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A B S T R A C T

This paper presents a brief review of the recent advances in fracture mechanics at Northwestern University
and Istanbul Technical University, prompted by the recent discovery of the gap test—a test that makes it
easy and unambiguous to determine the effects of crack-parallel stresses on the mode-I fracture energy and, in
consequence, on the nominal strength of structures of different sizes (aka, the size effect). The standard fracture
specimens cannot reveal these effects since they have zero or negligible crack-parallel stresses. In addition,
these effects cannot be reproduced by the standard, widely used, fracture models including the linear elastic
fracture mechanics (LEFM), the cohesive crack model (CCM), as well as the popular computational models
such as the extended finite element (XFEM) and the phase-field models (PFM). Therefore, it will be necessary
to adopt fracture models that can reflect the tensorial damage behavior in the fracture process zone (FPZ),
which is governed by at least two characteristic lengths, one for the FPZ length and one for the FPZ width.
The modeling of elasto-plastic metals is even more complicated since the FPZ of micrometer-scale width is
surrounded by a millimeter-scale plastic-hardening (yielding) zone. This role of the yielding zone has been
understood well since the 1980s except for the scaling laws which are helpful for determining the effect of
crack-parallel stresses more accurately. As a general conclusion, the line crack and phase field models cannot
be used for practical problems with significant crack-parallel stress components (𝜎𝑥𝑥, 𝜎𝑧𝑧, 𝜎𝑥𝑧). However, thanks
to the finite width of its fracture front, the crack band model can be used, provided that its tensorial damage
law is realistic. A new challenge for the nonlocal and gradient models is that they, too, will need to distinguish
two independent material characteristic lengths, one for the direction of damage band and one transverse to
it.
1. Introduction

Although an effect of the crack-parallel stresses on the fracture of
concrete and other quasibrittle materials has been suspected since the
1980s, little [1] or no clear information existed until the 2020 discov-
ery [2,3] of the simple gap test, in which crack-parallel compression
or tension at the fracture front can be easily produced and controlled.
Using elastic-perfectly plastic loading pads, the standard notched three-
point-bend beam is first loaded by compression parallel to the notch
while the end supports are installed with a suitable gap such that they
engage only after a constant plastic plateau in the pads is reached.
Upon testing scaled beams of several sizes, the fracture energy is
evaluated by the size effect method. In the Hutchinson–Rice–Rosengren
(HRR) theory [4,5] for the plastic-hardening fracture of metals, the
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way the normal stress 𝜎𝑥𝑥 in the propagation direction, called the 𝑇 -
stress, affects the FPZ of micrometer-scale width is complicated by the
surrounding yielding zone of millimeter-scale width. This effect was in
essence clarified in the 1990s [6,7]. However, the scaling law useful
for evaluating the standard fracture tests was not established until
2021 [8]. Here, eschewing mathematical details, we present a succinct
overview of the recent studies conducted at Northwestern University
and Istanbul Technical University. Finally, we point out the need for a
reappraisal of fracture mechanics.

In fracture modeling of concrete and other non-metallic materials,
the effect of crack-parallel stresses has generally been ignored. The
explanation is that, in the line-crack model such as the linear elastic
fracture mechanics (LEFM) and the cohesive crack model (CCM), a
line cut along the direction of a uniform uniaxial stress field produces
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no stress change. This also explains why all the standard fracture
test specimens – three-point-bend (3PB), compact tension (CT), single-
edge-notched tension (SENT), circumferentially notched tension (CNT),
diametral compression (DC), edge-notched eccentric compression, and
double cantilever beam (DCB) – have zero or almost zero crack-parallel
stresses. It might seem that the wedge-splitting specimen studied by
Tschegg [9] was an exception, but its crack-parallel compression is too
small compared to the uniaxial compression strength, 𝑓𝑐 , and its field
is nonuniform, with a maximum occurring away from the FPZ.

The effect of crack-parallel stress 𝜎𝑥𝑥 in the propagation direction,
called the 𝑇 -stress, and particularly the way it interferes with the yield-
ing zone, was carefully studied in the context of the HRR theory [4,5]
of plastic-hardening metals [6,7,10–12], as reviewed in detail in [8].
The T-stress effect was also analyzed in [13], but it was in the context
of lateral deflection of the crack path in LEFM.

2. Gap tests of concrete and their evaluation

An advantage of the gap test, depicted in Fig. 1a, is its simplicity and
evaluation unambiguity. This is thanks to the fact that, upon closing the
gaps at the beam ends, the support system transits from one statically
determinate configuration to another.

Another advantage is that the plastic pads produce a field of nearly
uniform uniaxial compression around the FPZ.

The third advantage is that the fracture energy 𝐺𝑓 can be easily
measured by the size effect method which is simple and has a relatively
low experimental error [14,15].

For concrete, the plastic pads made of polypropylene have been
used, while, for aluminum, pads of polyvinyl chloride (PVC) became
necessary to provide a larger 𝑇 -stress. The crack-tip opening displace-
ment 𝛿𝐶𝑇𝑂𝐷 is controlled by an extensometer (Fig. 1b). Geometrically
similar specimens of several sufficiently different sizes are tested. The
size effect law [16] is utilized, in which case it suffices to measure only
the peak loads. This is the most robust test of both the initial fracture
energy 𝐺𝑓 and the effective fracture process zone size 𝑐𝑓 . It has been
adopted as an international standard recommendation of RILEM [17]
and was endorsed by the ACI-446 committee. Another advantage of the
size effect method is that it is reducible to linear regression (in detail
see [2,3]).

The experimental results shown in Fig. 2 were obtained with normal
concrete of maximum aggregate size 18 mm and a mean cylindrical
compressive strength 𝑓𝑐 = 40.5 MPa. The geometry is defined by the
span-to-depth ratio 2𝐿∕𝐷= 3.75 and the notch depth ratio 𝑎∕𝐷= 0.3.
The depths of geometrically scaled beams were 𝐷 = 101.6 mm (4 in),
203.2 mm (8 in), and 406.4 mm (16 in). The data points (empty circles)
in Fig. 2a are the measured values of fracture energy 𝐺𝑓 for different
levels of compression stress 𝜎𝑝𝑎𝑑 applied at the yielding pads.

Note that 𝐺𝑓 and 𝑐𝑓 depends strongly on the compressive stress,
𝜎𝑝𝑎𝑑 , at the pads. This shows that both the LEFM, which can be
implemented via the extended finite element method (XFEM), and the
phase-field models (PFM) as well as the CCM, are inapplicable. The
stress 𝜎𝑥𝑥 near the notch tip, which represents a material property, is
only slightly different from 𝜎𝑝𝑎𝑑 and is in Fig. 2a,b shown by the solid
circle points.

As expected, the test results could be closely matched by the finite
element (FE) crack band model [18–20], which has become the most
widely used fracture model used in the practice of concrete and geo-
materials, as well as in composite airframe design. In this model, the
width, ℎ, of the fracture front is considered to be a material fracture
property; ℎ = 𝐺𝑓0∕𝐴 where 𝐴 = area under the stress-mean transverse
strain curve and 𝐺𝑓0 = 𝐺𝑓 value for 𝜎𝑥𝑥 = 0. A realistic tensorial
damage law must be used in the crack band model, and concrete
microplane model M7 [21,22] has been adopted for this purpose (it
was implemented as user-defined material in ABAQUS).

The crack band model results are marked in Fig. 2a,b by solid and
2

dashed curves. The decrease of 𝐺𝑓 at high compression is represented
well. The increase of 𝐺𝑓 at moderate compression is underestimated,
although the overall trend is correct. The underestimation could be
eliminated by noting that the widening of the FPZ calls for increas-
ing the finite element width at the crack band front. This would be
computationally difficult, but the increase of 𝐺𝑓 can alternatively be
represented by adjustment of the postpeak softening in model M7.
However, such adjustment can only be justified if the change of 𝐺𝑓
does not depend on the loading path, which was shown not to be the
case in [3].

To provide an intuitive physical explanation of the 𝐺𝑓 variation,
consider the schematic picture in Fig. 3a. The initial rising part of
the curve in Fig. 2a is explained by a 𝜎𝑥𝑥-generated increase of static
friction (and aggregate interlock) on microcracks (and microplanes)
inclined with respect to the directions of macrocrack propagation [23].
To explain the subsequent descending part of the curve, a further in-
crease of crack-parallel compression must overcome friction and cause
slip on the inclined microcracks. This must lead to lateral expansion
of the FPZ and, thereby, to axial splitting cracks (Fig. 3a) which tend
to widen the FPZ [24]. Such behavior is not predicted by the classical
Drucker–Prager and Mohr–Coulomb plasticity models. This comes as
no surprise since the plasticity-type failure criteria based on tensor
invariants cannot capture oriented phenomena such as slip on planes
of distinct orientation, which are the reality.

Parameter 𝑐𝑓 of the size effect law obtained by fitting the gap tests
of various sizes also varies with the crack-parallel compression 𝜎𝑥𝑥;
see Fig. 2b. This, too, is captured in essence by the simulations with
the crack band model and M7, although the 𝑐𝑓 -increase at moderate
crack-parallel compression is again underestimated. This increase and
the underestimation of 𝐺𝑓 at moderate crack-parallel stress calls for
an increase of crack band width ℎ. Indeed, such an increase would
cancel the underestimations of both 𝐺𝑓 and 𝑐𝑓 , but will be difficult
to characterize computationally. An equivalent increase via M7 is
nevertheless possible

The foregoing observations have further serious consequences for
the nonlocal and gradient models. They indicate that the nonlocal
material characteristic length 𝑙0 should not be kept constant but should
vary as a function of the normal stress in the principal direction of
the damage tensor in the developing damage localization band that
terminates in fracture.

Furthermore, it appears that the difference between the M7 predic-
tion and the maximum data point in Fig. 2a is not due to the damage
constitutive law. This implies that the material characteristic length for
the width of the FPZ (though not that for the length of FPZ) should
depend on the crack-parallel stress, which is also supported by the
physical cause of changing FPZ width proposed in Fig. 2c. This calls
for an improvement in the crack band models and is a major challenge
for the nonlocal and gradient models of material damage.

Also noteworthy are the crack band M7 simulations in Fig. 2. They
indicate that the crack-parallel stress effect is highly path dependent.
Different loading sequences leading to the same combination of crack-
parallel stress and stress intensity factor yield very different failure
predictions. This means that, in computations, it would be insufficient
to vary the 𝐺𝑓 -value based on the current stress state (see Fig. 3b). The
effective 𝐺𝑓 is strongly path-dependent.

In [2,3], it was further predicted, by appropriate crack-band mi-
croplane simulations, that similar effects occur in fiber reinforced
concrete and in shale ([3, Fig. 8]). Experimental confirmation is still
pending.

3. 𝑻 -Stress effect and scaling of the HRR theory of metal fracture

While polycrystalline metals have a simpler microstructure than
concrete, the scaling of their strength is complicated by a relatively
large, millimeter scale, yielding zone of plastic hardening metal, which
surrounds a far narrower, micrometer scale, FPZ. In consequence, as
shown in [8], the law of size effect must reproduce not one but two
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Fig. 1. a. Schematic of gap test; b. Concrete beam set up for gap test of notched concrete beam of depth 101.6 mm (4 in.); c. Load–deflection diagram, in which a spike, rising
from the plateau, is due to bending moment applied from end supports after their engagement.
Fig. 2. Gap test results—circle points (empty: as measured on the pad, filled: as inferred for tip vicinity); blue solid curves—calculated based on M7 at plastic pads (dashed) and
at tip vicinity. a For mode I fracture energy 𝐺𝑓 and b for characteristic size (both normalized by values at zero crack parallel stress).
3
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Fig. 3. a. Schematic of shape changes of the FPZ due to increasing 𝜎𝑥𝑥, with intuitive effects of microcrack friction and slip. b. Various loading paths leading to the same
combination of crack-parallel stress 𝜎𝑥𝑥 and the load, parametrized by applied nominal stress 𝑠𝑖𝑔𝑁 or by applied model I stress intensity factor 𝐾𝐼 (note the enormous path
dependence).
Fig. 4. Three asymptotic regimes of nominal strength in fracture of plastic-hardening metals, and schematic transitions between them.
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ransitions through three power-law regimes; see the straight lines in
he log–log plot of nominal strength versus structure sizes in Fig. 4. An
intermediate asymptote (a concept due to Barenblatt [25]) needs to be
inserted between the small-size horizontal asymptote and the large-size
asymptote of slope −1∕2. Thus there are three transitional size effects
to consider: from the first asymptote to the second, from the second to
the third, and from the first to the third. The last one is practically most
important and happens to have the same form as the original 1984 size
effect law (SEL), but with parameters calculated differently.

The uniaxial stress–strain law of incompressible plastic-hardening
metals can be taken in the Ramberg–Osgood [26] form: 𝜖∕𝜖𝑦 = 𝜎∕𝜎𝑦 +
𝛼 (𝜎∕𝜎 )𝑛, where 𝜎 = initial yield strength; 𝜖 = initial yield strain, 𝛼
4

𝑝 𝑦 𝑦 𝑦 𝑝 𝑒
= empirical parameter; and 𝑛 = plastic hardening exponent, typically
to 20 [4,5]. The tensorial generalization, in which the elastic strain is
eglected [27], is written as [4,5,28,29]: 𝑒𝑖𝑗 = (3𝛼𝑝𝜖𝑦∕2𝜎𝑦)(𝜎𝑒𝑓∕𝜎𝑦)𝑛−1𝑠𝑖𝑗
where 𝜎𝑒𝑓 = ( 32 𝑠𝑘𝑙𝑠𝑘𝑙)

1∕2; here 𝜎𝑒𝑓 is the scalar effective stress (the
ummation rule for repeated indices applies).
In the yielding zone, the near-tip field of displacement 𝑢𝑖, deviatoric

tress 𝑠𝑖𝑗 and deviatoric strain 𝑒𝑖𝑗 (𝑖, 𝑗 − 1, 2, referred to Cartesian
oordinates) has the separated form given by [4,5,8]:

𝑖 = 𝛼𝑝𝜖𝑦𝑟𝑝(𝑟∕𝑟𝑝)𝑚𝑛+1𝐹𝑖(𝜃) (1)
𝑚𝑛 𝑚
𝑖𝑗 = 𝛼𝑝𝜖𝑦(𝑟∕𝑟𝑝) 𝜑𝑖𝑗 (𝜃), 𝑠𝑖𝑗 = 𝜎𝑦(𝑟∕𝑟𝑝) 𝜓𝑖𝑗 (𝜃) (2)
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where 𝜑𝑖𝑗 (𝜃) = 3
2𝜓𝑖𝑗 (𝜃)

(

3
2𝜓𝑘𝑙(𝜃)𝜓𝑘𝑙(𝜃)

)
𝑛−1
2 . Here (𝑟, 𝜃) are the polar

oordinates centered at the crack tip, exponent 𝑚 is a constant, and 𝑟𝑝 is
the effective size (or radius) of the yielding zone. The dimensionless an-
gular functions 𝐹𝑖, 𝜓𝑖𝑗 and 𝜑𝑖𝑗 are the solutions of ordinary differential
equations, accurately calculated by the finite difference method [30,
31], finite element method [32], or conformal mapping [33,34]. The
energy flux through the yielding zone into the fracture process zone is
calculated by Rice’s path-independent 𝐽 integral [35]:

= ∫𝛤

(

𝑊̄ d𝑦 − 𝜈𝑗 𝑠𝑖𝑗𝑢𝑖,1d𝑠
)

, 𝑊̄ = ∫ 𝑠𝑖𝑗d𝜖𝑖𝑗 (3)

where 𝛤 is a closed contour around the fracture front, 𝑠 is its length
oordinate, 𝜈𝑖 its outward unit normal, and 𝑦 = 𝑥2, and 𝑊̄ = strain en-
rgy density. With the help of the 𝐽 -integral it has been shown [4,5,8]
hat

= − 1
𝑛 + 1

(4)

or large-scale yielding in relatively small structures one gets the
caling laws (equivalent to Eqs. 5.3.10 in [28]):

𝑖 = 𝛼𝑝𝜖𝑦𝑟𝑝(𝑟∕𝑟𝑝)
1
𝑛+1 𝐹𝑖(𝜃) (5)

𝑒𝑖𝑗 = 𝛼𝑝𝜖𝑦(𝑟∕𝑟𝑝)
− 𝑛
𝑛+1 𝜑𝑖𝑗 (𝜃), 𝑠𝑖𝑗 = 𝜎𝑦(𝑟∕𝑟𝑝)

− 1
𝑛+1 𝜓𝑖𝑗 (𝜃) (6)

It is normal to characterize the structural strength in terms of the
nominal strength, 𝜎𝑁 = 𝑃∕𝑏𝐷, where 𝑃 is the applied load, 𝑏 is
the structure width (for a 2D structure), and 𝐷 is the characteristic
structure size. For large-scale yielding in small enough structures, one
gets the size effect law:

𝜎𝑁 ∝ 𝜎𝑦

( 𝑟𝑝
𝐷

)1∕(𝑛+1)
(for large-scale yielding) (7)

Superposing the crack-parallel stress 𝜎𝑥𝑥 = 𝑇 on the elastic singular
stress field outside the yielding zone, one has

𝜎𝑒𝑙11 = (𝐾𝐼∕
√

𝑟)𝑓11(𝜃) + 𝑇 (8)

where 𝑓11(𝜃) is a known function [36, p. 86]); 𝐾𝐼 =
√

𝐸′𝐺𝑓 = mode
I stress intensity factor, 𝐸′ = 𝐸 (Young’s modulus) and 𝐸′ −𝐸∕(1 − 𝜈2)
for plain strain (𝜈 = Poisson ratio). For small-scale yielding, the 𝜎𝑒𝑙𝑖𝑗
field prevails at sufficiently large 𝑟, but for small 𝑟 it interferes with
the near-tip singular plastic-hardening field given by Eq. (6), i.e.,

𝜎𝑝𝑙𝑖𝑗 = 𝜎𝑦(𝑟∕𝑟𝑝)
− 1
𝑛+1 𝜓𝑖𝑗 (𝜃) (9)

he fields in Eqs. (8) and (9) were optimally matched in Nguyen
t al. [8] by virtual work equivalence preserving global equilibrium.
fter some calculations, this led to a simple equation for the effective
adius 𝑟𝑝 (or length 𝑙𝑝 = 𝜁𝑟𝑝) of the plastic-hardening zone at crack
ront [8]:

𝑟𝑝 =
𝜅 𝑙0

(1 − 𝜂𝑇 ∕𝜎𝑦)2
where (10)

𝑙0 =
𝐸′𝐺𝑓
𝜎2𝑦

=
𝐾2
𝐼

𝜎2𝑦
, 𝜅 = 𝜁−1

(

𝐶𝑒
𝐶𝑛𝐶𝑝

)2
, 𝜂 = 𝜋

𝐶𝑛𝐶𝑝
(11)

𝐶𝑛 = 𝜁−
1

(𝑛+1) 𝑛 + 1
2𝑛 + 1

, 𝐶𝑝 = ∫

𝜋

−𝜋
𝜓11(𝜃)d𝜃, 𝐶𝑒 =

2
3 ∫

𝜋

−𝜋
𝑓11(𝜃)d𝜃 (12)

here 𝑙0 = Irwin’s material characteristic length. For the special case
f 𝑇 = 0, the foregoing expression is similar to Eq. (5.4-10) in [28]
except for the dimensionless factors 𝐶𝑛, 𝐶𝑝, 𝐶𝑒). Further note that, for
the special case of 𝑇 = 0, an estimate of 𝑟𝑝 was obtained for an
dge-notched tension specimen in a different way in 1976 by Shih and
utchinson [12]).
The calculations given in [8] finally led to the large-scale size effect
5

aw for fracture of plastic-hardening metals describing the transit from
the first to the final asymptote in Fig. 5:

𝜎𝑁 =
𝜎0

√

1 +𝐷∕𝐷0
(13)

which is applicable only if the smallest specimen depth is sufficiently
larger than the yielding zone size (i.e., to the right of the intersection
of the second and third asymptotes in Fig. 4).

The size effect law framed in Eq. (13) has the same form as the
riginal (1984) size effect law for quasibrittle structures [14,37]. Its
oefficients, however, are expressed differently:
2
0 = 𝐸′𝐺𝑓∕2𝑟𝑝 + 𝜎2𝑝 , 𝐷0 = 2𝑟𝑝∕𝑔0 (14)
2
𝑝 = 1

2
𝐸′𝜎𝑦𝜖𝑦𝑄𝑝 (15)

Availability of this scaling law provides an alternative way to mea-
sure the fracture energy of metals, similar to that established for
concrete (an international recommendation of RILEM [17], also en-
dorsed by ACI-406). After obtaining the size effect data on notched
specimens of sufficient size range (all of them sufficiently larger than
the yielding zone), one needs to fit them optimally with Eq. (13), which
is amenable to linear regression (Fig. 5c). Then one can solve 𝐺𝑓 , 𝑟𝑝 and
𝜎𝑝 from Eqs. (14) and (15).

Other scaling laws apply for the transitions from the first to the
second, and the second to the third asymptote in Fig. 4; see [8].

3.1. Gap tests of aluminum and their size effect

Although the gap tests of aluminum beams of various sizes are
still in progress at the time of writing, preliminary information can be
given. The initial tests were already reported in [8] where also more
information on the testing method was provided.

Three-point-bend (3PB) fracture specimens of aluminum (6061-
T651) alloy have been tested at two levels of 𝜎𝑥𝑥. The experiments
involved 4 different sizes with the size range of 1 ∶ 2 ∶ 4 ∶ 8
(corresponding to 𝐷 = 12, 24, 48, 96 mm). The span-to-depth ratio was
4 and the initial notch depth was 𝑎∕𝐷 = 1∕3. All the dimensions
were geometrically scaled in two dimensions except for the transverse
thickness, 𝑏 = 10 mm. A displacement-controlled procedure was used,
with the rate of 0.002 mm/s for the smallest-size specimens. For larger
sizes, the loading rate was scaled to preserve approximately the same
strain rate on the crack-tip gage for all the sizes. The loading was run
into the postpeak until the load dropped to 20% of the peak load due
to bending.

The optimum fits of the available results obtained with Eq. (13)
are presented in Fig. 5. 𝐺𝑓 shows a 58% increase, corresponding to
an expansion of the yielding zone.

4. Comments on reappraisal of fracture mechanics

Although the experimental studies and numerical simulations of
fracture with crack-parallel stresses are still far from complete, the
significant role of the crack-parallel stresses is already clear. It is now
almost certain that the line crack models such as LEFM and CCM are
inadequate for general applications unless it is known a priori that the
crack-parallel stresses are, in the given situation, negligible. This also
includes the XFEM, which is based on LEFM, and the phase-field models
which uses a simplistic damage law with a single damage parameter (𝑐,
varying from 0 to 1) [38–41] (the ‘‘peridynamics" needs no comment;
see [42]).

In practice, non-negligible crack-parallel stresses are ubiquitous:

1. The crack-parallel compression has been shown [43] to play
a dominant role in the prediction of load capacity of rein-
forced concrete beams and slabs subjected to shear force loading.
Five decades of attempts to predict the failure load with LEFM
or CCM failed, because, as is now clear [43–45], the crack-
parallel compression at peak load almost reaches the compres-
sion strength of concrete.
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Fig. 5. a. Gap test setup for notched aluminum beam, showing beam of depth 96 mm and guard beams to prevent lateral buckling. b. Scaled notched aluminum beams of 3 sizes.
c. Two linear regressions of size effect test results for two ratios of crack parallel stress 𝜎𝑥𝑥. d. Corresponding log–log size effect plots for the same two levels of 𝜎𝑥𝑥, with LEFM
asymptotes of slope −1∕2.
2. Seismic fractures of reinforced concrete columns of buildings or
bridges are typically longitudinal or steeply inclined, with large
crack-parallel compression.

3. So are most fractures in prestresed concrete.
4. The shear failure in the composite of aircraft wings, wing boxes,
stabilizers or rudders is actually a tensile fracture with large
crack-parallel compression.

5. A longitudinal crack in the pressurized composite fuselage is due
to biaxial tension, with a large crack-parallel tension.

6. The longitudinal crack in the composite casing of a solid-fuel
rocket occurs also under biaxial stress.

7. Ditto for fracture of various kinds of pressure vessels or inflatable
shells.

8. The sideways cracks in unidirectional composites occur under
large crack-parallel tension.

9. The hydraulic fracture of shale involves poromechanical stress
transfer from the fluid to the solid phase, and is surely affected
by tectonic and overburden stresses along the fracture.

10. The tectonic stress parallel to a propagating earthquake fault
must play a role at the fault front.

11. Crack-parallel compression acts in most fractures of sea ice, ei-
ther propagating longitudinally, as in ice sheets pushing against
the legs of an oil platform, on transversely, as under vertical
load.

12. The composite crush cans, enhancing crashworthiness of au-
tomobiles, fracture longitudinally under a large crack-parallel
compression.

13. So do the cracks produced in concrete walls under projectile
impact.

14. Most thermal cracks in metals or drying cracks in concrete or
soil occur under biaxial tension.

15. Microcracks in MEMS evolve under biaxial stresses, too.
6

16. Although not yet investigated, it is likely that the crack-parallel
stresses also change the prefactors of the Paris law and Charles-
Evans law for cyclic and static fatigue in metals and composites.

Finally, it should be emphasized that, to capture the effects of
crack-parallel stresses, fracture must be modeled as a band of finite
width at the crack front, and with a tensorial softening damage con-
stitutive model that can reproduce oriented microcrack or slips on the
meso-level.
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