)
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Proposition 2.9. Let Pi, > P}, and Pi = P}; then the factor of 7 in (2.36) satisfies
= cii(fulS) = FSH fuw(SHC = Fo(§)CF) = ci(fulS) = fu(SH)(8(S) - 8(S1)- (2:40)
Proposition 2.10. Let P, = P}, and P > P); then the factor of 7 in (2.36) satisfies
= SEi(FulS) ~ Ful SN FwSNCH = fo(SNCE) > S ey(FulS) - FulSH)(8(8) - g(8). (24D
Proposition 2.11. Let Pi, = P}, and Pi < P); then the factor of T in (2.36) satisfies

- %ci,-(fw(sf) — Fu(SD)(fw(SHCY — fo(SH)CY) » %ci,-(fw(sf) ~ fw(SH)(g(S) - g(SY)). .42)

2.6 Auxiliary bound for the gradient of g

The following theorem is the first outcome of this section.

Theorem 2.2. There exists a constant C, independent of h and T, such that
I IQ VUIr(fa(Sh,o))) - VUR(E(Sh,))) | < C, a=w,o. (2.43)

Proof. Owing to (1.3), it suffices to prove (2.43) when @ = w. By applying Propositions 2.7-2.11 to Lemma 2.1
and combining with Proposition 2.1, we readily derive that

N M
Y1y Y ci(fulS™) = fu(S™H)(g(8™) - g(8™)) < € (2.44)
n=b =L eNG). PPy

with a constant C independent of h and 7. Therefore, (2.43) will follow if we bound the summand for all j such
that P}y’ < P};’. But the symmetry of the summand implies that

M
Y Y S - FulSM)(eS™) - g(5™)

=1 jeN(i),PLi<p]

M=

Y c(fwS™) = fiulS™))(g(S™) - g(S™).

=1 jeN(i), P> pm

Hence
M . . . .
j VIRFw(SPN) - VURESIN =2 Y cii( fu(S™) = fu(S™))(g(S™) - g(S™)
@ =1 jeN(i),Phis Pl
M . . . .
+y Y ci(fulS™) - fulS™))(8(S™) - g(S™)
=1 jen), Pri=p)
and (2.43), with another constant C, follows by substituting this equality into (2.44). O

2.7 Bound for the gradient of g

Lemma 2.2. There is a positive constant C such that

vx €[0,1], g'(x)<Cf,(x). (2.45)
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Proof. Considering (1.5) and (1.9), we infer

—— x4 (1 - x)Fo=1+h (2.46)

thus implying that g’ is a bounded function, i.e., g is Lipschitz continuous. Note that the Lipschitz constant

L of g is bounded by

1 1 1 9u—14B 9o-1+B
{ — ————max X7 3(1 —x) “). 2.47
.05 awsw 0(0190 xe[O,l]( ( ) ) ( )

On the other hand, (1.8)—(1.10) yield for all x €]0, 1[,

a3 Qw Qo 9, _14p, 9,-1+p
—= = xYv 1-—x)% 4> 0. (2.48)
Cmax l9W 80 ( )

g =

Thus g € W1*(0, 1) is a strictly monotonic increasing function on [0, 1] with range [0, ] for some § > 0,
hence invertible with inverse g=! € W1-*(0, ).
Now, we turn to f,,. By definition, we have

fo () = (Mo (ONY, (X) = N OMH(X)). (2.49)

1
(Mw(X) + No(x))?
The inequalities (1.6)—(1.10) imply that

f,{v(X) 2 LaoO(w [ixgw_l(l - X)SD + iXSW(l - X)So—l] .
9 9

Crznax w
Thus,
3 , Aoy (1)'90 91
bl > — w 2.
Vx € [0, 4] s fu() 9. \4 X (2.50)
and 5
1 Ao 1\%v
21, flix) =2 (—) 1-x)%1, 2.51
VX € [4 ] fw () 9, \4 (1-x) (2.51)

Let us use these results to compare g’ and f,. It follows from (2.46) that

1 1 1 Soclgnax> Ao Ay Xswfl
N.03 A9y A9 Aoty Crznax'go

Vx € [0,%], g’(x)s(

and by setting

1 1 1 5 9Chy
C1= 4%
N3 awdw a9, Ao Ay

and comparing with (2.50), we obtain
VX € [0, %] , g <Ciflx). (2.52)

Similarly,

1 1 1 1 8,C2
Vx € [—, 1] , g< ( “ maX) (;Oaw (1-x)%1
4 N+03 awy a9 Aoty ) CZ. 9w

so that, by setting

1 1 1 5 9wCli
Cy = 4%
n+a3 ayww a9, Qo Ay

and comparing with (2.51), we deduce
1
VX € [Z’ 1] , 8 X) < Cof) (). (2.53)

This leads to the desired relation (2.45) with C = max(Cy, C,). O
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We are now ready to show Theorem 2.1, which follows by combining (2.45) with (2.43). Let (i, j) be any pair of
indices. If S™ < S™J, then by (2.45),

sn

; . s J ; ;
FuS™) = fulS™) = | fuGodxs [ 800 dx = Clgs™) - g(s™).

n,i

As g is increasing, we have g(S™/) — g(S™) > 0. Therefore

(fw(S™) = fu(S™1))(g(S™) - g(S™)) = Clg(S™) - g(S™H)I>. (2.54)

By changing both signs, the same result holds when §™/ < S™, Then (2.2) follows from (2.43).

3 Convergence

The interpolants of pag(Sh,r), 8(Sh,7), and pc(Sk,7) play an important part in this work, see Theorem 2.1,
and (1.22). Therefore, we begin by studying convergence properties first of In(g(Sn,7)) and In(pag(Sh,7)), & =
w, 0, and next I (p(Sp,7)). Some results will stem from an interesting relation between differences in values
of Sp,r and g(Sn, 7).

3.1 Properties of /,(g(Sp,;)) and I,(pag(Sh,:)), @ =w, 0
3.1.1 Convergence properties of I,(g(Sh,7))

Using the fact that the finite element basis functions and the discrete saturation are bounded below and above
by 0 and 1, respectively, there exist constants C, D, E, independent of n, h, and 7, such that

Ig(Sh,0)(tn)lL22) < CMR(E(Sh, o) (En)ln < DITn(E(Sh, )t < EMA(&(Sh,0)(tn)l2(0)- (€3))

These inequalities carry over to the norm in L?(Q). Now, let us prove the following convergence property of
In(8(Sh,7))-

Lemma 3.1. Under the assumptions of Theorem 2.1, we have

li S -1 S =0. 3.2
(h,‘r)l—r{%0,0)"g( r,t) = In(g(Sh, ez Q) (3.2)

Proof. For any x in any element K of 73, we have

d+1 d+1
In(8(Sh,0))(X, tn) = &(Sh,)(X, tn) = ) &(S™)i(x) - g( Y Sn’i(Pi(X))
i=1 i=1

where 1 < i < d+1 are the local numbers of the nodes. As Sy ; is a polynomial of degree one in K, it attains its
maximum and its minimum in space at vertices of K, say g(S™¢) and g(S™") are its maximum and minimum,
respectively. Thus, recalling that g is a nonnegative monotonically increasing function,

d+1 d+1
Y g(S™Hpi(x) < g(S™), g( y S"”(pi(X)> > g(s™").
i=1 i=1

Hence

N
ITh(g(Sh,0) — &S, gy < DT Y IKIIg(S™) - g(S™). (3.3)
n=1 KeTy

For any node i, let »; denotes the maximum of |K| over all elements K in A;. Then we can readily check that

N N M
YT Y IKIgS™) -gS™F<CY Ty Y |g(S™) - g™
n=1

KeTy n=1 i=1 jeN()
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where C is a bound for the maximum number of elements that share a common edge, bound independent of
h and 1 by virtue of the regularity of the mesh. Now, recall the classical formula in each d-simplex K,
1 |Fil |Fjl
Vi -Voj| = - ———In; - n; 3.4
[ 190i- V9l = 5 Imi ml (3:4)

where F; is the face opposite to the vertex a; and n; is the exterior (to K) unit normal to the face F;. The
regularity of the mesh implies that there exists a constant Co, independent of h and 7, such that |n; - n;j| > Co.
Hence, using again the regularity of the mesh, we obtain

J Vi - Vepj| > Chd2
K
and denoting by p;; the minimum of hg for all K in A; N Aj, we deduce
Cij = Cpg-_2 (3.5)

with another constant C independent of h and 7. By collecting these results, we derive

N M
1 . .
ITh(g(Sh,0)) ~ 8(Sh, 2y SC Y T i ) <?) cijlg(s™) - g(s™H*. (3.6)
n=1 i=1 jeN(i) ij

With another application of the regularity of the mesh, this becomes

M(g(Sh.0) ~ 8(Sh )% g < CHAIVUIR(E(Sh NI (3.7)

(note that the power of h is independent of the dimension) and the limit (3.2) follows from Theorem 2.1. [

3.1.2 Relation between g(5"/) — g(§™/) and §"/ — §™i

Here, we derive an upper bound for ™/ — S™! in terms of g(S™/) — g(S™1).
Lemma 3.2. There exists a constant C, independent of h and T, such that for all i, j, n,

| - §™1] < Clg(S™) - g(S™HIM (3.8)
where r = max(9, + B4, Sw + fB3) > 1.

Proof. To simplify, we set ¢ = S™, d = S™/ and assume c < d. From (2.48), it follows that

as ay A, (4
D) -g(0)> o422 J xOutBsL(1 _ x)IorBi-1, 3.9)
max w (o] C

For the sake of brevity, we do not specify the constant factor in (3.9) and write
d
g(d)-g(c) = C4 J xIwhaml(q — x)orhast,
(o}

Now, we argue according to the positions of ¢ and d. There are four cases.
1. If1/8 < c < 7/8, then (3.9) gives

g(d)-g(c)2 G <1>8w+ﬁ3_1 jd(l — x)%o+Bu-1

8 c
1 '~9w+ﬁ3_1 1 9.+
= _ _ o+B4 _ — A\9ot+B4
cl(g) 90+ﬁ4((1 0) (1-d)%or).
But
a- C)Bo+ﬁ4 -(1- d)90+ﬂ4 =(1- C)So+ﬁa—1(d o) +(1-d)((1- C)30+ﬂ4—1 ~(1- d).90+ﬂ4—1)
1 9o+B4-1
>(d-c) (g) .
Hence

g(d)-g(c) 2 (d-o). (3.10)

Cl 1 9y+B3+90+f4-2
9 + B <§>
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2. Ifc>7/8,thend > 7/8 and (3.9) gives

7 >'9w+ﬁ3*1 1
8 190 + B4

Letusseta=1-d,b=d-c,y =39, + B4 -1 > 0. We can also write

y+1
(1 - c)%etPe — (1 - @)%the = aY“((l + g) - 1).

It is easy to check that the function

g(d) -g(c)=Cy ( ((1 _ C)So+ﬁ4 -(- d)'9”+ﬁ“),

x> (1+x)Y -1 - x¥*l

vanishes at x = 0 and is strictly monotonic increasing, hence is strictly positive for x > 0. Hence

y+1 y+1
ay+1<(1+§> —1>>ay+1<§> = p¥+t,

Thus
1- C)90+ﬂ4 -(1- d)90+ﬁ4 >(d- C)|90+ﬂ4
and
l9w+ﬁ3’1 1
_ _ _ \JotBa
g(d) -g(c) = C1<8) 9 +B4(d c) . (3.11)

3. Ifc<1/8andd < 7/8, thentheintegrand 1 - x > 1 — d > 1/8 and by the above argument,

190+Ba—1 1
_ - = A 4wtBs _ wtB
g(d) g(C)>C1(8) 8W+ﬂ3(d ¢ 3)

1 190+ﬂ1,—1 9 ﬁ
— — wtp3
> C1( 8) Ry (d-oc) . (312

4, Ifc<1/8andd > 7/8,thenc< (d-c)/6 <(d-c)/2 < d. Therefore, we can write

(d-0)/2
g(d)-glc) = C1 j xS tBi=1(1 _ x)9o+Bu-1
(d-0)/6
9o+B4-1 9 +Bs 9 4B
1 1 1 1
o(3) aim((aeo) (se0) )
9o+9yw+B3+B4—1 9 +B3
1 ; — l _ ~\wtBs
2Cl(Z) 8W+ﬁ3(1 <3> )(d c)7r. (3.13)

Sinced -c < 1,9, + B4 > 1,and 9,, + B3 > 1, we have in all cases
8(d) - g(c) > Co(d — ) Pothudufs)

where C, is the minimum of the constant factors in (3.10)—(3.13). O

The convergence to zero of the differences Iy (pag(Sh,7)) — Pag(Sh,7), @ = w, 0, follows from this lemma and
Theorem 2.1.

Lemma 3.3. There exists a constant C, independent of h and 1, such that

||Ih(pag(sh,'r)) —pag(sh,r)||L2(Q) <Ch¥, a=w,o0 (3.14)

where yy = B3/1, Yo = B4/7 and in both cases, r is the exponent of Lemma 3.2.
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Proof. Letusstartwith a = w. Arguing as in the proof of Lemma 3.1, with —p,,, (monotonic increasing) instead
of g, the analogue of (3.6) holds for —p¢(Sp,r), with the same notation

Ik (Pwg(Sh,2)) = Pwg(Sh,0l32 g < Z Z D (%)ciﬂpwg(sm)—pwg(sn,i)|z (3.15)

n=1 i=1jeN(@) U

and the result will stem from an adequate upper bound for pwg(S”’j ) — pwg(S"’i), for all neighbors j of i. To
this end, we proceed as in Lemma 3.2. Let ¢ = S™{, d = S™J, and suppose again that c¢ < d; then by (1.12), (1.8),
(1.9), and (1.10),

) . 1 d
n,jy _ miy| < B3-1 1- 9o+B4-1 1
[Pwe(S™) = Pwg(S™) [, L X771 -X) (3.16)

that we write as 4
IDwg(S™) — Pug(S™H)| < C} j X711 - x) et
c

Here, the discussion reduces to three cases.
1. If1/8<c<7/8,since 9, +fB4-1>0,

d d
j XB1(1 = x)lorBit ¢ 1> I (1= x)%Bel < 81B5(d — ). 3.17)
(o) c
2. Likewise, if ¢ > 7/8,
d 8\ 1B
J XFL(1 = x)PorBat <7) d-c). (3.18)
c
3. Ifc<1/8,
4 i 9rput _ [T g1 L, g 1 Bs
Jx3 (1 — x)%0tPa ij3 =—(d» -cP)<=(d-c)”. (3.19)
c c ﬁ3 ﬁ3

Indeed, by Jensen’s inequality, valid for 0 < 3 < 1
d=c+(d-c) < (c/’3 +(d- c)ﬁ3)1/ﬁ3, ie., dP <P+ (d-c)fs.

Consequently, in all cases,
IDwg(S™) = Pug(S™H] < Ch|s™T - S|P, (3.20)

Thus, by substituting into (3.15), applying Lemma 3.2, and setting y,, = 83/r, we infer
2 i n,j _ on,i2p < Hi 2yw
Ih(Pwg(Sh,0) = Pwg(Sh,o)lIf2 gy < C Z Z Y —rci,-|s TostPB <y Y Y —rcyA;
n=1i=1jeN(i) n=1i=1jeN(@) U
where 4;; = |g(S™/) — g(S™1)|. Note that r > B3, hence y,, < 1. Then

N M
%. - w 2 w
1T (Pwg(Snr)) = Pug(Sn)lifag < C Y Y Y —(rey)' ™ (rey)™ Ay
n=1i=1jeN(i)

Yw /' N M sy \ AV 1=vw
(B8 E (3557
n=1i=1jeN(i) n=1i=1jeN@) Y

But
1_yw

N M 1/(1-yy) . AN
ZZ y ( > TCij < C(T|1Q)) yWsup(—l)
n=1i=1jex( \ €U ij \Cij

and (3.14) with a = w follows from (3.5), the regularity of the mesh, and Theorem 2.1. When a = o, the proof
is based on fact that —p,, is nonnegative, monotonically increasing, and satisfies the inequality

1 1
— Poe() < J xOutBs1(1 _ x)ba1,
Pog Crin @39y

By comparing with (3.16), we see that the above argument carries over to p,, with 3 replaced by . O
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We remark that owing to (1.3),
X
VX €10, 1], Pugt) +Pos() = | L&) ds = pelx) - pe(0). (3.21)

Finally, with the notation of Lemma 3.3, the following bound regarding p.(Sh,.) follows from (3.14) and (3.21),
and the fact that p.(0) is a constant:

n(Pc(Sh,7)) = Pe(Sh,)lr2 ) ChY (3.22)

where y = 3 min(B3, B4).

3.2 Weak convergence

The saturation satisfies the maximum principle [7]:
0<Shr<l. (3.23)

The bound (3.23) implies that there exists a function S € L*(Q) and a subsequence of (h, 7) not indicated,
such that
lim Spr=35 weakly*in L*(Q). (3.24)
(h,7)—=(0,0)
Proposition 3.1. The limit function S satisfies

V(x,t) ae.inQ, O0<5S(xt) <1. (3.25)

Proof. The convergence (3.24) means that for all i € L1(Q),

jQ Shrth — jo sy, jo(l SuoP — jQ(l - 9.

We argue by contradiction. Suppose thats > 1 on a set of positive measure, say D, and take ) = (5 - 1),, the
positive part of 5 — 1. Then

0< JQ (1-Sn )Y — JQ(l -5GE-1), = JD(l -35E-1),

thus contradicting the fact that (1 — 5) < 0 on D. This proves that s < 1. The proof that 5 > 0 is similar. O

The bound (2.1) yields weak convergence, up to a subsequence, of the gradient of Uy, »,r. We can deduce weak
convergence of the sequences themselves by applying the generalized Poincaré inequality

vv e HY(Q), Vi) < C(‘ JQ %

+ ||VV||L2(Q)> (3.26)

Indeed,
[, Unr = Wanrs 1y = (I ug(Sno), 1),
owing to (1.23). Then the properties of pyg and the boundedness of Sy  imply that

|(Tn(Pwg(Sn,o))s 1),] < C.

Similarly,
jﬂ Ui = (Tn(pwg(Sh.0) + pe(0), 1),

a bounded quantity. Then we infer from (3.26) that

1Uan, L2 <C, a=w,o. (3.27)
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With this, (2.1) implies that there exist functions W, € L(0, T; H(Q)), a = w, 0, and a subsequence of h and
T (not indicated) such that,
lim  Ugpr=W, weaklyinL?(0, T; H(Q)). (3.28)
(h,7)—(0,0)
Likewise, the function I(g(S,¢)) is bounded in L2(Q) and it follows from this and (2.2) that there exists a
function K € L2(0, T; H'(Q)) such that, up to a subsequence,
lim  In(g(Sh)) =K weaklyin L?(0, T; H(Q)). (3.29)
(h,7)—=(0,0)
This implies in particular that for almost every time t, I (g(Sn,;)) converges strongly in L2(Q). But as is well-
known, these convergences are not sufficient to pass to the limit in the nonlinear terms: they must be supple-

mented by a bound for a fractional derivative in time of Sy ; that yields compactness in time. This will stem
via a bound for a fractional derivative in time of g(Sp,+).

3.3 Compactness in time

Following the argument introduced by Kazhikhov (see [9]) and recalling that ||- IIf is equivalent to the L?> norm
in finite dimension, we want to derive first a fractional estimate in time for I,(g(Sh,r)) and next for g(Sn,7).
The following lemma is a preliminary bound written in terms of sums of the pointwise values in time.

Lemma 3.4. Under the assumptions of Theorem 2.1, there exist constants C, independent of h and T, such that
forallintegers 1 <€ < N -1,

=
&

N-¢

Y (IS - gSMIM < Cen), Y Tlg(Sp*) - g(SPIEa g < CleD). (3.30)
m=1 m=1
Proof. The starting point is the inequality
N-¢
¢
Y t(lgsp) - gspig) <L Z 7(g(Sp) - g(SP, Spt - Sy ) (33D
m=1

owing that g is Lipschitz continuous and increasing. Thus, by writing

4
Shm+€ _ Shm — Z (Shm+k _ Shm+k—1)
k=1

testing each line of (1.20) taken at level m + k with Iy, (g(S;l"*") - g(Sm), and applying (3.31), we obtain

N-¢ N-¢ 11
3 T(lg(Sp+e) - g(SHIY) Lzrzr| (Fu(SiOgy ™ = fu(SpHOgm™, g(Spt) - g(S),
m=1 m=1 k=1
+ [P 1 O (S0)s P, Tn(g(S7) = g(S)]4 (332)

It is easy to check that, on one hand, withr = ¢orr =0,

([P, Tn O (S0 Pk, Tn(8(Sp)], |

w,h ? w,h ?
. 1 M m+n,j m+r,i m+k,ij m+k,j m+k,i
=5 | X (&™) — g™ ) eimu (S (P - Py
i,j=1
1 M ) ) ki i )
<7 Y ci(mulgs™ ™) - g™ + mu(sy Py - PR
i,j=1

since 1, is increasing and Sp, ; is bounded by one. On the other hand,

|(Fu(siOgRT™ - fu(Sp g™, g(Sp+e) - g(Si)ul < CU™ Mz + 1g™ * L)
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where here and below, C denotes constants that are independent of ¢, h, and 7. Therefore, recalling [7]:

1 M ) ) 1/2
VVh € Xp,  VVhl2) = —= ( Z cijl V7 - V'|2> (3.33)
V2 i,j=1
we have
N-¢ N-¢ 1
Y T(lg(Sp) - g(SIly) Z ([Enw(l)(er) Y IVIRESI NI )
m=1 m=1 r=¢,0
P15 S e n|pn | ¢ 3 e e + 19" )
2 ifMwlow w w q L +iiq L1(Q)
k=1 1i,j=1 k=1
1 < myy 2 N myy (2
<SMwLED| Y TIVIMGSIDIZ o) + Y. TIVINESIIEz g
m=1+¢ m=1
1 & k, k.j i _
SLDAD) ( Y. cimu(Sy NPT - PP+ (g™ H o) + ||2m+k||L1<o)))~ (334)
m=1 k=1 i,j=1

By (2.2), it suffices to bound the terms in the last line above. This is achieved by interchanging the sums over
m and k. Let n = m + k; n runs from 2 to N and m runs from max(1, n — £) to min(n - 1, N — £). Thus

N-¢ Y .
Z Z z Cunw(sm+k 1))| m+k,) m+k1 z (

k=1 1i,j=1 n=2 m=max(1,n-¢)

But min(n-1,N - ¢) -max(1,n-¢) < £ - 1. Hence

N-¢ 14
Z Z Z Cl]"lw(sm+k z])|Pm+k) Pm+k i (f‘l’) Z Z CU"IW(SH 11)|Pn] n 2 (335)
m=1 k=1 i,j=1 n=2 i,j=1

min(n-1,N-¢) M n,ij nj i
T) Y cimw(SyIPY - Py
i,j=1

and we know from [7] that this last sum over n is bounded. In the same fashion,
N-¢ ¢
Y Y (1™ ) + 14™ @) < @01glL g + 19l @)- (3.36)
m=1 k=1

Then, under the assumptions of Theorem 2.1, (3.30) follows by substituting (2.2), (3.35), and (3.36) into (3.34).

The second inequality stems from the first one and (3.1). O

The next theorem transforms (3.30) into integrals. The proof is skipped because the argument is not new, see
for instance [10].

Theorem 3.1. Under the assumptions of Theorem 2.1, there exists a constant C, independent of h, and T, such
that for all real numbers 6,0 < 6 < T,

T-6
L §(Shr(t+ 8) — g(Shr(O]22(q dt < CB. (3.37)
Similarly,
T-6 5
JO ITn(g(Sh,c(t + 8)) = 8(Sh,(E)) |12 () At < C& (3.38)

with another constant C, independent of h, and 7.

3.4 Strong convergence

With Theorem 3.1, it follows from Kolmogorov’s theorem that the sequence I5(g(Sn,r)) is compact in L2(Q),
see [9]. Thus, again up to a subsequence, I(g(Sy,r)) converges strongly in L?(Q). Since it converges weakly
to K in L2(0, T; H'(Q)) (K belongs also to L*(Q)), uniqueness of the limit implies

lim  In(g(Sh)) =K stronglyin L?(Q). (3.39)
(h,1)(0,0)
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By Lemma 3.1, this also implies

li =K ly in L?(Q). ’
(h’T)I_I)I}O’O)g(Sh,T) strongly in L*(Q) (3.40)

From here, let us prove the strong convergence of Sy, ;. Recall that g is invertible with range ]0, [ and inverse
gt e WH(10, B[). Let Fp,r = g(Sh,r); then

Shr =8 (Fnr).

The strong convergence of Fp ; and the continuity of g=! imply the strong convergence of Sy,  to g71(K) in
L?(Q), and since Sy ; converges weakly to S, uniqueness of the limit implies that s = g1(K), i.e.,

lim Sp.=35=g Y(K) stronglyinL?(Q). (3.41)
(h,1)-(0,0)

This strong convergence and the continuity of g, p,e, @ = w, 0, and p, also imply that

lim S = g(35), lim S = S),a=w,o, lim S =pcS 342
(h,T)—»(0,0)g( nt) = 8(S) (h,‘r)—»(0,0)pag( ht) pag( ) (h’T)_)(O’O)pC( h,1) = Pc(S) ( )

all strongly in L2(Q). Furthermore Lemma 3.3 and (3.22) yield

. _ — . _ — . 2
(h,})lf}o,m In(Dag(Sh,7)) = Pag(3), (h’r%l_f}'(lo,o)lh(pc(sh,r)) =pc(s), stronglyinL“(Q). (3.43)

In view of (3.28), this convergence implies that P4 »,r converges weakly in L?(Q) to some function p, € L?(Q),
a = w, o. Furthermore, uniqueness of the limit implies that W,, the limit function of Uq,n,r has the form

Ww = Pw +pwg(§)a Wo =Po —pog(g)- (3.44)

Note that, on the one hand, the uniform boundedness of g(Sn,r), Pag(Sh,z), In(Pag(Sh,7)), Pc(Sh,7), and
In(pc(Sh,7)) and their strong convergences in L?(Q) imply their strong convergence in L'(Q) for any finite r.
On the other hand, the weak convergence of Ug,p,7 in L%(0, T; H1(Q)) implies its strong convergence in L'(Q)
for r < 6 (and any finite r when d = 2) for almost every t. These two results yield the strong convergence of
Pahz, @ =w,o0,in L(Q) for r < 6, any finite r when d = 2, for almost every ¢.

4 ldentification of the limit

Let us pass to the limit in the equations of the scheme. This is done in several steps because we do not have
convergence of the pressure gradient.

4.1 The upwind terms

Since the discrete auxiliary pressures Uy p . converge weakly to W, in L2(0, T; H1(Q)), instead of treating
directly the upwind terms [Pg,n, ¢, In(Na(Sh,7)); Pa,h 7> In],, We begin with [Po ¢, In(Na(Sh,7)); Ua,h 7> In,-
4.1.1 Discrete auxiliary pressure

Let us start with the wetting phase, the treatment of the non-wetting phase being much the same. Let v be a
smooth function, say v € C(Q) and let Vp; = p(In(v)). Assume for the moment that S, the limit of Sy, , is

sufficiently smooth, say s € WH*°(Q) and let 5; = 5(ty) in ]t,_1, tn]. Then assumption (1.6) implies

1 (tn _ _
- J nw(3) dt — nw(5%7)
T tn—l

< Ctlnyyllzeo0,1) 1965200 (4.1)
L>(Q)
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We treat the upwinding in several steps and consider first
[Q M@ VU pe - VVir = jQ VUir - VWi (0r(1w(®) = M(Ee) + M(50))- .2)
But in view of (4.1),

I IQ VUw,h,r - Vi (pr(Mw(3) = nw(Se)| < CTInl oo, 1) 10¢Sl ooy 10w, b,z llz2 (0, 71 (@) I Vi, 2l L2 0, 7301 (2))

and the boundedness of all factors of 7, owing to (2.1) and the regularity of v, implies

lim JVUW .VV W(5)) = 1w (5y)) = O. i3
(h,1)—(0,0) Jo heT h,r (0 (Mw(3)) = Nw (7)) 423)

Next the weak convergence of Uy to Wy, in L%(0, T; H1(Q)), the strong convergence of Vh, to v in

L®(0, T; WH*(Q)), the continuity of 1, the regularity of 5, and (4.3) imply

lim j Nw(S)VUw - VVir =I Nw(S)VW,, - Vv.
(h,7)—(0,0) Jo Q

Let us expand the expression in the above left-hand side.
Setting cij,x = [, IV@i - Vol and wi = |K]™! [, w, we have the following proposition [7].

Proposition 4.1. Let (1.16) hold. The following identity holds for all w in L1(Q):
M . .
VZn, Vn € Xn, J wVZy -VVy = ZZI Z < Z Cij,KWK>(VI - Vl). (4.4)
i=1 j=1 KCAinA]'

Therefore, in view of Proposition 4.1 we have

Mz

M 3 . :
Z( Z Cij,k (Mw(S7 ))K)( Uy’ U\r/lv’l)(Vn’]—Vn’l).

_ 1
J er(ST)VUW,h,T : VVh,T = E
Q KcAina;

n=1

Hence

1y M ni o ni ) . o
o dm S Z D ( D cl,-,me(@?))K)(Uw”—UW’ )(V"”—V"’l)=j0 nw@EVWy -Vv. (45

i,j=1 \ KcA;n4;

Now, if wisin W*°(Q), then again, standard finite element approximation shows that there exists a constant
C, independent of h, K c A; n 4;, and w, such that

“WK - W"L"O(K) <Ch |W|W1 oo(K) <Ch |W|W1 00 (). (46)
According to (1.6) and the regularity of 5, 1,(5) belongs to L>®(0, T; W1*°(Q)), and (4.6) gives

(W Gk - ﬂw(§¥)||Loo(K) < Chinylize,1)IVSliLeo(o)

that allows to replace (1w (3"))k by any value of n,(5") in K. Let us choose the upwind value of 5" as in (1.19),
i.e., . .
sD), py' > Py
Swa =1 &, Py’ < P} @.7)
max((s?)!, (s1Y), Py'=P,’
and set B
Rjj = Z cijx((Mw@EM)k = MwEwe))-

KCAiﬂA)‘
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By proceeding as in Theorem 2.4 in [7] and applying (2.1), the regularity of v, and the approximation properties
of I, we obtain

Ly S 3 n,j nizl/2 M . .21/2
EZ Z )(V"’J i) Z ( z [R;I(Uy” - Uy") ) ( z IRyj|(V™ — v )

i,j=1 i,j=1

NI»—\

Ry, Iz 0,1 IVSlizeo (@ IV Uw, b, e l22() IV Vi, 2 lz2(q)
h Iy, e 0,1)IVSliLeo (@) V11 0, T:H2(0)) -

With (4.5), this implies

N . . . . —
Z Z cimwEEH (U - Un (v - ) = JQ Nw(S)VW,, - Vv. (4.8)
n—l i,j=1

(h, r)—»(o 0)
T .
To recover [, [Pw,n,c» In(w(S,2)); Uw,h,t> Vi,z]y» We write
WD) = M) - Mw(Su”) + nu(Sy")

and we must examine the convergence of

[unN

N . . . . .
=S 2T Z cii(Mu G D) ~ nw(Sw ) (U — U (V™ - vy,
n=1 ij=1

On the one hand, owing to the smoothness of v, we have
[V — V™ < Chyjl|VVIiLe(o) (4.9)

where h;j; is the length of the edge whose endpoints are the vertices i and j. On the other hand,

WD) — Mw(Si ) < ClIlyleo,1) 52 — Si”l.
Hence
N 5 1/2
1XI < cnwnm@||VUw,h,T||Lz<Q>( Z Z cih3[s - :’V’”P) :
It is easy to check that
M
Y cihdisnd - swUP < ch 5Pt - smif2.
i,j=1 i=1
Therefore

N 1/2
- 2
1X| < ClIVVIiLeo(@)IVUw, 2 llz2(0) ( > 1| In(s)) - Z,TNU(Q))

n=1
= CIIVVILo@IVUw,k, 7 lL2(@) R (S7) = Sh,zllz2(q)

where we have used the equivalence of norms. Then, we write

1In(S7) = Sh,zllz2(q) < Mn(S7) = Sellr2q) + IS¢ = Sllz2() + IS = Sh,zllz2(q)

and the approximation properties of Iy, the strong convergence of 5; to 5 and of Sy ; to 5, all in L2(Q) imply
that

Z Zc,, Mw(id) — m(Sw (U - UV - vi) = 0. (4.10)

(hr)—>(00) =

A combination of (4.10) and (4.8) yields the intermediate convergence result when the limit function 5 is

smooth,
N

(h,r%i—r{(lo,o) - ; T[Pw,h,r, Ih(nw(sh,r))§ Uw,n,z» Vh,r]h = JQ )]W(g)VWW -V, (4.11)
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It remains to lift the regularity restriction on S. Let (Sp;)m>1 be a sequence of smooth functions that tend to s
in L?(Q). Then for each ¢ > 0, there exists an integer My such that

ISm, —Sllz2q) < €. (4.12)
From (4.12), the projection properties, and the fact that My is fixed, we infer

lor(nw () = nwllz2) < lpr(Mw () — Mw(Smz2(@) + P (Mw(SMy)) — Mw(Sm )20
+ Inw(Smy) = Mw®llL2() < (2 € + CT)INy,lleo(o,1)- (4.13)
Now, we replace (4.2) by

jQ M VUne - VVir = jQ Pe(Mw(E) = N (Sae)) VU - VWir + jQ pe (M (Sue))VUne - Ve
= JQ pr(nw(g) - nw(SMo))VUw,h,r “VVh,r + JQ er(SMo)VUW,h,T “VVhr. (4.14)

For the first term, owing to (4.12), the projection properties, and (1.6), we have

‘ JQ Pr(Mw(B) = Mw(Smy))VUw,h,t - V| < IVVh oo @IV U,z llz2 o) Inw () — nw(Sumo)llz2q)

< €Ny lze©,)lIVVa Lo @IV Uwh,rl12(q)-

Then the uniform boundedness of Uy, and Vj ; yield

‘ JQ Pr(nw(g) - nW(SMO))VUW,h,T V| <Ce (4.15)

with a constant C independent of h and 1. Thus, we must examine the limit of the second term. Since My is
fixed and Sy, is smooth, by reproducing the previous steps, we derive the analogue of (4.8) for the function
SMos

N M . . .
Z Z Cittw(Su, WD (Us = URE) (V™ - vy

(h,T 4>(O 0)
= J Nw(Smy)VWy - Vv = J nw@S) VW, - Vv +R (4.16)
Q Q
where

|R|=HQ (w(Sity) ~ ()Y Wy - Vv | < 1l (0,11, ~ Sz @IV Wl IVl < Ce. (417)

To relate the left-hand side of (4.16) to [Pw,n,z, In(Mw(Sk,)); Uw,h,ts Vi]y,, We split

(St )wd) = Mw(Sw) + M (S D) = (i)

and examine the convergence of

L

n=1

Mlp—\

Z ci(Mw((Suwis) = nw(Sw D)UY - UL (v — v,
i,j=1

By arguing as above and using the interpolant I, we derive
1Y < Clniylzeo0,)IVVIiLeo @IV Uw, b, e l2¢0) IR ((So)r) — Sh,zllL2(q)-
Finally, we write

1 ((Smo)e) = Sh,rlliz@) € Hn((Smy)e) — (Smo)ellzzcq) + 1(Smo)r — Smollzzcq) + 1Smy = Sllz2(@) + IS = Sh,ellz2(q)

< ChlSm, llizeo(o, T32(Q)) + CTISM, 10,1522 () + € + IS = Sh,2llL2(Q)
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so that
|Y| < C(h + T+ 8) + "§ - Sh,T||L2(Q)- (418)

In the next theorem, the limit (4.11) when 3 is only in L2(Q) follows by combining (4.14)—(4.18). The same
argument holds when w is replaced by o.

Theorem 4.1. Let v € C1(Q) be a smooth function and let Vy ; = In(v)(ty) in1tq_1, tnl;

T —
lim —J [Pa,h,ra Ih(rla(sh,r)); Ua,n,z» Vh,r]h = J rltx(g)VWa -Vv (4.19)
(h,1)—(0,0) Jo Q

where s is the strong limit of Sy, and W, the weak limit of Ug,hr @ =W,o0.

4.1.2 The term with pyq4

This paragraph is dedicated to the limit of

T
jo [Pa,h,‘r, Ih(na(sh,r));Ih(pzxg(sh,r)), Vh,‘r]h, a=w,o.

It shall be split below, as suggested by the following observation, derived from (1.12) and (1.11):
3 ) ) S 3
Mw(Sw)Pwe(S) + g(S) = jo o) (1w (Sw) = nw())PL(x) dx

. . . N ..
No(So)Pog(S) + () = jo Fuw(0)(N6(Sa) = Mo (X))pL(x) dx.

Thus, we add and subtract g and write by applying Proposition 2.1 of 7],

T
jo [Pahes In(a(Sho): In(Pag(Sh.o)s Vil

N M . . . . .
= Y1 Y VMey[na(Sy ") (Pag(S™) - Pag(S™H) + g(S™) - g(S™)]
n=1 ij=1

+| V8(Sn1) VVhr=T1+T,.

Q
Since
lim T,-= J vVgiE)-Vv (4.20)
(h,7)—(0,0) 0
we must prove that the first term tends to zero. When a = w, it has the form
1 N M snJ i . .
Ti=-3 Zl T .Zl cl-,-( Lm Fo)(Mw(Sw”) = nw())pL(x) dx>(V”” 4 (4.21)
n=1 |ij=

with an analogous expression in the non-wetting phase. Then (4.9) yields,

ITal < gnwnmoéré hijci j:jfo(x)(nw(sw"’d ~ 1w 00)PL(x) dx | (4.22)
Showing that T; is small requires a technical argument that we split into several steps.
Proposition 4.2. For the wetting phase, we have
LS FoO(Mw(S) = M (0)P0) dx | < ~(1ul(S) = M(S)) (Pug(S) — Pug(SH). (4.23)
For the non-wetting phase, the corresponding expression is bounded by
LS ) (6(S9) = 1o00)PL0) dX | < (6(S) = 16(SH)) (Pog(S) - Pog(S)- (4.24)
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Proof. Let us prove (4.23), the proof of (4.24) being similar. The discussion depends on the respective values
of ' and S'. There are two cases: S' < S/ or §' > §/. Of course S' = §/ brings nothing.
1. IfS'< S and S, = S, then ny(Sy) — Nw(X) = Nw(S)) - Nw(x), and, as py, is decreasing,

0< j: foGO=PL0N (w00 = 1y (8) dx < =(1(S) = (5D (Pug(S) = Pug(S")-
If Sy = S/, then n,,(Su) — Mw(x) = Muw(S) — N (), and
0< j: Fo )P0 (Mw(S) ~ () dx < (1w (S") = N (S)) (Pug(S) ~ Pug(S)).
2. IfS'> Y and S} = S, then
0< LS foO =P (S") = () dx < =(1uw(S) = () (Pug(S") ~ Pug(S))-

Finally, suppose that SJ = §/. Then
st . . . . ,
0< L}_ £o00 L0 (S) — Muw(0) dX < ~(T(S) — 11(S)) (Pwg(ST) — Pug(S)).

This proves (4.23). O
By substituting (4.23) into (4.22), we arrive at
N

M
T Y hiei( = (1w(S™) = (™) (Pug(S™) - Pug(S™)) (4.25)

C
VETRS E"VV"L‘X’(Q)
n=l ij-1

with an analogous bound in the non-wetting phase. Up to the factor h;;, they behave like IQ V(In(Ma(Sh,t))) %
VIh(Pag(Sh,c))), @ = w, 0. Thus T; tends to zero if this quantity is bounded or is of the order of a neg-
ative power of h that is larger than —1. We have no direct bound for it, but as we do have a bound for
jQ VI (fa(Sh,7))) - VUIR(g(Sh,1))), see (2.43), we can gain some insight by relating the two integrands. Again,
we examine the wetting phase, the treatment of the non-wetting phase being the same. The proposition
below will be applied to x; = S™! and x, = §™/. The condition x; < x; is not a restriction because if it does
not hold, the indices i and j can be interchanged without changing the value of the two integrands.

Proposition 4.3. We have for all pairs x1, x, with 0 < x; < x, < 3/4,
(Mw(x2) = Mw(01)) (Puwg(X1) = Pug(x2)) < COE = xP)(xb> - X‘f) (4.26)
(fuw(2) = fu(x1))(802) — 80x1)) = COG* = xP) P — 33w+, (4.27)
Similarly, we have for all pairs x1, x, with 1/4 < x; < x3 <1,
(Mw(x2) = Mw (X)) (Pwg(x1) = Pwg(x2)) < Clxa = x1)((1 = x1)%¥Pe — (1 — x)%*P4) (4.28)
(fuw(x2) = fw(x))(g(x2) - g(x1)) = C((1 = x1)% — (1 = x2)%)((1 - x1)% P+ — (1 - xp)%*Pe). (4.29)

Finally, we have for all pairs x1, x with0 < x; < 1/4and 3/4 < x3 <1,

(Mw(x2) = nw(x1))(Pwg(X1) = Pug(x2)) < C(fuw(x2) - fuw(x1))(g(x2) - 8(x1)). (4.30)
All constants C above are independent of x; and x5.

Proof. According to (1.6),

T 9 _ o
Nw(x2) — nw(x1) < m(XZ -X; ).
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Next, recalling that pcvg(x) = fo(X)pL(x), we have, owing to (1.8), (1.9), and (1.5),

11 1
pwg(xl)—pwg(xZ>-j £oGO(-pL(0) dx < — — j xBL(1 - %)%l dy
N« a3z apdy Jx,
11 1 1 1 1
B3-1 B3
< — X dx < — - x 4.31
N+ a3 a9, Ll N+ a3fB3 aOSO( r) (4.31)

and (4.26), valid on [0, 1], follows from these two inequalities.
For (4.27), we use (2.50) that gives

80
Fulo2) = ) > 25 o (1) 0 - ) 432)

max ‘90 SW

and we use (2.48) that gives

a3 Qy Ao 1 <1)30+ﬁ4 ( 9w+B3 _Xl;)w+l33).

§x2) ~glx1) > Cmax %8_0 dw + B3 X2

The product of the two leads to (4.27).
Regarding (4.28), (4.26), albeit valid for all x € [0, 1], is not adequate for the comparison we have in
mind, and instead we use that

Mw(0) < —
w
which implies that
Nw(x2) = Nw(x1) < —(Xz—Xl)
Similarly, we use
11 1 15 9o+Bu—1
< —— 1_ o 4
P < o a1 -
so that 1 1 1

41—53((1 X1)‘9 o+By _ (1- X2)90+ﬁ4)

we(X1) = Pwe(x
Pwg(X1) — pwg(x2) < ’1 a3aoo +ﬁ4

thus proving (4.28). Next, by applying (2.51), we have

l9w
) (1= x1)% — (1 - x2)%).

1 apay /1
Ful) = fular) 25— go" (Z

max

Likewise, by applying (2.48), we obtain

as oy a 1 1\9w1455
g0) - gx) > 5 g 0 s B (Z) (1 = x1)%*Be — (1= xz)% %),
max w o] (o]

The product of the two yields (4.29).
Finally, when O < xq < 1/4 and 3/4 < x; < 1, since both n,, and —py are both increasing, they satisfy

(i’lw(Xz) - ﬂw(Xl))(ng(Xl) —ng(Xz)) < rlw(l)( —ng(l)) >0
Likewise, as both f,, and g are increasing, they satisfy
1 1
(fw(x2) = fw(x1))(8(x2) - 8(x1)) > (fw ( ) ~fw (Z)) (g(%> —g(z)) =:D>0.
Hence
(Mw(x2) = nw(x1))(Pwg(X1) = Pwg(x2)) < —%(ﬂwpwg)(l)(fw(xz) - fw(x1))(8(x2) — g(x1))

whence (4.30). Clearly all constants involved are independent of x; and x;. O
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It stems from (4.26) and (4.27), that the two left-hand sides cannot be compared when x; and x, are too small.
The same observation applies to (4.28) and (4.29) when 1 — x; and 1 — x, are too small. But in this case, there
is no need for comparison because the expression we want to bound is sufficiently small, as is shown in the
next proposition where again, x; = S™! and x, = S™J.

Proposition 4.4. Suppose that x; < x; < hiy]-1 for some exponent y; > O such that

1

> . 4.33
Y1 9 + Bs ( )
Then
hij (M (x2) = N (x2)) (Pwg (1) — Pug(x2)) < CRE™! (4.34)
where
0<61 <Y1(t9w +ﬂ3)—1. (4.35)
Similarly, suppose that 1 — x; <1 - x3 < h?}z for some exponent y, > 0 such that
S S (4.36)
V2> 77 9o + B4~ )
Then
hij (M (X2) = N (X)) (Pwg (1) = Pug(x2)) < Chi (4.37)
where
0< 6, $Y2(1+a90 +,B4)—1. (4.38)

In both cases, the constants C are independent of x1, x,, and h;j;.
Proof. In the first case, according to (4.26), the choice (4.35) and (4.33) on y;, we have

hi]'(er(XZ) - rIW(Xl))(pwg(Xl) —pwg(xz)) < Chl-1j+yl(8W+ﬁ3)

with the constant C of (4.26), which gives (4.34). In the second case, the same argument leads to

i (M (X2) — M (X0)) (Pug(X1) — Pug(x2)) < Ry V21 90A0)

with the constant C of (4.28), thus implying (4.37) with the choice (4.38) for §, and the condition (4.36)
ony,. O

Now, we turn to the case when x> is not too small.

Proposition 4.5. In addition to (4.33), suppose that the exponent y; of Proposition 4.4 satisfies

1
Y1 < o (4.39)
Suppose that x1 < x> and 3/4 = x5 > h?}l. Then
hij(Mw(x2) = Mw(X1)) (Pwg(x1) = Pug(x2)) < Chgl(fw(Xz) - fw(x1))(8(x2) - 8(x1)) (4.40)
where
0 < 8} = min(1 - y1 9w, 61). (4.41)

Again, the constant C is independent of x4, x», and h;;.

Proof. Either x; < x»/2 or x; > x»/2, and we examine each case.
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1. When x; < x»/2, formula (4.27) leads to

w 9w+ps3
(fulx2) - fux0))(g(x2) - gx1)) (1 -(3) ) (1 -(3) ) 20

with the constant C of (4.27), whereas

(M (X2) = T (X1)) (Pwg(X1) - Pwg(x2)) < Cxo" P

with the constant C of (4.26). Hence

hij
hij (1w (x2) = Mw(x1)) (Pwg (X1) = Pug(x2)) < C—5-(fu(x2) = fuw(x1))(g(x2) - 8(x1))
X2

with another constant C independent of x1, x, and h;;. Now, we use the assumption that x, > h;/jl .Then,
owing to (4.41),

hi; _ !
Y S h1 y1‘9w < h61
9w 7 7
X2

and we recover (4.40).
2. When x; > x»/2, we infer from the next to last inequality in (4.31) that

11 1 53_1<il 1 1

_ - - = _ 1-B5 _
Pug(X1) = Pug(x2) < N« a3 Apdy (e —x)q < N« as aosoz X;—ﬁs (x2 = x).
Thus, on the one hand,
(nw(x2) - rlw(Xl))(pwg(Xl) —ng(Xz)) <C (x2 - Xl)(ng - Xlw) (4.42)

1-B3
X3

where C is the above constant divided by a,,9,,. On the other hand, we use the lower bound (4.32) for the
difference in f,, and we need a lower bound for the difference in g. It is derived from (2.48),

8(x2) - g(x1) = %;—:g—z (%)Srﬁﬁrl Xfw+ﬁ3_1(xz - X1)
e ()G e @49
Hence (4.32) and (4.43) yield
(fwlx2) = fulx1))(8(x2) - gx1) > Cx3" P 7 (x5 = xP) 0z = x1) (4.44)

with the product of the constants of (4.32) and (4.43). Then by combining (4.42) and (4.44), we deduce
that

C
(Mw(x2) = Mw(x1))(Pwg(x1) — Pwg(x2)) < W(fw(xz) - fw(x1))(8(x2) - g(x1))
ij
which is (4.40) when & satisfies (4.41).
The proof is completed. O

The case when 1 - x; is not too small is handled by the next proposition.

Proposition 4.6. In addition to (4.36), suppose that the exponent y, of Proposition 4.4 satisfies

(4.45)
Supposethat 1/4 < x; <x; <land1-xq > h}}z. Then

hij(Mw (x2) = Mw(X1)) (Pwg (x1) = Pwg(X2)) < Chf,-'z(fw()(z) - fw(x1))(8(x2) - g(x1)) (4.46)
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where

0 < 85 =min(82, 1 -y2(9 - 1)). (4.47)
Again, the constant C is independent of x4, x>, and h;;.
Proof. The proofis analogous to that of Proposition 4.5, but we sketch the steps for the reader’s convenience.
We skip the constants’ details, but stress that they are independent of x4, x>, and h;;. Again, there are two

possibilities, either 1 — x, < (1 — x31)/2o0r 1 -x, > (1 — x1)/2, and we examine each case.
1. Inthe first case,

(HW(XZ) - er(Xl))(pr(Xl) —ng(Xz)) <CA- x1)1+30+ﬂ4

and
(fw(x2) = fu(x1))(g8(x2) — g(x1)) = C(1 — x1)?%+Pe,

Hence

(Mw(x2) = Nw(x1))(Pwg(X1) — Pwg(x2)) < C (fw(x2) = fuw(x1))(g(x2) — g(x1))

(1-x1)%1

(fw(x2) = fw(x1))(g(x2) — g(x1)).

Y2 (‘90_1)
h;

With (4.45) and (4.47), this implies (4.46).
2. Inthe second case, we have on the one hand,

Puwg(x1) = Pwg(x2) < CO — x1)(1 — x7)%*Pet

so that
(Mw(x2) = Nw(x1)) (Pwe(X1) = Pwg(x2)) < Cxz = x1)%(1 = x7)%+Pe71,
On the other hand,
fuw(x2) = fuwlx1) = Clxa = x1)(1 = x)% 2

and
g(x2) - g(x1) = Clxz — x1)(1 — xq) PPt
and thus
1
(ﬂw(Xz) - ﬂw(Xl))(ng(Xl) _pwg(XZ)) < Cm(fw(’@) _fw(Xl))(g(XZ) - g(Xl))
1
< CW(fW(Xz) - fw(x1))(g(x2) - g(x1))
ij

whence (4.46).
This completes the proof. O
In view of (4.33), (4.35), (4.39), and (4.41), let us choose

51-6, =P 2 (4.48)

20, + 8 YT, %8

Then (4.33) and (4.35) are satisfied, as well as (4.39) and (4.41). Likewise, in view of (4.36), (4.38), (4.45),

and (4.47), the choice
2+ B4 2

29, + B 12T 20, + B,
satisfies (4.36), (4.38), (4.45), (4.47). Then the desired limit follows by collecting these results.

8, =06, = (4.49)
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Lemma 4.1. The term T, defined in (4.21) tends to zero, with a similar limit in the non-wetting phase, i.e.,

N M s i
. B iy ! nj _ ymiy =
(h’T%l_l‘}%O’o) Z T Z CU ( an,i fo(x)(rlw(sw ) YIW(X))pC(X) dX)(V 4 ) 0

n=1 i,j:1
N M smi i / A
lim Y1) cj (J F()(10(So™) = Mo (0)P(x) dx)(v”’l e -
(h,1)—(0,0) ;=1 ij=1 s

Proof. We prove the first limit. Here the parameters of Propositions 4.4 and 4.5 are chosen by (4.48) and (4.49).
It stems from the above considerations that, for each index n, the set of all indices (i, j) from 1 to M can be
grouped into three subsets,

. ) 1 ) .
0y = {(i,j); 0<S™ < S < %} 0, = {(i,j); ZESMasmis 1}
1 3 ‘
0 :{',';0<s""<—, —sS"’Jsl}.
3=1(,)) R

In turn, O, and O, can each be partitioned into two subsets
01,1 = {(i,j) € 015 S™ < h)i}, 01,2 = {(i,j) € 015 S™ > h)}'}
021 ={(@,)) €025 1-S" <hf’}, 035 ={(,j) € 025 1-S™" > hl’}.

To simplify, let y

Aij=ci ( [1 A0t - muo)pco) dx) (v - ).
In view of (4.34) and (4.37), for all pairs (i, j) in Op,1, € = 1, 2, A, satisfies

|Aij1 < CIVVIL=@ b cis.

Owing to (4.40) and (4.46), for all pairs (i, j) in O, 2, £ = 1, 2, we have

Al < CIVVIzm@ iy i fu(S™) = fu(S™)(8(S™) - 8(S™)-
Finally, for all pairs (i, j) in O3,

|Ai | < CIVVIILe(@hicis( fiu(S™) = fu(S™))(g(S™) - g(S™)).

According to (2.43), the sum of the terms over all (i, j) in Op,, and O3 tends to zero. For the remaining terms,
observe that by definition,
hicij < ClAi n 4]

so that the sum over all (i, j) in O,; is bounded by Chg.e that also tends to zero, whence the first part of the
limit (4.50). The same limit to zero holds for the non-wetting phase. O

With (4.20), this lemma leads to the desired limit of the term with the auxiliary pressures.

Theorem 4.2. Let v € C1(Q) be a smooth function and let Vi (t) = In(v)(tn) in Jtn-1, tnl;

T
li P, I 01 V = S)- = 51
o dm jo [Panrs In(1a(Sh.0)): In(Pag(She)s Vie, jQVg(s) v, a=w,o (4.51)

where s is the limit of Sp,z.
We remark that the derivative of g satisfies formally the identities
Vx €[0,1], NMa(OPug(x)+8'(x)=0, a=w,o. (4.52)

Finally, Theorems 4.1 and 4.2, together with (4.52) and (3.44), give the desired convergence of the upwind
terms.
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Theorem 4.3. With the notation and assumptions of Theorem 4.1, we have for all functions v € C1(Q),

T
lim - J p i S ;3 P, , V
Ao, [Pa,h,7s In(Ma(Sh,0)); Payhyzs Vel

- jQ (Tw(5)V (B + Pug(3)) + VE(E) - Vv if a=w

= [ (oo~ pos(s) - VEG) - WY i a-o. (4.53)

4.2 Convergence of the right-hand sides

In order to pass to the limit in the right-hand sides of (1.20)—(1.21) it is convenient to replace the quadrature
formulas by integrals. Since the quadrature formulas are exact for polynomials of degree one, this is achieved
by approximating some functions with the operator pj, see (1.26). As si, belongs to L*(Q), standard approx-
imation properties of p; and r, and a density argument imply

lim  p;(px(Sin)) = Sin  in L°(K x]0, TI). (4.54)
(h,7)—(0,0)

Then the continuity of f,, for « = w, o, yields

(h’Tl)iE}O’O)fa(pr(pK(sin))) = fa(sin) in L*(Kx 10, T[). (4.55)

Similarly, since g belongs to L2(Q),

- . 2
", Tl) Oo)pr(pK(Q)) in L*(K <0, T[).

Also the (constant in space) correction added to p,(rn(q)) satisfies

. a2
pdm ([ m@-) -0 iz

Therefore

lim =g inL%*(Q). 56
(hT)A(OO)th g inL<(Q) (4.56)

With the same function V¢, consider the first term in the right-hand sides of (1.20)-(1.21):
N T
X:= Z T(Ih(f“(sinn,h))qg’ V}r:)h = JO (Ih(fa(sin,h,r))qh,‘r, Vh,‘r)h-
n=1

By definition of the quadrature formula, X has the following expression:

oy Kl & ey
X_ZT Z d+1 Zf"‘ 1nhr V .

n=1 KeTy

By inserting fu(p7(Pk(Sin))) and p7(pk(q)), this becomes

IKI T n,¢; n,; nel
d+121(fa(sin,h1) falpe(p(sin)))y Vi

d+1

z d|+|1 z fa(PT(PK(Sm)))(CIZ il —pT(pK(q))) 1744 (f,

N
PP
N
+ T
1 KeTy

j (02 (PRSP (PK(@) Ve = X1 + X2 + X3
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since the last summand is a polynomial of degree one. We have
lim X5-= J Sin) g V.
(h.7)—(0.0) 3 Qfo( 1n)q

It remains to show that X; and X, tend to zero. For X1, since f, and f,, have the same derivative (up to the
sign), we deduce from (2.49), (1.6), (1.7), (1.9), and (1.10) that f} is bounded in [0, 1]; hence
falsiys 1) = falpr(pr(sin))] < Clsi - = pr(px(sin))].

Thus, the summand is bounded by polynomials and the equivalence of norms yields

IX1| < Clvlizeo(@)llSin,h,r — PPk (Si)llz2(Q)1Gn,zllz2(q)

that tends to zero with (h, 7). It is easy to check that the same holds for X,. Hence

T
(h,1)—(0,0) O(h(fa( in,h,7))qh,t h,r)h thx( in) 4 ( )

The argument for the second term in the right-hand side of (1.20) is much the same; we insert p;(pg(5))

and we use the fact that

lim Sy — 5 _o.
A UShr = prlpxGDlz

Then the argument used for the first term readily gives

T
li I V = sS)qv. .
(h,r)l—r>r(10,0) JO ( h(fa(sh,r))ghry h,r)h .[Q fa(3)qv. (4.58)
By combining (4.57) and (4.58), we obtain convergence of the right-hand sides,
T
tim | (nfaCsinna)@ne - TfaSn)d, Vao)y = | fasm@-fa®ay.  459)
(h,7)—(0,0) Jo —r Q

4.3 The full scheme

It remains to pass to the limit in the time derivative, say in (1.20), summed over n, and tested with the same
Vhn,r as previously, except that here we take v(T) = 0. After summation by parts, this term reads

N N-1
Y (Sp =S Vg == Y (Vi = VL Sy - (Vi Sy - (4.60)
n=1 n=1
By definition,
n+1 n cm\® |K| & n+1,i n,i n,i
(VR = VRS = D g7 @l ) (Vihie—ymingni,
Keo, ¢ =1

By inserting px(V"*1+ic — V™) in each element, this becomes
(Vi = VR, SPY = (Vi = V- pp(V™E = VM), ST + L) Ppn(V™ - VM)ST.
The first term has the bound
|Vt = Vi = pn(V™ - VT, SZ)m < @leo@ Vit = Vi = pr(V™ = V) [nlIShln-

Since the functions are piecewise polynomials, the equivalence of norms yields

N-1
> (VR = Vi = pn(V™ = V™), Sy

n=1

< Clolre)

N-1

N-1 1 1/2 1/2
X < Z T";(Ih(vr”-1 - Vn) —Ph(Vn+1 - Vn))"%zgn) < Z T||SZ"%2(Q)> .

n=1 n=1
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Then the regularity of v, the approximation properties of I and pp and the boundedness of Sy ; imply that

N-1
Y (VI = Vi - pp(VHE = VT, SPY
n=1

lim =0.

(h,7)—(0,0)

Similarly, it is easy to check from the convergence of Sy ; that

N-1

- lim J V"“—V"S”:—J 04V)s.
(h’r)ﬁ(o’o)n; , ol )i == |, @)

The treatment of the initial term is the same. Hence

N
lim Y (STosrlym? - - j
(h,rw(o,m,,; R

(V)35 — j @s°v. (4.61)
Q

By combining (4.61), with Theorem 4.3 and (4.59), we readily see that the limit functions S, p, and p,g(5)

satisfy the weak formulation (1.13). This proves Theorem 1.1.

5 Conclusions

This paper complete the analysis of a IP; finite element method to solve the immiscible two-phase flow prob-
lem in porous media. The unknowns are physical, namely the phase pressure and saturation, and they are
continuous piecewise linear polynomials. Thanks to mass lumping, the scheme directly solves for the nodal
values of the unknowns. The method is general, in the sense that the mobilities are allowed to vanish at the
endpoints of the saturation interval and the derivative of the capillary pressure is unbounded. In this work,
we show that the discrete approximations of pressure and saturation converge to the weak solution as the
time step and mesh sizes tend to zero.
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