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1. Introduction

A first-order finite element method is proposed to simulate two-phase flows in heterogeneous porous media. The method
is defined for unstructured meshes made of simplices for two-dimensional or three-dimensional domains. Mass-lumping and
upwinding techniques are employed to discretize the mass and stiffness matrices. The proposed method solves for primary
unknowns that are physical quantities, namely the wetting phase pressure and the wetting phase saturation. Flows are
driven by injection and production wells, represented by source and sink functions. The method has recently been analyzed
in the papers by Girault et al. [30,31]. The fact that the relative permeabilities vanish when evaluated at the residual sat-
uration values and that the capillary pressure has an unbounded derivative make the proofs for the well-posedness and
convergence analysis of the scheme technical and complicated. In this current work, we extend the scheme to heteroge-
neous porous media for which the permeability field varies over several orders of magnitude across the domain. Several
simulations of incompressible two-phase flow in two-dimensional and three-dimensional domains show the accuracy and
robustness of the proposed mass-lumped upwinded finite element method. In this paper, our proposed scheme will be
referred to as the “vertex scheme” because mass-lumping reduces the finite element integrals to quantities involving the
values of the solution at the vertices. Thanks to the use of mass-lumping and upwinding, the maximum principle is proved
and observed in our computations. The numerical solution of the saturation does not exhibit local oscillations near the front,
which indicates the monotonicity of the scheme.
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The numerical modeling of incompressible two-phase flow in porous media has been widely studied in the literature.
Only a small fraction of the proposed schemes with physical primary unknowns, has been theoretically analyzed. Besides
our proposed finite element method [30,31], a cell-centered finite volume method has been analyzed in Eymard et al. [23].
Many of the convergence works in the literature impose unrealistic constraints on the input data, in particular the rela-
tive permeabilities are assumed to be bounded below by positive constants and the derivative of the capillary pressure is
assumed to be bounded [40,21,24]. If non-physical primary unknowns are chosen, such as the global pressure introduced
by Chavent and Jaffré [11], the degeneracy of the relative permeabilities can be circumvented (see [18,39,13]). The idea of
using mass-lumping has been proposed for the numerical solution of various partial differential equations (see for instance
[12,15]) as well as in the application of porous media (see [27,5]). Mass-lumping within the finite element method yields
a diagonal mass matrix, which is a desirable feature for reducing the computational cost. Thanks to mass-lumping, the
discrete saturation is guaranteed to satisfy a maximum principle. Accuracy of the solutions is also achieved by the use of
upwinding as this helps reduce the numerical oscillations near fronts in convection-dominated problems. While the result-
ing scheme is not guaranteed to be locally mass conservative, the accuracy of the numerical saturation obtained with both
upwinding and mass-lumping, translates into small local mass errors that remain below the nonlinear solver tolerance.

Heterogeneities in porous media are common features in the modeling of multiphase flows in subsurface. The perme-
ability field is discontinuous and varies over several orders of magnitude. This implies that suitable numerical methods
should handle PDEs with highly discontinuous coefficients, in order to accurately capture the fluxes between elements.
These suitable methods include the class of control-volume methods Aavatsmark et al. [3,4], Edwards [19], multi point
flux approximation methods Aavatsmark [2], Friis and Edwards [28], mixed finite element methods Arbogast et al. [6], and
discontinuous Galerkin methods Riviere [41]. For example, finite volume methods use the harmonic average of the discon-
tinuous coefficients, discontinuous Galerkin methods employ a weighted average Ern et al. [22]. Our method associates to
each finite element degree of freedom a weighted average of the discontinuous coefficient. The resulting approximation
error remains first order and our numerical simulations show the proposed averaging technique yields accurate solutions.

An outline of the paper follows. In Section 2, the two-phase flow model is presented with wetting phase saturation and
pressure as primary unknowns. The vertex scheme is defined in Section 3 and the resulting linearized system is described
in Section 4. Numerical simulations are shown in Section 5 and are followed by conclusions.

2. Governing equations

The incompressible two-phase flow model in a porous medium Q c R%, d =2, 3, over a time interval (0, T) is charac-
terized by the following coupled equations:

9(Ps) = V- (Mw($)KVP) = fw(sin)q — fw(s)g, inx(0,T), (21a)

—0(¢s) =V - (Mo (K (Vpc(s) + V) = fo(sin)g — fo(s)g,  inx(0,T), (2.1b)
Nw(@)KVp-n=0, ond x (0, T), (2.1¢c)

N0(S)KVpo -n=0, on 92 x (0, T). (2.1d)

The primary unknowns are the wetting phase pressure, p, and wetting phase saturation, s. The secondary unknowns, namely
the non-wetting phase pressure and saturation, (po, So), are recovered by using the relations:
Po=Dpc(s)+p, So=1-s5.

The porosity and the permeability of the medium are denoted by ¢ and K respectively. The mobilities, 1y, are the ratios of
the relative permeabilities, k., to the phase viscosities, py > 0, for « = o, w:

kro (s)

o

Ne(s) = oa=w,o. (2.2)

Both capillary pressure, p., and relative permeabilities are functions of the saturation (see [9,29]). In this work, the Brooks-
Corey model is used. The residual saturations, Sy, Sro, are constants in the interval [0, 1].

_ _ _ _ s—s
k() =57 . keo(5)=(1-521-57), §=-— " (23)
1 —=srw —Sro
| =
pas@ ifs>R
pe(s) = - _ ) (2.4)
‘ {deT] - %R(_]_%)(s —R) otherwise.

This model introduces parameters 6 € [0.2,3.0] and R = 0.05, which characterize the inhomogeneity of the medium and
linearization threshold, respectively. The entry pressure, pg, is a constant pressure corresponding to the capillary pressure
required to displace the fluid from the largest pore. The fractional flows of each phase are related to the mobilities as
follows:
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Nw (S)
Nw(S) + 1o(s)’

Homogeneous Neumann boundary conditions (2.1¢)-(2.1d) are prescribed on the whole boundary as flow is driven by wells.
Flow rates at the injection and production wells, g, and g satisfy:

q=0, g>0, /éz/g, (2.6)
Q Q

and the saturation at the injection wells is set equal to a constant value sj,. Because of the boundary conditions, the pressure
p is unique up to an additive constant. To fix the constant, we impose

f p=0. (27)

Q

fw(s) = fo(®)=1—= fw(s). (2.5)

Finally, the model is completed by the initial condition:
s=s% inQ. (2.8)
3. Numerical scheme

The domain 2 is partitioned into triangular elements in 2D and tetrahedral elements in 3D. Let h denote the maximum
diameter of each element in the mesh &;. Let T denote the time step size and let pj,s; denote the discrete pressure and
saturation respectively at time t" =nt. They belong to the finite element space X} of order one:

Xy ={vy, €C%Q): VE € &, vl € P1(E)}.

Let M be the dimension of Xy; it is the number of nodes (i.e. vertices) of &,. Let ®; be the Lagrange basis function, that is
piecewise linear and takes the value 1 at node i and O at all the other nodes. We write

M M
PR =) PlOi(x). spx)=> S!di(x), XeQ. (3.1)
i=1 i=1

We now define coefficients that arise from the mass-lumping technique. The technique is applied here to discontinuous
coefficients K. For a fixed node i, the macro-element A; is defined as the union of elements sharing the node i.

CijE = f IVO; - V&, cj= Y. cje c(K)= Y Kecje Y1<i,j<M,
E E€AiNAj E€AiNAj
1Al
d+1
We assume here that the permeability K is piecewise constant and we denote by Kg the constant value that is the restric-
tion of K on the element E. Clearly, if K is constant everywhere, then c;j(K) = Kc¢;; and we recover the case described in
Girault et al. [30].
We first introduce the nonlinear scheme, that is written with respect to the nodal values of the numerical pressure and
saturation. For n > 1, given 52’1 € Xy, find (py, sp) € Xp x X, satisfying (3.1) and

. V1<i,j<M.

mi

Sn _ Sr'lfl M
migp——t— =} ;i (K)nw (S}, ;) (P} — P)
j=1
=mi(fw(in)di — fw(S]Hg), 1<i<M—1, (3.2)
sr_gsrt M
—mig=—L— =% "¢ij (K)o (S5 ) (P} — P)
j=1

M
=Y cii(Kno(Sy i) (pc<5'}‘1> + (ST = ST = pe(STTH = pe(STTH(ST - S?‘U)
j=1

=mi(fo(sin)Gi — fo(S] Ng), 1<i<M, (33)



M.S. Joshaghani, V. Girault and B. Riviere Journal of Computational Physics 449 (2022) 110778

M
> “m; P} =0. (3.4)
i=1

The values S7, ij and S} jj are upwind values, i.e. they are nodal values of the saturation at either node i or node j, that

are made precise in the linearized scheme below. The discretization of the condition (2.7) is given by (3.4). In the case of
constant permeability, well-posedness and convergence of the nonlinear scheme are proved in Girault et al. [30,31].

Proposition 3.1. Let (s, p) be a weak solution to problem (2.1a)-(2.1b). Assume that the porosity ¢ and permeability K are positive
constants. As the mesh size h and time step size T tend to zero, the discrete saturation satisfying (3.2)-(3.4) converges, up to a subse-
quence, strongly to s in the L2 norm and the discrete pressure converges, up to a subsequence, weakly to p. In addition, the saturation
satisfies the maximum principle:

Srw SSp(X) <1 -5, VXEQ. (3.5)

Linearized Scheme: We linearize the equations (3.2)-(3.3) by using a fixed point iteration and approximating the capillary
pressure by a first-order Taylor expansion:

Pe(ST) ~ pe(SI1) + pL(SI (st — st h.

nk

N S?'k) where the superscript k denotes the fixed-point

At each time step t", we will solve for a sequence of nodal values (P
iteration number.

n,k n—1 M
ST =S

mip———t— = 3 i (K)mw(Sy, 5 P = P
j=1
=mi(fwGin)@i — fw(S] Hg), 1<i<M-—1, (36)
sthk—sp! & nk—1, pnk  pnk
—mig=———— =} "cij(K)mo(Sgi (P — P

j=1

M
= 2 cutOma(SpE™ (pe(ST ™ + (ST = ST = pe(S] ) = puSITH(SH = 1)
j=1

=mi(fo(sin)Gi — fo(S] Ha), 1<i<M, (37)
M
Y mipi* =o0. (3.8)
i=1
. . . R k.
We now make precise the choice of the upwind values, S"}v;.j and 52,;‘(,‘-
n,k—1 . n,k—1 n,k—1
k-1 Sik] ! Pill>PAk1
nk-1 _ } cnk— : n,k— n,k—
Sey'=gst ey (3.9)
max (Pt ST e et = PR
S?,kfl if pc(s?,kfl) + P?,kfl - pc(sz,kfl) + P?’k71
J—1 ke - e e o= =
Spi T =1t it pe(SP ) + PP < pe(sTT) 4 P (3.10)
min(S?’k_l, S?’k_l) if pc(s?,k—l) + P:"l,k—1 — pc(s?,k—l) + P?’k_].

We initialize the iterates with the values at the previous time-step:
prO=pi-t M0 =g 1,
Convergence is obtained when the difference between two iterates for both discrete pressure and saturation is small (less
than 107) in the L% norm. The nodal values of the saturation and pressure at time t" are the nodal values of the converged
iterates. Since the finite element solutions s and pj uniquely depend on the nodal values, they can be evaluated at any
point in the domain.
Finally, to start the algorithm, we choose for 52 the Lagrange interpolant of the saturation s and for pg a constant value

so that §%° 500

w.ij and 0.ij are well defined.

Remark 3.1. Equation (3.6) is valid for i = M; this can be obtained by adding (3.6) and (3.7) and by using (3.8).

4
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4. Solver methodology

The fully discrete formulations (3.6)-(3.8) yield a 2 x 2 block linear system of the form:

Ks Kgp) (s f,
- 41
<Kps Kpp) <p> (fp> 1

where each block is of size M x M and has entries that depend on the time step and the Picard iterate. Because of the
local support of the basis functions, the sums over all the nodes in (3.6) and (3.7) reduce to sums over a small set of nodes,
which leads to sparse matrices. To be precise, let /(i) be the set of indices of all nodes in the macro-element A;.

The block K is a diagonal matrix:

m
(Kss)ii = 7’4’, 1<i<M-1, (Ks)um=0.
The non-zero entries in the block K, are:
Kep)ij = —Cii (KOMw (S5, 1<i<M=1, jeN(G). j#i, Kp)j=mj, i=M. 1<j<M.
The non-zero entries in the block K are:

m;
(Kps)ii = T¢ s

T<i<M. (Kpo)ij = —Ci(K)no(Ses HpL(ST™Y), 1<i<M. jeNG). j#i.

0,ij
The non-zero entries in the block Kj, are:
Kpp)ij = —cij(K)no(Sps). 1<i<M, jeNG), j#i.

For completeness, we display the entries of the right-hand side vectors f; and f,.

€)= "0+ mi(fu i — (S Da), T=i<M-1, Bw =0,
(fp)i = _mTiqb +mi(fo(sin)qi — fo(s?il)gi)

k—1 - - - - - -
+ 37 oSy (pe(STH = pLSITHSIT = pe(SITH 4 pLSITHSIT!) . (42)
JeN ()
It is worth noting that the construction of the global matrix K is done by assembling local matrices, as this is usually
done in the finite element framework. For example we describe the procedure for assembling the block Ky in Algorithm 1;

the other blocks Ky, Kgp, and Kp, are handled similarly. Let CE_ be the local matrix associated with the ¢;; coefficients
restricted to an element E.

(Ch e e = / VWi, - VW |, V1 <ijge, jloc <d +1,
E

where the functions W;, are linear polynomials on E that correspond to the restriction of a global basis ®; on E for the
node i with local number equal to ij,.

Remark 4.1. In the case of a two-dimensional domain partitioned into a structured mesh of right-triangular elements of size
h, the local matrix le)c is the same constant matrix for all elements E. Taking the local numbering counterclockwise and

start from the right-angle node, CEC reads as follows:
0.5 05 05
ct.=|05 05 00|, VEe&. (4.3)
0.5 0.0 05

However, for unstructured meshes, the entries of the local matrix will depend on the element.

A Schur complement approach is used to factorize the matrix K following [38,33] and the references within can be
applied. Since the block K is not invertible, we rewrite the system K as

A1 A
K= R
<A21 A2
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Algorithm 1 Assembly for Kps matrix at time step t" and Picard’s iteration k.

nput: (57, (] i (P

Initialize Kps to the zero matrix.
for each element E in mesh do

construct Cfx > For structured mesh: le)f is constant over all elements

evaluate Kg = K| > Value of permeability in element E.

for i ={1,2,---,d+1} do > There are (d + 1) degrees-of-freedom per element

i = glodofs(ijoc) > Global number of local node

Kps(i, i) =— (ﬂf‘)t > Mass-lumping operation
for jioc ={1,2,---,d+1} \ {iloc} do

Jj = glodofs(jic) > Global number of local node

if pc(S?'k’I) + P?’k’l > pC(S?'k’l) + P';‘k’l then > Upwinding operation

Etaij = 70(S]"* ")
else if pc(S]™1) + P < pe(ST*T) + P! then
Etaij = 1o(S}* ")

else
Etaij = 7o (min(sp*~", sT¢°T))
end if
Kps (i, j) = —Etai x € (itoc. jioc) x Kex Le(sT")
end for
end for

end for

where A1 =Kss(1: M —1,1: M —1). In other words, we shifted the definition of the blocks so that the first block A is of
size (M — 1) x (M — 1) and it is now invertible. We now write

_ 1 0\ (A1 0\ (1 (A1) Az
K‘(Am(An)” 1)(0 s)(o i ) (44)

where I is the identity matrix and

S=Axn — Ay (A1) A (4.5)

is the Schur complement. The inverse can therefore be written as:

1 (1 —(A) AR (AT 0 I 0
‘ _<° I >( 0 5_1><—A21(A11)_1 1)' (4.6)

The task at hand is to find the inverse of S. Note that Aj; is a diagonal mass matrix for the saturation equation and hence
it is straightforward to obtain the inverse. For the Schur complement block we employ the multigrid V-cycle on S from the
HYPRE boomerAMG package [26]. We expect this to work since the S block is spectrally equivalent to the Laplacian. When
the inverses are obtained, we rely on GMRES [42] with relative tolerance of 1 x 1078 to solve the entire block system. It
is found in Mapakshi et al. [38] that this methodology is computationally less expensive and more practical for large-scale
computations. Solving the system of equations (4.1) in fast and efficient way can be done through PETSc [7,8,16] and its
composable solver capabilities [10]. Appendix A contains the necessary PETSc command-line options for the described Schur
complement approach. All the numerical results are generated using FEniCS Project [36,9]. Among the various components
available in FEniCS, we use the DOLFIN library [37] and the Unified From Language library [43]. Simulations are conducted
on a single socket Intel Core i7-7920HQ server node by utilizing a single MPI process. Computer codes implementing the
proposed computational framework can be found at [44].

5. Representative numerical results
5.1. Analytical problem and h-convergence study

We first perform an h-convergence study on two-dimensional structured triangular meshes of size h. Consider a unit
square to be the computational domain with the following expressions for the saturation and pressure fields:

s(x,y,t) =0.4 4+ 0.4xy + 0.2 cos(t + x), (5.1a)
5 5 o 1 1 11
px,y,t)=24x°y —y“+x“sin(y +t) — 3 cos(t) + 3 cos(t+1) — & (5.1b)

We replace the source/sink terms (i.e., wells flow rates) of equations (2.1a)-(2.1b) by functions denoted by f; and f,
obtained via the method of manufactured solutions. Dirichlet boundary conditions are applied on 39 on both saturation
and pressure fields. The input parameters are:
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Table 1
Results of convergence test where the mesh size is denoted by h. The time step T is set to mesh size and L? and H' norms are
computed at the final time T =1.

h M T lIsh = slli2q) [1ph = Pll2 () lIsh = sllm1 (@) 1P — Pl (@)

Error Rate Error Rate Error Rate Error Rate
1/4 25 1/4 9430x 1074 — 8.830x 1073 - 5160 x 1073 - 4980 x 1072 -
1/8 81 1/8 6.600 x 100* 0515 4.740x 103 0899  3610x10> 0514 2.610x1072 0934

1/16 289 1/16 | 3.650x 10-* 0.853 2.370x10~3 1000 ' 2.010x 10> 0.846 1.300x10~2 1003
1/32 1069 1/32 | 1.890x107* 0949 1.170x10~> 1014 = 1.040x 107> 0944 6.440x10°3 1014
1/64 4225 1/64 =~ 9.350x 10> 1018 5.500x 10~* 1094 = 5220x10~% 1000 3.270x10~3 0975

$¢=02,K=1, uy =po =1, Srw =510 =0, krw(s) =52» kro(s) = (1 — 5)2-

The capillary pressure satisfies (2.4) with 6 =2, pg =50, and R = 0.05. Table 1 shows the errors in L2 and H! norms
evaluated at T =1 and the corresponding convergence rates for saturation and pressure. The rates are optimal in the H!
norm. The suboptimal rate in the L norm is expected as first order Taylor expansion is used for capillary pressure, and
phase mobilities are evaluated through Picard’s iterations. The vertex scheme results in the theoretical convergence rate of
one for both unknowns, which confirms the correct behavior of the algorithm.

5.2. Physical problems

In this section, robustness of the proposed vertex scheme is assessed using standard two- and three-dimensional test
problems. Numerical responses of several five spot and quarter-five spot problems, with homogeneous and heterogeneous
permeability fields are investigated. We examine the element-wise mass balance property associated with the vertex scheme
and also comment on capability of the scheme in satisfying the maximum principle. Let water and oil be the wetting phase
and non-wetting phase, respectively. For all problems, the relative permeability and capillary data satisfy (2.3), (2.4) and we
assume the following:

Sin=0.85, w=5x10"%kg/ms, o =2 x 1073 kg/ms, (5.2)
$=0.2, pa=5x10>Pa, =3, sy =55 =0.15, (5.3)
s9=0.15, p°=1 x 10° Pa. (5.4)

5.2.1. Two-dimensional homogeneous medium

We take a domain of = [0, 100]*> m? with mesh-size of h = 100/40 m. No-flow boundary condition over 3% is chosen
for this problem (see Fig. 1(a)) and flow is driven from the injection to the production wells by introducing source and sink
terms. The injection and production flow rates satisfy:

/C_I=/g=0.l, (5.5)
Q Q

where q is piecewise constant on [10,20] m x [10,20] m and g = 0 elsewhere and q is piecewise constant on [80,90] m x

[80,90] m and q = O elsewhere. We choose a constant permeability K =5 x 10~8 m2. Domain is discretized with a triangular
structured mesh and the time step size is T = 60 s. The final simulation time is T = 12000 s, and we provide solutions
snapshots at t = 1800 s, t = 6000 s, and t = 12000 s. The saturation and pressure profiles obtained under vertex scheme
are, respectively, displayed in Figs. 2(a)-2(c) and 2(d)-2(f). The wetting phase is injected at the lower left end of the
domain, and displaces the non-wetting fluid to the upper right corner. Note that this problem is convection-dominated but
it is evident that numerical saturation remain within physical bounds (s’,; >0.15 and sz < 0.85) during simulation and no
undershoot and overshoot are observed. It only takes 4 to 5 Picard’s iterations at each time step for convergence of the
vertex scheme. This is true for all two-dimensional test cases unless specified otherwise.

We compare saturation profiles obtained from the vertex scheme with the solutions obtained from the fully implicit
discontinuous Galerkin (DG) formulation developed by Epshteyn and Riviere [20]. For the chosen DG formulation polynomial
order is set to P =1, DG symmetry parameter is set to € = +1 (i.e.,, NIPG), and the penalty parameter is set to o =0.1.
Both DG formulation and vertex scheme are solved on the structured triangular mesh (as shown in Fig. 1(b)) and the time
step is T =60 s.

For three representative times, the saturation and pressure profiles, along the diagonal {(x, y) : x =y} from the injection
well upto production well are illustrated in Figs. 3(a) and 3(b).

We observe that the finite element solutions are accurate and in very good agreement with the DG solutions. It can be
seen that the saturation fronts, under both DG and proposed vertex scheme, propagates with the same speed. We recall
that the proposed finite element scheme satisfies a maximum principle, as mentioned in Proposition 3.1. However, the DG
approximations of the saturation are not guaranteed to satisfy (3.5) and small undershoot (usually at the injection well)
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Nw($)Vp-n=0 4 acaas:
7o(s) (VP + Vp.(s)) -m =0 D
b S . Wi, Vb T e W R W VI D W Ol b .
=] [}
= 10 mf)
s'=0.15 D« &1
3 A
o =02 production |, :: [ hinjcction well 1
I K=5x10"" well b = 5 :
= . —4 ; -3 A= Eas.
o - g = 5 1055, 11, = 2 10 L, " W fparanes
[ I BT
I g
- [; = B (b) Structured mesh
oy L =100 m s = |
ORY 5
= Li/ / 10 m T ~ A
= B// — 8in = 0.85 / - . Procuction well
: injection well @ - <
YN N NN NI N U NN <~ S N T N 7 L <
10(8) (Vp + Vpe(s)) n =0 ZLTS
7],,.(5‘)V1) . injection well
(a) Schematic < IS

(c¢) Unstructured mesh

Fig. 1. Two-dimensional homogeneous medium: This figure provides a pictorial description of the boundary value problem and shows the typical meshes
employed in our numerical simulations.

and overshoots (usually right after the saturation front) are observed for saturation profile. Increasing DG polynomial order
(in addition to sharpening front) is reported to relatively reduce these unphysical violations [21]. Even so, DG schemes still
require external bound-preserving mechanisms such as slope/flux limiting [34], artificial viscosity [17], or nodal-based opti-
mization [32] to completely enforce maximum principle. A comprehensive survey of bound-preserving methods is described
in Zhang and Shu [45].

5.2.2. Conservation of local mass balance
Next, we investigate the local mass conservation property of the proposed scheme for the incompressible two-phase flow
model. The local mass conservation of an element w at each time step, is calculated as follows:

n__ -1
m(E) = / Yo ) / M (8" Ke VD" - mg — / (Fwls)d+ fw(sa). (56)
E JE E

A true locally mass conservative scheme should produce the zero value for m(E) for each element E. We compute the mass
balance values for the problem described in Section 5.2.1. In Fig. 4, the values of m(E) are displayed at three representative
time snapshots. One can see that the magnitude of m(E) in the domain (except at the wells’ locations) is always less than
103, which is the tolerance set for the Picard’s iteration. Hence, the proposed scheme is locally mass conservative within
the set tolerance. We note that the source/sink models result in a higher mass balance error values (of the order of 10~3)
on the elements that form the support of the injection and production wells.

5.2.3. Two-dimensional domain with unstructured mesh

All parameters are the same as in Section 5.2.1, except for the mesh that is triangular unstructured as depicted in
Fig. 1(c). Fig. 5 shows the saturation profiles at four different times. We observe that the saturation remains bounded and
no violations of maximum principle are observed throughout the simulation. This result also shows that the proposed finite
element scheme handles unstructured meshes as expected.

5.2.4. Two-dimensional porous media with low permeability block

In this problem, the domain is € = [0, 100]® m?2, and as shown in Fig. 6 the permeability is 5 x 10~8 everywhere except
inside the square inclusion of size L =20 m, where the permeability ky, is 10 times smaller. The remaining parameters
are the same as in Section 5.2.1. The saturation solutions at different time steps are depicted in Fig. 7. As expected, the
wetting phase initially avoids the region of lower permeability, while still traveling towards the production well. Toward the
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[ I I
(a) t = 1800 s (b) t = 6000 s (¢) t =12000 s

PRESSURE PRESSURE PRESSURE
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‘ ] ‘ e ‘
(d) t = 1800 s (e) t = 6000 s (f) t = 12000 s

Fig. 2. Two-dimensional homogeneous medium: This figure shows the saturation and pressure profiles obtained from the proposed vertex scheme at three
different times. Structured triangular mesh is used (see Fig. 1(b)). The saturation field (top figures) should be between 0.15 and 0.85. This figure suggests
that the proposed scheme is capable of providing maximum-principle satisfying results. To wit, no undershoots (blue-colored cell) or overshoots (red-
colored cell) observed. Highest value and lowest value of pressure solutions (bottom figures) detected at the injection well and the production well,
respectively. The pressure difference forces the wetting phase flow through the domain. Pressure differences subside as the front reaches the production
well. Pressure solutions are warped for better visualization. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)
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Arc-length from injection well to production well (m) Arc-length from injection well to production well (m)
(a) Saturation profile (b) Pressure profile

Fig. 3. Two-dimensional homogeneous medium: This figure compares the saturation and pressure profiles obtained from the vertex scheme and a first order
discontinuous Galerkin formulation (i.e., DG-NIPG with P =1 and o = 0.1). Solutions are plotted along the diagonal line spanned from point (20, 20) m to
point (80,80) m. DG and vertex scheme reproduce similar responses throughout the simulation. Given that our solutions are only plotted on the diagonal
line, the results from the left figure should be treated with considerable caution. As highlighted in Fig. 2, saturation solutions under the vertex scheme are
always bounded by physical values. However, we are aware the DG method (and finite element methods in general) do not enjoy maximum principle. For
example, in this experiment the lowest and highest value of saturation found under the DG-NIPG formulation was 0.148 and 1.185, respectively.
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Fig. 4. Local mass balance conservation: This figure illustrates the local mass conservation properties of the vertex scheme for two-phase incompressible
flow problem on a homogeneous domain. The mass balance error remains small as time advances. This value is always less than 10~> inside the reservoir

(excluding elements allocated to wells).

SATURATION SATURATION
0.850 0.850
[ 0.75 l 0.75
0.65 0.65
— 0.55 — 0.55
— 0.45 — 0.45
0.35 0.35
[ 0.25 [ 0.25
0.150 0.150
max: 0.741 max: 0.807
min: 0.150 min: 0.150
(a) t =1500 s (b) ¢ = 4500 s
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Fig. 5. Two-dimensional homogeneous domain with unstructured mesh: This figure shows saturation contour plots obtained on an unstructured triangular mesh
(Fig. 1(c)). These results pinpoint that the proposed scheme can provide accurate and maximum-principle satisfying results on unstructured meshes.

end of the simulation, we can observe that the wetting phase has started to penetrate the inclusion region. However, when
we increase order of difference in permeabilities (e.g., K/Kj, = 10000), the inclusion becomes impenetrable throughout the
simulation. This trend is clearly shown in Fig. 8 and was reported in the literature for single-phase flow [35], and two-phase
flow [25]. Figs. 7 and 8 also highlight that the vertex scheme (on a relatively coarse mesh) is capable of generating sharp
saturation front in the domain with non-homogeneous permeability, in addition to completely suppressing undershoots and
overshoots in the saturation profile. Snapshots of the pressure solution along the diagonal line are shown in Fig. 9. The less
permeable region slightly undulates the curve in that region by increasing the pressure drop. However, similar to results
obtained in homogeneous porous media (see Fig. 3(b)), the pressure difference drops as more wetting phase reaches the
production well.
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Fig. 6. Two-dimensional porous media with low permeability block: This figure shows the representative computational domain and the boundary value problem.
No flow boundary conditions are assigned along all boundaries.

5.2.5. Two-dimensional porous medium with highly heterogeneous permeability

In this example, the domain € = [0, 1000]®> m? is highly heterogeneous because the permeability field is taken from
various horizontal permeability slices from model 2 of the SPE10 benchmark model [14,1]. This model is characterized by
two formations: a shallow-marine Tarbert formation in the top 35 layers, where the permeability field is relatively smooth,
and a fluivial Upper-Ness permeability in the bottom 50 layers. Both formations are characterized by large permeability
variations, 8-12 orders of magnitude, but are qualitatively different. We choose layer 1 from Tarbert formation and layer 45
and 80 from Upper-Ness formation. Fig. 10(a), 10(b), and 10(c) show the selected permeability layers. These permeability
slices are scaled to a 60 x 60 grid, instead of the original 60 x 220 grid. The porosity is set to 0.2. No flow boundary
conditions are prescribed on the entire boundary and as shown in Fig. 11 an injection well of size 100 x 100 m is defined
on the center of domain and four production wells with size of 100 x 100 m are located near the corners of the domain.
Injection and production flow rates are piecewise constant with compact support and are determined by the following
constraint:

/qz/gzz.SX 107 (5.7)
Q Q

Here we employ the proposed finite element scheme on a structured mesh with 7200 triangular elements. The simulation
runs to T = 2.5 days with 600 time steps, and we provide the solutions at t = 0.4125, t =0.725, and 2.5 days. Saturation
contours are depicted in Fig. 12. The wetting phase moves from the injection wells towards the four production wells as
expected. The permeability field determines the pattern of the saturation front throughout the porous media. For all three
cases, physical instabilities in form of separate finger-like intrusions are generated. As expected, the saturation front forms a
curve that is less smooth for porous media of Upper Ness types (i.e., layers 45 and 80). It is evident that the vertex scheme
produces bound-preserving saturations and that fronts avoid small regions of lower permeability.

5.2.6. Three-dimensional porous medium

Herein we validate our vertex scheme in a three-dimensional set-up. In particular, we investigate an extension of the
numerical experiment performed in Section 5.2.1. The domain is € = [0, 1000]*> m3 and is partitioned into an unstructured
mesh of tetrahedron elements, as shown in Fig. 13(b). The permeability is fixed to K =5 x 10~8 m2. No flow boundary
condition is employed on the entire boundary 9€2. Production and injection wells of size (10, 10, 10) m with constant flow
rates of § =q =0.001 are positioned at the opposite corners of the domain. Fig. 13(a) shows the computational domain and
the boundary conditions for this problem. The final time is set to T =2 days and the time step size is set to T =216 s.
In Fig. 14, snapshots of the wetting phase saturation are given at times t = 0.125, t = 0.5, t = 1, and t = 2 days. Profile of
pressure at the corresponding times, along the diagonal (from injection well to production well), are exhibited in Fig. 15.
One can observe that the numerical scheme is robust in three-dimensional domain and the resulting saturation satisfies the
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Fig. 7. Two-dimensional medium with a low permeability block: This figure shows the evolution of saturation solutions. Permeability of block is one order of
magnitude smaller than the rest of domain. Structured triangular mesh (Fig. 1(c)) was used for this problem. Vertex scheme exhibits the expected response,
since the saturation avoids the region of low permeability. We note that no violations with respect to maximum principle occurred and saturation field
remains smooth and monotone even near the corners of the low permeability block.
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Fig. 8. Two-dimensional medium with a low permeability block: This figure shows evolution of the saturation profile along the diagonal line and compares the
solutions for two cases: (i) domain with a less permeable block (i.e., K/Kin = 10) and (ii) domain with almost impermeable block (i.e., K/Ki, = 10000).
In first case, fluid initially evades the block but as time progresses saturation inside the block starts to increase. However, for the second case, higher
permeability difference has made the inclusion impenetrable throughout the simulation. We observe that vertex scheme delivers satisfactory results with
respect to maximum principle.

12



M.S. Joshaghani, V. Girault and B. Riviere Journal of Computational Physics 449 (2022) 110778

T I T I T [T T I ]
®—e Vertex method, t = 1500 s
k—¥ Vertex method, t = 4500 s
m—u Vertex method, t=6900s |_|
Vertex method, t = 12000 s

12000

10000

8000
K =5x1079

6000

Pressure (Pa)

4000 — e -
2000 — Inclusion region .
- _
0 . | \ . | . a1
0 20 40 60 80

Arc-length from injection well to production well (m)

Fig. 9. Two-dimensional medium with a low permeability block: This figure shows the evolution of the numerical pressure. Profiles are plotted along the diagonal
line from point (20,20) m to (80,80) m. The pressure values drop as we move from the injection well toward the production well. The inclusion (or the
block) region, which is illustrated with gray-color, slightly perturbs the solutions.
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Fig. 10. Two-dimensional porous medium with highly heterogeneous permeability: This figure depicts the permeability fields adopted from three horizontal layers
of SPE10 benchmark model. Each field is scaled to a resolution of 60 x 60 grids. Layer 1 taken from relatively smooth Tarbert formation, while layer 45 and
80 are taken from more rugged Upper-Ness formation. Values are displayed in logarithmic scale, since they vary across a wide range.
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Fig. 11. Highly heterogeneous problems: This figure provides a pictorial description of the boundary value problem and shows the computational domain
used in numerical simulations. For both two-dimensional and three-dimensional problems no flow conditions are assigned across all boundaries. Fluid flow
is hence driven by the pressure difference prompted by injection and production wells.
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Fig. 12. Two-dimensional heterogeneous problem: This figure shows the evolution of the wetting phase saturation for the three chosen layers. For all cases,
permeability field determines the pattern fluid flows through porous media. Layer 1 (top figures), compared to other layers, leads to smoother saturation
front boundaries. This observation is justified as the permeability field associated with layer 1 is not as highly varying as for the other layers. This figure
also reiterates that the vertex scheme always produces physical values of saturations, without any overshoots and undershoots, even for domains with
permeabilites that vary over many orders of magnitudes.
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Fig. 13. Three-dimensional porous medium with homogeneous permeability: Left figure provides a pictorial description of the boundary value problem, no flow
conditions prescribed on all boundaries. Right figure shows a cross-sectional view of the mesh applied in our numerical experiment.
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Fig. 14. Three-dimensional porous medium: This figure shows saturation contours in a homogeneous domain with K =5 x 108 m?. Unstructured tetrahedron
mesh (Fig. 13(b)) is used for this experiment. Similar to two-dimensional problems, the scheme exhibits satisfactory results with respect to maximum
principle. This means that solutions always remain between 0.15 and 0.85. In this figure a cutaway view of solutions is provided for better visualization.
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Fig. 15. Three-dimensional porous medium: This figure shows pressure solutions obtained from the vertex scheme on a homogeneous domain with K =
5 x 1078 m2. Profiles are plotted on the diagonal line from point (20,20, 20) m to point (80,80, 80) m. Vertex scheme correctly predicts the response.
Maximum and minimum pressures are detected on the injection well and production well, respectively. As time advances, more fluid reaches the production

well and the pressure difference decreases.
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logscale permeability [mz]

Fig. 16. Three-dimensional porous medium with highly heterogeneous permeability: This figure shows the permeability field extracted from SPE10 benchmark
model. The resolution of this field is 32 x 64 x 12 grids. Values are displayed in logarithmic scale, since they vary across a wide range.
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Fig. 17. Three-dimensional SPE10 problem: This figure shows contours of the saturation solutions obtained under the proposed vertex scheme on a highly
heterogeneous domain (i.e., SPE10 permeability field). The numerical experiment performed on a structured tetrahedron mesh with 19200 elements. The
main inference from this figure is that (i) the proposed scheme generates robust and accurate results. It can be seen that the wetting phase fluid flows
through the most permeable pore-networks from injection well towards production well. (ii) The scheme always respects maximum principle, since no
undershoots and overshoots has been detected throughout the simulation. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

maximum principle. Only 5 to 6 Picard’s iterations are needed at each time step for convergence of the vertex scheme. This
is true for all three-dimensional test cases.

5.2.7. Three-dimensional porous medium with highly heterogeneous permeability

In realistic problems, heterogeneities in three-dimensional media have a large impact on the propagation of the fluid
phases. We now examine a three-dimensional problem analogous to the 2D numerical experiment carried out in Sec-
tion 5.2.6. The aim of this boundary value problem is to show that the proposed finite element method can perform
satisfactorily in highly heterogeneous three-dimensional domains. The domain is € = [0, 50] x [0, 100] x [0, 24] m>. As
shown in Fig. 16, we adopt a sample permeability field of size 32 m x 64 m x 12 m from the SPE10 benchmark problem [1].
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The coordinates of injection and production wells are (7.5,15,4) m and (42.5, 85,4) m, respectively (see Fig. 11(b)). The
size of both wells are 5m x 10 m x 2 m with [, § = [, q=0.1. The mesh is made of 19200 structured tetrahedral elements.
Total time is set to T =3 days and the time step is T =259.2 s. We apply the proposed finite element method and plot
the saturation contours at different time steps in Fig. 17. The wetting phase reaches the production well by sweeping the
regions with highest permeability value. Evidently, the numerical saturation remains within physical bounds and no under-
shoots and overshoots are observed. This experiments reinforces that the proposed scheme satisfies the maximum-principle
for two-phase incompressible flow and remains robust for highly heterogeneous three-dimensional media.

6. Conclusion

We have developed a new first-order finite element method with mass-lumping and flux upwinding, which we refer to
as vertex scheme, to solve the immiscible two-phase flow problem in porous media. We show optimal convergence rates
for manufactured solutions. The method is guaranteed to converge for simplicial meshes that satisfy an angle constraint.
Numerical examples in two and three dimensions pinpoint that the method is accurate, and robust, even in the case of
realistic discontinuous highly varying permeability. Furthermore, we show that the proposed solutions satisfy the maximum
principle and that the local mass error remains small throughout the simulation time. The method is mesh-independent
and does not require penalization or any external bound-preserving mechanism. One limitation of the method is the fact
that it does not handle anisotropic media.

CRediT authorship contribution statement

M.S. Joshaghani: Data curation, Methodology, Software, Validation, Visualization, Writing — review & editing. V. Girault:
Conceptualization, Supervision. B. Riviere: Conceptualization, Funding acquisition, Supervision, Validation, Writing - review
& editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A

Below, we have provided the PETSc command-line options for the Schur complement approach discussed in Section 4.
(See online version for color-coded terms).

Listing 1 PETSc command-line options for the proposed Schur complement approach.

# Outer solver
PETScOptions.set("ksp_type", "fgmres")
PETScOptions.set("ksp_rtol", 1e—8)

# Schur complement with full factorization
PETScOptions.set( 'pc_type’, 'fieldsplit’)
PETScOptions.set( 'pc_fieldsplit_type’, ’'schur’)
PETScOptions.set(’'pc_fieldsplit_schur_fact_type’, 'full’)

# Diagonal mass lumping
PETScOptions.set(’'pc_fieldsplit_schur_precondition’, 'selfp’)

# Automatically determine fields based on zero diagonal entries
PETScOptions.set('pc_fieldsplit_detect_saddle_point’)

# Single sweep of ILU(0) for the mass matrix
PETScOptions.set( 'fieldsplit_0_ksp_type’, 'preonly’)
PETScOptions.set('fieldsplit_0_pc_type’, ’ilu’)

# Single sweep of multi—grid for the Schur complement
PETScOptions.set('fieldsplit_1_ksp_type’, ’'preonly’)
PETScOptions.set( 'fieldsplit_1_pc_type’, 'hypre’)

Appendix B. Supplementary material
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jcp.2021.110778.

17


https://doi.org/10.1016/j.jcp.2021.110778

M.S. Joshaghani, V. Girault and B. Riviere Journal of Computational Physics 449 (2022) 110778

References

[1] SPE comparative solution project model 2, http://www.spe.org/web/csp/datasets/set02.htm. (Accessed 10 July 2019).
[2] Ivar Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci. 6 (3) (2002) 405-432.
[3] Ivar Aavatsmark, Tor Barkve, Oistein Bge, Trond Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: derivation
of the methods, SIAM ]. Sci. Comput. 19 (5) (1998) 1700-1716.
[4] Ivar Aavatsmark, Tor Barkve, Oistein Bge, Trond Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: discus-
sion and numerical results, SIAM ]. Sci. Comput. 19 (5) (1998) 1717-1736.
[5] LM. Abriola, K. Rathfelder, Mass balance errors in modeling two-phase immiscible flows: causes and remedies, Adv. Water Resour. 16 (4) (1993)
223-2309.
[6] Todd Arbogast, Mary F. Wheeler, Ivan Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences, SIAM
J. Numer. Anal. 34 (2) (1997) 828-852.
[7] S. Balay, S. Abhyankar, M.F. Adams, ]. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K.
Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual. Technical Report ANL-95/11 - Revision 3.8, Argonne National Laboratory, 2017.
[8] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, D.A. May, L.C.
Mclnnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Web page, 2018.
[9] R. Brooks, T. Corey, Hydraulic properties of porous media, Hydrol. Pap., Colo. State Univ. 24 (1964) 37.
[10] J. Brown, M.G. Knepley, D.A. May, L.C. McInnes, B. Smith, Composable linear solvers for multiphysics, in: 2012 11th International Symposium on Parallel
and Distributed Computing (ISPDC), IEEE, 2012, pp. 55-62.
[11] G. Chavent, ]. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation: Single-Phase, Multiphase and Multicomponent Flows Through
Porous Media, Elsevier, 1986.
[12] C.M. Chen, V. Thomée, The lumped mass finite element method for a parabolic problem, ANZIAM J. 26 (3) (1985) 329-354.
[13] Z. Chen, RE. Ewing, Degenerate two-phase incompressible flow III. Sharp error estimates, Numer. Math. 90 (2) (2001) 215-240.
[14] M. Christie, M. Andrew, M.]. Blunt, Tenth spe comparative solution project: a comparison of upscaling techniques, in: SPE Reservoir Simulation Sym-
posium, Society of Petroleum Engineers, 2001.
[15] G. Cohen, P. Joly, J.E. Roberts, N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation, SIAM ]. Numer. Anal.
38 (6) (2001) 2047-2078.
[16] L.D. Dalcin, R.R. Paz, PA. Kler, A. Cosimo, Parallel distributed computing using Python, Adv. Water Resour. 34 (9) (2011) 1124-1139.
[17] H. Van der Ven, J.W. Van der Vegt, Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible
flows: II. Efficient flux quadrature, Comput. Methods Appl. Mech. Eng. 191 (41-42) (2002) 4747-4780.
[18] J. Douglas, Finite difference methods for two-phase incompressible flow in porous media, SIAM J. Numer. Anal. 20 (4) (1983) 681-696.
[19] Michael G. Edwards, Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids, Comput. Geosci. 6 (3) (2002)
433-452.
[20] Y. Epshteyn, B. Riviere, Fully implicit discontinuous finite element methods for two-phase flow, Appl. Numer. Math. 57 (4) (2007) 383-401.
[21] Y. Epshteyn, B. Riviere, Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow, J. Comput. Appl. Math. 225 (2) (2009)
487-509.
[22] A. Ern, AF. Stephansen, P. Zunino, A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and
anisotropic diffusivity, IMA J. Numer. Anal. 29 (2) (2008) 235-256.
[23] R. Eymard, R. Herbin, A. Michel, Mathematical study of a petroleum-engineering scheme, Modél. Math. Anal. Numér. 37 (6) (2003) 937-972.
[24] R. Eymard, C. Guichard, R. Herbin, R. Masson, Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation, ]. Appl.
Math. Mech. 94 (7-8) (2014) 560-585.
[25] M.S. Fabien, M. Knepley, B. Riviere, A high order hybridizable discontinuous Galerkin method for incompressible miscible displacement in heteroge-
neous media, Results Appl. Math. (2020) 100089.
[26] R.D. Falgout, U.M. Yang, HYPRE: a library of high performance preconditioners, in: International Conference on Computational Science, Springer, 2002,
pp. 632-641.
[27] P.A. Forsyth, A control volume finite element approach to NAPL groundwater contamination, SIAM J. Sci. Stat. Comput. 12 (1991) 1029-1057.
[28] Helmer A. Friis, Michael G. Edwards, A family of MPFA finite-volume schemes with full pressure support for the general tensor pressure equation on
cell-centered triangular grids, J. Comput. Phys. 230 (1) (2011) 205-231.
[29] M.T. Van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44 (5) (1980) 892-898.
[30] V. Girault, B. Riviere, L. Cappanera, A finite element method for degenerate two-phase flow in porous media. Part I: well-posedness, J. Numer. Math.
29 (2) (2021) 1-21.
[31] V. Girault, B. Riviere, L. Cappanera, A finite element method for degenerate two-phase flow in porous media. Part II: convergence, J. Numer. Math.
29 (3) (2021).
[32] M.S. Joshaghani, K.B. Nakshatrala, A modeling framework for coupling plasticity with species diffusion, arXiv preprint, arXiv:2011.06652, 2020.
[33] M.S. Joshaghani, ]J. Chang, K.B. Nakshatrala, M.G. Knepley, Composable block solvers for the four-field double porosity/permeability model, ]. Comput.
Phys. 386 (2019) 428-466.
[34] D. Kuzmin, A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods, J. Comput. Appl. Math. 233 (12) (2010) 3077-3085.
[35] J. Li, B. Riviere, Numerical solutions of the incompressible miscible displacement equations in heterogeneous media, Comput. Methods Appl. Mech.
Eng. 292 (2015) 107-121.
[36] A. Logg, G.N. Wells, Dolfin: automated finite element computing, ACM Trans. Math. Softw. 37 (2) (2010), https://doi.org/10.1145/1731022.1731030.
[37] A. Logg, G.N. Wells, J. Hake, DOLFIN: A C++/Python Finite Element Library, Springer, 2012, chapter 10.
[38] N.K. Mapakshi, J. Chang, K.B. Nakshatrala, A scalable variational inequality approach for flow through porous media models with pressure-dependent
viscosity, ]. Comput. Phys. 359 (2018) 137-163.
[39] A. Michel, A finite volume scheme for the simulation of two-phase incompressible flow in porous media, SIAM ]. Numer. Anal. 41 (2003) 1301-1317.
[40] M. Ohlberger, Convergence of a mixed finite element - finite volume method for the two phase flow in porous media, East-West J. Numer. Math. 5
(1997) 183-210.
[41] B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, 2008.
[42] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM ]. Sci. Stat. Comput. 7 (3)
(1986) 856-869.
[43] M.S. Alnes, UFL: A Finite Element Form Language, Springer, 2012, chapter 17.
[44] ZENODO|vertex-based-method. Vertex-based method: a linear finite element algorithm that preserves mass balance and maximum principle, https://
doi.org/10.5281/zenod0.4619878, march 2021.
[45] X. Zhang, C.W. Shu, Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments,
Proc. R. Soc. A, Math. Phys. Eng. Sci. 467 (2134) (2011) 2752-2776.

18


http://www.spe.org/web/csp/datasets/set02.htm
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibCAD1F18D9B4D2891BAC70A52F1A03B70s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibF46657CBDE3C98192A354E37D214045As1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibF46657CBDE3C98192A354E37D214045As1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib735711330ECD1C345282616E2BAE8428s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib735711330ECD1C345282616E2BAE8428s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibF66BE578D80351A4002F1BD3CDDDE634s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibF66BE578D80351A4002F1BD3CDDDE634s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib9C5DAA7E814434838BED2825C3D9F2E7s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib9C5DAA7E814434838BED2825C3D9F2E7s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib0543429390EFB9D06A963637765572D0s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib0543429390EFB9D06A963637765572D0s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibE655017514850299ABCD3C4D5C0BB146s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibE655017514850299ABCD3C4D5C0BB146s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib2CAFA0A23E169235EA3BC21EF9577511s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib2F2D2BE5C83B3047F60AE2498F9C4E5Ds1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib2F2D2BE5C83B3047F60AE2498F9C4E5Ds1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibDD793A90D4BE2B2649ADD66AC8A2CAFFs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibDD793A90D4BE2B2649ADD66AC8A2CAFFs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibD91FF58CC1C64A568D3EE8E54E77E406s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibFA3CF2648ED32D10838D49846095FCC7s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib5EA7AF7BE11FA590CED56C0551F71B08s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib5EA7AF7BE11FA590CED56C0551F71B08s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib778534C8F4CDD320E23EE7C5E4D4FC19s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib778534C8F4CDD320E23EE7C5E4D4FC19s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib47C8096E49FA30E1A380BF9C90F279A9s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib342A04CD3DE25EFC01E0457F7522FA97s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib342A04CD3DE25EFC01E0457F7522FA97s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibEA8E446DFEEE7EE0F20547336BACF301s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibDA00F33D2EEE2318DC9BB5FF17787B5Ds1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibDA00F33D2EEE2318DC9BB5FF17787B5Ds1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibA7691BF9CC312AF90AEBE8BD6C98CB74s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib1228184D0DFE819D51015295440975ADs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib1228184D0DFE819D51015295440975ADs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib446350CBB3603FB3F03C4372B3E341A1s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib446350CBB3603FB3F03C4372B3E341A1s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib632026749175114FC04C129CC1CE0BA4s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib8C836C42C6C4F6A312B06EBF8BF3D5CFs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib8C836C42C6C4F6A312B06EBF8BF3D5CFs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib772063E1CC6AD703BB4EBE4C018C64BBs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib772063E1CC6AD703BB4EBE4C018C64BBs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib44C40E7A29FFFF4046512DCD9277A0D5s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib44C40E7A29FFFF4046512DCD9277A0D5s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibBFB1486E865F47A2E84CDD3C9BB09D76s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibC86E196CF55C88EC2094376543554FAFs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibC86E196CF55C88EC2094376543554FAFs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibC59F7B6AA24363E8B1945A8A8E958370s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib29C7789F089327F41BC2203065735D85s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib29C7789F089327F41BC2203065735D85s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibB6D9C9C3138793F5771FCA6443D9F1A7s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibB6D9C9C3138793F5771FCA6443D9F1A7s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib757E9E2DBF6851A5EA2210E5C40B2C15s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib4F292385C8476DD2F18C8A2D1B1EFA65s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib4F292385C8476DD2F18C8A2D1B1EFA65s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib2411BF074750C597835AD771519900D6s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib60A4A3DAAF25B8D1EA05F7D07981A6E4s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib60A4A3DAAF25B8D1EA05F7D07981A6E4s1
https://doi.org/10.1145/1731022.1731030
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib9CA4268DEC3A4F67236BD22DF870DA88s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibF727F4CFA66320F1C30F89DF42002470s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibF727F4CFA66320F1C30F89DF42002470s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib92FC4D4E166C235A04DACAA2EB281AA6s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib60F8B13CFB36C50FB13F3C50D7CC106Bs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib60F8B13CFB36C50FB13F3C50D7CC106Bs1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib83638E2F7E417E0E7F5A926475F6882Ds1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibFCE760C30C742555A60CA44B97BAA815s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bibFCE760C30C742555A60CA44B97BAA815s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib9009ABFC66B22EB8524C59C52C39FD8Bs1
https://doi.org/10.5281/zenodo.4619878
https://doi.org/10.5281/zenodo.4619878
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib6F8E185FC1B7F760E392C0D541DA72E5s1
http://refhub.elsevier.com/S0021-9991(21)00673-2/bib6F8E185FC1B7F760E392C0D541DA72E5s1

	A vertex scheme for two-phase flow in heterogeneous media
	1 Introduction
	2 Governing equations
	3 Numerical scheme
	4 Solver methodology
	5 Representative numerical results
	5.1 Analytical problem and h-convergence study
	5.2 Physical problems
	5.2.1 Two-dimensional homogeneous medium
	5.2.2 Conservation of local mass balance
	5.2.3 Two-dimensional domain with unstructured mesh
	5.2.4 Two-dimensional porous media with low permeability block
	5.2.5 Two-dimensional porous medium with highly heterogeneous permeability
	5.2.6 Three-dimensional porous medium
	5.2.7 Three-dimensional porous medium with highly heterogeneous permeability


	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix B Supplementary material
	References


