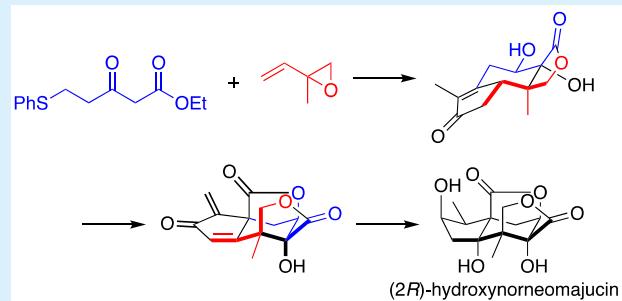


Asymmetric Total Synthesis of (2*R*)-Hydroxynorneomajucin, a Norsesquiterpene from *Illicium jiadifengpi*

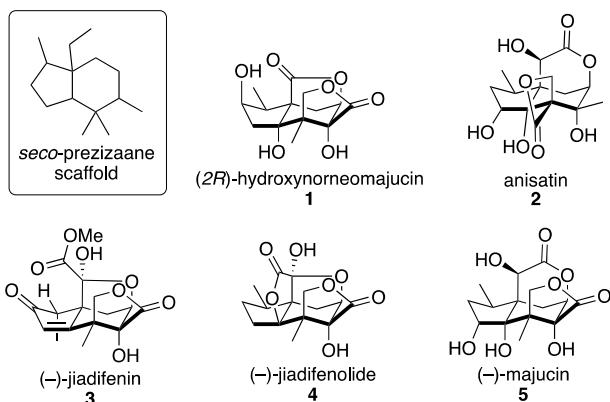
Charles J. Dooley, III and Scott D. Rychnovsky*

Cite This: *Org. Lett.* 2022, 24, 3411–3415

Read Online


ACCESS |

Metrics & More


Article Recommendations

Supporting Information

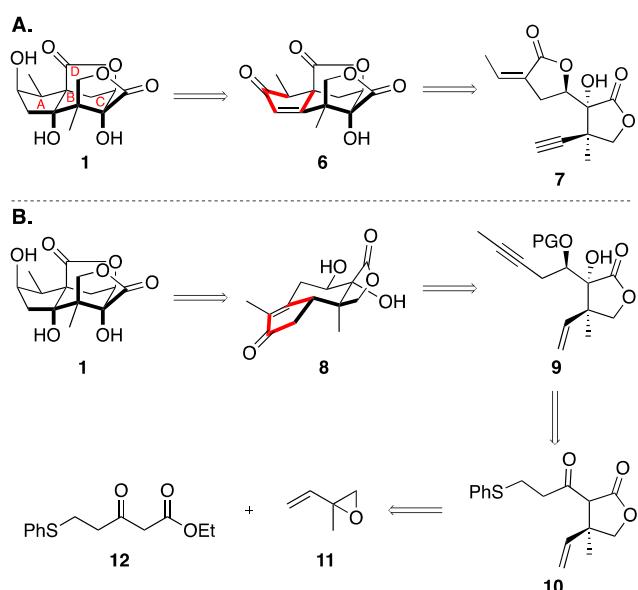
ABSTRACT: We report the first total synthesis of (2*R*)-hydroxynorneomajucin, a norsesquiterpene derived from the *Illicium* genus. This natural product displays neurotrophic properties. Small molecule neurotrophins have potential as therapeutics in neurodegenerative diseases. Key steps of our synthesis include a Tsuji–Trost reaction, a Pauson–Khand cyclization, and a Nagata hydrocyanation. A simple sequence of reductions and a Mukaiyama hydration introduce the A-ring substituents with the correct configurations. The overall synthesis was completed in 17 steps (longest linear sequence, LLS).

Seco-prezizaane sesquiterpenes from the *Illicium* genus of flowering plants, Figure 1, have captivated synthetic chemists

Figure 1. Structures of seco-prezizaane natural products. Many of these compounds show neurotrophic activity.

for decades owing to their highly oxidized structures and potent biological activity.¹ The bioactivity of these natural products seems to be dictated by the oxidation pattern around the core of the molecule.² For example, anisatin, bearing a β -lactone, is known to cause convulsions while jiadifenin, jiadifenolide, majucin, and (2*R*)-hydroxynorneomajucin (**1**) display neurotrophic effects.³ The neurotrophic properties of these latter natural products are particularly attractive, as small molecule neurotrophins have potential as therapeutics in neurodegenerative diseases such as Parkinson's or Alzheimer's disease.

There has been significant synthetic work toward the *seco*-prezizaanes, particularly in the past decade.^{1b} There have been


several elegant approaches reported to anisatin,⁴ jiadifenin,⁵ majucin,⁶ and jiadifenolide.⁷ However, since its isolation in 2012, there has only been one report targeting (2*R*)-hydroxynorneomajucin. Interestingly, **1** was the first norsesquiterpene isolated from the *Illicium* genus of plant.⁸ In 2016, Gademann reported an approach to **1**, which gave access to late-stage intermediates but fell short of the natural product.⁹ Herein, we report the first asymmetric total synthesis of **1**, proceeding in 17 steps (LLS, longest linear sequence).

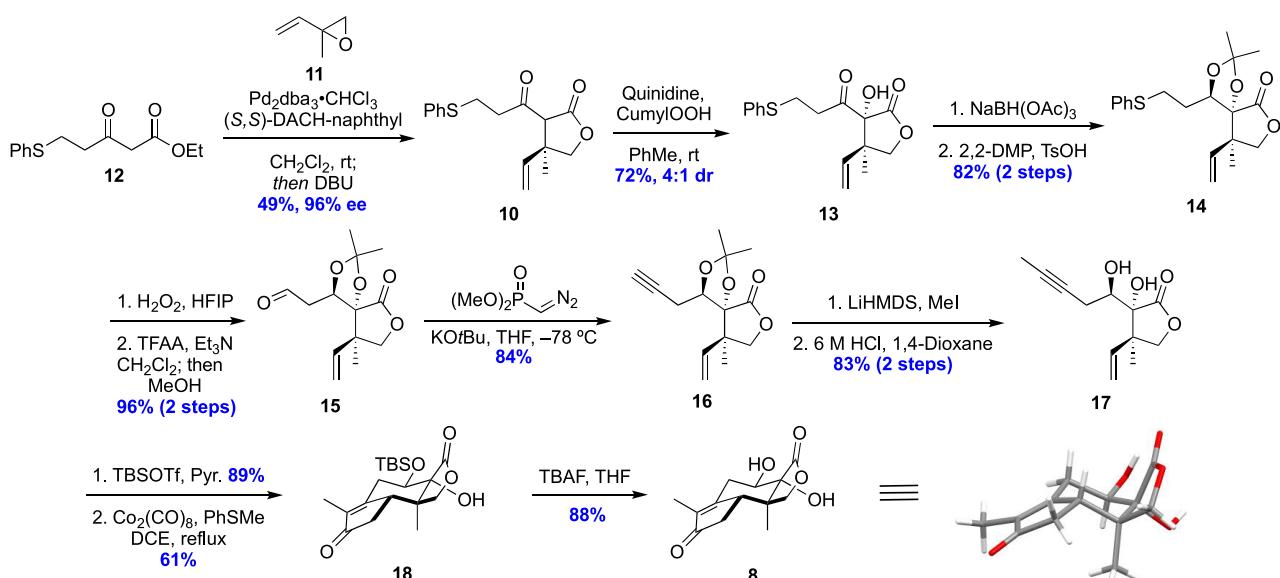
Our retrosynthesis is shown in Figure 2. Initially, we envisioned deriving the natural product through late-stage redox manipulations, leading back to tetracycle **6**. The A- and B-rings of the molecule could be disconnected through a Pauson–Khand reaction, leading back to enyne **7**.¹⁰ We initially pursued this route, but under all conditions tested, we were unable to enact this Pauson–Khand reaction (for details, see Supporting Information). In light of this setback, we investigated the retrosynthesis presented in Figure 2B. We once again envisioned deriving the natural product from **6**, but the final lactone could be formed at a later stage, leading back to tricycle **8**. Tricycle **8** is derived from an intermediate in Zhai's synthesis of jiadifenin^{5c} and could be brought back to enyne **9** through a Pauson–Khand reaction (PKR). Enyne **9** could be derived from β -keto lactone **10** through a sequence of functional group manipulations. Finally, we imagined forming the quaternary center in the first step by utilizing the Tsuji–

Received: April 6, 2022

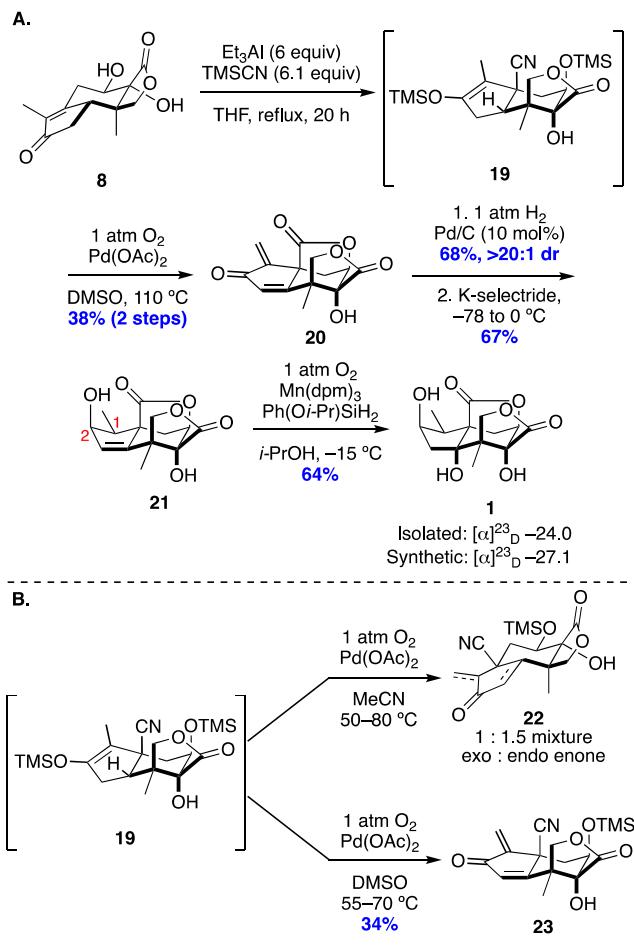
Published: May 2, 2022

Figure 2. Initial retrosynthetic strategy A and the revised retrosynthetic strategy B developed for the synthesis of (2R)-hydroxynorneomajucin (1).

Trost/lactonization of isoprene monoxide (11) and ketoester 12.¹¹


We initially investigated the Tsuji–Trost asymmetric allylation with an alkyne preinstalled in the β -keto ester. However, the material was difficult to synthesize due to isomerization to a conjugated allene, and the Pd-catalyzed reaction was unsuccessful on the mixture of isomers. The phenylsulfide 12 was selected as an alternative substrate for the Tsuji–Trost allylic alkylation with isoprene monoxide (Scheme 1). The phenylsulfide left a functional group for later incorporation of the necessary alkyne. Trost has reported a similar reaction in their approach to the core of viridemomycin, and through modification of their reaction conditions, we were able to access 10 in 49% yield, and 96% ee

with respect to the newly formed quaternary center.¹² Diastereoselective oxidation of the keto-lactone was achieved by applying conditions developed by Jørgensen.¹³ Treatment of 10 with catalytic quinidine in the presence of cumyl hydroperoxide led to α -ketol 13 in 72% yield as a 4:1 mixture of separable diastereomers. Notably, it is necessary to cool the reaction to limit the amount of side products derived from sulfide oxidation. Reduction of the α -ketol, followed by protection of the diol intermediate, afforded acetonide 14 in good yield.


With the diol protected as an acetonide, we next needed to install an alkyne for the key Pauson–Khand cyclization. The thioether was first converted to an aldehyde through oxidation to the sulfoxide, followed by Pummerer rearrangement mediated by TFAA, yielding aldehyde 15 in excellent yield. Seydel–Gilbert homologation¹⁴ of the aldehyde led to alkyne 16, which could subsequently be methylated and deprotected to access diol 17. We attempted several Pauson–Khand reactions with the free diol, and with varying protecting strategies, but had very little success. As such, we elected to silylate the secondary alcohol in a similar manner to Zhai and utilize this substrate for the Pauson–Khand reaction.^{15,5c} Treatment of this intermediate with $\text{Co}_2(\text{CO})_8$ and thioanisole in refluxing DCE led smoothly to tricyclic enone 18 in 61% isolated yield. While this exact Pauson–Khand is known, we elected to modify the reaction conditions for simplicity. The published conditions utilize tributylphosphane sulfide as an additive for the reaction, but this compound is not commercially available.¹⁶ Additionally, it has long been known that readily accessible sulfides serve as effective additives in the PKR, and we achieved a very similar result using commercially available thioanisole.¹⁷ Desilylation occurred upon treatment with TBAF, affording compound 8 in 88% yield. The connectivity and absolute configuration of tricycle 8 were determined unambiguously through X-ray crystallography.¹⁸

Having established the core of the natural product, we needed to install the final quaternary center, as well as close the final lactone, Scheme 2A. We investigated several strategies,

Scheme 1. Synthesis of the Advanced Tricyclic Intermediate 8

Scheme 2. (A) Functionalization of the A-Ring from Intermediate 8 and Completion of the Synthesis; (B) Divergent Results of Saegusa–Ito Oxidation Based on Reaction Conditions

but hydrocyanation proved to be the most effective.¹⁹ Using conditions similar to Utimoto, hydrocyanation of enone 8 was achieved by treatment with triethylaluminum and TMSCN in refluxing THF.²⁰ Unfortunately, hydrolysis of the silyl enol ether led to the incorrect methyl epimer with respect to the final natural product. After experimenting with epimerization strategies, we discovered that oxidation to the dienone through sequential Saegusa–Ito reactions allowed for diastereoselective and chemoselective reduction of the *exo*-olefin to give the desired stereochemistry at C1. Additionally, we found that it was possible to oxidize the crude intermediate 19 to the dienone directly with superstoichiometric Pd(OAc)₂ under an oxygen atmosphere. Interestingly, the outcome of the dehydrogenation was sensitive to the temperature and solvent, as reactions in acetonitrile at 50–80 °C gave incomplete conversion to the dienone, often forming a mixture of regioisomeric mono-enones 22 (Scheme 2B). When the oxidation was conducted in DMSO at 55–70 °C, the β -cyano dienone 23 was often isolated. Conveniently, when the mixture was heated to 110 °C in DMSO, the double dehydrogenation occurred with concomitant hydrolysis of the nitrile, leading directly to dienone 20 in 38% yield over 2 steps. While relatively low yielding, this two-step sequence formed the final quaternary center and lactone readily, and

afforded an intermediate with suitable functional handles to complete the synthesis.

To complete the synthesis of 1, we needed to manipulate the oxidation state of the A-ring. Chemo- and diastereoselective hydrogenation of the *exo*-enone of 20 was achieved by simple hydrogenation with Pd/C, affording the desired methyl stereocenter at C1 in 68% yield as a single diastereomer. Initial attempts at hydrogenation led to lower stereoselectivity due to residual Pd in the material following Saegusa–Ito oxidation. Careful chromatographic removal of the residual Pd after the prior step allowed for much greater diastereoselectivity in the hydrogenation.²¹ We next needed to achieve a diastereoselective 1,2-reduction of the remaining enone. Based upon precedent from other *seco*-prezizaane syntheses,^{5d} we were certain that standard Luche conditions would favor the incorrect diastereomer. However, in a related system, Wicha has shown that this bias can be reversed by using the bulkier reducing agent K-selectride.²² Reduction of our intermediate enone with K-selectride at -78 °C led to alcohol 21 in 67% yield, once again as a single diastereomer. The relative configuration of this newly installed stereocenter was confirmed through NOE correlations. Final Mukaiyama hydration was achieved using Mn(dpm)₃ and Ph(O*i*-Pr)SiH₂ at -15 °C, affording the first synthetic sample of 1 in 64% yield as a single diastereomer.²³ The spectral data for our synthetic sample are consistent with those reported by Fukuyama.⁸ Optical rotation of the synthetic sample was similar to that reported for the natural product.⁸ Combined with the X-ray structure of intermediate 8, this confirms the absolute configuration of the natural product.

Our work also sheds light on the prior synthetic approach to natural product 1.⁹ The advanced intermediate reported by Gademann appears to be epimeric to the natural product at C2, a consequence of the stereochemical preference of the Luche reduction used (see Scheme S1 for details).^{9b} Our current strategy provides a simple alternative to correctly set the configuration of this center.

In summary, we have achieved the first total synthesis of (2*R*)-hydroxynorneomajucin in 17 steps from β -ketoester 12. Key steps in the sequence include a Tsuji–Trost asymmetric allylic alkylation, a Pauson–Khand reaction, and a Nagata hydrocyanation. The route introduces the A-ring functionality in a straightforward sequence that generates the correct configuration at the four stereogenic centers in this ring. This synthetic approach lays the groundwork for further investigation of the biological activity of this interesting neurotrophic natural product.

■ ASSOCIATED CONTENT

SI Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.orglett.2c01207>.

Experimental details, compound characterization, NMR data, and X-ray data (PDF)

FAIR data, including the primary NMR FID files, for compounds 1, 8, 10, 13, 14, 15, 16, 17, 18, 20, 21, 23, and S21 (ZIP)

Accession Codes

CCDC 2164643 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing

data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

■ AUTHOR INFORMATION

Corresponding Author

Scott D. Rychnovsky — Department of Chemistry, University of California at Irvine, Irvine, California 92697, United States; orcid.org/0000-0002-7223-4389;
Email: srychnov@uci.edu

Author

Charles J. Dooley, III — Department of Chemistry, University of California at Irvine, Irvine, California 92697, United States; orcid.org/0000-0002-7437-5222

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acs.orglett.2c01207>

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

C.D. would like to thank Nick Foy (UCI) and William Thomas (UCI) for supplying catalyst and silane for the final step. C.D. would like to thank Allergan for fellowship support. Support was also provided by the National Science Foundation (CHE 2101674 and CHE 1764380).

■ REFERENCES

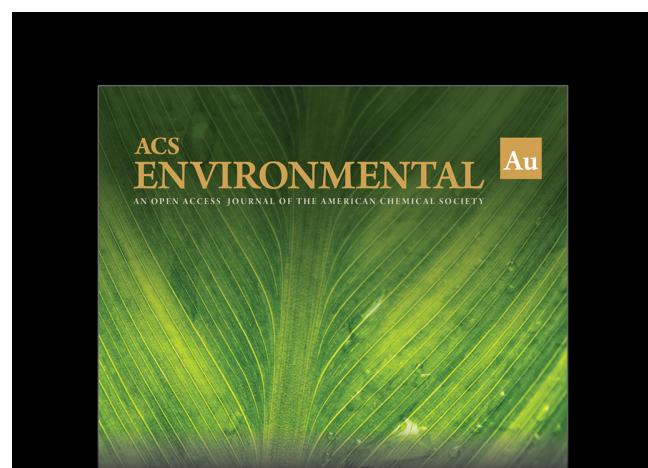
- (1) (a) Urabe, D.; Inoue, M. Total syntheses of sesquiterpenes from *Illicium* species. *Tetrahedron* **2009**, *65*, 6271–6289. (b) Condakes, M. L.; Novaes, L. F. T.; Maimone, T. J. Contemporary Synthetic Strategies toward *secos*-Prezizaane Sesquiterpenes from *Illicium* Species. *J. Org. Chem.* **2018**, *83*, 14843–14852.
- (2) (a) Carcache, D. A.; Cho, Y. S.; Hua, Z.; Tian, Y.; Li, Y.-M.; Danishefsky, S. J. Total Synthesis of (\pm) -Jiadifenin and Studies Directed to Understanding Its SAR: Probing Mechanistic and Stereochemical Issues in Palladium-Mediated Allylation of Enolate-Like Structures. *J. Am. Chem. Soc.* **2006**, *128*, 1016–1022. (b) Trzoss, L.; Xu, J.; Lacoske, M. H.; Mobley, W. C.; Theodorakis, E. A. *Illicium* Sesquiterpenes: Divergent Synthetic Strategy and Neurotrophic Activity Studies. *Chem.—Eur. J.* **2013**, *19*, 6398–6408.
- (3) (a) Fukuyama, Y.; Huang, J.-M. Chemistry and neurotrophic activity of *secos*-Prezizaane- and anisalactone-type sesquiterpenes from *Illicium* species. *Studies in Nat. Prod. Chem.* **2005**, *32*, 395–427. (b) Fukuyama, Y.; Kubo, M.; Harada, K. The search for, and chemistry and mechanism of, neurotrophic natural products. *J. Nat. Med.* **2020**, *74*, 648–671. (c) Witkin, J. M.; Shenvi, R. A.; Li, X.; Gleason, S. D.; Weiss, J.; Morrow, D.; Catow, J. T.; Wakulchik, M.; Ohtawa, M.; Lu, H.-H.; Martinez, M. D.; Schkeryantz, J. M.; Carpenter, T. S.; Lightstone, F. C.; Cerne, R. Pharmacological characterization of the neurotrophic sesquiterpene jiadifenolide reveals a non-convulsant signature and potential for progression in neurodegenerative disease studies. *Biochem. Pharmacol.* **2018**, *155*, 61–70. (d) Shenvi, R. A. Neurite outgrowth enhancement by jiadifenolide: possible targets. *Nat. Prod. Rep.* **2016**, *33*, 535–539.
- (4) For syntheses of anisatin, see: (a) Niwa, H.; Nisiwaki, M.; Tsukada, I.; Ishigaki, T.; Ito, S.; Wakamatsu, K.; Mori, T.; Ikagawa, M.; Yamada, K. Stereocontrolled total synthesis of $(-)$ -anisatin: a neurotoxic sesquiterpenoid possessing a novel spiro β -lactone. *J. Am. Chem. Soc.* **1990**, *112*, 9001–9003. (b) Ogura, A.; Yamada, K.; Yokoshima, S.; Fukuyama, T. Total Synthesis of $(-)$ -Anisatin. *Org. Lett.* **2012**, *14*, 1632–1635.
- (5) For syntheses of jiadifenin, see: (a) Cho, Y. S.; Carcache, D. A.; Tian, Y.; Li, Y.-M.; Danishefsky, S. J. Total Synthesis of (\pm) -Jiadifenin, a Non-peptidyl Neurotrophic Modulator. *J. Am. Chem. Soc.* **2004**, *126*, 14358–14359. (b) Trzoss, L.; Xu, J.; Lacoske, M. H.; Mobley, W. C.; Theodorakis, E. A. Enantioselective Synthesis of $(-)$ -Jiadifenin, a Potent Neurotrophic Modulator. *Org. Lett.* **2011**, *13*, 4554–4557. (c) Yang, Y.; Fu, X.; Chen, J.; Zhai, H. Total Synthesis of $(-)$ -Jiadifenin. *Angew. Chem., Int. Ed.* **2012**, *51*, 9825–9828. (d) Cheng, X.; Micalizio, G. C. Synthesis of Neurotrophic *secos*-Prezizaane Sesquiterpenes (1R,10S)-2-Oxo-3,4-dehydro-neomajucin, (2S)-Hydroxy-3,4-dehydroneomajucin, and $(-)$ -Jiadifenin. *J. Am. Chem. Soc.* **2016**, *138*, 1150–1153.
- (6) For syntheses of majucin, see: (a) Condakes, M. L.; Hung, K.; Harwood, S. J.; Maimone, T. J. Total Syntheses of $(-)$ -Majucin and $(-)$ -Jiadifenolane A, Complex Majucin-type *Illicium* Sesquiterpenes. *J. Am. Chem. Soc.* **2017**, *139*, 17783–17786. (b) Hung, K.; Condakes, M. L.; Novaes, L. F. T.; Harwood, S. J.; Morikawa, T.; Yang, Z.; Maimone, T. J. Development of a Terpene Feedstock-Based Oxidative Synthetic Approach to the *Illicium* Sesquiterpenes. *J. Am. Chem. Soc.* **2019**, *141*, 3083–3099.
- (7) For syntheses of jiadifenolide, see: (a) Xu, J.; Trzoss, L.; Chang, W. K.; Theodorakis, E. A. Enantioselective Total Synthesis of $(-)$ -Jiadifenolide. *Angew. Chem., Int. Ed.* **2011**, *50*, 3672–3676. (b) Siler, D. A.; Mighion, J. D.; Sorensen, E. J. An Enantiospecific Synthesis of Jiadifenolide. *Angew. Chem., Int. Ed.* **2014**, *53*, 5332–5335. (c) Paterson, I.; Xuan, M.; Dalby, S. M. Total Synthesis of Jiadifenolide. *Angew. Chem., Int. Ed.* **2014**, *53*, 7286–7289. (d) Paterson, I.; Xuan, M.; Dalby, S. M. Total Synthesis of Jiadifenolide. *Angew. Chem., Int. Ed.* **2014**, *53*, 7286–7289. (e) Lu, H.-H.; Martinez, M. D.; Shenvi, R. A. An eight-step gram-scale synthesis of $(-)$ -jiadifenolide. *Nat. Chem.* **2015**, *7*, 604–607. (f) Shen, Y.; Li, L.; Pan, Z.; Wang, Y.; Li, J.; Wang, K.; Wang, X.; Zhang, Y.; Hu, T.; Zhang, Y. Protecting-Group-Free Total Synthesis of $(-)$ -Jiadifenolide: Development of a [4 + 1] Annulation toward Multisubstituted Tetrahydrofurans. *Org. Lett.* **2015**, *17*, 5480–5483.
- (8) Kubo, M.; Kobayashi, K.; Huang, J.-M.; Harada, K.; Fukuyama, Y. The first examples of *secos*-Prezizaane-type norsesteroenoids with neurotrophic activity from *Illicium jiadifengpi*. *Tetrahedron Lett.* **2012**, *53*, 1231–1235.
- (9) (a) Gomes, J.; Daepen, C.; Liffert, R.; Roesslein, J.; Kaufmann, E.; Heikinheimo, A.; Neuburger, M.; Gademann, K. Formal Total Synthesis of $(-)$ -Jiadifenolide and Synthetic Studies toward *secos*-Prezizaane-Type Sesquiterpenes. *J. Org. Chem.* **2016**, *81*, 11017–11034. (b) Daepen, C. A. Total Syntheses of $(-)$ -Fragin and Valdizien, and Synthetic Studies Toward Complex Neuritogenic Terpenoids, PhD Thesis, University of Basel, 2017; DOI: [10.5451/unibas-006781426](https://doi.org/10.5451/unibas-006781426).
- (10) For a review on the recent use of the Pauson–Khand in total synthesis, see: Chen, S.; Jiang, C.; Zheng, N.; Yang, Z.; Shi, L. Evolution of Pauson–Khand Reaction: Strategic Applications in Total Syntheses of Architecturally Complex Natural Products (2016–2020). *Catalysts* **2020**, *10*, 1199.
- (11) Trost, B. M.; Jiang, C. Atom Economic Asymmetric Creation of Quaternary Carbon: Regio- and Enantioselective Reactions of a Vinyl epoxide with a Carbon Nucleophile. *J. Am. Chem. Soc.* **2001**, *123*, 12907–12908.
- (12) Trost, B. M.; Jiang, C. Pd-Catalyzed Asymmetric Allylic Alkylation. A Short Route to the Cyclopentyl Core of Viridinomycin. *Org. Lett.* **2003**, *5*, 1563–1565.
- (13) Acocella, M. R.; Mancheño, O. G.; Bella, M.; Jørgensen, K. A. Organocatalytic Asymmetric Hydroxylation of β -Keto Esters: Metal-Free Synthesis of Optically Active anti-Diols. *J. Org. Chem.* **2004**, *69*, 8165–8167.
- (14) (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. Reactions of dimethylphosphono-substituted diazoalkanes. $(\text{MeO})_2\text{P}(\text{O})\text{CR}$ transfer to olefins and 1,3-dipolar additions of $(\text{MeO})_2\text{P}(\text{O})\text{C}(\text{N}_2)\text{R}$. *J. Org. Chem.* **1971**, *36*, 1379–1386. (b) Gilbert, J. C.; Weerasooriya, U. Diazoethenes: their attempted synthesis from aldehydes and aromatic ketones by way of the Horner–Emmons modification of the Wittig reaction. A facile synthesis of alkynes. *J. Org. Chem.* **1982**, *47*, 1837–1845.

(15) Substrate **18** was prepared by Zhai (ref 5c) in 11 steps from commercially available material, which is identical with the current route. Our route provides better control of the quaternary center and a moderately improved overall yield.

(16) (a) Hayashi, M.; Hashimoto, Y.; Yamamoto, Y.; Usuki, J.; Saigo, K. Phosphane Sulfide/Octacarbonyldicobalt-Catalyzed Pauson–Khand Under an Atmospheric Pressure of Carbon Monoxide. *Angew. Chem., Int. Ed.* **2000**, *39*, 631–633. (b) Maddox, S. M.; Nalbandian, C. J.; Smith, D. E.; Gustafson, J. L. A Practical Lewis Base Catalyzed Electrophilic Chlorination of Arenes and Heterocycles. *Org. Lett.* **2015**, *17*, 1042–1045.

(17) Sugihara, T.; Yamada, M.; Yamaguchi, M.; Nishizawa, M. The Intra- and Intermolecular Pauson–Khand Reaction Promoted by Alkyl Methyl Sulfides. *Synlett* **1999**, *1999*, 771–773.

(18) CCDC 2164643.


(19) For a review, see: (a) Nagata, W.; Yoshioka, M. Hydrocyanation of Conjugated Carbonyl Compounds. *Org. React.* **1977**, *25*, 255–476. For recent applications, see: (b) Murphy, S. K.; Zeng, M.; Herzon, S. B. A modular and enantioselective synthesis of the pleuromutilin antibiotics. *Science* **2017**, *356*, 956–959. (c) Johnson, R. E.; Ree, H.; Hartmann, M.; Lang, L.; Sawano, S.; Sarpong, R. Total Synthesis of Pentacyclic (–)-Ambiguine P Using Sequential Indole Functionalizations. *J. Am. Chem. Soc.* **2019**, *141*, 2233–2237. (d) Qu, P.; Snyder, S. A. Concise and Stereoselective Total Syntheses of Annotinolides C, D, and E. *J. Am. Chem. Soc.* **2021**, *143*, 11951–11956.

(20) (a) Utimoto, K.; Obayashi, M.; Shishiyama, Y.; Inoue, M.; Nozaki, H. Conjugated addition of cyanotrimethylsilane to α,β -unsaturated ketones. *Tetrahedron Lett.* **1980**, *21*, 3389–3392. (b) Utimoto, K.; Wakabayashi, Y.; Horiie, T.; Inoue, M.; Shishiyama, Y.; Obayashi, M.; Nozaki, H. Cyanotrimethylsilane as a versatile reagent for introducing cyanide functionality. *Tetrahedron* **1983**, *39*, 967–973.

(21) Hydrogenation of purified alkene **20** with $\text{Pd}(\text{OAc})_2$ in THF led to a 2.5:1 dr, which validates the hypothesis that trace Pd from the prior reaction decreases the selectivity.

(22) Michalak, K.; Morawski, M.; Wicha, J. Synthetic Approach to the Core Structure of Oleandrin and Related Cardiac Glycosides with Highly Functionalized Ring D. *Org. Lett.* **2016**, *18*, 6148–6151.

(23) (a) Obradors, C.; Martinez, R. M.; Shenvi, R. A. Ph(*i*-PrO)SiH₂: An Exceptional Reductant for Metal-Catalyzed Hydrogen Atom Transfers. *J. Am. Chem. Soc.* **2016**, *138*, 4962–4971. (b) Ohtawa, M.; Krambis, M. J.; Cerne, R.; Schkeryantz, J. M.; Witkin, J. M.; Shenvi, R. A. Synthesis of (–)-11-O-Debenzoyltashironin: Neurotrophic Sesquiterpenes Cause Hyperexcitation. *J. Am. Chem. Soc.* **2017**, *139*, 9637–9644.

Editor-in-Chief: **Prof. Shelley D. Minteer**, University of Utah, USA

Deputy Editor:
Prof. Xiang-Dong Li
Hong Kong Polytechnic University, China

Open for Submissions

pubs.acs.org/environau ACS Publications
Most Trusted. Most Cited. Most Read.