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ABSTRACT: We report the first total synthesis of (2R)-hydroxy-
norneomajucin, a norsesquiterpene derived from the Illicium genus.
This natural product displays neurotrophic properties. Small
molecule neurotrophins have potential as therapeutics in neuro-
degenerative diseases. Key steps of our synthesis include a Tsuji−
Trost reaction, a Pauson−Khand cyclization, and a Nagata
hydrocyanation. A simple sequence of reductions and a Mukaiyama
hydration introduce the A-ring substituents with the correct
configurations. The overall synthesis was completed in 17 steps
(longest linear sequence, LLS).

Seco-prezizaane sesquiterpenes from the Illicium genus of
flowering plants, Figure 1, have captivated synthetic chemists

for decades owing to their highly oxidized structures and
potent biological activity.1 The bioactivity of these natural
products seems to be dictated by the oxidation pattern around
the core of the molecule.2 For example, anisatin, bearing a β-
lactone, is known to cause convulsions while jiadifenin,
jiadifenolide, majucin, and (2R)-hydroxynorneomajucin (1)
display neurotrophic effects.3 The neurotrophic properties of
these latter natural products are particularly attractive, as small
molecule neurotrophins have potential as therapeutics in
neurodegenerative diseases such as Parkinson’s or Alzheimer’s
disease.
There has been significant synthetic work toward the seco-

prezizaanes, particularly in the past decade.1b There have been

several elegant approaches reported to anisatin,4 jiadifenin,5

majucin,6 and jiadifenolide.7 However, since its isolation in
2012, there has only been one report targeting (2R)-
hydroxynorneomajucin. Interestingly, 1 was the first norse-
squiterpene isolated from the Illicium genus of plant.8 In 2016,
Gademann reported an approach to 1, which gave access to
late-stage intermediates but fell short of the natural product.9

Herein, we report the first asymmetric total synthesis of 1,
proceeding in 17 steps (LLS, longest linear sequence).
Our retrosynthesis is shown in Figure 2. Initially, we

envisioned deriving the natural product through late-stage
redox manipulations, leading back to tetracycle 6. The A- and
B-rings of the molecule could be disconnected through a
Pauson−Khand reaction, leading back to enyne 7.10 We
initially pursued this route, but under all conditions tested, we
were unable to enact this Pauson−Khand reaction (for details,
see Supporting Information). In light of this setback, we
investigated the retrosynthesis presented in Figure 2B. We
once again envisioned deriving the natural product from 6, but
the final lactone could be formed at a later stage, leading back
to tricycle 8. Tricycle 8 is derived from an intermediate in
Zhai’s synthesis of jiadifenin5c and could be brought back to
enyne 9 through a Pauson−Khand reaction (PKR). Enyne 9
could be derived from β-keto lactone 10 through a sequence of
functional group manipulations. Finally, we imagined forming
the quaternary center in the first step by utilizing the Tsuji−
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Figure 1. Structures of seco-prezizaane natural products. Many of
these compounds show neurotrophic activity.
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Trost/lactonization of isoprene monoxide (11) and ketoester
12.11

We initially investigated the Tsuji−Trost asymmetric
allylation with an alkyne preinstalled in the β-keto ester.
However, the material was difficult to synthesize due to
isomerization to a conjugated allene, and the Pd-catalyzed
reaction was unsuccessful on the mixture of isomers. The
phenylsulfide 12 was selected as an alternative substrate for the
Tsuji−Trost allylic alkylation with isoprene monoxide
(Scheme 1). The phenylsulfide left a functional group for
later incorporation of the necessary alkyne. Trost has reported
a similar reaction in their approach to the core of
viridenomycin, and through modification of their reaction
conditions, we were able to access 10 in 49% yield, and 96% ee

with respect to the newly formed quaternary center.12

Diastereoselective oxidation of the keto-lactone was achieved
by applying conditions developed by Jørgensen.13 Treatment
of 10 with catalytic quinidine in the presence of cumyl
hydroperoxide led to α-ketol 13 in 72% yield as a 4:1 mixture
of separable diastereomers. Notably, it is necessary to cool the
reaction to limit the amount of side products derived from
sulfide oxidation. Reduction of the α-ketol, followed by
protection of the diol intermediate, afforded acetonide 14 in
good yield.
With the diol protected as an acetonide, we next needed to

install an alkyne for the key Pauson−Khand cyclization. The
thioether was first converted to an aldehyde through oxidation
to the sulfoxide, followed by Pummerer rearrangement
mediated by TFAA, yielding aldehyde 15 in excellent yield.
Seyferth−Gilbert homologation14 of the aldehyde led to alkyne
16, which could subsequently be methylated and deprotected
to access diol 17. We attempted several Pauson−Khand
reactions with the free diol, and with varying protecting
strategies, but had very little success. As such, we elected to
silylate the secondary alcohol in a similar manner to Zhai and
utilize this substrate for the Pauson−Khand reaction.15,5c

Treatment of this intermediate with Co2(CO)8 and thioanisole
in refluxing DCE led smoothly to tricyclic enone 18 in 61%
isolated yield. While this exact Pauson−Khand is known, we
elected to modify the reaction conditions for simplicity. The
published conditions utilize tributylphosphane sulfide as an
additive for the reaction, but this compound is not
commercially available.16 Additionally, it has long been
known that readily accessible sulfides serve as effective
additives in the PKR, and we achieved a very similar result
using commercially available thioanisole.17 Desilylation
occurred upon treatment with TBAF, affording compound 8
in 88% yield. The connectivity and absolute configuration of
tricycle 8 were determined unambiguously through X-ray
crystallography.18

Having established the core of the natural product, we
needed to install the final quaternary center, as well as close the
final lactone, Scheme 2A. We investigated several strategies,

Figure 2. Initial retrosynthetic strategy A and the revised
retrosynthetic strategy B developed for the synthesis of (2R)-
hydroxynorneomajucin (1).

Scheme 1. Synthesis of the Advanced Tricyclic Intermediate 8
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but hydrocyanation proved to be the most effective.19 Using
conditions similar to Utimoto, hydrocyanation of enone 8 was
achieved by treatment with triethylaluminum and TMSCN in
refluxing THF.20 Unfortunately, hydrolysis of the silyl enol
ether led to the incorrect methyl epimer with respect to the
final natural product. After experimenting with epimerization
strategies, we discovered that oxidation to the dienone through
sequential Saegusa−Ito reactions allowed for diastereoselective
and chemoselective reduction of the exo-olefin to give the
desired stereochemistry at C1. Additionally, we found that it
was possible to oxidize the crude intermediate 19 to the
dienone directly with superstoichiometric Pd(OAc)2 under an
oxygen atmosphere. Interestingly, the outcome of the
dehydrogenation was sensitive to the temperature and solvent,
as reactions in acetonitrile at 50−80 °C gave incomplete
conversion to the dienone, often forming a mixture of
regioisomeric monoenones 22 (Scheme 2B). When the
oxidation was conducted in DMSO at 55−70 °C, the β-
cyano dienone 23 was often isolated. Conveniently, when the
mixture was heated to 110 °C in DMSO, the double
dehydrogenation occurred with concomitant hydrolysis of
the nitrile, leading directly to dienone 20 in 38% yield over 2
steps. While relatively low yielding, this two-step sequence
formed the final quaternary center and lactone readily, and

afforded an intermediate with suitable functional handles to
complete the synthesis.
To complete the synthesis of 1, we needed to manipulate the

oxidation state of the A-ring. Chemo- and diastereoselective
hydrogenation of the exo-enone of 20 was achieved by simple
hydrogenation with Pd/C, affording the desired methyl
stereocenter at C1 in 68% yield as a single diastereomer.
Initial attempts at hydrogenation led to lower stereoselectivity
due to residual Pd in the material following Saegusa−Ito
oxidation. Careful chromatographic removal of the residual Pd
after the prior step allowed for much greater diastereoselec-
tivity in the hydrogenation.21 We next needed to achieve a
diastereoselective 1,2-reduction of the remaining enone. Based
upon precedent from other seco-prezizaane syntheses,5d we
were certain that standard Luche conditions would favor the
incorrect diastereomer. However, in a related system, Wicha
has shown that this bias can be reversed by using the bulkier
reducing agent K-selectride.22 Reduction of our intermediate
enone with K-selectride at −78 °C led to alcohol 21 in 67%
yield, once again as a single diastereomer. The relative
configuration of this newly installed stereocenter was
confirmed through NOE correlations. Final Mukaiyama
hydration was achieved using Mn(dpm)3 and Ph(Oi-Pr)SiH2
at −15 °C, affording the first synthetic sample of 1 in 64% yield
as a single diastereomer.23 The spectral data for our synthetic
sample are consistent with those reported by Fukuyama.8

Optical rotation of the synthetic sample was similar to that
reported for the natural product.8 Combined with the X-ray
structure of intermediate 8, this confirms the absolute
configuration of the natural product.
Our work also sheds light on the prior synthetic approach to

natural product 1.9 The advanced intermediate reported by
Gademann appears to be epimeric to the natural product at
C2, a consequence of the stereochemical preference of the
Luche reduction used (see Scheme S1 for details).9b Our
current strategy provides a simple alternative to correctly set
the configuration of this center.
In summary, we have achieved the first total synthesis of

(2R)-hydroxynorneomajucin in 17 steps from β-ketoester 12.
Key steps in the sequence include a Tsuji−Trost asymmetric
allylic alkylation, a Pauson−Khand reaction, and a Nagata
hydrocyanation. The route introduces the A-ring functionality
in a straightforward sequence that generates the correct
configuration at the four stereogenic centers in this ring. This
synthetic approach lays the groundwork for further inves-
tigation of the biological activity of this interesting neuro-
trophic natural product.
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