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ABSTRACT
A new Slurm simulator compatible with the latest Slurm version
has been produced. It was constructed by systematically transform-
ing the Slurm code step by step to maintain the proper scheduler
output realization while speeding up simulation time. To test this
simulator, a container-based Virtual Cluster was generated which
fully mimicked a production HPC cluster. As for all Slurm sim-
ulators, the realization is a stochastic process dependent on the
computational hardware. Under favorable conditions the simulator
is able to approximate the actual Slurm scheduling realization. The
simulation fidelity is sufficient to use the simulator for its main
function, that is, to test Slurm parameter configurations without
having to experiment on full production systems.

CCS CONCEPTS
•Computer systems organization→Distributed architectures;
•Computingmethodologies→Planning and scheduling;Mod-
eling and simulation; • Software and its engineering→Real-
time schedulability.
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1 INTRODUCTION
Slurm is an open-source job scheduling system that is widely used
in many small and large-scale high-performance computing (HPC)
resources. It is highly tunable, with many parametric settings that
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can significantly influence job throughput, overall system utiliza-
tion and job wait times. In many cases it is difficult to judge how
modification of these parameters will affect the overall performance
of the HPC resource. In 2017 we released and utilized our first Slurm
Simulator intended to aid HPC personnel tuning Slurm’s parame-
ters to optimize throughput or meet specific workload objectives
without impacting the HPC system in production [5, 6]. An impor-
tant discovery was that scheduling is a stochastic process influenced
by the execution time uncertainty in the resource allocation and
release procedures relative to job submission. The uncertainty orig-
inates from significant variations in the time between execution of
multiple resource handling routines including the priority-based
scheduler and the backfill scheduler and differential detection of
jobs exciding the time-limit. The stochasticity results in different
scheduling realizations and consequently the need to run multiple
simulations to infer the effects of changing the Slurm parameters.

The original version of our simulator was used by us [5, 6] and
others to study various aspect of job scheduling on HPC resources.
Eleliemy and Ciorba extended the simulator to study multilevel
scheduling [1]. Tanash et al [7] and Wang at al [9] used our Simula-
tor to evaluate their ML model for wait time prediction. Villapando
and Rubio supplemented their study on how walltime limit cor-
rection affect the wait time with simulated results [8]. There have
been several Slurm simulators developed over the last decade. RM-
Replay [4] uses a slightly modified Slurm and achieves faster than
a real time modeling by adjusting the real clock time. Such an ap-
proach offers the benefits of an unmodified Slurm but effectively
lowers the performance of the control node by scaling the clock
speed. This results in a modestly reliable acceleration (x10) and the
need for powerful multicore hardware to accommodate the back-
logger retiring and starting jobs. It is also not clear the effect on
the individual jobs as the clock scaling effects were studied only on
workload completion time and not individual jobs. The BSC simula-
tor [2] claims a high time acceleration and high accuracy. However,
it was tested only on a homogeneous cluster with a relatively light
workload modelled after late 1990s supercomputers which typically
would not use the job backfiller and thus would have only moderate
utilization. Thus, it is unclear how the simulator would perform for
a more realistic, modern workload with 90%+ resource utilization.
The earlier version of the BSC Slurm simulator failed to model such
workloads and it is unclear that the issues were addressed in the
current version of the BSC simulator.
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Since 2018, several major Slurm releases occurred, and our pre-
vious simulator is now obsolete. Here we report on the progress
of a new Slurm simulator based on a recent Slurm release. In this
development, major attention was given to the reproduction of real
Slurm runs of the same workload. For obvious reasons we can not
obtain multiple historical runs of the same workload in a real sys-
tem and thus some kind of automated workload feeding to Slurm
is required. We address this problem by implementing a Virtual
Cluster using docker containers where each separate container
represents a separate compute or head node. The virtuality here
refers to containers being virtual hosts, Slurm is installed on it in a
regular manner just like on actual production system. The Virtual
Cluster allows us to obtain multiple scheduling realizations as a
utility for our Slurm simulator development. Unfortunately, our
first attempt to apply the modification used in the earlier simulator
version directly to the new version of Slurm failed miserably in
the sense that the simulation of the reference workload was very
poor. Lengthy debugging didn’t localize the problem. We tackled
this problem by starting with a new Slurm code and introducing
small changes one at a time to implement our simulator. After each
change we checked to make sure the simulator was able to repro-
duce the actual Slurm results. The resulting simulator, under certain
conditions, produces a workload statistically indistinguishable from
the reference workload.

2 METHODS
Virtual Cluster. The Slurm Simulator can only be useful if it can
reproduce the behavior of Slurm on actual HPC resources. From
real-life systems, we can only retrieve a single historic workload
realization (jobs’ submit, start and end time alone with requested
and allocated resources). However, in the majority of cases of in-
terest, the job placement occurs in a stochastic manner. Thus, for
a valid statistical comparison, we need a multiple runs with the
same workload. To do that on a real full-scale system is complicated
and impractical. Thus, we developed a Docker-based Slurm virtual
cluster with an automatic batch job feeder. The created cluster
uses a normal Slurm environment, and essentially is only different
from the real-life installation in HPC centers since it is deployed in
Docker containers rather than on actual hardware. Besides using
it to obtain critical metrics for the Slurm simulator, the developed
virtual cluster can be used for other purposes related to Slurm HPC
resource management, such as training system administrators and
testing Slurm settings in real-time. It was also used to measure the
effect of the Slurm built-in job profiler on a filesystem.

A Slurm virtual cluster was created using docker containers
where each node of the HPC resource is represented by a container
(one for the head node and one for each compute node). A bridge net-
work connection allows standard network communication between
nodes. We created an infrastructure for the automatic building of
head and compute node docker images with all required services
and configurations, including users’ accounts. Docker-composer is
used to launch the whole cluster. Upon the launch, the cluster repre-
sents a complete functioning HPC resource. It is possible to login to
the head node as a regular or administrative user and launch batch
or interactive jobs, manage Slurm accounts and other operations
regularly executed on HPC resources.

To automate job submission, we created an automated job feeder
that uses a text-based human-readable format for job request spec-
ification. The format extends Slurm’s request specification with
new options for submission time and actual job duration. This will
decrease the learning time as it uses known arguments from Slurm
utilities. The format is extensible and later we can include other
events like job cancellation and taking down a node. Same format
was adopted for the simulator.

To account for the scheduling uncertainties systematically, we
add a configurable delay between the start of the Slurm controller
and submission of the job stream. The delay is set randomly before
the simulation. The state of repeatedly executed resource managing
routines are unknown a priori and can be different in different
realizations. The randomized initial delay simulates it.

For the batch jobs, we created a set of mini-applications that can
be used for different scenarios. The one which will be used the most
is the sleep job: the application will simply sleep for a specified
time and exit with the requested status. Due to the sleep app’s
low compute requirement, it is possible to squeeze more virtual
compute nodes on the same physical host and is most useful to
study the scheduling aspects of Slurm. Another application, called
miniapp, cycles over three stages: matrix-matrix multiplication,
memory growth and sleep. This app is more helpful whenwewant a
compute job to do something more substantial than simply sleeping.
It was used for measuring the effect of the Slurm build-in job profiler.
We recycle it on Ookami, an ARM-SVE cluster, to ensure that the
profiler works as expected on this novel machine.

For production runs, a virtual cluster was deployed in our center
OpenStack cloud at CCR. We have found that 200 compute nodes
can be simulated by a single 8 core virtual machine; we reserve the
first 4 cores for the head-node and the other 4 cores for all other
nodes.

Slurm Simulator. In our previous simulator version, we opted
for complete serialization and rather intensive Slurm code mod-
ification for better performance and control. Such an approach
turns out to be difficult to maintain and makes it impossible for
automatic version update for new versions of Slurm. Thus instead
of complete serialization, we decided to go a different route and
to minimize core Slurm code changes to have a clean separation
between a simulator and the actual Slurm code. This should enable
better migration to a newer version and should facilitate adoption
by Slurm developers. The new version of the simulator is based on
version 21.08 of Slurm.

To minimize Slurm core code modifications, we used several
approaches to alter the Slurm execution: 1) use the GCC compiler
option to wrap standard library functions, 2) use the constructor
method to initialize the simulator and thus avoid modifications to
the main functions and 3) to access static variables and functions we
created a wrapper for the source code with additional functionality
to access variables and functions of interest. The only major part
of the core Slurm code modified is thread creation, which is very
conservative and unlikely to change.

A key feature of the simulator is time acceleration done by op-
portunistic time skipping in case of no evens. It is implemented by
wrapping (see GCC compiler option --wrap) all time related func-
tion (gettimeofday and various sleep functions) as well as some
pthread functions (pthread_cond_timedwait and some others).
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Possible time skipping is identified by calculating the time to the
next event, if the time is within a threshold (more than 10 ms) the
clock is incremented by that time. Because the main slurm back-
ground loop sleeps for a maximum of one second, the time skipping
never exceeds one second. Scheduling events include: repeated pri-
ority and backfill scheduling, the main slurm background loop, job
submission and completion.

As for usability improvement, we implemented a new text-based
specification for batch jobs, using the same format as for the virtual
cluster. In the previous version, the jobs specification is set using
a raw-C data structure following remapping to the Slurm internal
format. Now, we use the same text format as used for request
specification by users and invoke functions from the Slurm sbatch
utility to convert it to Slurm internal format. This way we do not
handle the conversion manually and specify the jobs similar to the
way they are input by Slurm users.

Reference Test System and Workload. Two systems were
used as a reference test system: a Micro cluster, a small 10-node
resource and UB-HPC, and a 217-node cluster, corresponding to a
newer portion of the academic cluster at our center. Micro cluster
is used as a reference test system. It was used previously, but here
it is implemented using a Docker-based virtual cluster instead of
a Slurm frontend mode, making it more similar to a real Slurm
installation. This ten node cluster consists of different node types:
two CPU generations, a large memory and a GPU nodes. This se-
lection allows us to validate job placement based on the resource
requests within the batch job. The 500 jobs workload was generated
requesting a mixture of non-specific nodes and specific nodes. Jobs
were distributed between five users grouped into two accounts.
Some jobs were allowed to run indefinitely to trigger wall limit
exceed routine. This setup was executed over 20 times with an
average running time of 13.7 hours. To improve turn-around, a
shrunken version of the previous was added. It takes 48 minutes
to run. Finally, for very fast checks a small 10 jobs workload were
also develop. UB-HPC cluster (217 nodes) was used as a more re-
alistically sized system. It corresponds to a newer portion of the
our center cluster. It consists of 32 cores per node nodes (87 regular
and 2 GPU nodes) and 40 cores per node nodes (96 regular, 8 GPU
and 24 large memory nodes). The used historic workload contains
29,678 jobs from 95 user among 65 groups. The workload was run
on Virtual Cluster 8 times and took 29.4 days per run.

Comparison of Different Scheduling Realizations. During
our incremental simulator development route, we needed an effec-
tive way to determine that new changes to the code still produced
the same expected results. As with many other scientific programs,
the difficulties arise from the fact that scheduling is a stochastic
process (as opposed to a deterministic process) and thus a simple
comparison with a minimalistic threshold to account for minor
rounding error would not suffice. Because our reference contains
multiple realizations of same workload, we can make a statisti-
cally valid comparison. The major outcome of the run is waiting
time and that is what we essentially want to compare, however
it will vary with the configuration. The job’s waiting times are
dependent variables within a single run due to shared resources
(compute nodes) they compete for. Hence, comparison of averaged
wait times can be misleading, because if some jobs start running
earlier then some jobs will start later and this would have effect on

the mean wait time. So, we decided to treat each job’s wait time
as a dependent random variable within each run and each run is
independent of each other. This way we can compare runs instead
of individual jobs and use multivariate analysis. To compare the
distance between runs, the Euclidian distance was used where each
vector component corresponds to the individual job’s wait time. A
heat map of distances between individual normal and simulated
runs is used for visual comparison. If both reference and simulated
runs are drawn from the same distribution the distance between
the same type of runs should be same as between different types of
runs. A statistical method which essentially capitalizes on this the
is the multivariate Wilcoxon test [3], which was used for a more
formal judgment of similarities between reference and simulated
results.

Compute Resources and Code Repositories. TheMicro clus-
ter reference workload realization was calculated using a desktop
with Intel i7-9800X, simulation was performed on the same desk-
top or a laptop with Intel i7-11800H 2.3GHz. The UB-HPC cluster
reference workload realization was calculated using our SUNY Uni-
versity at Buffalo center’s OpenStack Cloud resource, the simulation
was performed on the same desktop or on the Purdue University
Anvil Cluster (AMD EPYC 7763 2.54GHz CPU). The Slurm simu-
lator code, tools, virtual cluster, cluster configurations, reference
and simulated workloads are available at https://github.com/ubccr-
slurm-simulator/.
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Figure 1: Distance heatmap comparing reference and sim-
ulated workload realizations as measured by Euclidian dis-
tance on the job’s wait time. Each label on the x- and y- axes
corresponds to an individual run and each number corre-
sponds to the delay in seconds between the Slurm controller
start and the first job submission. As the scale legend indi-
cates, the blue color is the closest, white further and red the
greatest distance apart. A Micro cluster, 500 job workload. B.
UB-HPC cluster.

3 RESULTS AND DISCUSSIONS
Our initial attempt to apply changes we made earlier to an old
version of Slurm to the new version of Slurm produced a working
code, however, the resulting job schedule was very different from
the reference. A lengthy attempt to debug didn’t lead to a solution,
there were too many significant changes and so we changed the
approach and started from the beginning. We started from the new
version of Slurm and incrementally applied changes to make it a
Slurm Simulator. At each step we ran a validation test to ensure
that we did not introduce any bugs that affected the simulator
performance. In the early steps the code was close to the actual
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Slurm and we used our Virtual Cluster setup to validate updates.
Along with modifications of Slurm, the Virtual Cluster was also
evolving to a single Slurm Simulator running docker container. The
opportunistic time stepping was introduced last and thus running
a test on our full-scale workload would be prohibitively long and
thus we largely used small 10 jobs workload and shrunk the 500
jobs workload for validation. Only after time skipping was enabled
were we able to switch to the full-scale 500 jobs workload for val-
idation. The UBHPC workload was used for the final validation.
Such a scheme proved to be more efficient as it allowed us to catch
problems earlier.

The distance maps between reference and simulated workload
realizations are shown in Figure 1. The distance is calculated as the
Euclidian distance on job wait times. In case of the Micro cluster
the reference and simulated look very similar and the multivariate
Wilcoxon test indicates that they are not statistically different. For
the UB-HPC cluster (Figure 1.B), the result is hardware dependent,
the faster computer provides results that are closer to reference. The
average within reference data distance is 742±135 hours, while the
distance of simulated data to reference data are 906±180 hours and
2290±262 for execution on fast and slower hardware respectively. If
all realization are pulled from same distribution these three ranges
should be the same, clearly the simulation executed on slower hard-
ware stands out. However, if we recalculate the average distance
per job it is only about 3 minutes, which might be close enough in
practice. For a better understanding of the hardware dependance
and stochasticity we run a number of experimentations on the
Micro system with shrunken workloads. The shrunken workload
appears to be further apart from reference than a full-scale work-
load (though not far enough to be statistically significant). If time
stepping were off, or with significant padding around events, the
resulting job scheduling is much closer to reference. We speculate
that the larger deviation from reference on slower hardware is due
to the longer times needed for thread synchronization. We might
or might not be able to mitigate that in the future. In the latter
case we need to study the predictability power of the simulator. In
many cases the prediction of relative changes is more reliable due
to offsetting differences in the simulation.

The time acceleration was somewhere between 20 and 40 for the
Micro and the UB-HPC cluster. While this is not as impressive as
earlier versions of the simulator, it is still practicable since it allows
us to generate a month-long workload in about a one computational
day. Unlike in the Virtual Cluster, in simulation mode compute
nodes are not modeled explicitly, but their responses are mimicked
within the controller itself without starting additional threads. This
significantly decreases the compute demand and dependency on
cluster size.

4 CONCLUSIONS AND FUTURE PLANS
Using high performing CPUs running the newly developed version
of the Slurm simulator produced a schedule statistically indistin-
guishable from the reference realization. Modest time acceleration
allows us to simulate a month long workload in one-two days. The
simulation shows a dependency on the hardware performance and
further study is needed to analyze the accuracy of the simulator.
Like many other simulators of real physical phenomena, it is very
likely that even though the simulator may not produce perfectly
accurate absolute results it can be much more accurate in predicting
relative changes.
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