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Absiract—This article investigates the problem of dis-
tributed cooperative energy management of multiple en-
ergy bodies with the consideration of both the optimal
energy generation/consumption of each participant within
single energy b and the optimal energy distribution on
the interconnected lines between any pair of energy bodies.
First, we define the physical and communication structure
of the system formed by many energy bodies, each of which
is viewed as a multienergy prosumer. Then, a distributed
energy management model is proposed to achieve not only
maximum Eﬂﬁ“ of overall energy eration and con-
sumption, also minimum cost of energy delivery. To
address this issue, a distributed double-Newton descent
(DDND) algorithm is proposed, which possesses two ad-
vantages. On the one hand, by employing second-order
information, the concept of Newton descent is embedded
into the implementation of the proposed algorithm, resuli-
ing in faster convergence speed. On the other hand, the
proposed algorithm performs in a fully distributed fashion.
As a consequence, each participant can locally obtain its
optimal operation as well as the global energy market clear-
ing prices; meanwhile, each energy router can locally ob-
tain the optimal exchanged energy with its neighbor enargz
routers. Moreover, we prove that the proposed DDND a
gorithm can asymptotically converge to the global optimal
point. As a result, the correctness of the DDND algorithm
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can be guaranteed in theory. Finally, simulation results val-
idate the effectiveness of the proposed algorithm.

Index Terms—Distributed algorithm, energy body (EB),
energy internet (El), Newton descent.

|. INTRODUCTION

5 THE next-generation expansion of smart grid, the con-
A cept of energy internet (EI) is proposed and has gained
wide attention in recent years [1]-[4]. Different from the smart
erid, one imporiant purpose of El is to integrate multienergy net-
works (such as electricity grid, heat network, and gas network)
and advanced communication technology to enhance system re-
silience, improve energy efficiency, and adopt higher penetration
of renewable energy. etc. To achieve the smooth transition from
smart grid to El, the concept of energy body (EB) is proposed
within the context of El [5], which is analogous to the microgrid
in smart electricity grid. However, different from the microgrid,
the EB can effectively integrate different energy networks and
simultanecusly play multiple roles in energy production and
consumption. This is because EB has inherent peer-to-peer
functional relationship among different energy resources and is
thus more suitable for El model development. Since there exists
strong-coupling among different energy networks, the energy
management problem (EMP) is more complex and difficult in the
aspects of modeling, algorithm design and theoretical analysis,
etc., which necessitates 1o be studied to achieve the expected
functionalities of EL

The EMP is commonly viewed as an optimal decision problem
with the objective of maximizing social welfare while meeting
load demands and a set of operation constraints. Up Lo the
present, significant amount of work have been done on this
topic within the context of smart grid or ELl. Generally, the
approaches Lo search for the global optimal operations can be
roughly grouped into two calegories, i.e., centralized method and
distributed method. Note that the centralized method depends
on powerful centralized controller and two-way communication
structure which may incur higher computation cost, and suf-
fer from single-point failures and weak privacy. To overcome
these deficiencies, the distributed method mainly focuses on
disaggregating the global computation problem and assigning
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to individual and distributed energy device, which only utilizes
local information and computation to obtain the optimal opera-
tion, leading to better robustness [6], scalability [7], flexibility
[8], and privacy [9], [10], etc. Now, the distributed method has
become the most important analysis method and been seen as
a promising alternative. Chow ef al. [11] first introduced the
incremental consensus algorithm to smart prid in, which can
solve the economic dispatch problem in a distributed fashion.
Since this method requires a leader agent, it cannot be seen
as a fully distributed method. To solve the economic dispatch
problem in a fully distributed manner, the Lambda-lteration
based method was proposed in [12]. On the basis of [12], Xu
et af. [13] first proposed a fully distributed control strategy to
solve the EMP considering the impact of the component level
response. Therein, the upper control level is designed to obtain
the optimal power generation/demand which is further used as
power reference for the associated component in lower control
level. Note that the considered cost function in [11]-{13] are
quadratic-form. The designed distributed algorithm and theo-
retical analysis method are mainly suitable for quadratic-form
optimization. In this article, we will consider more complex cost
function and design more universal distributed algorithm. Many
distributed energy management strategies have been presented
thereafter under this background. Therein, the major concerns
include the effects of communication delays [14], [15], non-
convex analysis [16], [17], underlying control [18], [19], and
network attacks [20], [21]. etc.

Of note. the above research mainly focuses on solving the
EMP for power system without considering the interdependence
and co-planning of different energy systems. To address this
issue, Zhang ef al [5] defined an enerey management frame-
work for El with multi-EB and analyzed its structure as well
as benefits, which extends the EMP from smar grid to EL
Therein, a distributed-consensus-ADMM was proposed, which
can effectively handle the power-heat-gas coupling problem
during energy generation and consumption. Under this frame-
work, the multitimescale energy management model was fur-
ther built in [22], where an event-triggered based method was
proposed to solve the EMP. Later, similar to EB, the concept
of We-Energy was presented in [23]. However, the considered
cost model for each energy device is of quadratic-form; mean-
while, the proposed double-consensus algorithm is only suitable
for quadratic-form optimization, which makes it not suitable
for El with complex cost functions and constrains. In [24], a
neurodynamics-based algorithm was proposed and applied to
solve the EMP in multienergy system.

The previous work have better modeled the different coupling
modes among different energy networks and developed multiple
distributed algorithms to focus only on the local optimal energy
ceneration and consumption. However, the planning of the en-
ergy distribution on the interconnected power line, heat pipeline,
and gas pipeline among EBs are not considered. Although some
constraints of the power line and heat pipeline were taken into
account in [25], the optimal allocation of exchanged power, heat,
and gas on interconnected lines was not addressed. Under inter-
connecled mode of multi-EB, the optimal energy distribution
among EBs is very important and the reasons are as follows.
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Fig. 1. Physical structure of interlinked multi-EBs.

First, each EB is an independent individual. As seen in Fig. 1,
each EB establishes physical connection and exchanges energy
with only its neighbor EBs, but does not connect to a common
enercy bus. Thus, to complete the energy market transactions,
each EB needs to know who and how much it should sell the
excess energy Lo (or buy deficit energy from). Second, different
EBs may have different structures. For instance, let us consider
a pair of EBs connected with each other. With regard to the
electricity element, the one EB may use ac network and the other
may use dc network. Thus, as reference signals, the direction
and amount of the exchanged power are both needed to control
the underlying ac/dc or dc/ac converter to achieve the energy
delivery. Last but not the least, different interconnected lines
or pipelines may hold different properties such as distance
and materials, etc., resulting in different energy delivery cosL
Hence, the global planning of the optimal energy distribution
will improve the economics and efficiency.

Up to now, few noticeable research has been documented
to develop fully distributed algorithm based on local decision
variables to simultanecusly obtain the optimal energy gen-
eration/consumption for each distributed participant and the
optimal energy distribution on interconnected lines within EI
integrating multiple energy networks. The closest work that can
be found is in [26]-{29] within multiarea or multimicrogrid
scenario and in [25] within integrated energy system scenario. To
be specific, the authors divided the node-branch sets into internal
setand boundary set for each areain [26] and [27]. Each area only
needs Lo share the information of each boundary set with neigh-
bor areas to achieve collaborative economic dispatch. However,
each area needs to collect all the information of its components.
Although this method can achieve distributed calculation among
multiareas, the internal implementation within single area is
centralized. In [28], a distributed adjustable robust optimal
scheduling algorithm is proposed to solve the collaborative EMP
of multiple microgrids. Similar to [26] and [27], each microgrid
also needs to centralizedly manage its internal components. In
[29]. the authors proposed a hierarchical energy management
stratepy to study the same problem as in [28]. However, under a
tree-like structure, a centralized coordinator is needed to collect
all the calculation results of microgrid subproblem as well asen-
ercy router (ER ) subproblem, use them to calculate the optimal
incremental cost, and then send back the optimal incremental
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cost to each microgrid and ER. The research in [26]-{29] have
made some outstanding contributions to achieve the cooperative
management of multimicrogrids. Nevertheless, the coordinator
is also needed to either manage internal participants of individual
microgrid [26]-{28], or calculate part of global variables [29].
This also means that the global computation processes are not
fully divided and assigned to distributed participants or energy
devices, resulting in not fully distributed implementation. In
this article, we would like to find the optimal energy gen-
eration/consumption for each distributed participant and the
optimal energy distribution on interconnected lines in a fully
distributed fashion. Thus, the methods proposed in [26]-{29]
cannot be used to solve our studied problem. In addition, the
studied problem in [26]-{29] is for multiple electricity micro-
grids without the consideration of the interaction of different
enercy networks. Based on the neurodynamic algorithm [30],
a distributed optimization approach was proposed to solve the
economic dispatch problem for integrated energy system in [25].
It is worth noting that the research in [25] has done outstanding
contributions to achieve the cooperated operation for integrated
electricity and heal network considering the transmission power
line and heat pipeline congestions. However, like the method
in [30]. the decision variables (i.e., the variables needed to
be calculated) for each agent in [253] are composed of all the
variables of the whole system (i.e., the global variables) during
the algorithm implementation. The decision variables for each
agent will finally converge (o the same values which are the
optimal solutions for the global variables. In this article, we
hope that the decision variables of each agent (i.e., participant
or ER} only include its local variables. Thus, the distributed
methods proposed in [25] and [30] are nol suitable for our
work.

To address those challenges, we Uy to propose dis-
tributed model and method to find the optimal enerey gener-
ationfconsumption for distributed pariicipants as well as the
optimal energy distribution on interconnected lines in a fully
distributed fashion based on local decision variables within the
concept of EB-based El. The major contributions of this article
are summarized as follows.

1) A fully distributed model for multiobjective EMP, inte-
grating the planning of optimal energy generation/consumption
for internal participants within each EB and external energy
distribution on interconnected edzes between any pair of EBs,
is presented in this article. The studied problem is further for-
mulated as a distributed optimization problem involving many
different kinds of coupled equality and inequality constraints.
Therein, each participant or ER only needs to know it local
decision variables.

2} A distributed double-Newton descent (DDND) algorithm
is proposed Lo find the global optimal solution of the studied
problem. Compared with the literature [26]-{29], the proposed
algorithm can be implemented in a fully distributed manner with-
out needing any coordinator. Compared with [25] and [30], the
proposed algorithm enables each participant or ER only needing
Lo know its local variables and sharing several low-dimensional
auxiliary variables with its neighbors to obtain the local optimal
operations. To the authors’ best knowledge, it is the first time

to simultaneously obtain the optimal operation for individual
participant and the optimal energy distribution among EBs in a
fully distributed manner by only using local decision variables
for EB-based EL

3) The Newton descent concept is uniguely embedded into
the execution of the proposed algorithm. Due to the utilization
of second-order information, the convergence speed of our dis-
tributed algorithm is greatly improved when compared with the
distributed gradient-based descent method.

4) One Lemma and two Theorems are presented to prove the
feasibility of the proposed algorithm. Based on those theoretical
analysis, we can conclude that the proposed algorithm can
converge to the global optimal solution.

Il. SYSTEM STRUCTURE AND PRELIMINARY FORMULATION

A possible layout of interlinked EBs is shown in Fig. |, where
each EB is equipped with an ER to control the energy exchange
with other interconnected EBs. As both energy supplier and
consumer, each EB integrates multiple energy resources, includ-
ing various Lypes of renewable distributed penerators (RDGs),
fuel-based distributed generators (FDGs), renewable distributed
heating devices (RDHDs), fuel-based distributed heating de-
vices (FDHDs), distributed combined heat and power (DCHPs)
devices, distributed electricity storages (DESs), distributed heat
storages (DHSs), and distributed gas providers (DGPs). Addi-
tionally, we consider three types of energy loads, i.e., power, heat
and gas loads, each of which contains an equivalent must-rn
load and a controllable load. Each EB can operate in island-mode
or interconnected mode by exchanging energy with neighbor
EBs via the linked lines. In terms of different application sce-
narios, the EB can be reparded as small as a residential house or
as large as a town.

A. EB Model

With regard to the internal energy generations/consumptions
in individual EB, the electricity power generations come from
the RDG, FDG, and DCHP, denoted as 7%, p/*, and p{"", re-
spectively. The heat gcneratmns come from the RDHD, FDHD,
and DCHP, denoted as A=, h/", and k™", respectively. The gas
is fed by the DGP denn{ed as g; . 'Eﬂsed on the charging and
discharging states, the DES and DHS can act at energy supplier
or consumer. We denote pf* and A* as the exchanged power and
heat for DES and DHS, respectively; meanwhile, we let p5* or
hi* be positive for discharging and negative for charging. For
the energy loads, [F™ (or IF"%), [[*™ (or I{"*), and I¥"™ (or I§*)
are employed to represent the must-run (or controllable) power,
must-run {or controllable) heat, and must-run (or controllable)
eas loads, respectively. Stimulated by the profit, each EB is able
to simultaneously take the rule energy supplier and consumer
by managing its internal participants. We let pi™, hi™, and g™
represent the imbalance (deficit or overabundance) power, heal,
and gas. The energy balance constraints for ith EB at time T are
ziven by

fu chp

PiT_FIT+F1T+P1T +P:r—£p,' if’r: (1
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b = by + b3 + hef + b — I8 — 10 (2)

ol = o5 — " ~ . ®

i}

Apart from the supply demand balance constrains, each EB is
limited to a set of local operation constraints mainly containing
the following six types.

1) The capability constraints for FDG, FDHD, and DGP

P10 < ply < v, veph (4
0< gi,u,niu < Qf?;" < gfu,m (5)

where superscript “min” and “max” represent the corresponding
minimum and maximum allowed bounds, and symbol + is used
to represent p or h (i.e., the variables related to power or heat)
Lo simplify notations.

2} Confidence constraints with the consideration of forecast-
ing errors for RDG and RDHD [5]

™ < U <™ beph  (©)
3) The feasible operation region for DCHP
O o+ BIE 497 >0, k=1,234 (T)

where 9} ., ¥ ., and ] . are coefficients of xth linear inequality
constraint [23].
4) The ramp rate limits for FDG and DCHP

—p["™™ < p7 —ply_, <p["™™ @®)
ki, A B chyp,
—p T Lt B SE 9)

where p/ ™™ and p{;¥"™™ are the ramp rates.
5) The feasible charging/discharging actions and stored en-
ergy for DES and DHS [31]

— P < il < Yveph (10)
Soc;{;r — Soc;fT_, — Y AT, veph (11
SOGY™ < SOCY, < SOCY™*,  +deph (12)

where o™ and ¥?*™" are the maximum charging and
discharging rates, respectively; .S'DE-‘}'!’T is state of charge (the
stored energy). ’

6) Enerzy loads constraints and relevant ratios of energy loads

5]

0<Br Iy — s (13)
O<iir <IF— I (14)
0<fp <Ip -l (15)
Yoo <Ur/(0F + VD) < Tig,  (16)

T SLE/R+E) < TR (D)
T SEF /@ + 1) S TH (18)

where Ty g_.p. T gn, and T, s_,p refer to the ratio of electric
power load with respect to combined power and gas load, the

ratio of heal load with respect to combined heat and gas load,
and the ratio of electric power load with respect to combined
power and heat load, respectively. T is the conversion ratio from
SCM/h (gas flow rate) to MW and its value is often set to 1 /84.

The benefit function for individual EB used to guide the
optimal operation behavior consists of the following six parts

1) The cost functions of FDG and FDHD, i.e.. (19), and DCHP,
i.e.. (20), derived from the fuel cost are

C{y) = af T (g ) + 0ol + 1

Yir

+ P Texp(ed T ylh); (19)

chp 3 ch hp, ch chp_eh hp_chp ch
C(oif hif) = g P(pef ) + PP +dg PP i

+ PR + FEPPROE + P (20)

where a‘:.'-'.fﬂ* E,}f-‘,fu’ c‘ﬁ‘.fﬂi Ef,fu, gf,fu, ﬂfhpf ﬁ:hp, dfhpefh”,
£ P represent nonnegative cost coefficients.

2} The cost functions of RDG and RDHD with the consid-
eration of the tradeoff between the optimality and generation

possibility are [3]
Clrsy) =Py

rEeMmAN _ fre
t-‘i?i,'.l"' YT

+ by exp (&Fme-re,m—mrﬁ) (21)
"lf"i,T 1 w‘l,’]"
where o™ and Y™ are nonnegative cost coefficients; V"™
is the penalty coefficient.
3) The cost functions of DES and DHS are [28]

Clilr) = af ™ (Wi +5) (22)
where a¥** and b¥*** are cost coefficients.
4) The cost function of DGP is [5]
Cloir) = ai(gi7) + bilglr) +digir +<  (23)

where af, b;. df, and ¢ are nonnegative cost coefficients. In
addition, it should be pointed out that C'(g{7.) is convex within
the constraint (5).

5) The utility function for energy loads with the consideration
of demand response is

U055, 105) = —al (10 + 25 ) + BP(ET + 1)
— (U + L) + BRI + 1)
— o ({7 + 05 + BT + 1) (24)

where af, AP, af, 80, of, and 57 are nonnegative utility
coefficients.
6) The income (cost) for selling (purchasing) energy to (from)
other EB(s) is
UCyr = prigp i} + pricohit +pri{ rgi7 (29
where pri{ ., prijy, and prij ;. are the market clearing prices
for power, heal, and gas, respectively.
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B. Energy Distribution Model Among EBs

By controlling the local ER as seen in Fig. 1, each EB can sell
surplus energy to other EBs to make additional profits and/or pur-
chase deficit energy from other EBs to meet its internal energy
demands. The energy distribution can be modeled as the repre-
sentation of graph structure. We define three energy distribution
graphs corresponding to the different physical links of power,
heat, and gas among EBs. First, a power distribution graph is
defined as GF = (N, EP, OF), where N' = {1.2,--- ,n} is the
set of nodes representing all the ERs, £F = {1,2,... | EP} is
the set of edeges representing the power exchange across the
corresponding interconnected power line, and OF = {o; . } is
node-edge incidence matrix. Therein, i € N, e? € £F; 0y 0 = |
ifedge leaves node i 0y » = —1 ifedge enters node ¢; o er = 0,
otherwise. The amount of power exchange on edge £ = (i, k)
is defined as y.-. The delivery cost function is used to guide the
system power distribution, which can be modeled as [29]

’G{XEP} = EERXEPJZ

where af >0 is the cost coefficient. Moreover, if the final
calculation result of y. > 0, it means that the final power
exchange across edge & = (i, k) is from node i to node k;
Otherwise (i.e., yer < 0), it means that the final power exchange
across edge e = (i, k) is from node & to node i. The maximum
power transmission capability on ¥ = (4, &) is defined as v 55",
such that

(26)

—Xar L Xer € Xop (27

where (27) represents the transmission line congestion con-
straint.

Now, node ¢ can be seen as a source node with outgoing
rate pi" if pj’7 > 0; otherwise, it is seen as a sink node with
incoming rate pi'F <= 0. Then, the node-edge (or node-branch)
power fow balance constraint is modeled as

OFyP — pim (28)

where y* and p'™ are the column vector forms of y.» and
P, respectively. In addition, caused by the system total power
su'pply—dﬂmand balance, the total values of im:uming power are
equal to the ones of outgoing power, ie., > ,p, 7 =0

Based on the aforementioned model, the problem of finding
the optimal power distribution among EBs can be formulated
as a kind of dynamic network flow optimization problem with
multiple source and sink nodes. In the subsequent algorithm
design part, we will provide its distributed solution. Moreover,
the Algebraic connectivity of GF is determined by the second
smallest eigenvalue of graph Laplacian OPOPT . To ensure solu-
tions feasibility, we assume G is connected. It also means that
OPOPT is symmetric, singular and positive semidefinite.

The similar definition and model of power distribution can be
applied for heat distribution and gas distribution. We let G* =
(N,E",O") and G9 = (N, £9,09) represent the heat and gas
distribution graphs, respectively, where £ = {1,2,... ,E"},
E9={1,2,--- \E9}, Oy on ={og e}, and O; x = {0,060}
C{xer ) and C(xes) are denoted as the cnnespnuding delivery
cost functions for y .~ and y .., respectively. x 75" and x 7" are

the maximum heat and gas transmission capability on edges £"
and 9, respectively. The node-edge heat flow and gas flow bal-
ance constraints as well as the heat and gas pipeline congestion
constraints should also be fulfilled, i.e.,

th — him

078 = g™

(29
(30)

N g St s
N 5 Xew % Xag -

C. Multiobjective Energy Management of EBs

We consider an EI system with n EBs; meanwhile, EB ¢ has
my participants (i.e., RDG, FDG, RDHD, DCHP, DES, DGP,
and schedulable enerzy loads, etc.). The objective is to find the
optimal operations with maximum social welfare (sw) of EBs
and optimal energy distribution with minimum delivery costs
{dc) among EBs, which is defined as follows:

n
max Obj=)_ FY%-F4%

(31)
i=I1
with
Fy = — Y (C(7) +CWs) + C(¥5%)) — Claty)
weph
— C(B{ 2 heE) + U(SF 5, 05 + UCr
Fif = Z Clxer) + Z Clxer) + Z Cxes)
eP=1 ek=l ef=]
subject to
n bl
Zmr—ﬂzh;‘}=ﬂazg$=ﬂ (32)
=1 =1

and (4){18), (2T30).

Nexl, to simplify notations, we define that =, £ R isa
3-D vector composed of the power, heat and gas of the jth
participant of :th EB. Note that some of those elements may
be zero(s) depending on the characteristics of the participant.
We also define that [T € R? is a 3-D vector composed of the
power, heat and gas of the jth must-run energy loads of ith EB.
Each participant is able to transform its variable to the form
of xyy by making the upper and lower bounds of each zero(s)
variable be zeros; meanwhile, the cost function(s) corresponding
to the zero variable(s) is(are) set to any kind of strongly convex
function(s} like that defined in (19). In addition, the ER plays
the role of exchanging energy as well as information with other
ERs. To estimate the value of exchanged energy, i.e., p{'7.. h{'F,
and gi"F. in a distributed energy network, we assign a dummy
variable x; for the ER in ith EB and let j = 0. This is needed for
later algorithm development such as in (40). Meanwhile, we also
assign a strongly convex cost function for r,; and let its bounds
be zeros. Then, we let Wy, lo represent the corresponding cost
function or negative utility function. The above studied problem,
as specified by (4)(18), (27}+32), can be rewritien as

o My
min Obj=» Y W(zy)+ Fi5

1=1 j=0

(33)
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subject to

mn m; n m;

Y. ) Byzy=)» > In, z4€Qy (39
=1 7=0 i=1 §=0

OPxP = p™ O"" = '™ 0% = g™  (35)
Xer € Sderi Xer € QeriXes € (les (36)

where By; = —I; if z,; represents controllable energy load;
otherwise, By; = Is. Therein, I5 is a 3-D identity matrix. £2,,,
har. Den . and £z are the local closed convex sets determined
by the local inequality constraints.

D Analysis of Surface and Complexity

For an optimization problem, if the dimension of the
decision variables is less than three, it is a good way to draw
the objective function surface together with the constraint
surface such that the global optimal point can be intuitively
found. As a result, the optimization problem can be analyzed
and solved in a better way. In our considered optimization
problem (33)3-36), we focus on achieving the distributed
cooperative energy management of multiple energy bodies with
maximum total social welfare as well as minimum total delivery
costs. We denote the system’s total decision variables as x =
[Tg=01,+ - s Tagmnmis Xep=1,- - s XeP=Er) Xeh=11"" " s Xeh=E
Xes=1:""" s Xes—£s| Which is the column vector made from
concatenation of all Ty, xer, ¥ en. and yes. Therein, the variable
for individual participant, i.e., xy;, is 3-D, and the variable on
each interconnected line, i.e., y.- for power line, or y .~ for heat
pipeline or y . for gas pipeline, is 1-D. Although the dimensions
Of Ty5. Xers Xen . a0d x5 are low, the overall decision variable
vector x is high-dimensional in a large-scale El with many
participants and interconnected lines. Thus, the corresponding
objective function surface is very complex. It is a difficult and
even unrealistic task to draw the accurate objective function
surface for the optimization problem with high-dimensional
decision variables and also for problem (33}+36). In this
scenario, the graphical approach may not be viable. We have
to use mathematical method to solve this problem. As we
discussed in Appendix B in [32], our optimization function is
strongly convex. Meanwhile, all the constraints are affine. Thus,
the studied problem (33)—(36) is a typical convex optimization
problem with only one global optimal solution.

Currently, many centralized mathematical approaches (such
as the primal-dual interior-point (PDIP) approach) can be used
to solve this kind of optimization problem. However, the cen-
tralized approach requires a centralized controller to collect all
the information of each participant and interconnected lines in
two-way communication structure. All the computation tasks
have to be implemented in the centralized controller, which is
subject to huge computing burden and cost as the El system
scale expands. In addition, the centralized approach also suffers
from single-point failures and weak privacy, etc. To address
these issues, this article designs distributed approach to find the
global optimal solution, which further increases the complexity
of the solution method. The complexity is reflected in how to
disappregate the global computation problem, and assign to

individual participant and ER to respectively achieve the optimal
operation and the energy distribution among EBs in a fully
distributed fashion.

lll. NewTonN-BASED DISTRIBUTED ENERGY
MAMAGEMENT STRATEGY

A. Distributed Communication Structure and Preliminary
Knowledge

This article focuses on employing distributed communication
manner Lo achieve local information sharing. The detailed design
for the communication structures of single EB and their inter-
connections are presenied in Appendix A in [32]. In addition,
some basic knowledee of convex analysis, the definition of
differentiated projection and a necessary Lemma (i.e., Lemma
1) are provided in Appendix B in [32], which is used for the
subsequent convergence analysis.

B. Main Algorithm

In this section, we focus our attention on the exploration
of fully distributed algorithm with faster convergence speed to
solve problem (33) with constraints (34 )4{36). The detailed de-
sizn process of the proposed algorithm is presented in Appendix
C in [32]. Based on the analysis in Appendix C in [32], the
updating rules of the proposed algorithm are given by

Ty = Do, (VW (zy) "2y, VW (zyy) 7 ( — VW (zy)

b=~ Y a5y —yg)
TeN;;
—w Y ayglzg —2g)+1; —Byzy  (38)
1jeN;;
iy=w Y aygvg —vg) (39)
ijeN;;
vy = — z E-]'qﬁ(’-‘-?u o Ug}' — Byyiyg (40)
ijeN;;
Xer = I'ﬂ._-p {WC’I{x“}“x.ep-. ?ZC[}CW}_.{_?C{XEP]
+Aps — Api)) (41)
Xer =T (V2C(xer ) ™ xer, VIC(xer ) (—VC(xer)
+Ane—Ang)) (42)
Xeg = ]-—'n.__g {VIG(XEF}_EXE"j ?EC{XEEJ_l{_vG{X&F}
+ A —Agx)) (43)
j-p.i = - Z (xer)
ep=I[1,k}
— 3 (xer) + (1 4+ mi)ualy (44)

ep={k,1)
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Algorithm 1: DDND Algorithm,

Input : The parameters of Wiz ), Clxer ) Clxen ).
C'(xes ), local operation constraints, node-edge
incidence matrixes OF, O" and 09,

Output ; The final values of optimal enerzy generation
and consumption as well as oplimal energy
exchange among EBs.

Initialize: Any admissible values for =q;(l) € 0,

Wiy '{fD}H Ziy U"D}- X:r{ﬁﬂ] g ﬂﬂ’l x;“{*ﬂ) € n:"'-
Xes(ta) € fes, Apilto) An.i(ta), and Ay :(la),
and T-ri_f{tl:l::' = —B{inj{EuJ + I[::;

1 repeat
] each participant and ER exchange the information of
Yij, Zij and vy with its neighbors, and perform

dynamics
1 a) (37) to update x;;; b)) (38) lo update g,
4 ¢} (39) o update z;;, &) (40) to update vy;.

Ll

Each ER exchanges the information of Ap i, A, Agi
with its neighbor ERs, and performs dynamics

a) (41) to update y.»; b) (44) to update Ay ;;

c) (42) to update y,n;  d) (45) to update Ay

e) (43) to update x..; ) (46) to update A, ;.
until Convergence;

eom s &

i‘h,1= _( Z (xen)
ep=(1,k)

ep=(k,1)

— % G+ ﬂh}‘l'aniz) (45)

3 (xes)

(e, =(1,k}

— 3 (xes)+(1 +mf}um|3) ;

e =(k,1)

(46)

where Yigs T19s Vigs J“F.l-i lh}:.. and 1911 are dﬂigﬂﬂd E:l]leiﬂr}r
variables, whose functionalities can be found in Appendix C in
[32].

The implementation procedure of the proposed algorithm is
summarized in Algorithm 1. It is worth noting that the Newton
descent directions are embedded in the calculation of not only
the optimal operation of each participant, i.e., (37}, but also the
optimal energy distribution on the edges among EBs, ie., (41)-
(43). For intuitive presentation, we name the above algorithm as
DDND algorithm. The discretized implantation of the DDND
algorithm is given in Appendix D in [32].

Remark 1: According to (41), besides the local information
of V2C(xer ) and VC(y.r ), the calculation of y .- on the edge
ep = (i, k) requires the information of A, ; and Ay, &. Tocalculate
¥ er, We 8ssign the computation task to the interconnected ER 1
and ER k by only letting ER : and ER % exchange information
with each other. The same calculation method is applied to
Yen a0d xes. Meanwhile, the updating of Ay, An g and 2g, is
implemented through local computation as in (44)-46). Then,

each ER can calculate the exchanged energy with its neighbor
ERs in a distributed fashion. Furthermore, in light of (37)}-{40),
the updating of variables z,;, y;;, z;;, and v,; only requires
local information share and calculation. Thus, each participant
can also find its optimal operations in a fully distributed fashion.

Remark2: The existing algorithms (e.g., [5], [22]-[24]. [26]-
[29]) are not able to solve the studied problem of this article in
a fully distributed manner. To be specific, the methods in [5],
[22]-{24] do not consider the energy distribution constraints on
interconnected lines, i.e., (35) and (36), which is only suitable
for handling constraint (34). Note that (34)-36) are different
types of constraints, which cannot be simultaneously solved
by the proposed distributed algorithms in [5], [22]-{24]. Next,
the methods in [26]-{29] consider the constraint of power flow.
However, they need to rely on coordinator(s) to management
internal participants within individual microgrid or estimate part
of global variables, which cannot be seen as fully distributed
algorithms. Moreover, they do not consider the heat and gas
networks as well as the strong coupling relationships among
power, heat, and gas, which should be modeled in objective
functions and constraints.

Next, the following Lemma 2 and Theorems 1 and 2 are further
proposed to ensure the feasibility of the DDND algorithm in
theory. To be specific, Lemma 2 gives the convergence property
of dynamics (40} as follows.

Lemma 2: Suppose that graph &, is connected and dynam-
ics Ty is stable. The initial points are chosen as wy(fg) =
—B;_-IIU {fﬂ} +E:1; and I{j{tl}} = ﬂ{j. Tl'bE:[I.., d}rﬂaﬂliﬂs {40}
makes

v‘l-j'l::t} = i 1 + g jgﬂ {Iij{t:’ = I:? 4

t — oo.

(47)

The proof of Lemma 2 is presented in Appendix E in [32].

As assistant work, Lemma 1 (see Appendix B in [32]) and
Lemma 2 are used for the convercence analysis of the subsequent
main theoretical results. On these basis, the following Theorem
| shows that the equilibrium point of the DDND algorithm is the
optimal point and Theorem 2 further verifies the convergence of
the DDND algorithm.

Theorem 1: Suppose that graphs G¥, G", GY, G, and G, for
i=1,---  n are connected. Then, the equilibrium point of the
DDND algorithm is the optimal solution of the studied problem
Le., (33)-36).

The proof of Theorem 1 is presented in Appendix F in[32].

Theorem 2: Suppose that graphs G%, G", G%, G, and G, for
i =1,..- ,nare connected. Then, the DDND algorithm makes
all variables exponentially converge to the optimal solutions of
the studied problem, i.e., (33)-(36).

The proof of Theorem 1 is presented in Appendix G in[32].

In addition, note that the proposed DDND algorithm is suit-
able for solving common convex optimization with the form
shown in (33}-(36). Thus, this algorithm can be expanded to
solve more complicated model, if the system model can be
relaxed as the form shown in (33)—(36).

Remark 3: It can be seen from Algorithm 1 that the vari-
ables to be communicated only include w4y, 2¢;, Ve Apre Ans
and Ay ,. MNote that they are all floating-point numbers, each
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Fig. 2. Simulation results. (a) Power price. (b) Heat price. (c) Gas price. (d) Power generation/consumption. (e) Heat generafion/consumption.
() Gas generationconsumption. {g) Exchanged power. (h) Exchanged heat. (i) Exchanged gas. (j) Power distribution. (k) Heat distribution. (1) Gas

distribution.

of which occupies 32-bits for single-precision or 64-bits for
double-precision. For any pair of nodes (participant or ER), the
amount of communication data (i.e.. the total number of bits)
is very small. Currently, most of the communication devices
process the communication data transfer rate (CDTR) over the
level of megabit per second, which is more than enough to meet
the communication requirement for our considered problem.
Additionally, in this article, each node only needs to share infor-
mation with its neighbors in a short space distance, which does
nol involve the long-distance data transfer. Thus, the time delay
for ransmitting these numerical values is very short. Therefore,
by using the currently advanced communication technology,
there is negligible effect on our studied problem caused by the
CDTR and the corresponding time delay.

Remark 4: In our proposed algorithm, the decision variables
of each participant or ER only include its local variables but not
the global variables. The computational complexity for individ-
ual participant or ER by implementing the proposed algorithm is
O &), where g is the dimensionality of local variable. Note that
o 15 not changed with the system scale. Thus, the computational
complexity for individual participant or ER is also not changed
as the system scale.

Remark 5: The proposed algorithm possesses better robust-
ness property against single and even several link failure(s), as
long as the system or graph remains connected. The reasons are
as follows. Since the connectivity is not broken, the correspond-
ing graph Laplacian matrix remains symmetric, singular, and
positive semidefinite. The graph Laplacian matrix, both before
and after failure(s), holds one simple zero eigenvalue while the
rest of eigenvalues are positive. Note that those properties are
used for subsequent convergence proof. Since those properties
are not changed, the convergence is not changed either.

IV. SimuLsTION RESULTS

Numerical simulations are presented to exhibit the perfor-
mance of the proposed method for an El system with five
EBs. The system physical and communication structures are

TABLE |
TERMIMATION TIME

ACE <4 - - 7 3

DDND 16,9943 18.2714s 20.30m0s 2262473 24 9333s

DDGD 85.2326s 1M 6773 124.5019s 144.5963s 164, 62545

DNB T9 9825: 94 58933 97 B9Ss 90 548 120 1546s

illpstrated in Fig. A3{a) (see Appendix H in [32]), which are
derived from [5]. The parameters of cost or utility functions as
well as the local operation constraints of each participant are
obtained from [5]. The cost parameters of the interconnected
edges are lisied in Table Al (see Appendix H in[32]). The
energy scales are unified as 1 p.u. = IMW for power or heat,
1 p.u. = 845CM/h for gas, and 1 pu=1MWh for price [22].

A. Convergence Analysis

In this case study, we aim to show the global optimality and
convergence of the proposed DDND algorithm. The must-run
electricity, heatl, and gas loads for EB1 to EBS are the same as
those used by [5]. The initial directions of power exchange, heat
exchange, and gas exchange across the interconnected edges
among EBs are shown in Figs. A3(b}— A3(d) (see Appendix H
in[32]). The simulation results by running the DDND algorithm
are shown in Fig. 2. To be specific, Fig. 2(a}—(c) shows the
estimated power, heat, and gas prices of each participant. It can
be observed that, after approximately 10 s, the price of each
type of enercy converges to a common value which is the final
market clearing price. Fig. 2(d}{f) shows the trajectories of
estimated power, heat, and gas generations/demands of each
participant, whose final values are tabulated in Table A2 (see
Appendix H in [32]). The results are almost the same as the ones
corresponding to Table [ in [5], which implies that each partici-
pant can locally obtain its optimal operation. Next, Fig. 2(g-1)
shows the (rajectories of the exchanged energy of each EB. ie.,
—{1 4+ my vy, estimated by the corresponding ER. The final
values are also marked in Fig. 2(g)—{(i). It can be observed that
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Fig. 3. Final energy trading layout. (a) Power trading layout. {b) Heat
trading layout. {c) Gas trading layout.

the estimated values are the same as the actual values shown in
Table A2 (see Appendix H in [32]). Finally, Fig. 2(j)—~(1) shows
the energy distribution on interconnected lines among EBs. The
final converged values are listed in Table A3 (see Appendix H
in[32]). Note that some energy exchange values are nepative,
which means that the actual directions are opposite to the initial
ones. For instance, the initial power exchange direction between
EB3 and EB4, i.e., edze 2 shown in Fig. A2(b), is from EB3 to
EB4. The calculation value is —40.5327(p.u.), which implies
that the final direction is from EB4 to EB3. In other words,
EB4 will sell 40.5327(p.u.) electricity power to EB3. To clearly
see the energy trading layout, the final energy distribution on the
interconnected lines as well as the exchanged energy of each EB
are depicted in Fig. 3{a)}~{c). It can be observed that, for each
EB, the internal excess (or deficit) energy is equal to the amount
of energy selling to (or buying from) its neighbors. Theses imply
that the calculation results given by DDND algorithm are fea-
sible and effective. Moreover, to further validate the optimality
of the DDND algorithm, a classical centralized method, i.e., the
PDIP algorithm [33], is used to calculate the optimal solutions
of the same studied problem. The calculated results are listed in
Tables A2 and A3 (see Appendix H in[32]). It can be observed
that the calculated resulis obtained from our DDND algorithm
and the PDIP algorithm are almost the same. Thus, this verifies
that the proposed DDND algorithm can converge to the optimal
solution.

B. Comparison Analysis

In this case study, we compare the Newton descent method
with the gradient methods to show the faster convergence feature
of the proposed DDND algorithm. Note that the existing dis-
tributed algorithms cannot directly solve the considered problem
in a fully distributed fashion. To make a comparison with gradi-
ent descent method, we let all the Hessian matrices ?ZW{Iq }s
VIC(xer ), VEC(xen ), and V2O e ) be set to the correspond-
ing identity matrices. Then, the proposed DDND algorithm de-
generates to a kind of gradient descent method which is referred
Lo as distributed double-gradient descent (DDGD) algorithm. In
addition, we also compare the proposed DDND algorithm with
the distributed neurodynamic-based (DNB) algorithm regard-
ing convergence speed. Therein, the DNB is proposed in [30]
and applied to solve the EMP for integrated energy system in
[25], recently. When the DNBE algorithm is used to solve our
studied problem, the global variables are required to be known
by each participant and ER, leading to not fully distributed
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Fig. 4. Comparizon results. {a) DDMND algorithm. (b) DDGD algorithm.
(c) DNB algorithm.

implementation. Next, to show the exponential convergence of
the DDND algorithm in a better way, we define the averaged
calculation error { ACE) in logarithmic scale, as follows:

i 1
ACE = |n(§f;x B i | TS Elix” =¥

I . ,
+ 3l =X+ 3l =) @9

where X*, ¥7", +"", and y9* are the optimal solutions of X,
vF., x". and y9, respectively. The total number of the ERs and
participants, i.e., <% is equal to 36 for the test system shown in
Fig. A3, In addition, the denominator values of 6, 5, and 5 in the
second, third, and fourth items of the right hand of (48) are the
numbers of total power lines, heat lines, and gas lines among
EBs, respectively.

With the same setting of all the parameters, the trajectories
of ACE by using the DDND algorithm, DDGD algorithm, and
the DNB algorithm are shown in Fig. 4{a}-{c), respectively.
To clearly see the results, we let each algorithm stop once
ACE is below preset accuracy requirement; meanwhile, the
corresponding computation time is recorded. The termination
time under different values of ACE of the three algorithms are
listed in Table L It can be observed that the DDND algorithm
requires less time than the DDGD algorithm and DNB algo-
rithm to reach the same ACE. These results exhibit the faster
convergence feature of the proposed DDND algorithm. This
is because the DDND algorithm is able to take advantage of
Newton descent information by using both second-order and
first-order information to speed up the convergence.

C. One Day Energy Management

In this case study, we test the performance of the proposed
algorithm for one day energy management with changing renew-
able generations and load demands. The forecasting renewable
energy ceneration and must-run energy load variations for one
day are shown in Fig. 5{a}~c). Therein, PL, HL, and GL
represent the must-run power, heat, and gas loads, respectively.
The system structure and parameters are the same as the first
case study. By implementing the proposed DDND algorithm,
the profiles of power, heat, and gas penerations/demands are
presented in Fig. 5(di—(f). Meanwhile, the profiles of energy
flow distributions on the interconnected lines among EBs are
presented in Fig. 5(g)—{i). It should be pointed out that, for each
hour's dispatch period, the algorithm converges in less than 20 5.
It can be seen that the proposed algorithm can automatically re-
spond to the variations of the renewable energy generations and
load demands, and converge to new state during each dispatch
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Fig. 5. Simulation results for one-day scenario. (a) Renewable
power generation or must-run power load variations. (b) Renewable
heat generation or mustrun heat lcad vanations. (c) Must-run gas
load variations. (d) Power generatiocn/consumption. {e) Heat genera-
fion/consumption. (f) Gas generation/consumption. (g) Power distribu-
tion. {h) Heat distribution. (i) Gas distribution.

o

Fig. 6. Simulation in large-scale system. (a) Power genera-
fion/consumption. (b) Heat generation/consumption. (c¢) Gas genera-
fion/consumption. (d) Power distribution. {e) Heat distribution. {f) Gas
distribution.

period. It implies that the proposed DDND algorithm possesses
better adaptivity and robustness with changing system operating
conditions.

[ Effectiveness Analysis in a Large-Scale Test System

In this case study, we focus on analyzing the effectiveness of
the proposed algorithm in a large-scale test system. The system
physical structure of the larpe-scale text system is shown in Fig.
Ad (see Appendix H in [32]). Without loss of generality, we let
the communication network overlays the physical network. The
parameters for each type of participant are similar to those in
[22]. The parameters for each type of interconnected line are
similar to those in Table Al. We randomly set the initial flow
directions of power exchange, heat exchange, and gas exchange
across the interconnected edges among EBs. The trajectories
of estimated power, heat, and gas generations/demands of each
participant are shown in Fig. 6(a}-c). The energy flow distri-
butions on the interconnected lines among EBs are shown in
Fig. 6(d}—f). It can be observed that all those decision variables
converge after approximately 15 s. Compared with the results
in the first case study, although the system scale has tripled in
size approximatively, the convergence time has not increased
significantly. This result shows that the fast convergence speed
is still ensured in the large-scale system, which further verifies
the effectiveness of the proposed DDND algorithm.

V. CoONCLUSION

In this article, to achieve the cooperative energy management
of multiple distributed energy networks in the processes of
energy generation, delivery, and consumption, a multiobjective
enercy management model was built within the context of EB-
based EL 1t was further formulated as a distributed optimization
problem with multiple equality and inequality constraints. By
primal-dual analysis and Taylor expansion, a DDND algorithm
was further proposed Lo solve such kind of optimization problem
with some satisfactory features including fully distributed exe-
cution as well as faster convergence speed. By using Lyapunov
stability theory, we proved that the proposed DDND algorithm
was able to converge Lo the global optimal solution. In future
work, we will consider more complex sysiem model and study
effective relaxation approach to further expand the application
of the DDND algorithm.
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