THEME ARTICLE: TOP PICKS FROM THE 2021 COMPUTER

ARCHITECTURE CONFERENCES

Distributed Data Persistency

Apostolos Kokolis ® Antonis Psistakis ®, Benjamin Reidys, Jian Huang, and Josep Torrellas, University of Illinois
at Urbana-Champaign, Champaign, IL, 61801, USA

Distributed applications such as key-value stores and databases provide fault
tolerance by replicating records in the memories of different nodes, and using data
consistency protocols to ensure consistency across replicas. In this environment,
nonvolatile memory (NVM) offers the ability to attain high-performance data
durability. However, it is unclear how to tie NVM memory persistency models to the
existing data consistency frameworks. In this article, we propose the concept of
distributed data persistency (DDP) model, which is the binding of the memory
persistency model with the data consistency model in a distributed system. We
reason about the interaction between consistency and persistency by using the
concepts of visibility point and durability point. We design low-latency distributed
protocols for several DDP models, and investigate the tradeoffs between
performance, durability, and intuition provided to the programmer.

ver the past decades, distributed storage
O systems, such as key-value stores and trans-
actional databases, have become a core
component of the cloud infrastructure. To meet ever-
increasing performance requirements, these distrib-
uted applications typically avoid frequent accesses to
slow storage devices, such as solid-state drives
(SSDs). Instead, they store the records in main mem-
ory and provide fault tolerance by making replicas
(i.e., copies) of the records in other nodes’ memories.
These replicas are managed by the runtime sys-
tem using a data-consistency model. There are
many different data-consistency models in use,’?
which differ in their strength. Strong consistency
models strive to ensure that reading different repli-
cas in different nodes returns the same, up-to-date
version of the record. In contrast, weak consistency
models permit reads to different replicas to return
different, sometimes stale versions. Commercial
applications support a variety of models—e.g.,
Apache's ZooKeeper supports the strong Lineariz-
able consistency, while Google's Bigtable provides
the weak Eventual consistency.

0272-1732 © 2022 IEEE

Digital Object Identifier 10.1109/MM.2022.3162183

Date of publication 24 March 2022; date of current version 30
June 2022.

July/August 2022

Authorized licensed use limited to: University of lllinois. Downloaded on August 02,2022 at 12:25:50 UTC from IEEE Xplore. Restrictions apply.

Published by the IEEE Computer Society

Not using slow durable storage devices helps deliver
high performance during fault-free execution. However,
when a fault occurs, distributed applications that use vol-
atile memory to store replicas are subject to data loss or
slow data recovery. For example, a Meta key-value store
cluster needs hours to recover using remote data repli-
cas, and days to recover using a backend storage.

THE ARRIVAL OF NONVOLATILE
MEMORY (NVM) OFFERS A
PROMISING APPROACH TO HELP
DISTRIBUTED APPLICATIONS ATTAIN
BOTH HIGH PERFORMANCE AND
DURABLE STORAGE FOR IMPROVED
DATA RECOVERY.

The arrival of nonvolatile memory (NVM) offers a
promising approach to help distributed applications
attain both high performance and durable storage for
improved data recovery. NVM can provide data dura-
bility in about 100-400 ns. This is faster than a network
round trip in data centers with InfiniBand.

To facilitate the use of NVM, researchers have devel-
oped a framework of data-persistency models for a single
machine with hardware-managed cache hierarchies.®
These models vary in how eagerly they persist writes to

IEEE Micro

107

https://orcid.org/0000-0002-6211-4041
https://orcid.org/0000-0002-6211-4041
https://orcid.org/0000-0002-6211-4041
https://orcid.org/0000-0002-6211-4041
https://orcid.org/0000-0002-6211-4041
https://orcid.org/0000-0002-2273-3796
https://orcid.org/0000-0002-2273-3796
https://orcid.org/0000-0002-2273-3796
https://orcid.org/0000-0002-2273-3796
https://orcid.org/0000-0002-2273-3796

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

SIDEBAR: DATA-CONSISTENCY AND MEMORY-

PERSISTENCY MODELS

Data-Consistency Models

n a distributed computer with replicas of records

in different nodes, multiple processes running on
different nodes may concurrently read and update
the replicas of a given record. The consistency model
of a system defines the requirements and guarantees
of what data values can processes read. Some
popular data-consistency models are as follows.

Linearizable consistency or linearizability: As the
strongest model, it requires that all writes to all records
be seen by all processes in the same order and, in
addition, that all reads and writes be ordered by their
timestamps.

Causal consistency: Accesses are partially
ordered according to the Happens Before (HB)
relationship. Specifically, two accesses in the same
process are ordered based on the program order. A
read from a process that obtains a value written by a
write from another process is ordered after the write.
Furthermore, this relation is built transitively. In this
model, a process can observe a write w only after it
observes every previous write in w's HB history.
Writes do not need to be applied instantly and,
therefore, reads can return stale values.

Eventual consistency: Writes are propagated lazily.
This model only guarantees that all the replicas will
eventually see all the writes. This model provides very
weak consistency guarantees, and reads can return
unexpected values.

Transactional consistency: Accesses are organized
in transactions (Xactions). Although multiple variations
exist, this article uses a simple model. The writes in a
Xaction only need to be propagated to all the replicas by
the end of the Xaction. If the Xaction fails, none of the
updates are performed. Moreover, the operations within
a Xaction can only see the effects of other Xactions that
have completed prior to it.

Read-enforced consistency: We introduce this
new model, which is slightly weaker than linearizable
consistency. A write only needs to update all the
replicas at the point when a subsequent read tries
to read any of the replicas. Compared to
linearizability, this model allows faster completion of
write requests at the potential expense of delaying
reads.

Memory-Persistency Models

The availability of NVM has led to the creation of multi-
ple memory-persistency models for single-server plat-
forms. We adapt these models to work on a distributed
system, building on traditional durability models that
distributed systems have used to persist data to SSDs.
The memory-persistency models we use are as follows.

Synchronous persistency: We introduce this new
model as the adaptation of the strict memory-
persistency model from single-server systems® to
distributed systems. When a replica is updated in
volatile memory, it is immediately persisted to NVM. This
model is strict, but the time of the persist depends on
when the replica is updated, which in turn depends on
the data-consistency model of the system.

Read-enforced persistency: This model is more
relaxed than synchronous. Replicas do not need to be
persisted when they are updated. Instead, all the
updated replicas need to be persisted before any of
them is read. This model guarantees that any value
that has been read is also recoverable. However,
updates that have not yet been read may be lost in a
crash.

Eventual persistency: Persist operations are
performed lazily. They happen whenever it is possible,
without any concern about the order of persists. In case
of a volatile storage failure, an arbitrary number of
updates may be lost.

Scope persistency: We introduce this model as an
example of the model proposals that persist a set of
writes as a group. Every write is augmented with a Scope
ID, and the application can invoke a Persist on a given
Scope ID. Writes can be persisted in the background,
but the model guarantees that all the writes in a scope
are persisted by the time the persist call for that scope
terminates. On a failure, the state of all the completed
scopes is recovered, and that of those partially executed
is discarded.

Strict persistency: Strictest model that dictates that
a write should be persisted in the NVM of all the replica
nodes by the time the write completes—possibly even
before the replicas in the volatile memories of the
replica nodes receive the update. On a failure of volatile
storage, no update is lost. This model is relatively less
interesting because of its high strictness.

108 IEEE Micro July/August 2022

Authorized licensed use limited to: University of lllinois. Downloaded on August 02,2022 at 12:25:50 UTC from IEEE Xplore. Restrictions apply.

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

NVM. For example, Strict persistency requires that a
record be persisted as soon as it is updated, while Epoch
persistency only requires that updated records be per-
sisted at certain program locations.

As we use NVM in distributed applications and sys-
tems, we have to carefully manage both the consistency
and persistency of the data. Although distributed data-
consistency has been well studied, it has almost always
been used in systems which, at best, use slow storage
devices for durability. Hence, it is unclear how to best
incorporate the NVM memory persistency models into
these data-consistency frameworks. In fact, it is unclear
how these two classes of models interact with each
other, and how their combination impacts data durability,
performance, and programmer intuition in applications.

The “Data-Consistency and Memory-Persistency Mod-
els” sidebar describes some data-consistency models
and memory-persistency models. They include some of
the most popular ones, which will be used in this article.

In this work, we introduce the concept of distributed
data-persistency (DDP) model of a distributed system,
which is the binding of the memory-persistency model
with the data-consistency model. To understand DDP
models, consider a distributed computer where each
node has a volatile memory hierarchy and some NVM.
When an application runs on this platform, the runtime
makes copies of records in the volatile memory hierar-
chy of multiple nodes. Such replication is performed for
fault tolerance and performance, and may be later fol-
lowed by the persistence to NVM.

In such a system, we decouple data-consistency
models from memory-persistency models by using
the concepts of visibility and durability. The consis-
tency model is concerned with visibility, or when to
propagate the update of a record to its replicas in the
volatile hierarchies of nodes. The persistency model
is concerned with durability, or when to persist the
update to the NVMs of nodes. To be specific:

he consistency model defines the visibility

point (VP). The VP of an update with respect
to a node is when the update becomes available for
consumption at that node. The persistency model
defines the durability point (DP). The DP of an
update is when the update is made durable (in the
necessary number of nodes, as required by the
recovery system) and, hence, cannot be wiped out
by a failure.

July/August 2022

Authorized licensed use limited to: University of lllinois. Downloaded on August 02,2022 at 12:25:50 UTC from IEEE Xplore. Restrictions apply.

TABLE 1. Visiblity and durability points of an update for

different consistency and persistency models, respectively.

Consistency

VP of an update

Linearizable
Read-enforced
Transactional
Causal

Wrt all R nodes: when the update takes place
Wrt all R nodes: before the update is read

Wrt all R nodes: at the transaction end

Wrt a R node: after the VPs wrt the same node

of all the updates in the happens-before
(HB) history

Eventual Wrt a R node: sometime in the future

Persistency DP of an update

Strict When the update takes place
Synchronous At the VP of the update
Read-enforced | Before the update is read
Scope Before or at the scope end
Eventual Sometime in the future

Notes: “wrt” and ‘R” stand for “with respect to” and “replica.”

Broadly speaking, it helps to think as follows. Con-
sistency models are more or less strict depending on
how eagerly they propagate the update of a record to
the volatile memory hierarchy of the nodes with repli-
cas. Persistency models are more or less strict
depending on how eagerly they persist the update to
the NVMs of the nodes with replicas. This separation
of concerns provides an intuitive way to plug the
framework of persistency models into the framework
of consistency models, creating DDP models.

Table 1 shows the VP and DP of an update in the dif-
ferent consistency and persistency models, respectively,
of the “Data-Consistency and Memory-Persistency Mod-
els” sidebar. The models are listed from more to less
strict. In the following, for a given variable, we call “replica
nodes” all the nodes that contain a copy of the record.
More details are found in our MICRO-2021 paper.*

To understand the tradeoffs in DDP models, we design
new distributed protocols for 25 DDP models that
pairwise combine the persistency and consistency
models of Table 1. We target modern data center
architectures, where nodes communicate with low-
latency advanced remote direct memory access
(RDMA) and use NVM for persistency. In this setting,
where a round trip between nodes takes single-digit
microseconds, and data persistency can be obtained
in a few hundred microseconds, we design protocols
that emphasize low latency. Our protocols have no
single leader—i.e., a client read or write request can
be received and processed at any node.®> Moreover, on
reception of a client's write, a node broadcasts

IEEE Micro

109

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

110

messages to all the other replica nodes, instead of
sending a message that sequentially visits all the
other replica nodes. Our protocols build on Hermes.®
Following Hermes' terminology, we call coordinator
the node that receives the client's read/write request
for a record and initiates the transaction; followers are
all the other nodes with a replica of the record. The
protocols are described in our MICRO-2021 paper.?

The different DDP models provide different tradeoffs
between durability, performance, intuition provided to
the programmer, programmability, and implementabil-
ity. Durability refers to how capable the system is to
retain a consistent state after a failure that causes
the loss of some or all the volatile state. Performance
depends on three main factors: 1) the speed of reads,
2) the speed of writes, 3) and the volume of traffic
generated.

Programmer intuition is determined by what values
a read can return. In particular, we consider whether
the system supports monotonic reads and/or nonstale
reads.® A system supports monotonic reads if, given
two system-wide reads to the same variable, the later
read always provides the same or a later version of
the record that the earlier read provided. A system
fails to provide nonstale reads if a read that follows a
write system-wide fails to provide the value of the
write. The most obvious case is when a failure
between the write and read causes the loss of the
written version. Intuitive systems support both mono-
tonic and nonstale reads.

Programmability refers to the developer's ease of
writing the application. For example, if the developer
has to include annotations for transactions or scopes,

TABLE 2. Comparing different DDP models.

programmability is hurt. Finally, implementability
refers to the simplicity of the algorithms in the model.
For example, keeping track of the HB histories of
writes in the causal consistency model complicates
the implementation.

Specific DDP Model Analysis

Table 2 compares 10 representative DDP models: five
that bind synchronous persistency, two that bind read-
enforced persistency, one that binds eventual persis-
tency, and two that bind scope persistency to consis-
tency models. We consider durability, performance,
programmer intuition, programmability, and imple-
mentability. In the table, upward, flat, and downward
arrows mean high, medium, and low; crosses mean no
and tick marks means yes. We represent a DDP model
as <consistency model, persistency model>.

Combinations With Synchronous Persistency
Row 1 shows the very strict <Linearizable, Syn-
chronous>. Durability is high because a write does not
return until it is persisted in all replica nodes. In terms
of performance, writes are not optimized because a cli-
ent write is not acknowledged until the update is prop-
agated to all replicas and persisted in the replica
nodes. Reads are not optimized either because a client
read is blocked until an incoming prior write from
another node to the same record has updated and per-
sisted all the replicas. For these reasons, even though
we can say that the traffic is medium, the overall per-
formance is low. In terms of intuitiveness, this model is
highly intuitive because it provides both monotonic
reads and nonstale reads. Finally, both programmabil-
ity and implementability are high.

Row 2 shows <Read-Enforced, Synchronous>,
which optimizes writes by allowing the coordinator to
acknowledge the client as soon as the coordinator

Performance Programmer Intuition Other
Consistency Persistency Durability || Wr Opt? | Rd Opt?| Traffic| Overall || Monot.| Non Overall || Program- | Implemen-
Model Model Rds? | Stale Rds? mability? | tability?
1. Linearizable 1 X X & (3 v v i T T
2. Read-Enfor. & v X =S =S v X & T T
3. Transactional Synchronous T v v 1 1 v v f 4 /2
4. Causal & (4 v T T v X & T {
5. Eventual { v v (3 i X X U T T
6. Linearizable Read-Enfor. & v X T & v X & T T
7. Causal & v X T T v X =S T 13
8. Linearizable Eventual 13 v 4 () T X b 4 () f T
9. Linearizable Scope T v v T T b 4 b 4 T i3 13
10. Transactional T v (%4 T T X X T I (%

Notes: “opt” means optimized.

IEEE Micro

July/August 2022

Authorized licensed use limited to: University of lllinois. Downloaded on August 02,2022 at 12:25:50 UTC from IEEE Xplore. Restrictions apply.

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

sends the update messages to replica nodes. Reads,
however, are not optimized and still need to wait until
an incoming prior write from another node to the
same record is propagated to all the replicas and per-
sisted everywhere. In this model, durability is medium
because, if a failure occurs after a write has been
acknowledged to the client but before the write has
persisted, the write may be lost. Since writes are opti-
mized but reads are not, and the traffic is medium,
overall performance is medium. Monotonic reads are
guaranteed but not nonstale reads, due to the failure
just described: as the system recovers from the failure,
a subsequent read will not return the value produced
by the lost write. Hence, intuitiveness is medium.
Programmability and implementability are high.

Row 3 shows <Transactional, Synchronous>,
which is similar to <Linearizable, Synchronous>
except that it operates at transaction level. It has
high durability—completed transactions are never
lost. It optimizes writes through overlapping them
inside a transaction, and reads by not stalling them.
As a result, although traffic is high due to transaction
begin/end messages, its performance is high. It pro-
vides both monotonic reads and nonstale reads and,
hence, intuitiveness is high. However, programmabil-
ity is low due to the need to annotate code with trans-
actions, and implementability is low due to the need
to implement transactions and their conflict detec-
tion and resolution.

Row 4 shows <Causal, Synchronous>, which opti-
mizes both writes and reads. Neither of them stalls:
writes are acknowledged to the client as soon as the
coordinator sends the update messages, and reads
return the latest version in persistent memory. Since
the write optimization may result in a write to be lost
in a failure, durability is medium. Both reads and writes
are fast but the traffic is high because each write car-
ries its HB history. Still, performance is high. Mono-
tonic reads are guaranteed because, even if updates
arrive at a follower out of order, the system buffers
them and performs them in the order based on their
HB history. However, nonstale reads are unsupported
because writes can be lost to failures. Hence, intuition
is medium. Programmability is high but implementabil-
ity is low because of the need to buffer and enforce
the HB histories.

Row 5 shows <Eventual, Synchronous>. As it pro-
vides practically no guarantees on when writes update
replicas and persist, its durability is low. It has optimized
reads and writes, and low traffic. Hence, performance is
high. However, since neither monotonic reads nor non-
stale reads are supported, intuitiveness is low. Program-
mability and implementability are high.

July/August 2022

Authorized licensed use limited to: University of lllinois. Downloaded on August 02,2022 at 12:25:50 UTC from IEEE Xplore. Restrictions apply.

Relaxing Persistency

As we relax persistency and go from <Linearizable, Syn-
chronous> to <Linearizable, Read-Enforced> in row 6,
we optimize writes by acknowledging the client after the
replicas are updated but not yet persisted. Reads are not
optimized due to read-enforced persistency. Writes can
be lost in a failure. Consequently, durability decreases to
medium. Performance, however, increases to medium.
Furthermore, since nonstale reads are not guaranteed in
afailure, intuitiveness decreases to medium.

Row 7 shows <Causal, Read-Enforced>, which
mostly optimizes writes over <Linearizable, Syn-
chronous>. Because of this change, and despite its high
traffic due to HB history transfers, its performance is
high. However, since writes can be lost, durability is
medium and nonstale reads are not supported. As a
result, intuitiveness is medium. Implementability is low
because of the need to keep HB histories.

Further relaxing persistency to <Linearizable,
Eventual> in row 8 creates a system with both read
and write optimization but neither monotonic nor non-
stale reads. The result is low durability, high perfor-
mance, and low intuitiveness.

Finally, we consider scope persistency. In
<Linearizable, Scope> (row 9) and <Transactional,
Scope> (row 10), we have systems with high durability:
in a volatile storage failure, the state of all the com-
pleted scopes is recovered, and that of those partially
executed is discarded. Within a scope, writes are opti-
mized because they do not serialize their persists, and
so are reads, which can read before the scope per-
sists. As a result, despite the higher traffic caused by
scope-persist messages, performance is high. Neither
monotonic reads nor nonstale reads are guaranteed:
on a failure, a group of writes may be lost because the
scope did not persist. However, intuitiveness is still
high because either the whole scope survives or no
part of it does. Finally, both programmability and
implementability are low due to the need to mark and
support scopes. Further, both properties are worse if
scopes are combined with transactions (row 10).

We extensively compare the performance of our
25 DDP models for multiple key-value store applica-
tions. We model a platform with five servers of 20
cores each. Figure 1 presents the average throughput
of the different DDP models. Each bar represents the
combination of a consistency model (x-axis) with a
persistency model (legend). All bars are normalized to
the case of <Linearizable, Synchronous>. We find
that models with linearizable consistency have the

IEEE Micro

m

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

12

3T
3L0 e
2.0 F

Throughput

1.0}
0.5f
0.0

Linear

FIGURE 1. Throughput of the different DDP models.

lowest throughput, while those with causal and even-
tual consistency have the highest (often 2x-3x
higher). Those with transactional consistency fail to
deliver high throughput when conflicts are high.

Typically, throughput is inversely correlated with
mean read and write latencies. Models with causal and
eventual consistency have low read and write latencies.
The exception is the combinations with strict persistency.
The latter stalls writes until the updates are persisted
everywhere. Models with transactional consistency have
high write latencies, both because of conflicts—a request
will not be satisfied until the transaction restarts and
completes—and because writes bunch up at transaction
end. This is especially the case for strong persistency
models, such as strict and synchronous. On the other
hand, some models with read-enforced consistency have
high read latency. This is because, by enabling more write
overlapping than linearizable consistency, they induce
more NVM pressure, causing reads to stall longer for
writes to persist.

Application developers choose the consistency model
according to their needs. The evaluation in our
MICRO-2021 paper® suggests which persistency mod-
els should go with which consistency models and,
therefore, which DDP models to use. We now summa-
rize the main insights.

Latency-sensitive applications that can tolerate a
certain level of data staleness, such as web browsing
and social networking, often use eventual consis-
tency.” In this case, using synchronous persistency is
a good choice in terms of performance, programmabil-
ity, and implementability (see Table 2).

For consistency-sensitive applications that require
bounded staleness but can accept modest latencies,
such as certain web search services,' stricter consistency

IEEE Micro

Read-Enforc Xactional

Causal Eventual

models, such as read-enforced consistency, are good
choices. In this case, combining them with scope or even-
tual persistency results in high throughput and low tail
latency. Some of these applications aggregate data from
thousands of anonymous users and, therefore, the loss of
a certain amount of recent data is acceptable.

MODELS COMBINING STRONG
CONSISTENCY WITH WEAK
PERSISTENCY, OR WEAK
CONSISTENCY WITH STRONG
PERSISTENCY ARE TYPICALLY BEST.

Applications that need both reasonable consis-
tency guarantees and high performance, such as
photo sharing and news readers,® often use causal
consistency. In this case, we suggest to use synchro-
nous persistency. Our evaluation shows that causal
consistency delivers some of the best performance of
all cases in combination with multiple persistency
models. Therefore, developers can select the appropri-
ate persistency model based on the durability require-
ments of their application.

Applications that require transactional guarantees,
such as Google's globally distributed Spanner data-
base® use a form of transactional consistency. This
consistency model can deliver high throughput, but its
performance suffers if transaction conflicts are fre-
quent. In this case, using read-enforced persistency is
not a good choice, since reads end up suffering long
stalls. Other persistency models, such as scope or
eventual should be used.

Many systems use hybrid consistency models—
e.g., linearizable or read-enforced consistency in a
local cluster, and eventual consistency across the

July/August 2022

Authorized licensed use limited to: University of lllinois. Downloaded on August 02,2022 at 12:25:50 UTC from IEEE Xplore. Restrictions apply.

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

entire distributed system in a data center.”® In this
case, our results suggest using scope or eventual per-
sistency for the local cluster, and synchronous persis-
tency across the system.

Generally, we find that causal consistency com-
bined with either synchronous or eventual persistency
is highly competitive, and robust to increases in num-
ber of clients, network latencies, and write traffic.
Beyond this, models combining strong consistency
with weak persistency, or weak consistency with
strong persistency are typically best.

Irrespective of the DDP model, a recovery algo-
rithm is invoked on a crash. The complexity of the
recovery is higher in the weaker models than in the
stricter ones. For example, strict models, such as line-
arizable plus synchronous have a simple recovery pro-
cess because all nodes have the same persistent view
of the data. On the other hand, weaker DDP models,
such as those with eventual consistency or persis-
tency may need an advanced recovery algorithm.

This work can be extended in multiple ways to spur
research in computer architecture and distributed sys-
tems. This section describes some research directions
and opportunities enabled by our work.

Extending the Framework
Future work can extend our framework of consistency
and persistency models in many ways. One possible
extension is to propose new memory-persistency
models for distributed systems. Another extension is
to combine the persistency models described with the
many other existing data-consistency models.
Another possible research line is to develop better
protocols for these DDP models. In our MICRO-2021
paper,* we built our protocols based on Hermes.®
However, other protocol designs are possible, which
offer different performance and complexity tradeoffs.
Finally, another avenue worth exploring is using new
implementations of the DDP protocols. Our implemen-
tations use RDMAs. One can also use remote proce-
dure calls or services that manage the replication and
recovery in distributed systems, such as Zookeeper."

Opportunities for Computer
Architecture Research

This article shows that the arrival of NVM together with
advances in high-performance networks impacts remote
communication and persistency. Additional architectural
advances will introduce new tradeoffs in this area.

July/August 2022

Authorized licensed use limited to: University of lllinois. Downloaded on August 02,2022 at 12:25:50 UTC from IEEE Xplore. Restrictions apply.

Specifically, current RDMA functionality is limited. For
example, an RDMA request to persist data is acknowl-
edged before it can provide any guarantee that the data
have been successfully persisted in NVM. As a result,
researchers have proposed RDMA extensions that are
needed to facilitate NVMs."> Such proposals include
flushing data from volatile storage to NVM, as well as per-
forming a write directly to NVM and only acknowledging
this write when it has fully persisted in NVM.

AN IMPORTANT CONTRIBUTION OF
THIS WORK IS TO UNDERSTAND HOW
THE VISIBILITY POINT AND THE
DURABILITY POINT OF AN UPDATE
INTERACT WITH EACH OTHER IN
DIFFERENT DDP MODELS.

The introduction of programmable network inter-
face cards (SmartNICs) provides an opportunity to off-
load operations and decision making from the central
processing unit (CPU) to the SmartNICs—freeing up
the CPU for compute tasks. DDP protocols can take
advantage of advanced hardware support in the
SmartNICs. For example, DDP protocols often require
a node to perform fast checks of record metadata
before sending responses back to other nodes. Such
checks could be handled in the SmartNIC. This func-
tionality requires enhancing the RDMA with new prim-
itives and the NIC with new hardware.

Some DDP protocols, such as those that utilize
transactions can use fairly sophisticated support in
the SmartNIC. For example, they can identify potential
conflicts between the different transactions. Further
research is needed to understand and design the
SmartNIC hardware requirements.

Development of Applications

Our work provides a tradeoff analysis that can be used
by application developers to select the appropriate
DDP model for their applications. Applications like
databases or third party services like Zookeeper need
to implement the DDP models and provide a way for
the user to select one of them.

Advanced APls may be developed that allow for a
more effective use of these models. Programs may be
able to select the DDP model under which to treat
individual or groups of client requests. For instance,
the API can indicate that a write should be persisted
before replying to the client and that no other client

IEEE Micro

13

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

N4

should be able to read this value until the persist oper-
ation has completed.

In addition, the detailed description of the DP
for each DDP model enables the introduction of
more efficient distributed recovery mechanisms for
distributed systems. Such mechanisms can take
advantage of the DP to identify the latest update
that can be recovered from a record after a crash,
minimizing the traffic and coordination needed
between the nodes of the system.

This article has introduced a set of DDP models
and low-latency protocols to support them. These
models and protocols are widely applicable and not
tied to a specific programming framework or dis-
tributed system environment. This flexibility makes
the DDP models and protocols amenable to be
incorporated into a wide variety of services and dis-
tributed systems.

An important contribution of this work is to under-
stand how the visibility point and the durability point
of an update interact with each other in different DDP
models. Such insights can help developers of applica-
tions and runtime systems to build more efficient dis-
tributed software—i.e., software that attains the
desired combination of performance, consistency, and
durability properties—and to reason about the cor-
rectness of their distributed software.

1. P. Viotti and M. Vukoli¢, “Consistency in non-
transactional distributed storage systems,” ACM
Comput. Surv., vol. 49, no. 1, Jun. 2016, Art. no. 19,
doi: 10.1145/292696.

2. A.Dragojevi¢, D. Narayanan, M. Castro, and O.
Hodson, “FaRM: Fast remote memory,” in Proc. 11th
USENIX Symp. Netw. Syst. Des. Implementation, Apr.
2014, pp. 401-414. [Online]. Available: https://www.
usenix.org/conference/nsdil4/technical-sessions/
dragojevic

3. S.Pelley, P. M. Chen, and T. F. Wenisch, “Memory
persistency,” in Proc. 41st Annu. Int. Symp. Comput.
Archit., 2014, pp. 265-276. [Online]. Available: http://dl.
acm.org/citation.cfm?id=2665671.2665712

4. A.Kokolis, A. Psistakis, B. Reidys, J. Huang, and J.
Torrellas, “Distributed data persistency,” in Proc. 54th
Annu. I[EEE/ACM Int. Symp. Microarchit., 2021, pp. 71-85.

5. A.Katsarakis et al., "Hermes: A fast, fault-tolerant and
linearizable replication protocol,” in Proc. 25th Int.
Conf. Archit. Support Program. Lang. Operating Syst.,
2020, pp. 201-217, doi: 10.1145/3373376.3378496.

IEEE Micro

6. A.Ganesan, R. Alagappan, A. Arpaci-Dusseau, and R.
Arpaci-Dusseau, “Strong and efficient consistency
with consistency-aware durability,” in Proc. 18th
USENIX Conf. File Storage Technol., 2020, pp. 323-337.
[Online]. Available: https://www.usenix.org/
conference/fast20/presentation/ganesan

7. M.K. Aguilera and D. B. Terry, “The many faces of
consistency,” IEEE Data Eng. Bull., vol. 39, pp. 3-13, 2016.

8. S.A.Mehdiet al., "l can't believe it's not causal!
scalable causal consistency with no slowdown
cascades,” in Proc. 14th USENIX Symp. Netw. Syst. Des.
Implementation, Mar. 2017, pp. 453-468. [Online].
Available: https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/mehdi

9. J.C.Corbett et al., “Spanner: Google's globally-
distributed database,” in Proc. 10th USENIX Symp.
Operating Syst. Des. Implementation, 2012, pp. 261-264.

10. H.Lu et al., “Existential consistency: Measuring and
understanding consistency at facebook,” in Proc. 25th
Symp. Operating Syst. Principles, 2015, pp. 295-310.

11. P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,
"ZooKeeper: Wait-free coordination for internet-scale
systems,” in Proc. USENIX Conf. USENIX Ann. Tech.
Conf., 2010, p. 11.

12. SNIA, “"NVM PM remote access for high availability
(Technical White Paper),” Tech. Rep., May 2019. [Online].
Available: https://www.snia.org/sites/default/files/
technical_work/Whitepapers/NVM-PM-Remote-Access-
for-High-Availability.pdf

APOSTOLOS KOKOLIS is a Ph.D. candidate with the Univer-
sity of Illinois at Urbana-Champaign, Champaign, IL, 61801,
USA. He builds systems for high performance that integrate
nonvolatile memory technologies. His research interests
include computer architecture, memory systems, and distrib-
uted systems. Contact him at kokolis2@illinois.edu.

ANTONIS PSISTAKIS is a Ph.D. candidate with the University of
lllinois at Urbana-Champaign, Champaign, IL, 61801, USA. His
research interests include parallel and distributed systems, and
computer architecture. Psistakis received an M.Sc. degree in
computer science and engineering from the University of Crete,
Heraklion, Greece. Contact him at psistaki@illinois.edu.

BENJAMIN REIDYS is a Ph.D. student with the University of
lllinois at Urbana-Champaign, Champaign, IL, 61801, USA. His
research interests include memory and storage systems with
an emphasis on datacenter scale. Reidys received a B.Sc.
degree in computer science and mathematics from Virginia
Tech, Blacksburg, VA, USA. He is a Graduate Student Member
of IEEE. Contact him at breidys2@illinois.edu.

July/August 2022

Authorized licensed use limited to: University of lllinois. Downloaded on August 02,2022 at 12:25:50 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/292696
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevic
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevic
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevic
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dx.doi.org/10.1145/3373376.3378496
https://www.usenix.org/conference/fast20/presentation/ganesan
https://www.usenix.org/conference/fast20/presentation/ganesan
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
https://www.snia.org/sites/default/files/technical_work/Whitepapers/NVM-PM-Remote-Access-for-High-Availability.pdf
https://www.snia.org/sites/default/files/technical_work/Whitepapers/NVM-PM-Remote-Access-for-High-Availability.pdf
https://www.snia.org/sites/default/files/technical_work/Whitepapers/NVM-PM-Remote-Access-for-High-Availability.pdf

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

JIAN HUANG is an assistant professor with the University of
lllinois at Urbana-Champaign, Champaign, IL, 61801, USA. His
research interests include computer systems, systems archi-
tecture, memory and storage systems, distributed systems,
systems security, and especially the intersections of them.
Huang received a Ph.D. degree in computer science from
Georgia Tech, Atlanta, GA, USA. He is a Member of IEEE. Con-

tact him at jianh@illinois.edu.

JOSEP TORRELLAS is the Saburo Muroga professor of com-
puter science with the University of lllinois at Urbana-Cham-
paign, Champaign, IL, 61801, USA. His research interests
include computer architectures for parallelism, energy effi-
ciency, programmability, and security. Torrellas received a
Ph.D. degree from Stanford University, Stanford, CA, USA.

Contact him at torrella@illinois.edu.

Over the Rainbow: 21st Century
Security & Privacy Podcast

Tune in with security leaders of academia,

industry, and government.

OVER THE RAINBOW

Subscribe Today

www.computer.org/over-the-rainbow-podcast

July/August 2022

IEEE Micro

Authorized licensed use limited to: University of lllinois. Downloaded on August 02,2022 at 12:25:50 UTC from IEEE Xplore. Restrictions apply.

