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ABSTRACT

A common need for artificial intelligence models in the broader geoscience is to
represent and encode various types of spatial data, such as points (e.g., points
of interest), polylines (e.g., trajectories), polygons (e.g., administrative regions),
graphs (e.g., transportation networks), or rasters (e.g., remote sensing images),
in a hidden embedding space so that they can be readily incorporated into deep
learning models. One fundamental step is to encode a single point location into
an embedding space, such that this embedding is learning-friendly for downstream
machine learning models such as support vector machines and neural networks. We
call this process location encoding. However, there lacks a systematic review on the
concept of location encoding, its potential applications, and key challenges that need
to be addressed. This paper aims to fill this gap. We first provide a formal definition
of location encoding, and discuss the necessity of location encoding for GeoAl
research from a machine learning perspective. Next, we provide a comprehensive
survey and discussion about the current landscape of location encoding research.
We classify location encoding models into different categories based on their inputs
and encoding methods, and compare them based on whether they are parametric,
multi-scale, distance preserving, and direction aware. We demonstrate that existing
location encoding models can be unified under a shared formulation framework. We
also discuss the application of location encoding for different types of spatial data.
Finally, we point out several challenges in location encoding research that need to
be solved in the future.

KEYWORDS
Location encoding; GeoAl; representation learning; spatially-explicit machine
learning

1. Introduction and Motivation

The rapid development of novel deep learning and representation learning techniques and
the increasing availability of diverse, large-scale geospatial data have fueled substantial
progress in geospatial artificial intelligence (GeoAl) research (Smith {1984, |Couclelis
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1986, |Openshaw and Openshaw| /1997, |Janowicz et al.[2020)). This includes progress on
a wide spectrum of challenging tasks such as terrain feature detection and extraction
(Li and Hsu/|2020), land use classification (Zhong et al.|2019), navigation in the urban
environment (Mirowski et al.[2018), image geolocalization (Weyand et al. 2016, [Izbicki
et al.|2019)), toponym recognition and disambiguation (DeLozier et al.[2015, Wang et al.
2020), geographic knowledge graph completion and summarization (Qiu et al.|[2019,
Yan et al.|2019)), traffic forecasting (Li et al.|2018a)), to name a few.

Despite the fact that these models are very different in design, they share a common
characteristic - they need to represent (or encode) different types of spatial data, such
as points (e.g., points of interest (POIs)), polylines (e.g., trajectories), polygons (e.g.,
administrative regions), graphs/networks (e.g., transportation networks), or raster (e.g.,
satellite images), in a hidden embedding space so that they can be utilized by machine
learning models such as deep neural nets (NN). For raster data, this encoding process
is straightforward since the regular grid structures can be directly handled by existing
deep learning models such as convolutional neural networks (CNN) (Krizhevsky et al.
2012). The representation problem gets more complicated for vector data such as point
sets, polylines, polygons, and networks, which have more irregular spatial organization
formats, because the concepts of location, distance, and direction among others do not
have straightforward counterparts in existing NN and it is not trivial to design NN
operations (e.g., convolution) for irregularly structured data (Valsesia et al.2019).

Early efforts perform data transformation operations to convert the underlying
spatial data into a format which can be handled by existing NN modules (Wang et al.
2019)). However, this conversion process often leads to information loss. For example,
many early research about point cloud classification and segmentation first converted
3D point clouds into volumetric representations (e.g., voxelized shapes) (Maturana and
Scherer| 2015, |Qi et al.[2016) or rendered them into 2D images (Su et al|2015, Qi et al.
2016). Then they applied 3D or 2D CNN on these converted data representations for the
classification or segmentation tasks. These practices have a major limitation — choosing
an appropriate spatial resolution for a volumetric representation is challenging (Qi et al.
2017al). A finer spatial resolution leads to data sparsity and higher computation cost
while a coarser spatial resolution provides poor prediction results.

The reason for performing such data conversions is a lack of means to directly handle
vector data in deep neural nets. An alternative approach is to encode these spatial
data models directly. The first step towards such goal is to encode a point location
into an embedding space such that these location embeddings can be easily used in the
downstream NN modules. This is the idea of location encoding.

Location encoding (Mac Aodha et al.| 2019, Mai et al|2020b, |Zhong et al| 2020,
Mai et al.|[2020a, |Gao et al[2019, Xu et al.|[2018, |Chu et al|2019) refers to a NN-
based encoding process which represents a point/location into a high dimensional
vector/embedding such that this embedding can preserve different spatial information
(e.g., distance, direction) and, at the same time, be learning-friendly

for downstream machine learning (ML) models such as neural nets and support
vector machines (SVM). By learning friendly we mean that the downstream model does
not need to be very complex and does not require lots of training data to prevent model
overfitting. The encoding results are called location embeddings. And the corresponding
NN architecture is called location encoder, which is a general-purpose model that can
be incorporated into different GeoAl models for different downstream tasks.

Figure [1] is an illustration of location encoding. Here, we use location-based species
classification as an example of the downstream tasks which aims at predicting species y
based on a given location x. The training objective is to learn the conditional distribution
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P(y|x), i.e., the probability of observing y given x, which is highly non-linear. The
idea of location encoding can be understood as a feature decomposition process which
decomposes location x (e.g., a two-dimensional vector of latitude and longitude) into
a learning-friendly high dimensional vector (e.g., a vector with 100 dimensions), such
that the highly non-linear distribution P(y|x) can be learned with a relatively simple
learner such as a linear SVM or a shallow NN model M (). The key benefits of such an
architecture are to require less training data with simpler learners, and the possibility
to leverage unsupervised training to better learn the location representations.

[Figure 1 about here.]

Recently, the effectiveness of location encoding has been demonstrated in multiple
GeoAl tasks including geo-aware image classification (Yin et al.[2019, |Chu et al.[2019,
Mac Aodha et al.|[2019, Mai et al.2020b), POI classification (Mai et al.|2020b)), place
annotation (Yin et al.|2019)), trajectory prediction (Xu et al. 2018, [Yin et al.|2019),
location privacy protection (Rao et al.|2020), geographic question answering (Mai
et al.2020a), 3D protein distribution reconstruction (Zhong et al.2020), point cloud
classification and segmentation (Qi et al.|2017a.b| Li et al.|2018b), and so on. Despite
these successful stories, there is still a lack of a systematic review on such a topic. This
paper fills this gap by providing a comparative survey on different location encoding
models. We give a general conceptual formulation framework which unifies almost all
existing location encoding methods.

It is worth mentioning that the location encoding discussed in this work is different
from the traditional location encoding systems (i.e., geocoding systems)ﬂ which convert
geographic coordinates into codes using an encoding scheme such as Geohash or codes
for partition tiles such as Open Location Code and what3words. These traditional
encoding systems are designed to support navigation and spatial indexing, while the
neural location encoders we present here are used to support downstream ML models.

The contributions of our work are as follows:

(1) Although there are multiple existing works on location encoding, the necessity to
design such a model is not clear. In this work, we formally define the location
encoding problem and discuss the necessity from a machine learning perspective.

(2) We conduct a systematic review on existing location encoding research. A
detailed classification system for location encoders is provided and all models
are reformulated under a unified framework. This allows us to identify the
commonalities and differences among different location encoding models. As
far as we know, this is the first review on such a topic.

(3) We extend the idea of location encoding to the broader topic of encoding different
types of spatial data (e.g., polylines, polygons, graphs, and rasters). The possible
solutions and challenges are discussed.

(4) To emphasize the general applicability of location encoding, we discuss its potential
applications in different geoscience domains. We hope these discussions can open
up new areas of research.

The rest of this paper is structured as follows. We first introduce a formal definition
of location encoding in Section [2] Then, in Section 3] we discuss the necessity of location
encoding. Next, we provide a general framework for understanding the current landscape
of location encoding research and survey a collection of representative work in Section
[4] In Section 5] we discuss how to apply location encoding for different types of spatial

1https ://gogeomatics.ca/location-encoding-systems-could-geographic-coordinates-be-replaced-and-at-what-cost/
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data. Finally, we conclude our work and discuss future research directions in Section [6]

2. Definitions

Definition 2.1 (Location Encoding). Given a set of points P = {p;}, e.g., the locations
of sensors, species occurrences, and so on, where each point (e.g., an air quality sensor)
p; = (x;,Vv;) is associated with a location x; € RY (e.g., a sensor’s location) in L-D
space (L = 2,3) and attributes v; € RE (e.g., air quality measurements). We define the
location encoder as a function EncP?(x) : RF — R? (L « d), which is parameterized
by 6 and maps any coordinate x in space to a vector representation of d dimension.
This process is called location encoding and the results are called location embeddings.

Here, Enc(P9) (x) indicates that the encoding result of x may also depend on other
locations in P. When Enc(P9) (x) is independent of other points in P, we can simplify
it to Enc?(x). Note that sometimes, the input of the location encoder can be both
locations and attributes, i.e., Enc(P?) (x,v) : REFE R,

Figure [T illustrates the idea of location encoding in Definition The 20 2D points
serve as an example of P = {p;} with L = 2 and n = [P| = 20. Note that Enc(? (x)
can not only be used to encode global location x, but also be utilized to encode the
spatial relation between two locations, i.e., the spatial affinity vector Asyp = x4 — xp3.

One question we may ask is whether a location encoder can preserve spatial
information such as distance and direction information after the encoding process. From
a spatial information preservation perspective, there are two properties we expect a
location encoder to have: distance preservation and direction awareness.

Property 2.1 (Distance Preservation). The distance preservation property requires
two mnearby locations to have similar location embeddings. More concretely, given
any pair of location (x4,xp), the inner product/similarity between their resulting
location embeddings, i.e, (EncP?(x,), EncP? (xp)) monotonically decreases when
the distanceﬂ between x4 and xp, i.e., || x4 —xp ||, increases.

[Figure 2 about here.]

Property can be seen as a reflection of Tobler’s First Law of Geography (TFL)
(Tobler| |1970)) in location encoding. The requirement of distance preservation has
been adopted by multiple existing location encoding works. For example, |Gao et al.
(2019) proposed a learnable location representation model v(x) which consists of
three sub-models: vector matrix multiplication, magnified local isometry, and global
adjacency kernel. The global adjacency kernel sub-model assumes {(v(xg),v(xp)) =
(Kd)f(]| xa — xp ||), where K, d are predefined constants and f(r) is the adjacency
kernel that decreases monotonically as r increases. It can be seen that this sub-model
directly satisfies Property Mai et al.| (2020b) also showed that their proposed
multi-scale location encoder has a similar distance preservation property.

Property 2.2 (Direction Awareness). Locations that point into similar directions have
more similar (relative) location embeddings than those who point into very different
directions. More concretely, as shown in Figure [2| given x¢ as the reference point and
y axis as the global north direction, x4, Xxp, and x¢ are on the same circle centered at
Xo and therefore share the same distance to xp. The relative spatial relation between

2This can be Euclidean distance, manhattan distance, geodesic distance, great circle distance, and so on.
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x4 and xp is defined as Ao = x4 — Xo. The direction of A g, i.e., Z40 is defined
as the clockwise angle between y axis and A 40. The same logic applies to xp and x¢.
We say a location encoder is direction aware if it satisfies the following property: the
inner product (EncP9(Aa0), EncP?(Apo)) > (EncP (A 40), EncP9 (Aco)) if
|[Za0 — £LBo| < |£a0 — Lcol.

Property is a reflection of the Generalized First Law of Geography (Zhu et al.
2019b) which includes direction into the consideration of similarities. In this paper,
we call a location encoder an isotropic location encoder if it only preserves the spatial
proximity but ignores the variance of location embeddings when direction changes.
We need to develop direction-aware, so-called anisotropic location encoders when the
isotropicity assumption can not be held anymore. In fact, in normal spatial analysis,
isotropicity is the “default” assumption in most of the time. Although anisotropic
versions of many geospatial analysis techniques have been developed such as directional
kriging (Te Stroet and Snepvangers 2005), anisotropic clustering (Mai et al|2018),
direction remains on the level of an afterthought (Zhu et al[2019b). A similar situation
can be seen in the current location encoding research, or GeoAl research in general.
Compared with studies on distance preserved location encoders, there has been much less
work on how to make a location encoder direction aware. Mai et al.| (2020b) empirically
showed that their multi-scale location encoder as well as many baseline models are
direction-aware. However, this is just a by-product from their visualization analysis
of the response maps of these location encoders. No theoretical proof is provided. As
far as we know, there is no existing research that aims at developing a direction-aware
location encoder deliberately.

Besides the above two spatial information preservation properties, Location Encoder
ETLC(P’G)() should also satisfy the following two properties to ensure its generalizability.

Property 2.3 (Inductive Learning Method). Location Encoder Enc(P?)() is an
inductive learning method, i.e., the pretrained location encoder can be utilized to
encode any location without retraining even if it does not appear in the training set.

Property makes EncP?) () differ from many existing transductive-learning-based
location representation learning methods such as Location2Vec (Zhu et al. 2019a),
POI2Vec (Feng et al|2017), and Kejriwal and Szekely| (2017). For example, |Kejriwal
and Szekely| (2017) converted a set of GeoNames locations into a k-th nearest neighbor
graph in which locations (i.e., nodes) are linked to nearby locations by distance-weighted
edges. A random-walk-based graph embedding method is used to learn an embedding
for each location. This method is essentially a transductive learning model: when new
locations are added to the training set, the graph is modified and the whole model has
to be retrained to obtain the embeddings of new locations.

Property 2.4 (Task Independence). Location Encoder EncP?)() should be task-
independent or so called task-agnostic, i.e., the same model architecture can be used in
different downstream tasks without any modification.

Property also differentiate Enc(P79)() from some existing task-dependent location
representation approaches. For instance, both Location2Vec (Zhu et al|[2019al) and
POI2Vec (Feng et al|2017) learned the embeddings of locations (e.g., cell stations,
POIs) based on trajectories by adopting a Word2Vec-style training objective. This kind
of location representation cannot be easily transferred to other tasks beyond human
mobility. Similarly, Gao et al.| (2020) discretized the study area into N x N lattice and
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learned the embedding of each location by letting a Long Short Term Memory (LSTM)
based artificial agent navigate through the study area. The learned location embeddings
are used for simulation purpose but not for other geospatial tasks.

Property 2.5 (Parametric Model). A parametric model is a learning model with a
finite set of parameters 6.

A parametric model is not very flexible, but the model complexity is bounded. In
contrast, a non-parametric model assumes that the data distribution cannot be defined
with a finite set of parameters 6 and the size of parameters € can grow as the amount
of data grows (Russell and Norvig/2015)). So a non-parametric model is more flexible
while the model complexity is unbounded.

Although Property [2.1] and are expected for location encoders, not all
models we will discuss in Section [4] have these properties. See Table [I] for the detailed
comparison. However, all location encoders discussed in Section [4] satisfy Property
and 2.4} So we will not discuss these two properties separately for each model.

For simplicity, we will use Enc() and EncP)() to indicate Enc® () and Enc®9)().

3. The necessity of location encoding for GeoAl

In this section we motivate the need to embed a location x € R* (L = 2,3) into a high
dimensional vector Enc(P? (x) € R? which may seem counter-intuitive at first. We
mainly address this issue from a machine learning perspective.

A key concept in statistical machine learning is bias-variance trade-off (Hastie et al.
2009). On the one hand, when a learning system is required to pick one hypothesis out
of a large hypothesis space (e.g., deciding the parameters of a large 24 layer neural
networks), it is flexible enough to approximate almost any non-linear distribution (low
bias). However, it needs a lot of training data to prevent overfitting. This is called
the low bias high variance situation. On the other hand, when the hypothesis space is
restricted (e.g., linear regression or single layer neural nets) the system has little chance
to over fit, but might be ill-suited to model the underlying distribution and result in low
performance in both training and testing sets (high bias). This situation is called low
variance high bias. For many applications the data distribution is complex and highly
non-linear. We may not have enough domain knowledge to design good models with low
variance (the effective model complexity) and low bias (the model data mismatch) at
the same time. Moreover, we might want to avoid adopting too much domain knowledge
into the model design which will make the resulting model task specific. For example,
the distribution of plant species (such as P(y|x) in Figure (1) may be highly irregular
influenced by several geospatial factors and interactions among species (Mac Aodha
et al.|2019). Kernel (smoothing) methods (e.g., Radial Basis Function (RBF)) and
neural networks (e.g., feed-forward nets) are two types of most successful models which
require very little domain knowledge for model design. They both have well established
ways of controlling the effective model complexity. The kernel methods are more suited
to low dimensional input data — modeling highly non-linear distributions with little
model complexity. However, they need to store the kernels during inference time which
is not memory efficient. Neural networks have more representation power which means
a deep network can approximate very complex functions with no bias, while requiring
more domain knowledge for model design to achieve lower variance and bias.

From a statistical machine learning perspective, the main purposes of location



234
235
236
237
238
239
240
241
242
243
244

245

246

247

248

249
250
251
252
253

254

256
257
258
259

260

261

262
263
264
265
266
267

268

encoding is to produce learning friendly representations of geographic locations for
downstream models such as SVM and neural networks. By learning friendly we mean
that the downstream model does not need to be very complex and require large
training samples. For example, the location encoding process may perform a feature
decomposition (x € RF — Enc(P?) (x) e R?, where L < d) so that the distribution we
want to model such as P(y|x) in Figure [I| becomes linear in the decomposed feature
space, and a simple linear model can be applied. Figure [3| illustrates this idea by using
a simple binary classification task. If we use the original geographic coordinates x as
the input features to train the binary classifier, the resulting classifier M; will be a
complex and nonlinear function which is prone to overfitting as shown in the left of
Figure 3| After the location encoding process, the geographic coordinates feature is
decomposed so that a simple linear model M> can be used as the binary classiﬁerﬂ

[Figure 3 about here.]
[Table 1 about here.|

4. A review of the current landscape of location encoding

In this section, we provide a comprehensive review of the existing location encoding
techniques. Instead of enumerating every existing location encoding approach we
organize our discussion in a top-down manner. We first classify location encoding
models into different groups according to the input of location encoders and how they
manipulate the spatial features. Firstly, according to the input, we can classify the
existing location encoders into two categories: single point location encoder Enc(x)
and aggregation location encoder EncP)(x). Enc(x) only considers the current point’s
location while Fnc(P)(x) additionally considers points in its neighborhood N (x) < P.
Then, in Section Enc(x) is further classified into sub-categories based on the type
of positional encoder PE(x). Next, in Section EnecP)(x) is classified based on the
used neighborhood N (x). The survey result is summarized in Table [1l Finally, the
comparison among different models will be discussed in Section [4.3]

4.1. Single point location encoder Enc(x)

Interestingly, most existing single point location encoders, i.e., Enc(x), (Tang et al.
2015] |Gao et al.||2019, [Xu et al.|[2018| |[Chu et al.| 2019, Mac Aodha et al.|2019] Mai
et al|[2020b} |Zhong et al.|2020, |Rao et al.[2020) share a similar structure:

Enc(x) = NN(PE(x)), (1)

Here, NN(-) : RW — R is a learnable neural network component which maps the
input position embedding PFE(x) € RV into the location embedding Enc(x) € R, A
common practice is to define NN(+) as a multi-layer perceptron, while Mac Aodha et al.
(2019) adopted a more complex NN(+) which includes an initial fully connected layer,
followed by a series of residual blocks. The purpose of NN(-) is to provide a learnable
component for the location encoder, which captures the complex interaction between
input locations and target labels.

3The dimensionality of the location embedding space will be larger (e.g., 32 or 128); we use 3D here for ease of
illustration.
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PE(-) is the most important component which distinguishes different Enc(x). Usually,
PE(-) is a deterministic function which transforms location x into a W-dimension
vector, so-called position embedding. The purpose of PE(-) is to do location feature
normalization (Chu et al.|[2019, [Mac Aodha et al.|2019, Rao et al.|2020) and/or feature
decomposition (Mai et al|[2020bl, Zhong et al|2020) so that the output PE(x) is
more learning-friendly for NIN(-). In Table [1| we further classify different Enc(x) into
four sub-categories based on their PE(-): discretization-based, direct, sinusoidal, and
sinusoidal multi-scale location encoder. Each of them will be discussed in detail below.

4.1.1.  Discretization-based location encoder

The early pioneers (Tang et al|2015) argued that GPS coordinates are rather precise
location indicators which are difficult to use by a classifier. So instead of using the
coordinates, they discretized the whole study area into grid tiles and indicates each
point by the corresponding grid that it falls into.

Definition 4.1 (Discretization-based Location Encoder). A discretization-based
location encoder divides the study area (e.g., the earth surface) into regular area
units such as grids, hexagons, or triangles - Encgiscretize(X) = NN(PEgscretize(X))
where PEg;scretize(+) is usually a tile lookup function which maps x to a one hot vector
that indicates the corresponding tile id it falls into.

onehot. Early work in location encoding does not really have learnable component
specific to the location encoder. For example, Tang et al.|(2015)) divided the study area
(the contiguous United States) into M rectangle grids. Given a location x (the geotag of
an image), PE,,enot(x) € RM is a one hot vector to indicate which grid x falls into and
NN(-) as an identity function, i.e., Encopenot(X) = NN(PEynenot (X)) = PEopenot(X).

tile. Later Mai et al. (2020b) introduced tile as one of Encg;seretize(X) which uses a
trainable location embedding matrix as NIN(-). This makes it possible for the model to
benefit from unsupervised training.

Although Encgiseretize(x) shows promising results on tasks such as geo-aware image
classification, it has several inherent limitations: 1) Each tile embedding are trained
separately and spatial dependency is ignored, i.e., they do not have the distance
preservation property; 2) They have only one fixed spatial scale which can not effectively
handle points with varied density; 3) Choosing the correct discretization is very
challenging (Openshaw|[1981), Fotheringham and Wong|1991), and incorrect choices will
significantly affect the model’s performance and efficiency (Lechner et al.[2012).

There are some possible solutions for these problems. For problem 1 we can add a
regularization term in the loss function to make nearby tile embeddings have higher
cosine similarity. For problem 2 and 3 one can adopt an adaptive discretization (Weyand
et al.|2016) or multi-level discretization strategy as /Kulkarni et al.| (2020]) did which uses
deeper levels (smaller tiles) for higher point density areas and shallower levels (larger
tiles) for sparse areas. However, finer spatial resolution or multi-level discretization
means more tiles and more learnable parameters which can easily lead to overfitting.

4.1.2.  Direct location encoder

Recently, researchers adopted a rather simple approach by directly applying neural
networks to (normalized) coordinates (Xu et al.[2018, |Chu et al.|2019, Rao et al.|2020).

Definition 4.2 (Direct Location Encoder). A direct location encoder is defined as
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Encgirect(x) = NN(PEgjrect(x)) where PEg;rect(X) is usually a function to normalize
or standardize the input location feature x and NN(-) is a multi-layer perceptron.

direct. There are many slight variations of Encgirect(x) models. |Chu et al.| (2019)
took the input longitude and latitude (i.e., x = [\, ¢]* of a image) and normalized them
to range [—1, 1) by dividing them with constant values. Similarly, in trajectory synthesis
study, Rao et al. (2020)) deployed P Egjrect(x) which standardized each trajectory point
x = [\, ¢]" by using the centroid of all trajectory points. In order to perform pedestrian
trajectory prediction, Xu et al|(2018)) also designed a simple location encoder whose
PFEjirect(x) normalizes x to [0, 1]. Without a feature decomposition step, these models
often fail to capture the fine details of data distributions, and have worse prediction
accuracy than tile on specific tasks.

4.1.8.  Sinusoidal location encoder

Definition 4.3 (Sinusoidal Location Encoder). A sinusoidal location encoder is defined
as Encginy(x) = NN(PFEgjnu(x)) where PFEgjpn,(x) is a deterministic function which
processes x with sinusoidal functions, e.g., sin(), after location feature normalization.

wrap. Mac Aodha et al| (2019) developed Encyrap(x) = NN(PEgjn,(x)) which
uses sinusoidal functions to wrap the geographic coordinates. In Equation |2 longitude
A and latitude ¢ are first normalized into range [—1, 1] by dividing by 180° and 90°
accordingly and then are fed into sin(7x) and cos(7z) functions.

4 )|, wherex = (X, ¢) (2)

PEyrap(x) = [sin( 900

), cos(

), sin( ), cos(

71800 71800 7900

The purpose to use sinusoidal functions is to wrap geographic coordinates around the
world Mac Aodha et al.|(2019). This ensures that longitude \; = —180° and A9 = 180°
have the same encoding results. However, applying this encoding strategy to latitudes
is problematic. As for ¢; = —90° and ¢9 = 90°, i.e., the South pole and North pole,
they would have identical encoding results which is problematic. Moreover, even if we
fix this problem, wrap is still not a spherical distance-preserved location encoder.

4.1.4.  Sinusoidal multi-scale location encoder

One limitation of all location encoders we discussed so far is that they can not handle
non-uniform point density (Qi et al.2017a) or mixtures of distributions with very
different characteristics (Mai et al.[[2020b)). For example, given a set of POIs, some types
tend to cluster together such as night clubs, women’s clothing, restaurants while other
POI types are rather evenly distributed such as post offices, schools, and fire stations.
Similarly, as for species occurrences, some species herd together such as wildebeests
and zebras while the individuals of other species tend to walk alone and protect their
own territory such as tigers and bears. This will result in different spatial distribution
patterns of these species occurrences. In order to jointly model these spatial distributions,
we need an encoding method which supports multi-scale representations.

Inspired by the position encoding architecture in Transformer (Vaswani et al.|2017),
researchers developed multi-scale location encoders by using sinusoidal functions with
different frequencies (Mai et al.[2020b, Zhong et al.|2020)).

Definition 4.4 (Sinusoidal Multi-Scale Location Encoder). The sinusoidal multi-scale
location encoder is defined as Encgjnmur(x) = NN(P Egjnmui (X)) where PEginmu(X)
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decomposes x into a multi-scale representation based on different sinusoidal functions
with different frequencies:

PEgnmu(x) = [PESY (x);..; PE®) (x); ..; PEY), (x)]. (3)

Here S is the total number of scales. PELS»S) (x) processes the location features with
different sinusoidal functions whose frequency is determined by the scale s.

TF. Zhong et al. (2020]) slightly changed the position encoding architecture in
Transformer (Vaswani et al.|2017) and applied them in high dimension data points
such as 3D Cartesian coordinates.

Definition 4.5 (Transformer-based Location Encoder). The transformer-based location
encoder Encrp(x) = NN(PEpp(x)) is following Definition . For each scale s €

{0,1,...,.8 — 1}, PEY) (x) = PETF(x) is defined by Equation
the /th dimension of x.

| Here, x!!! indicates

PETF (x) =[PEIT (x);..; PEL] (x);...; PEI] ()], (4a)

27 Sx!!] . 271 Sx!!]
S(s1)/5 /75 S(s+1)/S)]’

where PESTlF(x) = [cos( vi=1,2,...,L. (4b)

Zhong et al.| (2020) showed that Encyp(x) works well for noiseless data, but for noisy
data they need to exclude the top 10% highest frequency components (the smallest
several s) in Equation [3] This indicates the necessity of another parameter to control
the smallest scale we consider in sinusoidal functions. That is the usage of A, in
theory and grid which we will discussed below.

theory. Space2Vec (Mai et al.|2020b) introduced theory as a 2D multi-scale location
encoder by using sinusoidal functions with different frequencies.

Definition 4.6 (Theory Location Encoder). Let a; = [1,0]T,a, =
[-1/2,4/3/2]T,a3 = [-1/2,—+/3/2]" € R? be three unit vectors which are
oriented 120° apart from each other. Ajin, Amae are the minimum and maximum
grid scale, and g = j\\m‘”. Encipeory(x) is following Definition H where in each scale

s € {0,1,...,.8 — 1}, PE§S)(X) — PE!"(x) is defined in Equation . Here, (:,-)
indicates vector inner product.

PEéheory (X) _ [PEgzleory(X); PEgLQeory (X); PEZ?OW (X)], (5&)

theory o <X7 aj> ol <X7aj> P
where PE_ " (x) = [COS()\mm 'gs/(s_l)),sm()\mm /5D )], Vi =1,2,3. (5b)

Both Encipeory(-) and (Gao et al.| (2019) are inspired by the grid cell research from
neuroscience field (Hafting et al.[2005, Blair et al.|2007, Killian et al.|2012, |Agarwal
et al|2015). In fact, Gao et al|(2019) inspired and laid the theoretical foundation
of Encipeory(x). As we discussed in Section , Gao et al.| (2019)) proposed a location
representation model v(x) which consists of three sub-models. They also proposed a
complex-value-based location encoder ¥(x) as an analytical solution for v(x) which
inspired EnctheOTy(-). More specifically, given two location x,, Xy, |(Gao et al| (2019)

proved that (¥ (x,), ¥(xp)) = 3(1 —g | xp — X4 ||?) where 8 =|| a; ||3= 1. That means
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the inner products between their location embeddings increase when | x5 — X, ||?
decrease, which satisfies Property . Mai et al.| (2020b) showed that Enctheory(‘) also
satisfies Property [2.1] both theoretically and empirically.

grid. grid is another type of Encginmui(x) proposed by Space2Vec (Mai et al.[[2020Db]).

Definition 4.7 (Grid Location Encoder). Encgiq(x) follows Definition where at

each scale s € {0,1,...,5 — 1}, PE{Y) (x) = PEY"(x) is defined by Equation |§| Here,
Amins Amaz and g follow the same definition as Definition [£.6]

PE?"(x) = [PEY}(x); .; PES (x);...; PEY}4(x)],
[ <

)\min : gs/(S71)) )\mm : gs/(Sfl)

(6a)

where PE?"(x) = [cos( ; sin( )], VI=1,2,..,L. (6b)
Mai et al.| (2020b)) shows that for both theory and grid, A\p.. can be directly
determined based on the size of the study area while A,,;, is the critical parameter

which decides the highest spatial resolution Enc(x) can handle.

4.1.5.

Compared with discretize which yields identical embeddings for x that fall into the
same tile, direct can distinguish nearby locations, i.e., Encgirect(Xa) # Encgirect(Xp),
if x, # xp. Mai et al|(2020b) compared them in different tasks and found out that
without an appropriate location feature normalization PFEgj.e.t(x), direct will show
lower performance than tile. This indicates the importance of PFEgjrect(X).

One advantage of direct is its simple architecture with fewer hyperparameters.
However, compared with PFEg;p,(x) and PFEgpmui(X), PEgirect(x) is rather hard for
NN() to learn from and may produce over-generalized distributions.

Compared with TF and grid, theory has a theoretical foundation to ensure Property
However, theory can only be applied to point sets in 2D space. In contrast, T'F
and grid lack a theoretical guarantee for Property while they can be utilized for
points in any L-D space. TF and grid follow similar idea while grid has an additional
parameter \,,;,, which is more flexible for data sets with different characteristics.

Comparison among different Enc(x)

4.2. Aggregation location encoder Enc(P)(x)

Definition 4.8 (Aggregation Location Encoder). The aggregation location encoder
Enc®) (x) jointly considers the location feature x and the aggregated features from the
neighborhood of x, denoted as N'(x). Inspired by the Graph Neural Network (GNN)
framework (Xu et al.2019), a generic model setup of Enc(®)(x) can be defined as

h = Enc(x), (7a)
g = Agge.enio V), (7b)
h{™ = Cmb(h{" Y, gl™), (7c)
Enc®(x) = Rat(h{"). (7d)

It consists of M Location Encoding Aggregation (LEA) layers, which iteratively
update the location representations. In Equation the initial location embedding

11
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h,(co) can be computed based on any single point location encoder discussed in
Section [4.I} Each LEA layer constitutes one neighborhood aggregation operation
Aggx,en(x)1-} (Equation and a feature combination operation C'mb(-,-) (Equation

. Aggx,en(x){-} aggregates the feature h&T‘l) of x; in N(x) from the previous LEA
layer which can be seen as an analogy of the convolution operation of CNN on point sets.
Aggx,en(x){-} can be element-wise max/min/mean pooling, sum, or any permutation
invariant architectures (Zaheer et al|2017, Qi et al.[2017al |Velickovié et al.[2018, Mai

et al.[[2019a)). Cmb(-,-) combines the point-wise feature h,(cmfl) with the aggregated

features g,(cm) which can be vector concatenation, element-wise max, min or mean. In the
last layer, a readout function Rdt(-), which can be an identity function or a multi-layer
perceptron, produces the final aggregated location embedding for x (See Equation .

Equation [7| can be treated as an analogy of the GNN framework (Battaglia et al.
2018, Xu et al|2019, [Wu et al|2020b) which is a general framework for different
neural network architectures applied on graphs such as GCN (Kipf and Welling 2017)),
GraphSAGE (Hamilton et al.||2017), GG-NN (Li et al.|2016]), GAN (Velickovi¢ et al.
2018)), MPNN (Gilmer et al.[2017), R-GCN (Schlichtkrull et al.|2018), CGA (Mai et al.
2019al), TransGCN (Cai et al.[2019), and so on.

N (x) can be defined in different ways such as the top kth nearest locations (Appleby
et al.[|2020, Mai et al.||2020b), locations within a buffer radius (Qi et al.|2017b)), or
locations within the same voxel as x (Zhou and Tuzel|2018). According to the definition of
N (x), we classify EncP)(x) into different categories: kernel, global, local neighborhood,
and hierarchical neighborhood aggregation location encoder as summarized in Table
We will discuss each in detail in the following section.

4.2.1. Kernel-based location encoder

A kernel-based location encoder needs two components: a predefined kernel function
k(-,-) and a set of kernel center points Q@ = {p;}. The selection of k(-,-) depends on
the nature of the dataset. The popular options are RBF kernels and Mercer kernels
(Vapnik [2013)). Q can be equal to or a subset of the training point set, i.e., @ < P or
can be a predefined point set such as the centers of regular grids (Yin et al.|2019).

Definition 4.9 (Kernel-Based Location Encoder). Given a kernel function k(-,-) and
the kernel center point set Q = {p;}, we define the kernel-based location encoder as
Equation [§ by following Definition [4.§ where M = 1.

h§?) = X, (8a)
kernel
g = Aggzg-igN(x)){hgg)} = U(x) = [k(x,x1); ... k(x,x)0)],  (8D)
h = cmb(h, gl) = gV, 9
Enc{l), (x) = Rdt(h{) = NN(h{"). (54)

Here, each x has a fixed “neighborhood” - Q, i.e.,, N(x) = Q = {p; = (xi)}. [;*]
indicates vector concatenation. |Q| indicates the total number of kernels and NIN(-) is
a multi-layer perceptron.

From a location feature decomposition perspective, Enc,(:;?n el(x) can be seen as using
kernel trick to decompose x into multiple kernel features (see Section . From a location
encoding aggregation perspective, it can be seen as aggregating the kernel features

12
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derived from the interaction between x and each kernel. Since each location x € P

shares the same N (x) = Q, Agg[()kgxb(i)){} does not need to be a permutation invariant

function. Here we use a concatenation of the |Q| kernel features of x. Examples of
Enct?) (x) include GPS2Vec (Yin et al.|2019) and the rbf baseline used by Space2Vec

kernel
(Mai et al.2020b). The main difference among them are the definitions of Q and k(-, -).
GPS2Vec. GPS2Vec (Yin et al|2019)) divided the Earth into multiple UTM zones

(P)

and trained different Ency el

(x) separately. Each zone is further divided into ¢ grids

—HX_CXJH2) Here || - ||2 indicates L2
norm and ( is a constant attenuation coefficient. We denote this model as Encg) 13 sovec(t):

rbf. Mai et al|(2020b) proposed a RBF kernel based location encoder as one of their
baselines, called rbf. Q are randomly sampled ¢ points from P, i.e., @ < P. The kernel

_x. |2
function k(x,x;) = exp (— HX20X2]H2) is a RBF kernel. We denote it as Encgj)().

Adapted kernel* Instead of using constant kernel bandwidth, Berg et al|(2014)
also proposed an idea of adaptive kernels to model the spatio-temporal distribution
prior of bird species. They precomputed this prior as a fixed scale kernel density
estimation (KDE) map. Here, instead of making a precomputed KDE map, we adopt
this idea to design an adaptive kernel based location encoder Encq(x) in which
| x—x; I3

2h,(x)?
defining h,(x) as the half of the distance from x to its Kth nearest neighbor. We use
to differentiate Enc,(x) from the original model proposed by Berg et al.|(2014).

Despite its simple design and the ability to handle non-linear distributions,
Encperne(x) has several shortcomings. Firstly, Encierner(x) has to memorize Q at

whose centers are used as Q and k(x,x;) = exp(

k(x,x;) = exp(— ). ho(x) is a kernel bandwidth function of location x, e.g.,

*

testing time which will affect memory efficiency. Secondly, since h,g) e RI9l, the size
of Q directly decides the number of learnable parameters in NN(-). This creates a
performance-efficiency trade-off problem. When |Q| is small, Encgerner(x) has less
memory burden. NN(-) also has fewer learnable parameters which need less training
data and is less likely to over fit. However, Q is rather distributed sparsely over the
study area which affects the quality of the encoding results. When |Q)| is rather large,
the encoding results are more accurate, but we need a huge amount of memory to store
Q and NN(+) needs more learning parameters. Moreover, the prediction of Encgerner(X)
also depends on the distribution of Q since it performs poorly on data sparse regions.

4.2.2.  Global aggregation location encoder

The global aggregation location encoder E”C;Z)b (%) defines N (x) as all locations in
P, ie., Nglobal(x) =P.

PointNet. PointNet (Qi et al.[2017a) was originally proposed for 3D point cloud
classification and segmentation. Its point cloud segmentation architecture can be
formulated as a global aggregation location encoder as shown in Equation [0 Equation [Oa]
first embeds each point into an initial embedding with a direct-like single point location
encoder Encpnet(x). It normalizes the input 3D point feature x = [z,y, 2]7 € R3 on to
a unit sphere, denoted as PE,,¢(-), before feeding them into NIN(-). NN(-) consists
of two affine transformations (parameterized as t-nets) TNy (-) and T'Na(-), which are
separated by a multi-layer perceptron M LP;(-). These affine transformations help to
make the semantic labeling of a point cloud invariant to geometric transformations (Qi

et al.||2017a). Note that PointNet only has one LEA layer, i.e., M = 1. Agg)(f:il})(x){-}

13
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is a multi-layer perceptron MLP;(-) for each x; € Nppet(x) = P followed by an
element-wise max pooling MaxPooly.ey,, ., x)1"} (See Equation . Cmb(-,-) is a
vector concatenation operation followed by a multi-layer perceptron M LPs(-) and the
readout function Rdt(-) is an identity function as shown in Equation

h{ = Encyner(x) = NN(PEpner(x)) = TN (MLP (TN (PEper(x)), (92)
g = Agg[l0 o )} = MazPoolyen,,, 0 (M LPo (b)), (96)
hi) = Cmb@ ) (b gl)) = MLPy([hY;gl), (9¢)
EnclZ),(x) = Rt (00)) — ). o

4.2.8.  Local aggregation location encoder

(P)

The local aggregation location encoder Enc;, ,,(x) considers a local neighborhood
N (x) such as all locations within a buffer of x with radius r, i.e., My, fer(x) = {x3] ||
X —X; |[o< 1, VX5 € P A X; # X}

VoxelNet. Zhou and Tuzel| (2018) discretizes the 3D space into unit voxels. For any
location x, its neighborhood is defined as Nyop(x) = {x4]t(x) = ¢(x;), Vx; € P}, where
t(x) is a voxel lookup function which returns the ID of the voxel in which x falls into.

h = Encyop(x) = NN(PEyoz(x)) = PEyop(%),
gl = Aggl'%) <x){h§3171)} = MazPool ey, (x {FCN™ (0" )},
by = Cmbe) (0 gl™) = [0V gl

EnclD)(x) = Rdt®? (b{) = n{™.

vox
First, a direct-like location encoder Ency..(-) (Equation encodes x = [z,y, 2]
into PEyoe(X) = [2,y, 2,2 — %,y — 7§,z — Z]*. Here NN(-) is an identity function’} and
(Z,7,z) is the centroid of all points in Nyez(x). Then aggregation (Equation [10b]) is
done by a pointwise fully connected layer FCN (m)(-) followed by an element-wise max
pooling MazPooly,ep,,, (x)1"}- g,((m) encodes the shape contained within the current
voxel Nyoz(x). Cmb(-, ) is simply a vector concatenation operation (See Equation [10d),
and Rdtyoq(+) is a identity function (See Equation [10d]).

SAGAT. Mai et al|(2020b) proposed a modified graph attention network (GAT)
(Velickovi¢ et al.|[2018)) to model the spatial interactions among nearby locations (e.g.,
POIS). Nipn(x) is defined as all k nearest neighbors of location x. The original model
focuses on encoding feature information v for each location such as POI type, but here
we generalize it as a generic local aggregation location encoder (Spatial-Aware Graph

4In|Zhou and Tuzel (2018), they encode each 3D point as [z,y, 2,v,x — T,y — ¥, 2 — 2] T where v is an attribute
of each point, e.g., received reflectance. Here we skip v to focus on the location information. However, as we
said in Definition it is very easy to extend Enc(P?(x) to Enc(P 9 (x,v).

14



486
487
488
489

490

491

492

493

494

496

497

498

499

500

501

502

503

504

505

506
507
508
509
510
511
512

513

514

Attention Network, in short, SAGAT):
hﬁ(o) = Encsagat(x), (11a)

m saga m— ]' m m—
g\ )=Agg,(<eif:nn {h VY = o Z >ooalniY), (1)

b = Cmb(e9a) (" M) = g™, (11c)
Ene?) (x) = Rt M)y = h{M) (11d)
(m)
where az(;n) = erp(Tiy ) O (11e)
ZxoeNk,nn (x) ea:p(aou )
ai(;n) = LeakyReLU((aum))T[hg(mfl); hi’?’l); Enc(x — x;)])- (11f)

In Equation SAGAT first uses Encgqgqt(x) to lift each location into the embedding
space. Originally, Mai et al.| (2020b) used a feature encoder as Encgsqgqi(x) to represent
v into a feature embedding. However, here, we define Encgsqgqt(x) to be any single
point location encoder discussed in Section [£.1} Equation [I1b]is the most important
neighborhood aggregation step. Multi-head attention is adopted to aggregate the

(m—1)

neighboring location embedding hy, of x; € Ninn(x) from the previous layer. U is

the total number of attention heads. agu ™) is the attention coefficient of h(m Y in the
uth attention head within the mth layer which is normalized across Nknn( ) based

on Equation U;T ) is its non-normalized counterpart. In Equation m h&m‘l) and

h)(gl_l) are the representations of the center location x and its neighbor x; in the m—1-th
layer. Compared with GAT (Velickovic et al.|2018), Enc(x—x;) is added in the attention
score computation so the spatial affinity Ax; = x — x; is considered in the aggregation
step. This practice makes SAGAT “spatial-aware”. a&m) is a learnable attention vector
for the uth attention head and LeakyReLU (-) is the LeakyReLU activation function.
Enc(-) is an encoder for spatial relation, which can be any single-point location encoder
such as tile, rbf, direct, theory, grid, TF, and so on. Mai et al.| (2020b) only utilized
one aggregation layer, i.e., M = 1. Here, we generalize it into multiple layers, i.e.,
M = 1. The combination and readout function are both identity functions.

[Figure 4 about here.]

Figure [d]illustrates the mth aggregation layer of SAGAT. In this example, we consider
three neighbors. Three yellow vectors h(m b (1 = 1,2,3) are the hidden embeddings
of three neighbors. Three green vectors Enc(x — xz) are the spatial displacement
embeddings which are used in the spatial-aware graph attention attention. The red
vector are the hidden embedding of center location x in the next layer.

DGCNN. Dynamic Graph CNNs (in short, DGCNN) (Wang et al.[2019)) is proposed
to jointly consider global shape structure and local neighborhood information when
learning on point clouds. DGCNN also has M LEA layers. Compared with other
location encoders, DGCNN has two crucial distinctions: 1) dynamic graph neighborhood

Né;ncim( ) and 2) an edge convolution module EdgeC’onv( At { }

dqr"nn
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g,(cm) Agg(dgj:;(rfn) {h m=1) } = EdgeConv( ™) {hg:?_l)} (12a)

PEN G (%)
= MazPool, (o {MLPI™ ([0 h{ Y — h{" Y]}, (12b)
h{"™) = Cmbp(oem) (- ), ) =gl (12)

The former means that instead of using a fixed neighborhood as VoxelNet and
SAGAT does, DGCNN recomputes the neighborhood of x for each LEA layer.
In the mth layer given the embeddings of all locations from the previous layer

1D — (W™ Vyx; e P, ngm

of h(m Y from H™D in the embeddlng space (not Euclidean space). Since #(™~1)
is updated after each LEA layer, N} P

(x) is defined as the top K nearest neighbors

gcm( x) is called a dynamic neighborhood. As

(m)
N (%)

dgenn

captures local geometric structure whlle maintaining permutation invariance. Equation
mainly shows how the edge convolution works while skipping other steps such as

for the edge convolution, EdgeConv {-} is an aggregation operator which

location embedding initialization and the readout function. EdgeC’onv( )/\/< ) { }
concatenates h,(cm_ ) and its affinity to its neighbor hgf,?_l) — h}(cm_l). The result is fed

(m)( )

into a multi-layer perceptron M LP, followed by a pointwise max pooling The

combination operator is an identity function (See Equation | Although N dg Cm(x)
is dynamic, we only consider single-scale neighborhoods for each x. So we classify
DGCNN can a local aggregation location encoder.

[Figure 5 about here.|

4.2.4. Hierachical aggregation location encoder

Instead of defining one neighborhood per location, the hierachical aggregation

(P)

hzeagg

i'e'7 Nhieagg(x> { hzeagg theagg( ) NfEZZc)ng( ) theagg( )} which can be

aggregated in a hierarchical manner as illustrated in Figure |5

location encoder Enc (x) defines a multi-scale neighborhood for location x,

Definition 4.10 (Hierachical Aggregation Location Encoder). Encge)agg(x) first

hierarchically aggregates location features from these neighborhoods and then

(P)

propagates the aggregated features back to each location. Enc;, 9 (x) usually adopts
a Conv-DeConv (Noh et al.|2015) like architecture which consists of two modules: 1)

Point Set Encoder PTConv,(lZ)a gg(~): a stack of M neighborhood aggregation layers

(or called Point Conv layers (Li et al.|2018b)) in which each location embedding in the
-1
ieagg

Set Decoder PT DeC’onv}Lie)agg(-): a stack of M point feature propagation layers (or

called Point DeConv layers) in which each DeConv-like architecture propagates the
location embeddings from the previous layers to a denser set of locations. This whole
architecture follows the U-Net design (Ronneberger et al./[2015):

m layer is aggregated from its neighborhood N hi (x) in the previous layer; 2) Point
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P P
Enc,(we)agg( X) = PTDeConv,(we)agg(PTConv,(m)agg( ) (13)

Here, PT C’onv,(;?agg() follows the model setup in Equation Sometimes,

PTDeConv,(LZ)agg(-) also follows Equation [7| such as PointCNN (Li et al.[2018b).

Figure [5{ shows an illustration of this Conv-DeConv architecture of Encge)a 90(X)-

PointNet++. As an extension of PointNet, PointNet++ (Q1i et al.[2017b)) follows

the Conv-DeConv like architecture in Figure[5|to achieve hierarchical feature aggregation

and propagation. The point set encoder PTC’onvg;gt +(x) consists of M Point Conv

Layers (so-called set abstraction levels (SAL) in Qi et al.|(2017b))) each of which is
composed of three key layers:

(1) The sampling layer at the mth SAL samples a point subset P from the
previous SAL - P(m=1 and, therefore, P") < P(m=1) and pO) = p.

(2) The grouping layer at the mth SAL groups points in P~ into the
neighborhood A¢ neH( x) € P01 of each point x € P™). /\/;D(Z)H(x) is defined
as all points x; € P~ within radius (™).

(3) The aggregation layer at the mth SAL produces new location embedding h(m)

(m—1)

for each x € P("™) by aggregating hy’ of x; in x’s neighborhood Al et +( X).

h)((O) = Encdirect( )7 (148‘)

() _ 40 (559) R0 b

gX gg N’;ZI@H ){ X } ( )

= MazPool, Ly (o {(MLP™ (R, (14c)

W™ = Cmb9) (Y M) = g™, (14d)
PTConv{l)(x) = Rat®*) (b)) = n{M™. (14e)

Q1 et al.| (2017b) proposed several versions of PointNet++: SSG (ablated PointNet+
with single scale grouping in each level), MSG (multi-scale grouping PointNet++),

and MRG (multi resolution grouping PointNet+-+). All of them are Enc,g?gagg(x)

according to Definition Equation [14] shows how the point set encoder of SSG
works. In the mth SAL, the PointNet layer aggregates features in AL pnet +( x) by using a

PointNet-like aggregation function Agg(ssg) ){} -M LP(m)(‘) followed by a max

N (
pooling function (See Equation [14c]).
Because PM) « pM-1) =~ pO) = p PM) jg 5 small subset of P which can
(P

be seen as the skeleton points of P. PTConvssg) (+) can only produce embeddings for

x € PM)_ To obtain embeddings for each x € P, PTDeConvgfg)(') is used to propagate
location features back to each x € P by using an inverse distance weighted interpolation

(P)

method. This can be seen as a reverse process of PT'Conuvssg (-). The sampled point sets
(PO = p pM) p@ P PM} are used in a reverse manner to progressively
interpolate the location features back to a larger sampled point set until we get location
embeddings for all x € P. This idea follows the Conv-DeConv idea in Equation
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Compared with SSG, MSG changes the point set encoder by concatenating location
embeddings of the same points obtained from neighborhoods with different spatial
scales. MSG is rather computationally expensive since it aggregates features in larger
scale neighborhoods for each centroid point. MRG solves this by concatenating location
embeddings obtained from different SSG point set encoders with varied numbers of
SAL layers. Please refer to|Qi et al.| (2017b|) for detailed description.

PointCNN. Similar to PointNet++, PointCNN (Li et al.|2018b)) also utilizes a point
set encoder with M Point Conv layers (which we call PointCNN Layers here). Each
layer also consists of three key steps: sampling layer, grouping layer, aggregation layer
(PointNet layer). The differences from SSG are mainly in grouping and aggregation

layer. The mth PointCNN grouping layer defines the neighborhood N tcnn( ) < plm=1)
as a set of K points uniformly sampled from the KD nearest nelghbors of x obtained
from P(m=1_ This can be seen as an analogy of the dilated convolution idea from the

traditional CNN models and D is the dilation rate. The PointCNN aggregation layer
(m)

: : ptenn m)
defines a convolution operation, COHU( )(Ii( ), ), over ptenn

(x) as an analogy to

the convolution operation over images. k(™ is the convolution kernels in the mth layer.

hgj?i = MLPJ(m)( Xi ) VXZ € Ntcnn( ) (153«)
X0 = MLPU(T o 0 (%3 = X)), (15b)
g - Agg(picff?m) {thLn D} (15¢)

= Conv(ptm”)(n(m),X(m) x Ty oo (R0 V]), (15d)

ptenn

}({m) _ Cmb(ptcnn) (hg(m—l)7g>({m)) g)((m)7 (156)
PTConv() (x) = Rdt”e™ (b)) = [0 MLP(x)], (15f)

Equation [15] describes how the point set encoder of PointCNN works. In Equation
a multiple-layer perceptron M LP(S(m)() individually lifts the spatial affinity x; — x
(x) into hf(mzs € R% a Cs dimensional embedding. Then
in Equation |15b FN<m> (x )(xZ —x) € RE*E represents a stack of the spatial affinity

for each neighbor x; € Nl

tcnn

vector x; — x € RL of all x; € ./\/'tcm( ) which results in a K x L matrix. The

multi-layer perceptron M LP(m)( converts this matrix into a K x K X-transformation
matrix - X" Next, in Equation [15d| a point convolution operator C’onv(ptc"”)(/{(m), )

aggregates the concatenation [hi{mg, h(i.n 1)] e RO+ ™Y

this K x (Cs + d 1) matrix and has to be aware of the order of all x; € Ntcnn( )
In the final readout function (Equation [15f) another M LP,(-) is used to dlrectly lift

x into a high dimensional embedding which is concatenated with hﬁ(M) e R¥™ . This
can be seen as an analogy of the skip-connection in traditional CNN. In Equation

X (M) ig used here to permute

when m = 1, hﬁ(’?’l) = h§2.) needs to be initialized. Given p; = (x;,Vv;) (See Definition
, Li et al. (2018b)) made h(o) = v;. We also can choose h(O) = X;.

Similar PointCNN layers are deployed in the point set decoder PTDeC’onUI(,tC)nn(X)
to form a Conv-DeConv like architecture. Similar Conv®m™) (™) .} operator is used

while the only difference is PTDeConvl()tczm( ) has more points but less feature channels

in its output vs. its input, and {P™} are forwarded from PTConv'l) (x).

ptenn

Graph-Conv GAN. Valsesia et al. (2019) presented a graph convolution based
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Encg;) ag g(x) for 3D point cloud generation based on Generative Adversarial Network

(GAN) (Goodfellow et al.|2014). We denote the location encoder of the model as
Encé@an(x). The same Conv-DeConv idea is used here (See Definition ) and

PTConvéfg)an(x) consists of M Point Conv layers each of which is composed of a
sampling, a grouping, and an aggregation layer:

hY = Enc(x), (16a)
m (m—1) (m—1)\1, (m—1)
g™ = Agg 969“7)> {h{" ) = Z L Sl L ,
(16b)
h{" = Cmbeo) (h" D, g(™) = o (g™ + WL £ b ), (160)
PTConv{F). (x) = Rdt\9°9°™) (h(M)) = h{(M). (16d)

We denote the location embedding of x at the mth layer as h{™ e Rd(m) Enc(x) in

Equation |16a] can be any single point location encoder. Agg(gc“j’\%n) {h )} e R4™

knn

in Equation [16b| uses a graph convolution operator to aggregate the neighborhood
N (x) at the mth layer. N,EZ;) (x) is defined as x’s K-th nearest neighbors - Nk(zz (x) =

knn
KNN(x, K,P(m=1), h,(gl_l) — h&m_l) e R¥"™" capture the spatial affinity between
neighboring location x; and x. F("™(-) denotes a fully-connected network which regresses
hiT’l) ~h{"Y into a matrix F(m>(h§’7’1) - h,(cmfl)) e RI™*d™ Y Fquation

shows how to combine the neighborhood feature g,(cm) e RY™ with x’s own feature

from the previous layer h,((m_l) e RV Wm) ¢ RAT XA and b € R are a
learnable matrix and a bias vector respectively.

It is worth mentioning that the main difference among SSG, PointCNN, and Graph-
Conv GAN is different aggregation layers used in their point set encoders (See Equation
and . Figure [5| shows their shared Conv-DeConv architecture.

4.3. Comparison among different models

After introducing Enc(x) and Enc(P)(x), it is worth to compare them from different
aspects. First, we provide a general comparison between Enc(x) and Enc®)(x):

(1) Enc(x) encodes x independently without considering its spatial context. In
contrast, Enc(P)(x) jointly consider x and its neighbor N (x). Enc(P)(x) can be
seen as a generalizaton of Enc(x) in which any Enc(x) can be used to compute
h (See Equation .

(2) When a new location x’ is added to P, Enc(x;) is unaffected for all x; € P. In
contrast, as for EncP)(x), for all x; € {x;|x; € P A x" € N(x;)}, EncP)(x;) will
be updated since N (x;) is modified. However, Enc,(gfgn ol
N(x) = Q is the same for all x € P which is unchanged.

(3) Enc(x) has a rather high inference speed, while the aggregation operator in
Enc®)(x) is time-consuming.

(4) Since Enc'P)(x) additionally considers N (x), it has richer features for model
prediction and has a potential higher performance compared to Enc(x).

(x) is unaffected since

We can see that both Enc(x) and Enc(P)(x) have advantages and disadvantages.
Although both of them are task-agnostic, they excel at different tasks and the model
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selection should depend on the current task:

(1)

The first criterion is the input for a single model prediction - one location x
(e.g., geo-aware image classification) or a whole point set P (e.g., point cloud
segmentation). The former setup prefers Enc(x) given its fast inference speed.
The latter one prefers Enc(P)(x) since it can additionally captures spatial context
information. Moreover, some tasks require producing a single embedding for the
whole point set P or parts of it such as point cloud classification and objection
recognition. For these tasks, Enc(P)(x) is the only choice.

Another criterion is the preference between faster inference speed or higher
prediction accuracy. A mobile application may prefer a faster inference speed in
which Enc(x) excels. An enterprise application might prefer higher prediction
accuracy where Enc(P)(x) is preferred.

Next, we compare different sub-categories of location encoders from five different
perspectives. The results shown in Table [I| will be discussed in detail as follows.

(1)

L: In terms of the spatial dimension of x a location encoder can handle, almost all
models can handle different L, e.g., L = 2, 3. Exceptions are GPS2Vec, wrap, and
theory. GPS2Vec and wrap are specifically designed for GPS coordinates which
can be uniquely identified by ¢ and A. theory is designed only for 2D coordinates
since it is inspired by neuroscience research about grid cells which are critical for
self-motion integration and navigation of mammals in a 2D space.

Parametric: As shown in Table , all models except rbf and adaptive kernel* are
parametric models, which means their learnable parameters have a fixed size. rbf
and adaptive kernel* can be either parametric or non-parametric models. Since
h;l) e RI<l (See Equation , the size of the kernel center set Q decides the

number of learnable parameters in NIN(-) of Enc](gfgnel(x). If @ =P, then both
rbf and adaptive kernel* become non-parametric models. Otherwise, if Q has a
fixed size, both of them are parametric model.

Multi-scale: Both Encginmu(x) and Encge)a 4¢(X) utilize multi-scale approaches.
So they are better at capturing locations with non-uniform density or a mixture
of distributions with different characteristics. However, they adopt different
multi-scale approaches. The former designs multi-scale representations based
on PE(x) which uses sinusoidal functions with different frequencies, while the
latter aggregates the neighborhood of x in a hierarchical manner. From a practical
perspective, many studies have shown that multi-scale location encoders can
outperform single-scale models and models without scale related parameters
on various tasks. For example, Qi et al. (2017b) showed that PointNet-++ can
outperform PointNet on both point cloud classification and segmentation task. [Mai
et al|(2020b) showed that multi-scale models (theory and grid) can outperform
tile, direct, wrap, and rbf on both POI type classification task and geo-aware
image classification task. |Mai et al. (2020a) showed that theory can outperform
direct on geographic question answering task.

Distance Prevervation: In terms of the question whether a location encoder is
distance preserved (Property , we mainly consider them from a empirical
perspective, e.g., whether the response map of a location encoder shows a spatial
continuity pattern or a spatial heterogeneity pattern. The former implies that this
model is distance preserved, while the latter indicates otherwise. For example, [Mai
et al| (2020b) systematically compared the response maps of different location
encoders such as tile, direct, wrap, theory, grid, and rbf, after training on the

20



689
690
691
692
693
694
695
696
697
698
699
700
701

702

703

704
705
706
707

708

709

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

725

726

727
728
729

730

POI type classification task (See Figure 2 in Mai et al. (2020b))). The results
show that direct, wrap, theory, and rbf are distance preserved while tile and
direct are not. Moreover, as we discussed in Section [4.1.4] theory also have a
theoretical proof for distance preservation. So we put “Yes™” in Table [l In terms
of other location encoders, since no experiment or theoretical proof has been done,
whether they have this property is unknown.

(5) Direction Awareness: A similar logic is used here. The response maps produced by
Mai et al. (2020b) showed that direct and theory is aware of direction information
while rbf is not. No conclusion can be drawn for other models.

(6) SAGAT is a bit different. Its properties also depend on the property of the used
Enc(+) in Equation SAGAT can be a parametric or non-parametric (e.g.,
use rbf as Enc(-) ) model. It becomes a multi-scale approach if Enc(-) uses a
multi-scale representation. Whether SAGAT has the distance preservation and
direction awareness property also depends on the used Enc(-).

5. Applying location encoding to different types of spatial data

Location encoders can be directly utilized on multiple point set-based GeoAl tasks such
as geo-aware image classification, POI type classification, and point cloud segmentation.
However, there are many other tasks that are defined on other types of spatial data
such as polylines, polygons, and graphs (networks). This section discusses the potential
of location encoders to model these types of spatial data.

5.1. Polyline

The location-to-polyline relation can be seen as an analogy of the word-to-sentence
relation. In NLP, a sentence, as an ordered sequence of words, can be encoded by
different sequential neural nets such as different recurrent neural networks (RNN)
(Hochreiter and Schmidhuber|1997, |Cho et al.[2014)) and Transformer (Vaswani et al.
2017). Their idea is to feed the embedding of each word token into a sequential model
at each time step to encode the whole word sequence as one single hidden state or a
sequence of hidden states.

Similarly, we can encode a polyline as an ordered sequence of locations, by using
these sequential neural network models. At each time step, we will encode the current
location into a location embedding and feed it into the sequential model. In fact, several
recent work about human mobility directly follow this idea. Xu et al|(2018)) utilized a
direct location encoder to represent each trajectory point into a location embedding.
Then a trajectory, represented as a sequence of location embeddings, are encoded by
an LSTM for pedestrian trajectory prediction. Similarly, Rao et al.| (2020) proposed an
LSTM-TrajGAN framework to generate privacy-preserving synthetic trajectory data in
which each trajectory point was encoded by a direct location encoder.

5.2. Polygon

Encoding polygon geometries into the embedding space is a logical next step. It is
very useful for several geospatial tasks which require comparing polygon geometries
such as geographic entity alignment (Trisedya et al.[2019), spatial topological reasoning
(Regalia et al.[[2019), and geographic question answering (Mai et al.|2019b, 20204, 2021]).
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However, unlike a polyline, which can be represented by an ordered sequence of
locations, a polygon should be represented by all locations within it. The topological
relationships between any location x and a polygon should be preserved after the
polygon encoding process. In other words, a polygon encoder should be topology aware.
As far as we know, polygon encoding is still an ongoing research problem that does not
have satisfactory solutions. Mai et al.| (2020a)) presented a geographic entity bounding
box encoding model as the first step towards polygon encoding by uniformly sampling a
location from within the bounding box of a geographic entity and feeding it to a location
encoder. Despite its innovativeness, this model still cannot handle fine-grained polygon
geometries. [Yan et al| (2021) proposed a graph convolutional autoencoder (GCAE)
which can encode simple polygons, i.e., polygons that do not intersect themselves and
have no holes. GCAE converts the exterior of a simple polygon into a graph and then
encodes this graph into an embedding space. The shortcoming of GCAE is that it
cannot handle polygons with holes and multipolygons. Moreover, it cannot preserve
the topology information. So one interesting future research direction is developing a
topology-aware polygon encoder which can handle both simple and complex polygons.

5.3. Graph

Graph (or network) is also an important spatial data format used in multiple geospatial
data sets such as transportation networks (Li et al.|2018a), (Cai et al.|[2020), spatial
social networks (Andris 2016)), and geographic knowledge graph (GeoKG) (Mai et al.
2020a). A graph can be defined as G = (V, £) where V and £ are the set of nodes and
edges in this graph. In the geospatial domain, each node e € V or a subset of nodes in V
is associated with a location x | such as the sensor locations in a sensor network, users’
locations in a spatial social network, or locations of geographic entities in a GeoKG.
We further call this kind of graph a spatially embedded graph.

The early practice to encode spatially embedded graphs is to treat them as normal
non-spatial graphs and use some existing GNN models or (knowledge) graph embedding
models (Grover and Leskovec| 2016, [Bordes et al.|2013, Trouillon et al.[2017)). In order
to add the spatial information as additional features without significantly modifying the
existing architectures, we can modify the node encoder by using one Enc(x) in Table
as the node encoder or one component of it while keeping other components unchanged.
The model can be trained with the same loss function. Mai et al.| (2020a) adopted
exactly this practice and developed a spatially-explicit knowledge graph embedding
model. Similar ideas can be applied to other spatially embedded graphs.

Interestingly, other than the normal graph data, many pioneer research applied GNN
models to a point set through a point-set-to-graph conversion. They first converted
point set P into a graph based on spatial relations, e.g., a k-th nearest neighbor spatial
graph, in which nodes indicate points while edges are associated with pairwise distance
based weights. After this conversion, a GNN model is applied on this graph so that node
attribute prediction can be done based on not only the nodes’ own features but also
their spatial context. Many GeoAl research has adopted this practice to tackle different
tasks including air quality forecasting (Lin et al.|2018)), place characteristics prediction
(Zhu et al.|2020), GeoNames entity embedding learning (Kejriwal and Szekely |2017)),
and different spatial interpolation problems (Appleby et al.| 2020, [Wu et al. 2020a).
We argue that this kind of distance weighted graph method is insufficient to capture the
relative spatial relations, since it necessarily forfeits information about the spatial layout

5Each node can associate with more complex geometries, and one single location is a simplification.
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of points. Some important spatial information is lost such as the direction relations
which are important for certain tasks when isotropic assumption is not held. Instead,
we advocate the idea of using any Enc(P)(x) discussed in Section for these tasks
since Enc(P)(x) is better at capturing spatial relations among locations.

5.4. Raster

Convolutional Nerual Networks (CNNs) (Lecun and Bengio||1995) are at the core of
many highly successful models in manipulating raster data such as image classification,
image generation, and image understanding. This great success is due to the ability
of the convolution operation to exploit the principles of locality, stationarity, and
compositionality. Locality is due to the local connectivity, stationarity is owed to
shift-invariance, and compositionality stems from the multi-resolution structure of the
raster data (Bronstein et al.2017). The number of learnable parameters is greatly
reduced because of its feature locality and weight sharing across the data domain
(Valsesia et al.[[2019). Due to the success of location encoding on vector data, it is
particularly interesting to think about the questions how we can apply location encoding
techniques on rasters and what the benefits are.

Interestingly, with increasing popularity of the Transformer (Vaswani et al.|2017))
architecture, several efforts have been made to replace CNN with a Transformer-like
architecture for raster-based tasks. The idea is that instead of using CNN kernels, we
first encode the pixel features as well as pixel locations into the embedding space with
a location-encoder-like architecture, so-called pizel position encoding, and then a self-
attention is applied on top of these pixel embeddings for different vision tasks. However,
one problem with this approach is that this per-pixel based self-attention has a very high
computational cost. One solution, among others, proposed by Vision Transformer (ViT)
(Dosovitskiy et al.|[2021]) uses a per-image-patch (instead of per-pixel ) self-attention
which significantly lowers the computational cost. Dosovitskiy et al.| (2021) showed
that ViT can outperform traditional CNN-based models on several image classification
benchmarks. However, the patch size becomes an important hyperparameter which will
significantly affect model performance. Applying location encoders on raster data is a
very new research direction. Existing work mainly focuses on encoding the positions
of pixels on an image. When a pixel represents an area on the earth’s surface (e.g.,
pixels in a satellite image), it is potentially very beneficial to encode pixel’s geographic
locations rather than its image positions. The geo-locations can serve as a channel,
which transfers knowledge learnt from large quantities of unlabeled data (geographic
data, geo-tagged image, or geo-tagged text) to the supervised learning tasks.

6. Conclusion and Vision for Future Work

In this work, we formulate location encoding as an inductive learning based, task
agnostic encoding technique for geographic locations. A formal definition of location
encoding is provided, and two expected properties — distance preservation and direction
awareness — are discussed from the perspective of GIScience. We illustrate the necessity
of location encoding for GeoAl from a statistical machine learning perspective. A general
classification framework has been provided to understand the current landscape of
location encoding research (See Table . We classify the existing location encoders into
two categories: single point location encoder Enc(x) and aggregation location encoder
EneP) (x). For each category, we unify the location encoders into the same formulation
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framework (See Equations [1| and . Different location encoders are also compared
based on various characteristics. Finally, we demonstrate the possible usage of location
encoding for different types of spatial data.

There are several interesting future research directions of location encoding:

(1)

Region representation learning: As we discussed in Section , there is
no satisfactory solution for polygon encoding (so called region representation
learning), which will be very useful in various tasks such as geographic entity
alignment and topological relation reasoning. How to design a topology-aware
polygon encoder which can handle simple polygons, polygon with holes, and
multipolygons simultaneously is an interesting future research direction.
Spatiotemporal point encoding: All the methods discussed so far are focused
on location information whereas the temporal aspect of geospatial data is also very
important. Several important related questions are: 1) How to utilize temporal
information in GeoAl models? 2) Can we encode temporal information in a similar
manner as spatial information? 3) What are the important properties we need to
preserve when doing temporal encoding? 4) How to combine temporal encoding
and location encoding in a single framework? As for event sequences that happen
synchronously (Kazemi et al.2019), i.e., sampled at regular intervals, the temporal
information can be modeled implicitly by RNNs, or fed in RNNs as another input
dimension after transforming time into handcrafted features (Du et al.||[2016, |Li
et al. 2017, [Rao et al|2020). Instead of using handcrafted temporal features,
recent work proposed to encode time as learnable vector representations such as
Time2Vec (Kazemi et al.2019) and |Cai et al.|(2020). These temporal encoders
are expected to preserve important properties such as periodicity, temporal
continuity, invariance to time rescaling, and so on. However, there are no systematic
comparison studies among these temporal encoding approaches. As for combining
location and temporal encoding, one obvious way is to add temporal information
as an additional dimension of the location features. Mac Aodha et al| (2019)
adopted this practice by adding time as an additional feature of PEqp(x) in
Equation [2] This leaded to a small performance improvement (0.25%-1.37%).
However, they failed to consider those important properties of time mentioned
above. Future research is needed to study the pros and cons of different temporal
encoding approaches and how to combine it with location encoding.

Spherical location encoding: As we discussed in Section currently, there
are no existing location encoders which can preserve spherical surface distance.
When we are dealing with large-scale geospatial data sets (e.g., global SST data,
species occurrences all over the world) in which the map distortion problem is no
longer negligible, a spherical-aware location encoder is required which enable us
to directly calculate on a round planet (Chrisman|2017)).

Unsupervised learning for location encoding: Most of the location encoders
listed in Table [I] are trained in a supervised learning fashion which prohibits
the application of the trained location embedding on other tasks. In contrast,
text encoding methods, e.g., BERT, are trained in an unsupervised manner from
numerous unlabeled data, and the pretrained model can be utilized in different
downstream tasks (Devlin et al.[2018]). How to design an unsupervised learning
framework for location encoding is a very attractive research direction. Recently,
multiple point cloud generative models have been proposed such as r-GAN /I-GAN
(Achlioptas et al|2018), Graph-Conv GAN (Valsesia et al.|2019)), tree-GAN (Shu
et al|2019)), PointFlow (Yang et al.|[2019), and Generative PointNet (Xie et al.
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2021). Their objective is to reconstruct given point clouds. This presents one
possible unsupervised learning framework of location encoding for unmarked points
(points without attributes). Another interesting idea is unsupervised learning of
the spatial distribution of marked points (points with attributes).

Data and Codes Availability Statement
There is no code implementation for this review paper.
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Figure 1.: An illustration of location encoding. Here, we use location-based species
classification as an example of the downstream tasks. Those 20 points in 2D space
represent species occurrence records. Each occurrence can be written as p; = (x;, ;)
where x; indicates the 2D locations and y; indicates the corresponding species type,
i.e., the ground truth label. V'(x;) indicates the spatial neighborhood of x;. A location
encoder Enc(-) takes 2D location x; as its input and outputs a location embedding as
a high dimensional vector. This embedding is further fed into a downstream NN model
M() for species prediction. The whole model architecture can be trained end-to-end in
a supervised learning manner.
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Figure 2.: An illustration of the direction preservation property of location encoding.
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Figure 3.: An illustration of how location encoding can help to produce learning-friendly
representations of geographic locations for downstream models. We use the same 20
points in Figure [I| as an example of P = {p;}. The red and blue points indicate they
belong to two different classes. My and M, are the illustrations of the trained binary
classifiers in the original geographic space and the location embedding space.
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Figure 4.: An illustration of the mth aggregation layer of SAGAT.
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Table 1.: Overview of location encoding approaches. Single point location encoders
Ene(x) and aggregation location encoders Enc(P)(x) are further classified based on
either PE(x) or N (x) (see Figure [1)). (M) indicates multi-scale representation. *
indicates a generalized version of the original model cited. We consider multiple criteria
of location encoders: 1) L: The spatial dimension of P; 2) Parametric: Is the location
encoder a parametric model (Yes) or non-parametric model (No)? 3) Mul.S.: Does
the location encoding adopt a multi-scale approach? 4) Dist.P.: Does this location
encoder preserve distance (Property [2.1)7 5) Dir.A.: Is this location encoder aware of
direction (Property [2.2)? For Dist.P. and Dir.A. “Yes” or “No” indicates whether the
property can be proved empirically (for example by using the response maps of trained
location encoders Mai et al.[(2020b)). “-” indicates that the property is unknown. “Yes+"
indicates that the property was shown both theoretically and empirically.

Encoder | PE(x) Model L | Parametric | Mul.S. | Dist.P. | Dir.A.
Discretization onehot (Tang et al[2015) 2,3 Yes No No -
tile(Ma1 et al.|[2020b)) 2,3 Yes No No -
Direct direct(Xu et al.[2018}|Chu et al.|2019, 2,3 Yes No Yes Yes
Enc(x) Rao et al.|[2020)
Sinusoidal wrap(Mac Aodha et al.|2019) 2 Yes No Yes -
TF (Zhong et al.||2020) 2,3 Yes Yes - -
Sinusoidal (M) | theory/Space2Vec (Mai et al.[2020b) | 2 Yes Yes Yes+ Yes
grid/Space2Vec (Mai et al.[|2020b) |2,3 Yes Yes Yes -
Encoder | N (x) Model L | Parametric | Mul.S. | Dist.Pr. | Dir.A.
GPS2Vec(Yin et al.[2019) 2 Yes No - -
Kernel rbf(Mai et al.||2020b)) 2,3| Yes/No No Yes No
Adapted kernel* (Berg et al.|[2014) |2,3| Yes/No No - -
Global PointNet (Qi et al.[|2017a) 2,3 Yes No - -
Enc® (x) VoxelNet (Zhou and Tuzel[2018) 2,3 Yes No - -
Local SAGAT (Mai et al.|2020b) 2,3| Yes/No |Yes/No| Yes/No |Yes/No
DGCNN (Wang et al.|[2019) 2,3 Yes No - -
PointNet++ (Q1 et al.[2017b) 2,3 Yes Yes - -
Hierarchical PointCNN (Li et al.|2018b) 2,3 Yes Yes - -
GraphCNN (Valsesia et al.|[2019) 2,3 Yes Yes - -
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