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Introduction

In the field of Human-Robot Interaction (HRI) many re-
searchers study shared control systems. This involves a
person and robot “interacting congruently in a perception-
action cycle to perform a dynamic task that either the human
or the robot could execute individually under ideal circum-
stances” [1]. For example, an agent might assist someone
using a robotic arm to grasp an object by identifying the ob-
ject and moving the arm into a good position to grasp it. An
agent might also assist someone driving a teleoperated robot
by preventing them from running into walls or other obsta-
cles.

One of the most important things in shared control is the
nature of the communication between the person and robot.
This communication is bi-directional – the agent needs to
understand the person (to infer their goals and intentions),
and the human needs to understand what decisions the agent
is making and why, and how to alter them if/when needed.
Here, interaction is often continuous, where people and
agents need to communicate across the duration of a task.

Well-designed communication could improve an opera-
tor’s situational awareness and increase robot transparency,
which can improve performance and help users maintain
accurate expectations about the robot’s abilities [21]. Re-
cent work in explainable robots can help inform transparent
communication [2]. Researchers might also draw from the
explainable AI field [21], though there may be differences
when using a physically embodied agent [23, 2]. Commu-
nication also influences understandability (of the robot and
task), performance, acceptance of the robot, and so on.

Thus, appropriate, well-designed communication could
help the human-robot team handle a variety of challenging
situations. For instance, if the robot was not trained for the
task the person wants to use it in, it might be helpful for the
robot to communicate its level of uncertainty about the task
to the person or how likely it estimates it is to succeed at
the task. This way the person could potentially make more
informed decisions about how much to rely on the robot’s
assistance.

In this paper, we explore key challenges in shared control,
in which better communication design could be useful, in-
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Figure 1: We present four different shared control scenar-
ios to explore key challenges in shared control: teleoperat-
ing a UUV, teleoperating a telemedicine robot, performing
collaborative assembly in a factory, and using an assistive
wheelchair mounted robotic arm.

cluding when encountering novel situations and contexts, re-
solving tensions between preferences and performance, and
alleviating cognitive burden and interruptions.

Example Shared Control Scenarios

Shared control systems can take a variety of forms across
several different dimensions. For instance, they may differ
depending on the distance between the person and robot,
whether there are other people around the robot or interact-
ing with it, and the criticality and interruptability of the task
being performed. We present some example shared control
systems to ground our subsequent discussion of shared con-
trol (Fig. 1).

Scenario 1: UUV A marine biologist might use an un-
manned underwater vehicle (UUV) to inspect coral. In this
scenario, the operator and robot are physically distant. The
person cannot physically interact with the robot or the envi-
ronment the robot is in (except through the robot), and they
likely cannot directly see the robot. Additionally, there are



likely no people near the robot. They might communicate
with the agent through a visual (e.g., a GUI) or haptic (e.g.,
a haptic joystick) interface.

Scenario 2: Telemedicine A healthcare worker might use
a mobile telemanipulator robot to examine a patient. In this
scenario, the operator and robot are again physically distant.
However, in this case, the robot is physically proximate to
another person and the healthcare worker is expected to in-
teract with them through the robot. The task also likely is
critical and has low interruptability, since interruptions could
lead to worse patient outcomes [27].

Scenario 3: Assembly A factory worker might use a Bax-
ter robot to collaboratively assemble furniture. In this sce-
nario, the operator and robot are close to each other, but
physically separate. Thus, unlike in the previous two sce-
narios, the operator and robot can directly interact with the
same environment and directly sense each other (see, hear,
etc.). There are also likely no other people near the operator
and robot.

Scenario 4: Assistance A person with a disability might
use a wheelchair-mounted arm robot to assist them with
tasks such as eating. As in Scenario 3, the operator and robot
are co-located. However, in this scenario, they are also phys-
ically connected. The operator might use the robot while
also interacting with other people.

Key Challenges

There are several challenges in shared control that re-
searchers should consider. These challenges may differ be-
tween situations, but will likely be of concern in many differ-
ent use cases. In particular, we discuss challenges with novel
situations, context-aware communication, tensions between
performance and preference, and cognitive burden and inter-
ruptions.

Challenge 1: Novel Situations The robot may not always
be trained for all situations a person wants to use it in. This
is a common problem in robotics, as robots may often be
deployed in open set conditions where they will encounter
new things outside of their training data [20, 14]. For exam-
ple, a person with a disability may want to use the robot to
dust a shelf, but the robot might only be trained to assist with
picking up objects. In this case, what should the robot do?
Should it attempt to help still or should it do nothing and
allow the person to fully teleoperate the robot? If the robot
attempts to help, it might be able to assist the person, but it
could make the task more difficult instead.

The line between what the robot has been trained for and
is capable of and what it has not been trained for may not
always be clear. If a telemedicine robot was trained to read
patient data off of certain types of patient monitors, and the
hospital switches to a new type of patient monitor not in
that training set, the robot may or may not still be able to
appropriately read the data.

In such scenarios, whether or not the robot should try to
assist may depend on the estimated level of risk if an er-
ror occurs and the risk tolerance of the person operating it.
In the situation with the telemedicine robot, it is likely the
robot should not try to assist with the new monitor, since an

error could lead to patient harm. On the other hand, if the
assistive robot tried to help dust the shelf, it likely would not
hurt anyone. It might knock over objects on the shelf, so its
assistance might be contingent on how delicate the objects
are and the person’s comfort level with the possibility of the
objects being knocked over.

Robot proficiency and risk self-assessment in such sce-
narios are still open research areas in robotics. It is difficult
for both robots and people to understand what they do not
know. For instance, a robot (and person) may have difficulty
estimating the robot’s performance on a task it has not tried
before. Thus, the robot’s risk calculation may not be very ac-
curate, particularly in complex situations like telemedicine,
where the level of risk can change drastically given envi-
ronmental factors (e.g., the patient’s underlying health con-
ditions, their current vitals, etc.). In such cases, it may be
better for the person to assess the level of risk themselves,
rather than rely on an estimate from the robot.

However, people may also produce inaccurate risk assess-
ments, especially if they do not have a good mental model
of the robot and a clear understanding of when failures are
likely. For example, say a factory worker uses Baxter to lift
a component of the product they are assembling while the
worker attaches something underneath it. If a new model of
the product is developed that slightly changes the part where
Baxter grips, the person might reasonably assume that Bax-
ter will still be able to reliably grip and lift it, since most
people would be able to adapt to the new component. How-
ever, the robot may not be capable of properly gripping it
anymore, possibly because of failures of its model for grip-
ping, limitations of its gripper, etc. The person and robot
may need to clearly communicate their proficiencies and risk
assessments so they can both gain a more complete picture
of the situation and hopefully more accurately assess the risk
and whether or not the robot should attempt to help.

Therefore, the robot must somehow communicate to the
person that it may not be capable of properly assisting with
the task and indicate the level of risk in a clear, easily un-
derstandable way. Some research has indicated that com-
municating such uncertainty can improve task performance
and trust [9, 4]. Researchers should be careful in the design
of such communication, as most people do not have an in-
depth understanding of statistics, and many different biases
can affect the interpretation of risk assessments [11]. Addi-
tionally, they should be careful to ensure the robot’s trans-
parency helps users properly calibrate their trust in the robot
[9, 19, 24], rather than leading them to overtrust the robot or
become complacent [25, 6] or overwhelmed [29].

Challenge 2: Context-Aware Communication More
work is needed to determine how to communicate in a way
that is sensitive to the task being performed, the environment
it is being performed in, the person it is being performed
with, and the ways communication can occur (Fig. 2). These
factors are interrelated. For instance, while a marine biolo-
gist and healthcare worker might have similar control needs
on a telemanipulator robot, their communication and infor-
mation needs will be quite different. For one thing, the ma-
rine biologist may not be interacting with other people, so
communicating with the robot through audio signals could



be appropriate. In contrast, the healthcare worker might need
to talk to a patient, and audio signals from the robot could
disrupt that interaction. Additionally, while both tasks might
be critical, the healthcare worker’s task may have more se-
rious consequences if they are interrupted during it (e.g.,
could lead to patient harm). Shared control systems should
consider the criticality and interruptability of a task as part
of their communication strategy.

The task context will also affect the type of information
people need. A healthcare worker using a telemedicine robot
to conduct a patient exam may require higher fidelity haptic
feedback than a person using an assistive robot to eat food.
While both tasks require some feedback for completion, the
healthcare worker might need fine-grained feedback to pre-
cisely determine where a patient’s pain is coming from or to
detect any irregularities in their abdomen. On the other hand,
a person using an assistive robot might just need coarse feed-
back to determine when the fork at the robot’s end effector
touches a piece of food and when it pierces it.

The robot’s (and person’s) task and environmental con-
texts will also affect how appropriate a given communica-
tion method is. People have limits to the amount of infor-
mation they can process, and the number of communication
channels they can attend to, particularly if they are engaging
in a safety-critical task or are under a high cognitive load.
It is important robots in shared control scenarios are well-
designed to be able to adapt to these varying conditions to
best meet the processing capabilities of the user.

Furthermore, communication will depend on a person’s
preferences and abilities, which may also depend on the task
and environmental context. For example, if a person is blind
or low vision, haptic or aural interaction modalities may be
more appropriate than visual modalities. Our prior work sug-
gests the importance of building systems that can be easily
adapted to different contexts depending on the abilities of
the user and/or constraints of the environment [18, 13]. Fur-
thermore, people might prefer different degrees of informa-
tion granularity in the feedback they receive. One factory
worker working with a Baxter might want detailed infor-
mation about exactly what step of the assembly process the
Baxter is on, while another person might just want to know
when the Baxter finishes a set of tasks.

Thus, researchers need to design communication strate-
gies that are able to adapt to the task, environmental and
user contexts they are used in. Such systems should be able
to smoothly transition modes as the task or environment
changes.

Challenge 3: Performance vs. Preference In shared con-
trol systems, the approach that offers the best performance
may not always align with the person’s preferences. It is not
clear to what extent the robot should prioritize performance
over preference, if at all. Furthermore, how should the robot
communicate this trade-off to the person?

The exact relationship between people’s preferences, dif-
ferent levels of autonomy, and performance is still unclear,
and more research is needed in this area. In some shared
control user studies, participants expressed a preference for
a more autonomous robot that performed the task better over
a less autonomous robot that performed the task less well

Figure 2: Context-aware communication requires consider-
ing many different factors, including communication, envi-
ronmental, user, and task characteristics.

[28, 15]. However, in other studies, participants did not pre-
fer more autonomous modes over less autonomous or tele-
operated modes, even when they acknowledged more au-
tonomous robot performed better [16], took less time or ef-
fort to use [7, 15], or was safer [12]. Some work suggests
this preference is influenced by the task difficulty [10, 15],
but other work does not necessarily support this. For in-
stance, Bhattacharjee et al. [7] and Javdani et al. [15] both
conducted studies with a feeding scenario, and participants
in Bhattacharjee et al. preferred a less autonomous agent
mode, while participants in Javdani et al. preferred a more
autonomous mode.

If a person’s preference does not align with the policy the
robot believes will produce the best performance, it is not
always clear if the robot should defer to the person’s prefer-
ence. In many cases, it likely should. If the task is not criti-
cal and errors will not lead to undesirable outcomes, it may
not matter if the robot follows the person’s preference. For
instance, there are negligible consequences when a marine
biologist navigates the robot on a slightly longer path to a
patch of coral.

However, in some cases, it is not as clear that the robot
should defer to human preference. A person might pre-
fer less assistance while using a robot to wash themselves.
However, they might not get as clean as they would if the
robot provided more assistance, which could lead to adverse
health effects. In these situations, how should the robot be-
have?

The robot might override the person’s preference to in-
crease their safety. This presents many ethical considerations
[17], including whether it is ethical for the robot to override
their preferences at all, and raises questions of technological



paternalism. It could also lead to lower adoption of the robot
if people are frustrated it does not do what they want.

The robot could also comply with the person’s preference.
However, this could give rise to some safety risks or reduced
performance for some tasks, particularly when people are
cognitively overloaded.

Alternatively, the robot could attempt to communicate to
the user the trade-off between their preferences and perfor-
mance or safety. The user may not always be aware that their
preference lowers performance or safety, so proper commu-
nication could keep the user informed about their options
and let them know what is happening if the robot did over-
ride their preference. To do this, the robot would need to
alert the user that their preferred method is less safe or re-
sults in lower performance. It may also need to explain why
this is the case [23].

The robot might also be able to influence the user’s ac-
tions without explicitly discussing it with the user. For ex-
ample, it could attempt to perform the task with the method
that increases safety or performance, but defer to the per-
son’s preference if the person insists [22]. While it is not
guaranteed this will convince the user to change their pref-
erences, it could nudge them towards a method that is safer
or performs better.

More research is needed to determine in what situations
human preferences are likely to be contrary to the best per-
formance or lower risk. Additionally, researchers should
consider when (if ever) and to what extent robots should ig-
nore people’s preferences. If they do, it will likely be highly
dependent on the task and environmental context, as well as
the culture of the person using the robot. In such scenarios,
researchers will also need to develop communication meth-
ods for the robot to alert the person to the situation.

Challenge 4: Interruptions and Cognitive Burden It is
not clear how robots can assist users during interruptions
in a task to reduce cognitive burden. In many environments,
people are interrupted frequently. For instance, in emergency
departments, clinicians are interrupted as often as once every
four minutes [26]. This adds to the person’s cognitive burden
and increases the chance of errors. If robots are introduced
into these environments, they will need to be designed with
these interruptions in mind.

In some interruption-prone environments, people have
tried a variety of methods to reduce interruptions. For in-
stance, in hospitals, people tried designating “interruption-
free” zones or using “do not interrupt” jackets [3, 5]. How-
ever, it is unclear whether such methods will be feasible or
effective long term [8]. With the introduction of robots, new
methods will need to be designed to ensure the person op-
erating the robot is not interrupted excessively and that the
robot does not disturb other people while they work.

Researchers have explored people’s interactions with
robots when they are interrupted or multi-tasking. Often,
these studies use interruptions to increase cognitive burden
or explore another trait, such as trust [30]. More research is
needed that specifically focuses on behaviors robots can en-
gage in to mitigate cognitive burden from interruptions and
explore strategies robots can use to help users reorient to
their original task.

Conclusion

In this paper, we discussed several key challenges in shared
control. In particular, there are open questions around how
the robot should behave in novel situations, ensuring com-
munication is context-aware, balancing preference and per-
formance, and reducing cognitive burden in interruption-
prone environments.

In addressing these challenges, researchers should con-
sider ways to improve communication between the person
and robot. While such communication will not resolve all
the challenges, it could help keep the person in the loop and
make better decisions, regardless of robot behavior. We hope
this paper will draw attention to these challenges and assist
researchers in advancing the development of shared control
systems.
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