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ABSTRACT
A common need for artificial intelligence models in the broader geoscience is to
represent and encode various types of spatial data, such as points (e.g., points
of interest), polylines (e.g., trajectories), polygons (e.g., administrative regions),
graphs (e.g., transportation networks), or rasters (e.g., remote sensing images),
in a hidden embedding space so that they can be readily incorporated into deep
learning models. One fundamental step is to encode a single point location into
an embedding space, such that this embedding is learning-friendly for downstream
machine learning models such as support vector machines and neural networks. We
call this process location encoding. However, there lacks a systematic review on the
concept of location encoding, its potential applications, and key challenges that need
to be addressed. This paper aims to fill this gap. We first provide a formal definition
of location encoding, and discuss the necessity of location encoding for GeoAI
research from a machine learning perspective. Next, we provide a comprehensive
survey and discussion about the current landscape of location encoding research.
We classify location encoding models into different categories based on their inputs
and encoding methods, and compare them based on whether they are parametric,
multi-scale, distance preserving, and direction aware. We demonstrate that existing
location encoding models can be unified under a shared formulation framework. We
also discuss the application of location encoding for different types of spatial data.
Finally, we point out several challenges in location encoding research that need to
be solved in the future.

KEYWORDS
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1. Introduction and Motivation1

The rapid development of novel deep learning and representation learning techniques and2

the increasing availability of diverse, large-scale geospatial data have fueled substantial3

progress in geospatial artificial intelligence (GeoAI) research (Smith 1984, Couclelis4
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1986, Openshaw and Openshaw 1997, Janowicz et al. 2020). This includes progress on5

a wide spectrum of challenging tasks such as terrain feature detection and extraction6

(Li and Hsu 2020), land use classification (Zhong et al. 2019), navigation in the urban7

environment (Mirowski et al. 2018), image geolocalization (Weyand et al. 2016, Izbicki8

et al. 2019), toponym recognition and disambiguation (DeLozier et al. 2015, Wang et al.9

2020), geographic knowledge graph completion and summarization (Qiu et al. 2019,10

Yan et al. 2019), traffic forecasting (Li et al. 2018a), to name a few.11

Despite the fact that these models are very different in design, they share a common12

characteristic - they need to represent (or encode) different types of spatial data, such13

as points (e.g., points of interest (POIs)), polylines (e.g., trajectories), polygons (e.g.,14

administrative regions), graphs/networks (e.g., transportation networks), or raster (e.g.,15

satellite images), in a hidden embedding space so that they can be utilized by machine16

learning models such as deep neural nets (NN). For raster data, this encoding process17

is straightforward since the regular grid structures can be directly handled by existing18

deep learning models such as convolutional neural networks (CNN) (Krizhevsky et al.19

2012). The representation problem gets more complicated for vector data such as point20

sets, polylines, polygons, and networks, which have more irregular spatial organization21

formats, because the concepts of location, distance, and direction among others do not22

have straightforward counterparts in existing NN and it is not trivial to design NN23

operations (e.g., convolution) for irregularly structured data (Valsesia et al. 2019).24

Early efforts perform data transformation operations to convert the underlying25

spatial data into a format which can be handled by existing NN modules (Wang et al.26

2019). However, this conversion process often leads to information loss. For example,27

many early research about point cloud classification and segmentation first converted28

3D point clouds into volumetric representations (e.g., voxelized shapes) (Maturana and29

Scherer 2015, Qi et al. 2016) or rendered them into 2D images (Su et al. 2015, Qi et al.30

2016). Then they applied 3D or 2D CNN on these converted data representations for the31

classification or segmentation tasks. These practices have a major limitation – choosing32

an appropriate spatial resolution for a volumetric representation is challenging (Qi et al.33

2017a). A finer spatial resolution leads to data sparsity and higher computation cost34

while a coarser spatial resolution provides poor prediction results.35

The reason for performing such data conversions is a lack of means to directly handle36

vector data in deep neural nets. An alternative approach is to encode these spatial37

data models directly. The first step towards such goal is to encode a point location38

into an embedding space such that these location embeddings can be easily used in the39

downstream NN modules. This is the idea of location encoding.40

Location encoding (Mac Aodha et al. 2019, Mai et al. 2020b, Zhong et al. 2020,41

Mai et al. 2020a, Gao et al. 2019, Xu et al. 2018, Chu et al. 2019) refers to a NN-42

based encoding process which represents a point/location into a high dimensional43

vector/embedding such that this embedding can preserve different spatial information44

(e.g., distance, direction) and, at the same time, be learning-friendly45

for downstream machine learning (ML) models such as neural nets and support46

vector machines (SVM). By learning friendly we mean that the downstream model does47

not need to be very complex and does not require lots of training data to prevent model48

overfitting. The encoding results are called location embeddings. And the corresponding49

NN architecture is called location encoder, which is a general-purpose model that can50

be incorporated into different GeoAI models for different downstream tasks.51

Figure 1 is an illustration of location encoding. Here, we use location-based species52

classification as an example of the downstream tasks which aims at predicting species y53

based on a given location x. The training objective is to learn the conditional distribution54
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P py|xq, i.e., the probability of observing y given x, which is highly non-linear. The55

idea of location encoding can be understood as a feature decomposition process which56

decomposes location x (e.g., a two-dimensional vector of latitude and longitude) into57

a learning-friendly high dimensional vector (e.g., a vector with 100 dimensions), such58

that the highly non-linear distribution P py|xq can be learned with a relatively simple59

learner such as a linear SVM or a shallow NN model Mpq. The key benefits of such an60

architecture are to require less training data with simpler learners, and the possibility61

to leverage unsupervised training to better learn the location representations.62

[Figure 1 about here.]63

Recently, the effectiveness of location encoding has been demonstrated in multiple64

GeoAI tasks including geo-aware image classification (Yin et al. 2019, Chu et al. 2019,65

Mac Aodha et al. 2019, Mai et al. 2020b), POI classification (Mai et al. 2020b), place66

annotation (Yin et al. 2019), trajectory prediction (Xu et al. 2018, Yin et al. 2019),67

location privacy protection (Rao et al. 2020), geographic question answering (Mai68

et al. 2020a), 3D protein distribution reconstruction (Zhong et al. 2020), point cloud69

classification and segmentation (Qi et al. 2017a,b, Li et al. 2018b), and so on. Despite70

these successful stories, there is still a lack of a systematic review on such a topic. This71

paper fills this gap by providing a comparative survey on different location encoding72

models. We give a general conceptual formulation framework which unifies almost all73

existing location encoding methods.74

It is worth mentioning that the location encoding discussed in this work is different75

from the traditional location encoding systems (i.e., geocoding systems)1 which convert76

geographic coordinates into codes using an encoding scheme such as Geohash or codes77

for partition tiles such as Open Location Code and what3words. These traditional78

encoding systems are designed to support navigation and spatial indexing, while the79

neural location encoders we present here are used to support downstream ML models.80

The contributions of our work are as follows:81

(1) Although there are multiple existing works on location encoding, the necessity to82

design such a model is not clear. In this work, we formally define the location83

encoding problem and discuss the necessity from a machine learning perspective.84

(2) We conduct a systematic review on existing location encoding research. A85

detailed classification system for location encoders is provided and all models86

are reformulated under a unified framework. This allows us to identify the87

commonalities and differences among different location encoding models. As88

far as we know, this is the first review on such a topic.89

(3) We extend the idea of location encoding to the broader topic of encoding different90

types of spatial data (e.g., polylines, polygons, graphs, and rasters). The possible91

solutions and challenges are discussed.92

(4) To emphasize the general applicability of location encoding, we discuss its potential93

applications in different geoscience domains. We hope these discussions can open94

up new areas of research.95

The rest of this paper is structured as follows. We first introduce a formal definition96

of location encoding in Section 2. Then, in Section 3, we discuss the necessity of location97

encoding. Next, we provide a general framework for understanding the current landscape98

of location encoding research and survey a collection of representative work in Section99

4. In Section 5, we discuss how to apply location encoding for different types of spatial100

1https://gogeomatics.ca/location-encoding-systems-could-geographic-coordinates-be-replaced-and-at-what-cost/
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data. Finally, we conclude our work and discuss future research directions in Section 6.101

2. Definitions102

Definition 2.1 (Location Encoding). Given a set of points P “ tpiu, e.g., the locations103

of sensors, species occurrences, and so on, where each point (e.g., an air quality sensor)104

pi “ pxi,viq is associated with a location xi P RL (e.g., a sensor’s location) in L-D105

space (L “ 2, 3) and attributes vi P RE (e.g., air quality measurements). We define the106

location encoder as a function EncpP,θqpxq : RL Ñ Rd (L ! d), which is parameterized107

by θ and maps any coordinate x in space to a vector representation of d dimension.108

This process is called location encoding and the results are called location embeddings.109

Here, EncpP,θqpxq indicates that the encoding result of x may also depend on other110

locations in P . When EncpP,θqpxq is independent of other points in P , we can simplify111

it to Encpθqpxq. Note that sometimes, the input of the location encoder can be both112

locations and attributes, i.e., EncpP,θqpx,vq : RL`E Ñ Rd.113

Figure 1 illustrates the idea of location encoding in Definition 2.1. The 20 2D points114

serve as an example of P “ tpiu with L “ 2 and n “ |P| “ 20. Note that EncpP,θqpxq115

can not only be used to encode global location x, but also be utilized to encode the116

spatial relation between two locations, i.e., the spatial affinity vector ∆AB “ xA ´ xB.117

One question we may ask is whether a location encoder can preserve spatial118

information such as distance and direction information after the encoding process. From119

a spatial information preservation perspective, there are two properties we expect a120

location encoder to have: distance preservation and direction awareness.121

Property 2.1 (Distance Preservation). The distance preservation property requires122

two nearby locations to have similar location embeddings. More concretely, given123

any pair of location pxA,xBq, the inner product/similarity between their resulting124

location embeddings, i.e, xEncpP,θqpxAq, EncpP,θqpxBqy monotonically decreases when125

the distance2 between xA and xB, i.e., ∥ xA ´ xB ∥, increases.126

[Figure 2 about here.]127

Property 2.1 can be seen as a reflection of Tobler’s First Law of Geography (TFL)128

(Tobler 1970) in location encoding. The requirement of distance preservation has129

been adopted by multiple existing location encoding works. For example, Gao et al.130

(2019) proposed a learnable location representation model vpxq which consists of131

three sub-models: vector matrix multiplication, magnified local isometry, and global132

adjacency kernel. The global adjacency kernel sub-model assumes xvpxaq, vpxbqy “133

pKdqfp∥ xa ´ xb ∥q, where K, d are predefined constants and fprq is the adjacency134

kernel that decreases monotonically as r increases. It can be seen that this sub-model135

directly satisfies Property 2.1. Mai et al. (2020b) also showed that their proposed136

multi-scale location encoder has a similar distance preservation property.137

Property 2.2 (Direction Awareness). Locations that point into similar directions have138

more similar (relative) location embeddings than those who point into very different139

directions. More concretely, as shown in Figure 2, given xO as the reference point and140

y axis as the global north direction, xA, xB , and xC are on the same circle centered at141

xO and therefore share the same distance to xO. The relative spatial relation between142

2This can be Euclidean distance, manhattan distance, geodesic distance, great circle distance, and so on.
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xA and xO is defined as ∆AO “ xA ´ xO. The direction of ∆AO, i.e., =AO is defined143

as the clockwise angle between y axis and ∆AO. The same logic applies to xB and xC .144

We say a location encoder is direction aware if it satisfies the following property: the145

inner product xEncpP,θqp∆AOq, EncpP,θqp∆BOqy ą xEncpP,θqp∆AOq, EncpP,θqp∆COqy if146

|=AO ´ =BO| ă |=AO ´ =CO|.147

Property 2.2 is a reflection of the Generalized First Law of Geography (Zhu et al.148

2019b) which includes direction into the consideration of similarities. In this paper,149

we call a location encoder an isotropic location encoder if it only preserves the spatial150

proximity but ignores the variance of location embeddings when direction changes.151

We need to develop direction-aware, so-called anisotropic location encoders when the152

isotropicity assumption can not be held anymore. In fact, in normal spatial analysis,153

isotropicity is the “default” assumption in most of the time. Although anisotropic154

versions of many geospatial analysis techniques have been developed such as directional155

kriging (Te Stroet and Snepvangers 2005), anisotropic clustering (Mai et al. 2018),156

direction remains on the level of an afterthought (Zhu et al. 2019b). A similar situation157

can be seen in the current location encoding research, or GeoAI research in general.158

Compared with studies on distance preserved location encoders, there has been much less159

work on how to make a location encoder direction aware. Mai et al. (2020b) empirically160

showed that their multi-scale location encoder as well as many baseline models are161

direction-aware. However, this is just a by-product from their visualization analysis162

of the response maps of these location encoders. No theoretical proof is provided. As163

far as we know, there is no existing research that aims at developing a direction-aware164

location encoder deliberately.165

Besides the above two spatial information preservation properties, Location Encoder166

EncpP,θqpq should also satisfy the following two properties to ensure its generalizability.167

Property 2.3 (Inductive Learning Method). Location Encoder EncpP,θqpq is an168

inductive learning method, i.e., the pretrained location encoder can be utilized to169

encode any location without retraining even if it does not appear in the training set.170

Property 2.3 makes EncpP,θqpq differ from many existing transductive-learning-based171

location representation learning methods such as Location2Vec (Zhu et al. 2019a),172

POI2Vec (Feng et al. 2017), and Kejriwal and Szekely (2017). For example, Kejriwal173

and Szekely (2017) converted a set of GeoNames locations into a k-th nearest neighbor174

graph in which locations (i.e., nodes) are linked to nearby locations by distance-weighted175

edges. A random-walk-based graph embedding method is used to learn an embedding176

for each location. This method is essentially a transductive learning model: when new177

locations are added to the training set, the graph is modified and the whole model has178

to be retrained to obtain the embeddings of new locations.179

Property 2.4 (Task Independence). Location Encoder EncpP,θqpq should be task-180

independent or so called task-agnostic, i.e., the same model architecture can be used in181

different downstream tasks without any modification.182

Property 2.4 also differentiate EncpP,θqpq from some existing task-dependent location183

representation approaches. For instance, both Location2Vec (Zhu et al. 2019a) and184

POI2Vec (Feng et al. 2017) learned the embeddings of locations (e.g., cell stations,185

POIs) based on trajectories by adopting a Word2Vec-style training objective. This kind186

of location representation cannot be easily transferred to other tasks beyond human187

mobility. Similarly, Gao et al. (2020) discretized the study area into N ˆ N lattice and188
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learned the embedding of each location by letting a Long Short Term Memory (LSTM)189

based artificial agent navigate through the study area. The learned location embeddings190

are used for simulation purpose but not for other geospatial tasks.191

Property 2.5 (Parametric Model). A parametric model is a learning model with a192

finite set of parameters θ.193

A parametric model is not very flexible, but the model complexity is bounded. In194

contrast, a non-parametric model assumes that the data distribution cannot be defined195

with a finite set of parameters θ and the size of parameters θ can grow as the amount196

of data grows (Russell and Norvig 2015). So a non-parametric model is more flexible197

while the model complexity is unbounded.198

Although Property 2.1, 2.2, and 2.5 are expected for location encoders, not all199

models we will discuss in Section 4 have these properties. See Table 1 for the detailed200

comparison. However, all location encoders discussed in Section 4 satisfy Property 2.3201

and 2.4. So we will not discuss these two properties separately for each model.202

For simplicity, we will use Encpq and EncpPqpq to indicate Encpθqpq and EncpP,θqpq.203

3. The necessity of location encoding for GeoAI204

In this section we motivate the need to embed a location x P RL (L “ 2, 3) into a high205

dimensional vector EncpP,θqpxq P Rd, which may seem counter-intuitive at first. We206

mainly address this issue from a machine learning perspective.207

A key concept in statistical machine learning is bias-variance trade-off (Hastie et al.208

2009). On the one hand, when a learning system is required to pick one hypothesis out209

of a large hypothesis space (e.g., deciding the parameters of a large 24 layer neural210

networks), it is flexible enough to approximate almost any non-linear distribution (low211

bias). However, it needs a lot of training data to prevent overfitting. This is called212

the low bias high variance situation. On the other hand, when the hypothesis space is213

restricted (e.g., linear regression or single layer neural nets) the system has little chance214

to over fit, but might be ill-suited to model the underlying distribution and result in low215

performance in both training and testing sets (high bias). This situation is called low216

variance high bias. For many applications the data distribution is complex and highly217

non-linear. We may not have enough domain knowledge to design good models with low218

variance (the effective model complexity) and low bias (the model data mismatch) at219

the same time. Moreover, we might want to avoid adopting too much domain knowledge220

into the model design which will make the resulting model task specific. For example,221

the distribution of plant species (such as P py|xq in Figure 1) may be highly irregular222

influenced by several geospatial factors and interactions among species (Mac Aodha223

et al. 2019). Kernel (smoothing) methods (e.g., Radial Basis Function (RBF)) and224

neural networks (e.g., feed-forward nets) are two types of most successful models which225

require very little domain knowledge for model design. They both have well established226

ways of controlling the effective model complexity. The kernel methods are more suited227

to low dimensional input data – modeling highly non-linear distributions with little228

model complexity. However, they need to store the kernels during inference time which229

is not memory efficient. Neural networks have more representation power which means230

a deep network can approximate very complex functions with no bias, while requiring231

more domain knowledge for model design to achieve lower variance and bias.232

From a statistical machine learning perspective, the main purposes of location233
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encoding is to produce learning friendly representations of geographic locations for234

downstream models such as SVM and neural networks. By learning friendly we mean235

that the downstream model does not need to be very complex and require large236

training samples. For example, the location encoding process may perform a feature237

decomposition (x P RL Ñ EncpP,θqpxq P Rd, where L ă d) so that the distribution we238

want to model such as P py|xq in Figure 1 becomes linear in the decomposed feature239

space, and a simple linear model can be applied. Figure 3 illustrates this idea by using240

a simple binary classification task. If we use the original geographic coordinates x as241

the input features to train the binary classifier, the resulting classifier M1 will be a242

complex and nonlinear function which is prone to overfitting as shown in the left of243

Figure 3. After the location encoding process, the geographic coordinates feature is244

decomposed so that a simple linear model M2 can be used as the binary classifier3.245

[Figure 3 about here.]246

[Table 1 about here.]247

4. A review of the current landscape of location encoding248

In this section, we provide a comprehensive review of the existing location encoding249

techniques. Instead of enumerating every existing location encoding approach we250

organize our discussion in a top-down manner. We first classify location encoding251

models into different groups according to the input of location encoders and how they252

manipulate the spatial features. Firstly, according to the input, we can classify the253

existing location encoders into two categories: single point location encoder Encpxq254

and aggregation location encoder EncpPqpxq. Encpxq only considers the current point’s255

location while EncpPqpxq additionally considers points in its neighborhood N pxq Ď P.256

Then, in Section 4.1, Encpxq is further classified into sub-categories based on the type257

of positional encoder PEpxq. Next, in Section 4.2, EncpPqpxq is classified based on the258

used neighborhood N pxq. The survey result is summarized in Table 1. Finally, the259

comparison among different models will be discussed in Section 4.3.260

4.1. Single point location encoder Encpxq261

Interestingly, most existing single point location encoders, i.e., Encpxq, (Tang et al.
2015, Gao et al. 2019, Xu et al. 2018, Chu et al. 2019, Mac Aodha et al. 2019, Mai
et al. 2020b, Zhong et al. 2020, Rao et al. 2020) share a similar structure:

Encpxq “ NNpPEpxqq, (1)

Here, NNp¨q : RW Ñ Rd is a learnable neural network component which maps the262

input position embedding PEpxq P RW into the location embedding Encpxq P Rd. A263

common practice is to define NNp¨q as a multi-layer perceptron, while Mac Aodha et al.264

(2019) adopted a more complex NNp¨q which includes an initial fully connected layer,265

followed by a series of residual blocks. The purpose of NNp¨q is to provide a learnable266

component for the location encoder, which captures the complex interaction between267

input locations and target labels.268

3The dimensionality of the location embedding space will be larger (e.g., 32 or 128); we use 3D here for ease of
illustration.
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PEp¨q is the most important component which distinguishes different Encpxq. Usually,269

PEp¨q is a deterministic function which transforms location x into a W -dimension270

vector, so-called position embedding. The purpose of PEp¨q is to do location feature271

normalization (Chu et al. 2019, Mac Aodha et al. 2019, Rao et al. 2020) and/or feature272

decomposition (Mai et al. 2020b, Zhong et al. 2020) so that the output PEpxq is273

more learning-friendly for NNp¨q. In Table 1 we further classify different Encpxq into274

four sub-categories based on their PEp¨q: discretization-based, direct, sinusoidal, and275

sinusoidal multi-scale location encoder. Each of them will be discussed in detail below.276

4.1.1. Discretization-based location encoder277

The early pioneers (Tang et al. 2015) argued that GPS coordinates are rather precise278

location indicators which are difficult to use by a classifier. So instead of using the279

coordinates, they discretized the whole study area into grid tiles and indicates each280

point by the corresponding grid that it falls into.281

Definition 4.1 (Discretization-based Location Encoder). A discretization-based282

location encoder divides the study area (e.g., the earth surface) into regular area283

units such as grids, hexagons, or triangles - Encdiscretizepxq “ NNpPEdiscretizepxqq284

where PEdiscretizep¨q is usually a tile lookup function which maps x to a one hot vector285

that indicates the corresponding tile id it falls into.286

onehot. Early work in location encoding does not really have learnable component287

specific to the location encoder. For example, Tang et al. (2015) divided the study area288

(the contiguous United States) into M rectangle grids. Given a location x (the geotag of289

an image), PEonehotpxq P RM is a one hot vector to indicate which grid x falls into and290

NNp¨q as an identity function, i.e., Enconehotpxq “ NNpPEonehotpxqq “ PEonehotpxq.291

tile. Later Mai et al. (2020b) introduced tile as one of Encdiscretizepxq which uses a292

trainable location embedding matrix as NNp¨q. This makes it possible for the model to293

benefit from unsupervised training.294

Although Encdiscretizepxq shows promising results on tasks such as geo-aware image295

classification, it has several inherent limitations: 1) Each tile embedding are trained296

separately and spatial dependency is ignored, i.e., they do not have the distance297

preservation property; 2) They have only one fixed spatial scale which can not effectively298

handle points with varied density; 3) Choosing the correct discretization is very299

challenging (Openshaw 1981, Fotheringham and Wong 1991), and incorrect choices will300

significantly affect the model’s performance and efficiency (Lechner et al. 2012).301

There are some possible solutions for these problems. For problem 1 we can add a302

regularization term in the loss function to make nearby tile embeddings have higher303

cosine similarity. For problem 2 and 3 one can adopt an adaptive discretization (Weyand304

et al. 2016) or multi-level discretization strategy as Kulkarni et al. (2020) did which uses305

deeper levels (smaller tiles) for higher point density areas and shallower levels (larger306

tiles) for sparse areas. However, finer spatial resolution or multi-level discretization307

means more tiles and more learnable parameters which can easily lead to overfitting.308

4.1.2. Direct location encoder309

Recently, researchers adopted a rather simple approach by directly applying neural310

networks to (normalized) coordinates (Xu et al. 2018, Chu et al. 2019, Rao et al. 2020).311

Definition 4.2 (Direct Location Encoder). A direct location encoder is defined as312
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Encdirectpxq “ NNpPEdirectpxqq where PEdirectpxq is usually a function to normalize313

or standardize the input location feature x and NNp¨q is a multi-layer perceptron.314

direct. There are many slight variations of Encdirectpxq models. Chu et al. (2019)315

took the input longitude and latitude (i.e., x “ rλ, ϕsT of a image) and normalized them316

to range r´1, 1q by dividing them with constant values. Similarly, in trajectory synthesis317

study, Rao et al. (2020) deployed PEdirectpxq which standardized each trajectory point318

x “ rλ, ϕsT by using the centroid of all trajectory points. In order to perform pedestrian319

trajectory prediction, Xu et al. (2018) also designed a simple location encoder whose320

PEdirectpxq normalizes x to r0, 1s. Without a feature decomposition step, these models321

often fail to capture the fine details of data distributions, and have worse prediction322

accuracy than tile on specific tasks.323

4.1.3. Sinusoidal location encoder324

Definition 4.3 (Sinusoidal Location Encoder). A sinusoidal location encoder is defined325

as Encsinupxq “ NNpPEsinupxqq where PEsinupxq is a deterministic function which326

processes x with sinusoidal functions, e.g., sinpq, after location feature normalization.327

wrap. Mac Aodha et al. (2019) developed Encwrappxq “ NNpPEsinupxqq which
uses sinusoidal functions to wrap the geographic coordinates. In Equation 2, longitude
λ and latitude ϕ are first normalized into range r´1, 1s by dividing by 180˝ and 90˝

accordingly and then are fed into sinpπxq and cospπxq functions.

PEwrappxq “ rsinpπ
λ

180˝
q, cospπ

λ

180˝
q, sinpπ

ϕ

90˝
q, cospπ

ϕ

90˝
qs, where x “ pλ, ϕq (2)

The purpose to use sinusoidal functions is to wrap geographic coordinates around the328

world Mac Aodha et al. (2019). This ensures that longitude λ1 “ ´180˝ and λ2 “ 180˝
329

have the same encoding results. However, applying this encoding strategy to latitudes330

is problematic. As for ϕ1 “ ´90˝ and ϕ2 “ 90˝, i.e., the South pole and North pole,331

they would have identical encoding results which is problematic. Moreover, even if we332

fix this problem, wrap is still not a spherical distance-preserved location encoder.333

4.1.4. Sinusoidal multi-scale location encoder334

One limitation of all location encoders we discussed so far is that they can not handle335

non-uniform point density (Qi et al. 2017a) or mixtures of distributions with very336

different characteristics (Mai et al. 2020b). For example, given a set of POIs, some types337

tend to cluster together such as night clubs, women’s clothing, restaurants while other338

POI types are rather evenly distributed such as post offices, schools, and fire stations.339

Similarly, as for species occurrences, some species herd together such as wildebeests340

and zebras while the individuals of other species tend to walk alone and protect their341

own territory such as tigers and bears. This will result in different spatial distribution342

patterns of these species occurrences. In order to jointly model these spatial distributions,343

we need an encoding method which supports multi-scale representations.344

Inspired by the position encoding architecture in Transformer (Vaswani et al. 2017),345

researchers developed multi-scale location encoders by using sinusoidal functions with346

different frequencies (Mai et al. 2020b, Zhong et al. 2020).347

Definition 4.4 (Sinusoidal Multi-Scale Location Encoder). The sinusoidal multi-scale
location encoder is defined as Encsinmulpxq “ NNpPEsinmulpxqq where PEsinmulpxq

9



decomposes x into a multi-scale representation based on different sinusoidal functions
with different frequencies:

PEsinmulpxq “ rPE
pSq

0 pxq; ...;PEpSq
s pxq; ...;PE

pSq

S´1pxqs. (3)

Here S is the total number of scales. PE
pSq
s pxq processes the location features with348

different sinusoidal functions whose frequency is determined by the scale s.349

TF. Zhong et al. (2020) slightly changed the position encoding architecture in350

Transformer (Vaswani et al. 2017) and applied them in high dimension data points351

such as 3D Cartesian coordinates.352

Definition 4.5 (Transformer-based Location Encoder). The transformer-based location
encoder EncTF pxq “ NNpPETF pxqq is following Definition 4.4. For each scale s P

t0, 1, ..., S ´ 1u, PE
pSq
s pxq “ PETF

s pxq is defined by Equation 4. Here, xrls indicates
the lth dimension of x.

PETF
s pxq “rPETF

s,1 pxq; ...;PETF
s,l pxq; ...;PETF

s,L pxqs, (4a)

where PETF
s,l pxq “ rcosp

2πSxrls

Sps`1q{S
q; sinp

2πSxrls

Sps`1q{S
qs, @l “ 1, 2, ..., L. (4b)

Zhong et al. (2020) showed that EncTF pxq works well for noiseless data, but for noisy353

data they need to exclude the top 10% highest frequency components (the smallest354

several s) in Equation 3. This indicates the necessity of another parameter to control355

the smallest scale we consider in sinusoidal functions. That is the usage of λmin in356

theory and grid which we will discussed below.357

theory. Space2Vec (Mai et al. 2020b) introduced theory as a 2D multi-scale location358

encoder by using sinusoidal functions with different frequencies.359

Definition 4.6 (Theory Location Encoder). Let a1 “ r1, 0sT ,a2 “

r´1{2,
?
3{2sT ,a3 “ r´1{2,´

?
3{2sT P R2 be three unit vectors which are

oriented 120˝ apart from each other. λmin, λmax are the minimum and maximum
grid scale, and g “ λmax

λmin
. Enctheorypxq is following Definition 4.4 where in each scale

s P t0, 1, ..., S ´ 1u, PE
pSq
s pxq “ PEtheory

s pxq is defined in Equation 5. Here, x¨, ¨y

indicates vector inner product.

PEtheory
s pxq “ rPEtheory

s,1 pxq;PEtheory
s,2 pxq;PEtheory

s,3 pxqs, (5a)

where PEtheory
s,j pxq “ rcosp

xx,ajy

λmin ¨ gs{pS´1q
q; sinp

xx,ajy

λmin ¨ gs{pS´1q
qs, @j “ 1, 2, 3. (5b)

Both Enctheoryp¨q and Gao et al. (2019) are inspired by the grid cell research from360

neuroscience field (Hafting et al. 2005, Blair et al. 2007, Killian et al. 2012, Agarwal361

et al. 2015). In fact, Gao et al. (2019) inspired and laid the theoretical foundation362

of Enctheorypxq. As we discussed in Section 2, Gao et al. (2019) proposed a location363

representation model vpxq which consists of three sub-models. They also proposed a364

complex-value-based location encoder Ψpxq as an analytical solution for vpxq which365

inspired Enctheoryp¨q. More specifically, given two location xa, xb, Gao et al. (2019)366

proved that xΨpxaq,Ψpxbqy “ 3p1´
β

4
∥ xb ´xa ∥2q where β “∥ aj ∥22“ 1. That means367
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the inner products between their location embeddings increase when ∥ xb ´ xa ∥2368

decrease, which satisfies Property 2.1. Mai et al. (2020b) showed that Enctheoryp¨q also369

satisfies Property 2.1 both theoretically and empirically.370

grid. grid is another type of Encsinmulpxq proposed by Space2Vec (Mai et al. 2020b).371

Definition 4.7 (Grid Location Encoder). Encgridpxq follows Definition 4.4 where at
each scale s P t0, 1, ..., S ´ 1u, PE

pSq
s pxq “ PEgrid

s pxq is defined by Equation 6. Here,
λmin, λmax and g follow the same definition as Definition 4.6.

PEgrid
s pxq “ rPEgrid

s,1 pxq; ...;PEgrid
s,l pxq; ...;PEgrid

s,L pxqs, (6a)

where PEgrid
s,l pxq “ rcosp

xrls

λmin ¨ gs{pS´1q
q; sinp

xrls

λmin ¨ gs{pS´1q
qs, @l “ 1, 2, .., L. (6b)

Mai et al. (2020b) shows that for both theory and grid, λmax can be directly372

determined based on the size of the study area while λmin is the critical parameter373

which decides the highest spatial resolution Encpxq can handle.374

4.1.5. Comparison among different Encpxq375

Compared with discretize which yields identical embeddings for x that fall into the376

same tile, direct can distinguish nearby locations, i.e., Encdirectpxaq ‰ Encdirectpxbq,377

if xa ‰ xb. Mai et al. (2020b) compared them in different tasks and found out that378

without an appropriate location feature normalization PEdirectpxq, direct will show379

lower performance than tile. This indicates the importance of PEdirectpxq.380

One advantage of direct is its simple architecture with fewer hyperparameters.381

However, compared with PEsinupxq and PEsinmulpxq, PEdirectpxq is rather hard for382

NNp¨q to learn from and may produce over-generalized distributions.383

Compared with TF and grid, theory has a theoretical foundation to ensure Property384

2.1. However, theory can only be applied to point sets in 2D space. In contrast, TF385

and grid lack a theoretical guarantee for Property 2.1 while they can be utilized for386

points in any L-D space. TF and grid follow similar idea while grid has an additional387

parameter λmin, which is more flexible for data sets with different characteristics.388

4.2. Aggregation location encoder EncpPqpxq389

Definition 4.8 (Aggregation Location Encoder). The aggregation location encoder
EncpPqpxq jointly considers the location feature x and the aggregated features from the
neighborhood of x, denoted as N pxq. Inspired by the Graph Neural Network (GNN)
framework (Xu et al. 2019), a generic model setup of EncpPqpxq can be defined as

h
p0q
x “ Encpxq, (7a)

g
pmq
x “ AggxiPN pxqth

pm´1q
xi

u, (7b)

h
pmq
x “ Cmbph

pm´1q
x ,g

pmq
x q, (7c)

EncpPqpxq “ Rdtph
pMq
x q. (7d)

It consists of M Location Encoding Aggregation (LEA) layers, which iteratively390

update the location representations. In Equation 7a, the initial location embedding391
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h
p0q
x can be computed based on any single point location encoder discussed in392

Section 4.1. Each LEA layer constitutes one neighborhood aggregation operation393

AggxiPN pxqt¨u (Equation 7b) and a feature combination operation Cmbp¨, ¨q (Equation394

7c). AggxiPN pxqt¨u aggregates the feature h
pm´1q
xi

of xi in N pxq from the previous LEA395

layer which can be seen as an analogy of the convolution operation of CNN on point sets.396

AggxiPN pxqt¨u can be element-wise max/min/mean pooling, sum, or any permutation397

invariant architectures (Zaheer et al. 2017, Qi et al. 2017a, Veličković et al. 2018, Mai398

et al. 2019a). Cmbp¨, ¨q combines the point-wise feature h
pm´1q
x with the aggregated399

features gpmq
x which can be vector concatenation, element-wise max, min or mean. In the400

last layer, a readout function Rdtp¨q, which can be an identity function or a multi-layer401

perceptron, produces the final aggregated location embedding for x (See Equation 7d).402

Equation 7 can be treated as an analogy of the GNN framework (Battaglia et al.403

2018, Xu et al. 2019, Wu et al. 2020b) which is a general framework for different404

neural network architectures applied on graphs such as GCN (Kipf and Welling 2017),405

GraphSAGE (Hamilton et al. 2017), GG-NN (Li et al. 2016), GAN (Veličković et al.406

2018), MPNN (Gilmer et al. 2017), R-GCN (Schlichtkrull et al. 2018), CGA (Mai et al.407

2019a), TransGCN (Cai et al. 2019), and so on.408

N pxq can be defined in different ways such as the top kth nearest locations (Appleby409

et al. 2020, Mai et al. 2020b), locations within a buffer radius (Qi et al. 2017b), or410

locations within the same voxel as x (Zhou and Tuzel 2018). According to the definition of411

N pxq, we classify EncpPqpxq into different categories: kernel, global, local neighborhood,412

and hierarchical neighborhood aggregation location encoder as summarized in Table 1.413

We will discuss each in detail in the following section.414

4.2.1. Kernel-based location encoder415

A kernel-based location encoder needs two components: a predefined kernel function416

kp¨, ¨q and a set of kernel center points Q “ tpju. The selection of kp¨, ¨q depends on417

the nature of the dataset. The popular options are RBF kernels and Mercer kernels418

(Vapnik 2013). Q can be equal to or a subset of the training point set, i.e., Q Ď P or419

can be a predefined point set such as the centers of regular grids (Yin et al. 2019).420

Definition 4.9 (Kernel-Based Location Encoder). Given a kernel function kp¨, ¨q and
the kernel center point set Q “ tpju, we define the kernel-based location encoder as
Equation 8 by following Definition 4.8 where M “ 1.

h
p0q
x “ x, (8a)

g
p1q
x “ Agg

pkernelq
piPN pxq

th
p0q
xi

u “ Ψpxq “ rkpx,x1q; ...; kpx,x|Q|qs, (8b)

h
p1q
x “ Cmbph

p0q
x ,g

p1q
x q “ g

p1q
x , (8c)

Enc
pPq

kernelpxq “ Rdtph
p1q
x q “ NNph

p1q
x q. (8d)

Here, each x has a fixed “neighborhood” - Q, i.e., N pxq “ Q “ tpj “ pxiqu. r¨; ¨s421

indicates vector concatenation. |Q| indicates the total number of kernels and NNp¨q is422

a multi-layer perceptron.423

From a location feature decomposition perspective, Enc
pPq

kernelpxq can be seen as using424

kernel trick to decompose x into multiple kernel features (see Section 3). From a location425

encoding aggregation perspective, it can be seen as aggregating the kernel features426
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derived from the interaction between x and each kernel. Since each location x P P427

shares the same N pxq “ Q, Aggpkernelq
piPN pxq

t¨u does not need to be a permutation invariant428

function. Here we use a concatenation of the |Q| kernel features of x. Examples of429

Enc
pPq

kernelpxq include GPS2Vec (Yin et al. 2019) and the rbf baseline used by Space2Vec430

(Mai et al. 2020b). The main difference among them are the definitions of Q and kp¨, ¨q.431

GPS2Vec. GPS2Vec (Yin et al. 2019) divided the Earth into multiple UTM zones432

and trained different Enc
pPq

kernelpxq separately. Each zone is further divided into q grids433

whose centers are used as Q and kpx,xjq “ expp´
∥ x ´ xj ∥2

ζ
q. Here ∥ ¨ ∥2 indicates L2434

norm and ζ is a constant attenuation coefficient. We denote this model as Enc
pPq

GPS2V ecp¨q.435

rbf. Mai et al. (2020b) proposed a RBF kernel based location encoder as one of their436

baselines, called rbf . Q are randomly sampled q points from P , i.e., Q Ď P . The kernel437

function kpx,xjq “ exp
`

´
∥ x ´ xj ∥22

2σ2

˘

is a RBF kernel. We denote it as Enc
pPq

rbf p¨q.438

Adapted kernel* Instead of using constant kernel bandwidth, Berg et al. (2014)439

also proposed an idea of adaptive kernels to model the spatio-temporal distribution440

prior of bird species. They precomputed this prior as a fixed scale kernel density441

estimation (KDE) map. Here, instead of making a precomputed KDE map, we adopt442

this idea to design an adaptive kernel based location encoder Encakpxq in which443

kpx,xjq “ expp´
∥ x ´ xj ∥22
2hσpxq2

q. hσpxq is a kernel bandwidth function of location x, e.g.,444

defining hσpxq as the half of the distance from x to its Kth nearest neighbor. We use *445

to differentiate Encakpxq from the original model proposed by Berg et al. (2014).446

Despite its simple design and the ability to handle non-linear distributions,447

Enckernelpxq has several shortcomings. Firstly, Enckernelpxq has to memorize Q at448

testing time which will affect memory efficiency. Secondly, since h
p1q
x P R|Q|, the size449

of Q directly decides the number of learnable parameters in NNp¨q. This creates a450

performance-efficiency trade-off problem. When |Q| is small, Enckernelpxq has less451

memory burden. NNp¨q also has fewer learnable parameters which need less training452

data and is less likely to over fit. However, Q is rather distributed sparsely over the453

study area which affects the quality of the encoding results. When |Q| is rather large,454

the encoding results are more accurate, but we need a huge amount of memory to store455

Q and NNp¨q needs more learning parameters. Moreover, the prediction of Enckernelpxq456

also depends on the distribution of Q since it performs poorly on data sparse regions.457

4.2.2. Global aggregation location encoder458

The global aggregation location encoder Enc
pPq

globalpxq defines N pxq as all locations in459

P, i.e., Nglobalpxq “ P.460

PointNet. PointNet (Qi et al. 2017a) was originally proposed for 3D point cloud461

classification and segmentation. Its point cloud segmentation architecture can be462

formulated as a global aggregation location encoder as shown in Equation 9. Equation 9a463

first embeds each point into an initial embedding with a direct-like single point location464

encoder Encpnetpxq. It normalizes the input 3D point feature x “ rx, y, zsT P R3 on to465

a unit sphere, denoted as PEpnetp¨q, before feeding them into NNp¨q. NNp¨q consists466

of two affine transformations (parameterized as t-nets) TN1p¨q and TN2p¨q, which are467

separated by a multi-layer perceptron MLP1p¨q. These affine transformations help to468

make the semantic labeling of a point cloud invariant to geometric transformations (Qi469

et al. 2017a). Note that PointNet only has one LEA layer, i.e., M “ 1. Aggppnetq
xiPN pxq

t¨u470
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is a multi-layer perceptron MLP2p¨q for each xi P Npnetpxq “ P followed by an471

element-wise max pooling MaxPoolxiPNpnetpxqt¨u (See Equation 9b). Cmbp¨, ¨q is a472

vector concatenation operation followed by a multi-layer perceptron MLP3p¨q and the473

readout function Rdtp¨q is an identity function as shown in Equation 9c, 9d.474

h
p0q
x “ Encpnetpxq “ NNpPEpnetpxqq “ TN2pMLP1pTN1pPEpnetpxqqq, (9a)

g
p1q
x “ Agg

ppnetq
xiPNpnetpxq

th
p0q
xi

u “ MaxPoolxiPNpnetpxqtMLP2ph
p0q
xi

qu, (9b)

h
p1q
x “ Cmbppnetqph

p0q
x ,g

p1q
x q “ MLP3prh

p0q
x ;g

p1q
x sq, (9c)

Enc
pPq

pnetpxq “ Rdtppnetqph
p1q
x q “ h

p1q
x . (9d)

4.2.3. Local aggregation location encoder475

The local aggregation location encoder Enc
pPq

localpxq considers a local neighborhood476

N pxq such as all locations within a buffer of x with radius r, i.e., Nbufferpxq “ txi| ∥477

x ´ xi ∥2ď r, @xi P P ^ xi ‰ xu.478

VoxelNet. Zhou and Tuzel (2018) discretizes the 3D space into unit voxels. For any
location x, its neighborhood is defined as Nvoxpxq “ txi|ιpxq “ ιpxiq, @xi P Pu, where
ιpxq is a voxel lookup function which returns the ID of the voxel in which x falls into.

h
p0q
x “ Encvoxpxq “ NNpPEvoxpxqq “ PEvoxpxq, (10a)

g
pmq
x “ Agg

pvoxq

xiPNvoxpxq
th

pm´1q
xi

u “ MaxPoolxiPNvoxpxqtFCN pmqph
pm´1q
xi

qu, (10b)

h
pmq
x “ Cmbpvoxqph

pm´1q
x ,g

pmq
x q “ rh

pm´1q
x ;g

pmq
x s, (10c)

EncpPq
voxpxq “ Rdtpvoxqph

pMq
x q “ h

pMq
x . (10d)

First, a direct-like location encoder Encvoxp¨q (Equation 10a) encodes x “ rx, y, zsT479

into PEvoxpxq “ rx, y, z, x´ x̄, y ´ ȳ, z ´ z̄sT . Here NNp¨q is an identity function4, and480

px̄, ȳ, z̄q is the centroid of all points in Nvoxpxq. Then aggregation (Equation 10b) is481

done by a pointwise fully connected layer FCN pmqp¨q followed by an element-wise max482

pooling MaxPoolxiPNvoxpxqt¨u. gpmq
x encodes the shape contained within the current483

voxel Nvoxpxq. Cmbp¨, ¨q is simply a vector concatenation operation (See Equation 10c),484

and Rdtvoxp¨q is a identity function (See Equation 10d).485

SAGAT. Mai et al. (2020b) proposed a modified graph attention network (GAT)
(Veličković et al. 2018) to model the spatial interactions among nearby locations (e.g.,
POIs). Nknnpxq is defined as all k nearest neighbors of location x. The original model
focuses on encoding feature information v for each location such as POI type, but here
we generalize it as a generic local aggregation location encoder (Spatial-Aware Graph

4In Zhou and Tuzel (2018), they encode each 3D point as rx, y, z, v, x´ x̄, y ´ ȳ, z ´ z̄sT where v is an attribute
of each point, e.g., received reflectance. Here we skip v to focus on the location information. However, as we
said in Definition 2.1, it is very easy to extend EncpP,θqpxq to EncpP,θqpx,vq.
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Attention Network, in short, SAGAT):

h
p0q
x “ Encsagatpxq, (11a)

g
pmq
x “ Agg

psagatq
xiPNknnpxq

th
pm´1q
xi

u “ σp
1

U

U
ÿ

u“1

ÿ

xiPNknnpxq

α
pmq

iu h
pm´1q
xi

q, (11b)

h
pmq
x “ Cmbpsagatqph

pm´1q
x ,g

pmq
x q “ g

pmq
x , (11c)

Enc
pPq

sagatpxq “ Rdtpsagatqph
pMq
x q “ h

pMq
x , (11d)

where α
pmq

iu “
exppσ

pmq

iu q
ř

xoPNknnpxq exppσ
pmq
ou q

, (11e)

σ
pmq

iu “ LeakyReLUppapmq
u qT rh

pm´1q
x ;h

pm´1q
xi

;Encpx ´ xiqsq. (11f)

In Equation 11a, SAGAT first uses Encsagatpxq to lift each location into the embedding486

space. Originally, Mai et al. (2020b) used a feature encoder as Encsagatpxq to represent487

v into a feature embedding. However, here, we define Encsagatpxq to be any single488

point location encoder discussed in Section 4.1. Equation 11b is the most important489

neighborhood aggregation step. Multi-head attention is adopted to aggregate the490

neighboring location embedding h
pm´1q
xi

of xi P Nknnpxq from the previous layer. U is491

the total number of attention heads. αpmq

iu is the attention coefficient of hpm´1q
xi

in the492

uth attention head within the mth layer which is normalized across Nknnpxq based493

on Equation 11e. σpmq

iu is its non-normalized counterpart. In Equation 11f, hpm´1q
x and494

h
pm´1q
xi

are the representations of the center location x and its neighbor xi in the m´1-th495

layer. Compared with GAT (Veličković et al. 2018), Encpx´xiq is added in the attention496

score computation so the spatial affinity ∆xi “ x ´ xi is considered in the aggregation497

step. This practice makes SAGAT “spatial-aware”. apmq
u is a learnable attention vector498

for the uth attention head and LeakyReLUp¨q is the LeakyReLU activation function.499

Encp¨q is an encoder for spatial relation, which can be any single-point location encoder500

such as tile, rbf , direct, theory, grid, TF , and so on. Mai et al. (2020b) only utilized501

one aggregation layer, i.e., M “ 1. Here, we generalize it into multiple layers, i.e.,502

M ě 1. The combination and readout function are both identity functions.503

[Figure 4 about here.]504

Figure 4 illustrates the mth aggregation layer of SAGAT. In this example, we consider505

three neighbors. Three yellow vectors h
pm´1q
xi

(i “ 1, 2, 3) are the hidden embeddings506

of three neighbors. Three green vectors Encpx ´ xiq are the spatial displacement507

embeddings which are used in the spatial-aware graph attention attention. The red508

vector are the hidden embedding of center location x in the next layer.509

DGCNN. Dynamic Graph CNNs (in short, DGCNN) (Wang et al. 2019) is proposed510

to jointly consider global shape structure and local neighborhood information when511

learning on point clouds. DGCNN also has M LEA layers. Compared with other512

location encoders, DGCNN has two crucial distinctions: 1) dynamic graph neighborhood513

N pmq

dgcnnpxq and 2) an edge convolution module EdgeConv
pmq

xiPN pmq

dgcnnpxq
t¨u.514
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g
pmq
x “ Agg

pdgcnnq

xiPN pmq

dgcnnpxq
th

pm´1q
xi

u “ EdgeConv
pmq

xiPN pmq

dgcnnpxq
th

pm´1q
xi

u (12a)

“ MaxPoolxiPN pmq

dgcnnpxq
tMLP pmq

e prh
pm´1q
x ;h

pm´1q
xi

´ h
pm´1q
x squ, (12b)

h
pmq
x “ Cmbpdgcnnqph

pm´1q
x ,g

pmq
x q “ g

pmq
x . (12c)

The former means that instead of using a fixed neighborhood as VoxelNet and515

SAGAT does, DGCNN recomputes the neighborhood of x for each LEA layer.516

In the mth layer, given the embeddings of all locations from the previous layer517

Hpm´1q “ th
pm´1q
xj

|@xj P Pu, N pmq

dgcnnpxq is defined as the top K nearest neighbors518

of hpm´1q
x from Hpm´1q in the embedding space (not Euclidean space). Since Hpm´1q

519

is updated after each LEA layer, N pmq

dgcnnpxq is called a dynamic neighborhood. As520

for the edge convolution, EdgeConv
pmq

xiPN pmq

dgcnnpxq
t¨u is an aggregation operator which521

captures local geometric structure while maintaining permutation invariance. Equation522

12 mainly shows how the edge convolution works while skipping other steps such as523

location embedding initialization and the readout function. EdgeConv
pmq

xiPN pmq

dgcnnpxq
t¨u524

concatenates h
pm´1q
x and its affinity to its neighbor h

pm´1q
xi

´ h
pm´1q
x . The result is fed525

into a multi-layer perceptron MLP
pmq
e p¨q followed by a pointwise max pooling. The526

combination operator is an identity function (See Equation 12c). Although N pmq

dgcnnpxq527

is dynamic, we only consider single-scale neighborhoods for each x. So we classify528

DGCNN can a local aggregation location encoder.529

[Figure 5 about here.]530

4.2.4. Hierachical aggregation location encoder531

Instead of defining one neighborhood per location, the hierachical aggregation532

location encoder Enc
pPq

hieaggpxq defines a multi-scale neighborhood for location x,533

i.e., Nhieaggpxq “ tN p1q

hieaggpxq,N p2q

hieaggpxq, ...,N pmq

hieaggpxq, ...,N pMq

hieaggpxqu which can be534

aggregated in a hierarchical manner as illustrated in Figure 5.535

Definition 4.10 (Hierachical Aggregation Location Encoder). Enc
pPq

hieaggpxq first536

hierarchically aggregates location features from these neighborhoods and then537

propagates the aggregated features back to each location. Enc
pPq

hieaggpxq usually adopts538

a Conv-DeConv (Noh et al. 2015) like architecture which consists of two modules: 1)539

Point Set Encoder PTConv
pPq

hieaggp¨q: a stack of M neighborhood aggregation layers540

(or called Point Conv layers (Li et al. 2018b)) in which each location embedding in the541

m layer is aggregated from its neighborhood N pm´1q

hieagg pxq in the previous layer; 2) Point542

Set Decoder PTDeConv
pPq

hieaggp¨q: a stack of M point feature propagation layers (or543

called Point DeConv layers) in which each DeConv-like architecture propagates the544

location embeddings from the previous layers to a denser set of locations. This whole545

architecture follows the U-Net design (Ronneberger et al. 2015):546
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Enc
pPq

hieaggpxq “ PTDeConv
pPq

hieaggpPTConv
pPq

hieaggpxqq (13)

Here, PTConv
pPq

hieaggp¨q follows the model setup in Equation 7. Sometimes,547

PTDeConv
pPq

hieaggp¨q also follows Equation 7 such as PointCNN (Li et al. 2018b).548

Figure 5 shows an illustration of this Conv-DeConv architecture of Enc
pPq

hieaggpxq.549

PointNet++. As an extension of PointNet, PointNet++ (Qi et al. 2017b) follows550

the Conv-DeConv like architecture in Figure 5 to achieve hierarchical feature aggregation551

and propagation. The point set encoder PTConv
pPq

pnet`pxq consists of M Point Conv552

Layers (so-called set abstraction levels (SAL) in Qi et al. (2017b)) each of which is553

composed of three key layers:554

(1) The sampling layer at the mth SAL samples a point subset Ppmq from the555

previous SAL - Ppm´1q, and, therefore, Ppmq Ă Ppm´1q and Pp0q “ P.556

(2) The grouping layer at the mth SAL groups points in Ppm´1q into the557

neighborhood N pmq

pnet`pxq Ď Ppm´1q of each point x P Ppmq. N pmq

pnet`pxq is defined558

as all points xi P Ppm´1q within radius rpmq.559

(3) The aggregation layer at the mth SAL produces new location embedding h
pmq
x560

for each x P Ppmq by aggregating h
pm´1q
xi

of xi in x’s neighborhood N pmq

pnet`pxq.561

h
p0q
x “ Encdirectpxq, (14a)

g
pmq
x “ Agg

pssgq

xiPN pmq

pnet`pxq
th

pm´1q
xi

u (14b)

“ MaxPoolxiPN pmq

pnet`pxq
tMLP pmqph

pm´1q
xi

qu, (14c)

h
pmq
x “ Cmbpssgqph

pm´1q
x ,g

pmq
x q “ g

pmq
x , (14d)

PTConvpPq
ssg pxq “ Rdtpssgqph

pMq
x q “ h

pMq
x . (14e)

Qi et al. (2017b) proposed several versions of PointNet++: SSG (ablated PointNet++562

with single scale grouping in each level), MSG (multi-scale grouping PointNet++),563

and MRG (multi resolution grouping PointNet++). All of them are Enc
pPq

hieaggpxq564

according to Definition 4.10. Equation 14 shows how the point set encoder of SSG565

works. In the mth SAL, the PointNet layer aggregates features in N pmq

pnet`pxq by using a566

PointNet-like aggregation function Agg
pssgq

xiPN pmq

pnet`pxq
t¨u - MLP pmqp¨q followed by a max567

pooling function (See Equation 14c).568

Because PpMq Ă PpM´1q Ă ... Ă Pp0q “ P, PpMq is a small subset of P which can569

be seen as the skeleton points of P. PTConv
pPq
ssg p¨q can only produce embeddings for570

x P PpMq. To obtain embeddings for each x P P , PTDeConv
pPq
ssg p¨q is used to propagate571

location features back to each x P P by using an inverse distance weighted interpolation572

method. This can be seen as a reverse process of PTConv
pPq
ssg p¨q. The sampled point sets573

tPp0q “ P,Pp1q,Pp2q, ...,Ppmq, ...,PpMqu are used in a reverse manner to progressively574

interpolate the location features back to a larger sampled point set until we get location575

embeddings for all x P P. This idea follows the Conv-DeConv idea in Equation 13.576
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Compared with SSG, MSG changes the point set encoder by concatenating location577

embeddings of the same points obtained from neighborhoods with different spatial578

scales. MSG is rather computationally expensive since it aggregates features in larger579

scale neighborhoods for each centroid point. MRG solves this by concatenating location580

embeddings obtained from different SSG point set encoders with varied numbers of581

SAL layers. Please refer to Qi et al. (2017b) for detailed description.582

PointCNN. Similar to PointNet++, PointCNN (Li et al. 2018b) also utilizes a point583

set encoder with M Point Conv layers (which we call PointCNN Layers here). Each584

layer also consists of three key steps: sampling layer, grouping layer, aggregation layer585

(PointNet layer). The differences from SSG are mainly in grouping and aggregation586

layer. The mth PointCNN grouping layer defines the neighborhood N pmq

ptcnnpxq Ă Ppm´1q
587

as a set of K points uniformly sampled from the KD nearest neighbors of x obtained588

from Ppm´1q. This can be seen as an analogy of the dilated convolution idea from the589

traditional CNN models and D is the dilation rate. The PointCNN aggregation layer590

defines a convolution operation, Convpptcnnqpκpmq, ¨q, over N pmq

ptcnnpxq as an analogy to591

the convolution operation over images. κpmq is the convolution kernels in the mth layer.592

h
pmq

xi,δ
“ MLP

pmq

δ pxi ´ xq,@xi P N pmq

ptcnnpxq, (15a)

X pmq “ MLP pmqpΓN pmq
ptcnnpxq

pxi ´ xqq, (15b)

g
pmq
x “ Agg

pptcnnq

xiPN pmq
ptcnnpxq

th
pm´1q
xi

u (15c)

“ Convpptcnnqpκpmq,X pmq ˆ ΓN pmq
ptcnnpxq

prh
pmq

xi,δ
;h

pm´1q
xi

sqq, (15d)

h
pmq
x “ Cmbpptcnnqph

pm´1q
x ,g

pmq
x q “ g

pmq
x , (15e)

PTConv
pPq

ptcnnpxq “ Rdtpptcnnqph
pMq
x q “ rh

pMq
x ;MLPgpxqs, (15f)

Equation 15 describes how the point set encoder of PointCNN works. In Equation593

15a, a multiple-layer perceptron MLP
pmq

δ p¨q individually lifts the spatial affinity xi ´ x594

for each neighbor xi P N pmq

ptcnnpxq into h
pmq

xi,δ
P RCδ , a Cδ dimensional embedding. Then595

in Equation 15b, ΓN pmq
ptcnnpxq

pxi ´ xq P RKˆL represents a stack of the spatial affinity596

vector xi ´ x P RL of all xi P N pmq

ptcnnpxq which results in a K ˆ L matrix. The597

multi-layer perceptron MLP pmqp¨q converts this matrix into a K ˆK X -transformation598

matrix - X pmq. Next, in Equation 15d, a point convolution operator Convpptcnnqpκpmq, ¨q599

aggregates the concatenation rh
pmq

xi,δ
;h

pm´1q
xi

s P RCδ`dpm´1q . X pmq is used here to permute600

this K ˆ pCδ ` dpm´1qq matrix and has to be aware of the order of all xi P N pmq

ptcnnpxq.601

In the final readout function (Equation 15f) another MLPgp¨q is used to directly lift602

x into a high dimensional embedding which is concatenated with h
pMq
x P RdpMq . This603

can be seen as an analogy of the skip-connection in traditional CNN. In Equation 15d,604

when m “ 1, hpm´1q
xi

“ h
p0q
xi

needs to be initialized. Given pi “ pxi,viq (See Definition605

2.1), Li et al. (2018b) made h
p0q
xi

“ vi. We also can choose h
p0q
xi

“ xi.606

Similar PointCNN layers are deployed in the point set decoder PTDeConv
pPq

ptcnnpxq607

to form a Conv-DeConv like architecture. Similar Convpptcnnqpκpmq, ¨q operator is used608

while the only difference is PTDeConv
pPq

ptcnnpxq has more points but less feature channels609

in its output vs. its input, and tPpmqu are forwarded from PTConv
pPq

ptcnnpxq.610

Graph-Conv GAN. Valsesia et al. (2019) presented a graph convolution based
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Enc
pPq

hieaggpxq for 3D point cloud generation based on Generative Adversarial Network
(GAN) (Goodfellow et al. 2014). We denote the location encoder of the model as
Enc

pPq
gcganpxq. The same Conv-DeConv idea is used here (See Definition 4.10) and

PTConv
pPq
gcganpxq consists of M Point Conv layers each of which is composed of a

sampling, a grouping, and an aggregation layer:

hp0q
x “ Encpxq, (16a)

gpmq
x “ Agg

pgcganq

xiPN pmq

knnpxq
thpm´1q

xi
u “

ÿ

xiPN pmq

knnpxq

F pmqphpm´1q
xi

´ hpm´1q
x qhpm´1q

xi

|N pmq

knnpxq|
,

(16b)

hpmq
x “ Cmbpgcganqphpm´1q

x ,gpmq
x q “ σ

´

gpmq
x ` Wpmqhpm´1q

x ` bpmq
¯

, (16c)

PTConvpPq
gcganpxq “ RdtpgcganqphpMq

x q “ hpMq
x . (16d)

We denote the location embedding of x at the mth layer as h
pmq
x P Rdpmq . Encpxq in611

Equation 16a can be any single point location encoder. Aggpgcganq

xiPN pmq

knnpxq
th

pm´1q
xi

u P Rdpmq

612

in Equation 16b uses a graph convolution operator to aggregate the neighborhood613

N pmq

knn pxq at the mth layer. N pmq

knn pxq is defined as x’s K-th nearest neighbors - N pmq

knn pxq “614

KNNpx,K,Ppm´1qq. hpm´1q
xi

´ h
pm´1q
x P Rdpm´1q capture the spatial affinity between615

neighboring location xi and x. F pmqp¨q denotes a fully-connected network which regresses616

h
pm´1q
xi

´ h
pm´1q
x into a matrix F pmqph

pm´1q
xi

´ h
pm´1q
x q P Rdpmqˆdpm´1q . Equation 16c617

shows how to combine the neighborhood feature g
pmq
x P Rdpmq with x’s own feature618

from the previous layer h
pm´1q
x P Rdpm´1q . Wpmq P Rdpmqˆdpm´1q and bpmq P Rdpmq are a619

learnable matrix and a bias vector respectively.620

It is worth mentioning that the main difference among SSG, PointCNN, and Graph-621

Conv GAN is different aggregation layers used in their point set encoders (See Equation622

14, 15, and 16). Figure 5 shows their shared Conv-DeConv architecture.623

4.3. Comparison among different models624

After introducing Encpxq and EncpPqpxq, it is worth to compare them from different625

aspects. First, we provide a general comparison between Encpxq and EncpPqpxq:626

(1) Encpxq encodes x independently without considering its spatial context. In627

contrast, EncpPqpxq jointly consider x and its neighbor N pxq. EncpPqpxq can be628

seen as a generalizaton of Encpxq in which any Encpxq can be used to compute629

h
p0q
x (See Equation 7).630

(2) When a new location x1 is added to P, Encpxiq is unaffected for all xi P P. In631

contrast, as for EncpPqpxq, for all xi P txi|xi P P ^ x1 P N pxiqu, EncpPqpxiq will632

be updated since N pxiq is modified. However, Enc
pPq

kernelpxq is unaffected since633

N pxq “ Q is the same for all x P P which is unchanged.634

(3) Encpxq has a rather high inference speed, while the aggregation operator in635

EncpPqpxq is time-consuming.636

(4) Since EncpPqpxq additionally considers N pxq, it has richer features for model637

prediction and has a potential higher performance compared to Encpxq.638

We can see that both Encpxq and EncpPqpxq have advantages and disadvantages.639

Although both of them are task-agnostic, they excel at different tasks and the model640
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selection should depend on the current task:641

(1) The first criterion is the input for a single model prediction - one location x642

(e.g., geo-aware image classification) or a whole point set P (e.g., point cloud643

segmentation). The former setup prefers Encpxq given its fast inference speed.644

The latter one prefers EncpPqpxq since it can additionally captures spatial context645

information. Moreover, some tasks require producing a single embedding for the646

whole point set P or parts of it such as point cloud classification and objection647

recognition. For these tasks, EncpPqpxq is the only choice.648

(2) Another criterion is the preference between faster inference speed or higher649

prediction accuracy. A mobile application may prefer a faster inference speed in650

which Encpxq excels. An enterprise application might prefer higher prediction651

accuracy where EncpPqpxq is preferred.652

Next, we compare different sub-categories of location encoders from five different653

perspectives. The results shown in Table 1 will be discussed in detail as follows.654

(1) L: In terms of the spatial dimension of x a location encoder can handle, almost all655

models can handle different L, e.g., L “ 2, 3. Exceptions are GPS2Vec, wrap, and656

theory. GPS2Vec and wrap are specifically designed for GPS coordinates which657

can be uniquely identified by ϕ and λ. theory is designed only for 2D coordinates658

since it is inspired by neuroscience research about grid cells which are critical for659

self-motion integration and navigation of mammals in a 2D space.660

(2) Parametric: As shown in Table 1, all models except rbf and adaptive kernel˚ are661

parametric models, which means their learnable parameters have a fixed size. rbf662

and adaptive kernel˚ can be either parametric or non-parametric models. Since663

h
p1q
x P R|Q| (See Equation 8b, 8c), the size of the kernel center set Q decides the664

number of learnable parameters in NNp¨q of Enc
pPq

kernelpxq. If Q “ P, then both665

rbf and adaptive kernel˚ become non-parametric models. Otherwise, if Q has a666

fixed size, both of them are parametric model.667

(3) Multi-scale: Both Encsinmulpxq and Enc
pPq

hieaggpxq utilize multi-scale approaches.668

So they are better at capturing locations with non-uniform density or a mixture669

of distributions with different characteristics. However, they adopt different670

multi-scale approaches. The former designs multi-scale representations based671

on PEpxq which uses sinusoidal functions with different frequencies, while the672

latter aggregates the neighborhood of x in a hierarchical manner. From a practical673

perspective, many studies have shown that multi-scale location encoders can674

outperform single-scale models and models without scale related parameters675

on various tasks. For example, Qi et al. (2017b) showed that PointNet++ can676

outperform PointNet on both point cloud classification and segmentation task. Mai677

et al. (2020b) showed that multi-scale models (theory and grid) can outperform678

tile, direct, wrap, and rbf on both POI type classification task and geo-aware679

image classification task. Mai et al. (2020a) showed that theory can outperform680

direct on geographic question answering task.681

(4) Distance Prevervation: In terms of the question whether a location encoder is682

distance preserved (Property 2.1), we mainly consider them from a empirical683

perspective, e.g., whether the response map of a location encoder shows a spatial684

continuity pattern or a spatial heterogeneity pattern. The former implies that this685

model is distance preserved, while the latter indicates otherwise. For example, Mai686

et al. (2020b) systematically compared the response maps of different location687

encoders such as tile, direct, wrap, theory, grid, and rbf , after training on the688
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POI type classification task (See Figure 2 in Mai et al. (2020b)). The results689

show that direct, wrap, theory, and rbf are distance preserved while tile and690

direct are not. Moreover, as we discussed in Section 4.1.4, theory also have a691

theoretical proof for distance preservation. So we put “Yes`” in Table 1. In terms692

of other location encoders, since no experiment or theoretical proof has been done,693

whether they have this property is unknown.694

(5) Direction Awareness: A similar logic is used here. The response maps produced by695

Mai et al. (2020b) showed that direct and theory is aware of direction information696

while rbf is not. No conclusion can be drawn for other models.697

(6) SAGAT is a bit different. Its properties also depend on the property of the used698

Encp¨q in Equation 11f. SAGAT can be a parametric or non-parametric (e.g.,699

use rbf as Encp¨q ) model. It becomes a multi-scale approach if Encp¨q uses a700

multi-scale representation. Whether SAGAT has the distance preservation and701

direction awareness property also depends on the used Encp¨q.702

5. Applying location encoding to different types of spatial data703

Location encoders can be directly utilized on multiple point set-based GeoAI tasks such704

as geo-aware image classification, POI type classification, and point cloud segmentation.705

However, there are many other tasks that are defined on other types of spatial data706

such as polylines, polygons, and graphs (networks). This section discusses the potential707

of location encoders to model these types of spatial data.708

5.1. Polyline709

The location-to-polyline relation can be seen as an analogy of the word-to-sentence710

relation. In NLP, a sentence, as an ordered sequence of words, can be encoded by711

different sequential neural nets such as different recurrent neural networks (RNN)712

(Hochreiter and Schmidhuber 1997, Cho et al. 2014) and Transformer (Vaswani et al.713

2017). Their idea is to feed the embedding of each word token into a sequential model714

at each time step to encode the whole word sequence as one single hidden state or a715

sequence of hidden states.716

Similarly, we can encode a polyline as an ordered sequence of locations, by using717

these sequential neural network models. At each time step, we will encode the current718

location into a location embedding and feed it into the sequential model. In fact, several719

recent work about human mobility directly follow this idea. Xu et al. (2018) utilized a720

direct location encoder to represent each trajectory point into a location embedding.721

Then a trajectory, represented as a sequence of location embeddings, are encoded by722

an LSTM for pedestrian trajectory prediction. Similarly, Rao et al. (2020) proposed an723

LSTM-TrajGAN framework to generate privacy-preserving synthetic trajectory data in724

which each trajectory point was encoded by a direct location encoder.725

5.2. Polygon726

Encoding polygon geometries into the embedding space is a logical next step. It is727

very useful for several geospatial tasks which require comparing polygon geometries728

such as geographic entity alignment (Trisedya et al. 2019), spatial topological reasoning729

(Regalia et al. 2019), and geographic question answering (Mai et al. 2019b, 2020a, 2021).730
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However, unlike a polyline, which can be represented by an ordered sequence of731

locations, a polygon should be represented by all locations within it. The topological732

relationships between any location x and a polygon should be preserved after the733

polygon encoding process. In other words, a polygon encoder should be topology aware.734

As far as we know, polygon encoding is still an ongoing research problem that does not735

have satisfactory solutions. Mai et al. (2020a) presented a geographic entity bounding736

box encoding model as the first step towards polygon encoding by uniformly sampling a737

location from within the bounding box of a geographic entity and feeding it to a location738

encoder. Despite its innovativeness, this model still cannot handle fine-grained polygon739

geometries. Yan et al. (2021) proposed a graph convolutional autoencoder (GCAE)740

which can encode simple polygons, i.e., polygons that do not intersect themselves and741

have no holes. GCAE converts the exterior of a simple polygon into a graph and then742

encodes this graph into an embedding space. The shortcoming of GCAE is that it743

cannot handle polygons with holes and multipolygons. Moreover, it cannot preserve744

the topology information. So one interesting future research direction is developing a745

topology-aware polygon encoder which can handle both simple and complex polygons.746

5.3. Graph747

Graph (or network) is also an important spatial data format used in multiple geospatial748

data sets such as transportation networks (Li et al. 2018a, Cai et al. 2020), spatial749

social networks (Andris 2016), and geographic knowledge graph (GeoKG) (Mai et al.750

2020a). A graph can be defined as G “ pV, Eq where V and E are the set of nodes and751

edges in this graph. In the geospatial domain, each node e P V or a subset of nodes in V752

is associated with a location x 5 such as the sensor locations in a sensor network, users’753

locations in a spatial social network, or locations of geographic entities in a GeoKG.754

We further call this kind of graph a spatially embedded graph.755

The early practice to encode spatially embedded graphs is to treat them as normal756

non-spatial graphs and use some existing GNN models or (knowledge) graph embedding757

models (Grover and Leskovec 2016, Bordes et al. 2013, Trouillon et al. 2017). In order758

to add the spatial information as additional features without significantly modifying the759

existing architectures, we can modify the node encoder by using one Encpxq in Table 1760

as the node encoder or one component of it while keeping other components unchanged.761

The model can be trained with the same loss function. Mai et al. (2020a) adopted762

exactly this practice and developed a spatially-explicit knowledge graph embedding763

model. Similar ideas can be applied to other spatially embedded graphs.764

Interestingly, other than the normal graph data, many pioneer research applied GNN765

models to a point set through a point-set-to-graph conversion. They first converted766

point set P into a graph based on spatial relations, e.g., a k-th nearest neighbor spatial767

graph, in which nodes indicate points while edges are associated with pairwise distance768

based weights. After this conversion, a GNN model is applied on this graph so that node769

attribute prediction can be done based on not only the nodes’ own features but also770

their spatial context. Many GeoAI research has adopted this practice to tackle different771

tasks including air quality forecasting (Lin et al. 2018), place characteristics prediction772

(Zhu et al. 2020), GeoNames entity embedding learning (Kejriwal and Szekely 2017),773

and different spatial interpolation problems (Appleby et al. 2020, Wu et al. 2020a).774

We argue that this kind of distance weighted graph method is insufficient to capture the775

relative spatial relations, since it necessarily forfeits information about the spatial layout776

5Each node can associate with more complex geometries, and one single location is a simplification.
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of points. Some important spatial information is lost such as the direction relations777

which are important for certain tasks when isotropic assumption is not held. Instead,778

we advocate the idea of using any EncpPqpxq discussed in Section 4.2 for these tasks779

since EncpPqpxq is better at capturing spatial relations among locations.780

5.4. Raster781

Convolutional Nerual Networks (CNNs) (Lecun and Bengio 1995) are at the core of782

many highly successful models in manipulating raster data such as image classification,783

image generation, and image understanding. This great success is due to the ability784

of the convolution operation to exploit the principles of locality, stationarity, and785

compositionality. Locality is due to the local connectivity, stationarity is owed to786

shift-invariance, and compositionality stems from the multi-resolution structure of the787

raster data (Bronstein et al. 2017). The number of learnable parameters is greatly788

reduced because of its feature locality and weight sharing across the data domain789

(Valsesia et al. 2019). Due to the success of location encoding on vector data, it is790

particularly interesting to think about the questions how we can apply location encoding791

techniques on rasters and what the benefits are.792

Interestingly, with increasing popularity of the Transformer (Vaswani et al. 2017)793

architecture, several efforts have been made to replace CNN with a Transformer-like794

architecture for raster-based tasks. The idea is that instead of using CNN kernels, we795

first encode the pixel features as well as pixel locations into the embedding space with796

a location-encoder-like architecture, so-called pixel position encoding, and then a self-797

attention is applied on top of these pixel embeddings for different vision tasks. However,798

one problem with this approach is that this per-pixel based self-attention has a very high799

computational cost. One solution, among others, proposed by Vision Transformer (ViT)800

(Dosovitskiy et al. 2021) uses a per-image-patch (instead of per-pixel ) self-attention801

which significantly lowers the computational cost. Dosovitskiy et al. (2021) showed802

that ViT can outperform traditional CNN-based models on several image classification803

benchmarks. However, the patch size becomes an important hyperparameter which will804

significantly affect model performance. Applying location encoders on raster data is a805

very new research direction. Existing work mainly focuses on encoding the positions806

of pixels on an image. When a pixel represents an area on the earth’s surface (e.g.,807

pixels in a satellite image), it is potentially very beneficial to encode pixel’s geographic808

locations rather than its image positions. The geo-locations can serve as a channel,809

which transfers knowledge learnt from large quantities of unlabeled data (geographic810

data, geo-tagged image, or geo-tagged text) to the supervised learning tasks.811

6. Conclusion and Vision for Future Work812

In this work, we formulate location encoding as an inductive learning based, task813

agnostic encoding technique for geographic locations. A formal definition of location814

encoding is provided, and two expected properties – distance preservation and direction815

awareness – are discussed from the perspective of GIScience. We illustrate the necessity816

of location encoding for GeoAI from a statistical machine learning perspective. A general817

classification framework has been provided to understand the current landscape of818

location encoding research (See Table 1). We classify the existing location encoders into819

two categories: single point location encoder Encpxq and aggregation location encoder820

EncpPqpxq. For each category, we unify the location encoders into the same formulation821
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framework (See Equations 1 and 7). Different location encoders are also compared822

based on various characteristics. Finally, we demonstrate the possible usage of location823

encoding for different types of spatial data.824

There are several interesting future research directions of location encoding:825

(1) Region representation learning: As we discussed in Section 5.2, there is826

no satisfactory solution for polygon encoding (so called region representation827

learning), which will be very useful in various tasks such as geographic entity828

alignment and topological relation reasoning. How to design a topology-aware829

polygon encoder which can handle simple polygons, polygon with holes, and830

multipolygons simultaneously is an interesting future research direction.831

(2) Spatiotemporal point encoding: All the methods discussed so far are focused832

on location information whereas the temporal aspect of geospatial data is also very833

important. Several important related questions are: 1) How to utilize temporal834

information in GeoAI models? 2) Can we encode temporal information in a similar835

manner as spatial information? 3) What are the important properties we need to836

preserve when doing temporal encoding? 4) How to combine temporal encoding837

and location encoding in a single framework? As for event sequences that happen838

synchronously (Kazemi et al. 2019), i.e., sampled at regular intervals, the temporal839

information can be modeled implicitly by RNNs, or fed in RNNs as another input840

dimension after transforming time into handcrafted features (Du et al. 2016, Li841

et al. 2017, Rao et al. 2020). Instead of using handcrafted temporal features,842

recent work proposed to encode time as learnable vector representations such as843

Time2Vec (Kazemi et al. 2019) and Cai et al. (2020). These temporal encoders844

are expected to preserve important properties such as periodicity, temporal845

continuity, invariance to time rescaling, and so on. However, there are no systematic846

comparison studies among these temporal encoding approaches. As for combining847

location and temporal encoding, one obvious way is to add temporal information848

as an additional dimension of the location features. Mac Aodha et al. (2019)849

adopted this practice by adding time as an additional feature of PEwrappxq in850

Equation 2. This leaded to a small performance improvement (0.25%-1.37%).851

However, they failed to consider those important properties of time mentioned852

above. Future research is needed to study the pros and cons of different temporal853

encoding approaches and how to combine it with location encoding.854

(3) Spherical location encoding: As we discussed in Section 5.4, currently, there855

are no existing location encoders which can preserve spherical surface distance.856

When we are dealing with large-scale geospatial data sets (e.g., global SST data,857

species occurrences all over the world) in which the map distortion problem is no858

longer negligible, a spherical-aware location encoder is required which enable us859

to directly calculate on a round planet (Chrisman 2017).860

(4) Unsupervised learning for location encoding: Most of the location encoders861

listed in Table 1 are trained in a supervised learning fashion which prohibits862

the application of the trained location embedding on other tasks. In contrast,863

text encoding methods, e.g., BERT, are trained in an unsupervised manner from864

numerous unlabeled data, and the pretrained model can be utilized in different865

downstream tasks (Devlin et al. 2018). How to design an unsupervised learning866

framework for location encoding is a very attractive research direction. Recently,867

multiple point cloud generative models have been proposed such as r-GAN/l-GAN868

(Achlioptas et al. 2018), Graph-Conv GAN (Valsesia et al. 2019), tree-GAN (Shu869

et al. 2019), PointFlow (Yang et al. 2019), and Generative PointNet (Xie et al.870
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2021). Their objective is to reconstruct given point clouds. This presents one871

possible unsupervised learning framework of location encoding for unmarked points872

(points without attributes). Another interesting idea is unsupervised learning of873

the spatial distribution of marked points (points with attributes).874
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Figure 1.: An illustration of location encoding. Here, we use location-based species
classification as an example of the downstream tasks. Those 20 points in 2D space
represent species occurrence records. Each occurrence can be written as pi “ pxi, yiq
where xi indicates the 2D locations and yi indicates the corresponding species type,
i.e., the ground truth label. N pxiq indicates the spatial neighborhood of xi. A location
encoder Encp¨q takes 2D location xi as its input and outputs a location embedding as
a high dimensional vector. This embedding is further fed into a downstream NN model
Mpq for species prediction. The whole model architecture can be trained end-to-end in
a supervised learning manner.
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Figure 2.: An illustration of the direction preservation property of location encoding.
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Figure 3.: An illustration of how location encoding can help to produce learning-friendly
representations of geographic locations for downstream models. We use the same 20
points in Figure 1 as an example of P “ tpiu. The red and blue points indicate they
belong to two different classes. M1 and M2 are the illustrations of the trained binary
classifiers in the original geographic space and the location embedding space.
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Figure 4.: An illustration of the mth aggregation layer of SAGAT.
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Figure 5.: An illustration of the Conv-DeConv architecture (Noh et al. 2015) for
Enc

pPq

hieaggpxq such as PointNet++ (Qi et al. 2017b), PointCNN (Li et al. 2018b), and
Graph-Conv GAN (Valsesia et al. 2019).

36



List of Tables1141

1 Overview of location encoding approaches. Single point location encoders1142

Encpxq and aggregation location encoders EncpPqpxq are further1143

classified based on either PEpxq or N pxq (see Figure 1). (M) indicates1144

multi-scale representation. ˚ indicates a generalized version of the original1145

model cited. We consider multiple criteria of location encoders: 1) L:1146

The spatial dimension of P; 2) Parametric: Is the location encoder a1147

parametric model (Yes) or non-parametric model (No)? 3) Mul.S.: Does1148

the location encoding adopt a multi-scale approach? 4) Dist.P.: Does1149

this location encoder preserve distance (Property 2.1)? 5) Dir.A.: Is this1150

location encoder aware of direction (Property 2.2)? For Dist.P. and Dir.A.1151

“Yes” or “No” indicates whether the property can be proved empirically1152

(for example by using the response maps of trained location encoders1153

Mai et al. (2020b)). “-” indicates that the property is unknown. “Yes+”1154

indicates that the property was shown both theoretically and empirically. 381155
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Table 1.: Overview of location encoding approaches. Single point location encoders
Encpxq and aggregation location encoders EncpPqpxq are further classified based on
either PEpxq or N pxq (see Figure 1). (M) indicates multi-scale representation. ˚

indicates a generalized version of the original model cited. We consider multiple criteria
of location encoders: 1) L: The spatial dimension of P; 2) Parametric: Is the location
encoder a parametric model (Yes) or non-parametric model (No)? 3) Mul.S.: Does
the location encoding adopt a multi-scale approach? 4) Dist.P.: Does this location
encoder preserve distance (Property 2.1)? 5) Dir.A.: Is this location encoder aware of
direction (Property 2.2)? For Dist.P. and Dir.A. “Yes” or “No” indicates whether the
property can be proved empirically (for example by using the response maps of trained
location encoders Mai et al. (2020b)). “-” indicates that the property is unknown. “Yes+”
indicates that the property was shown both theoretically and empirically.

Encoder PEpxq Model L Parametric Mul.S. Dist.P. Dir.A.

Encpxq

Discretization onehot(Tang et al. 2015) 2,3 Yes No No -
tile(Mai et al. 2020b) 2,3 Yes No No -

Direct direct(Xu et al. 2018, Chu et al. 2019,
Rao et al. 2020)

2,3 Yes No Yes Yes

Sinusoidal wrap(Mac Aodha et al. 2019) 2 Yes No Yes -

Sinusoidal (M)
TF(Zhong et al. 2020) 2,3 Yes Yes - -
theory/Space2Vec (Mai et al. 2020b) 2 Yes Yes Yes+ Yes
grid/Space2Vec (Mai et al. 2020b) 2,3 Yes Yes Yes -

Encoder N pxq Model L Parametric Mul.S. Dist.Pr. Dir.A.

EncpPqpxq

Kernel
GPS2Vec(Yin et al. 2019) 2 Yes No - -
rbf(Mai et al. 2020b) 2,3 Yes/No No Yes No
Adapted kernel˚ (Berg et al. 2014) 2,3 Yes/No No - -

Global PointNet (Qi et al. 2017a) 2,3 Yes No - -

Local
VoxelNet (Zhou and Tuzel 2018) 2,3 Yes No - -
SAGAT (Mai et al. 2020b) 2,3 Yes/No Yes/No Yes/No Yes/No
DGCNN (Wang et al. 2019) 2,3 Yes No - -

Hierarchical
PointNet++ (Qi et al. 2017b) 2,3 Yes Yes - -
PointCNN (Li et al. 2018b) 2,3 Yes Yes - -
GraphCNN (Valsesia et al. 2019) 2,3 Yes Yes - -
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