
ARTICLE TEMPLATE

A Vecchia approximation for high-dimensional Gaussian cumulative

distribution functions arising from spatial data

ARTICLE HISTORY

Compiled August 2, 2022

Abstract

We introduce an approach to quickly and accurately approximate the cumulative dis-
tribution function of multivariate Gaussian distributions arising from spatial Gaus-
sian processes. This approximation is trivially parallelizeable and simple to imple-
ment using standard software. We demonstrate its accuracy and computational ef-
ficiency in a series of simulation experiments, and apply it to analyzing the joint
tail of a large precipitation dataset using a recently-proposed scale mixture model
for spatial extremes. This dataset is many times larger than what was previously
considered possible to fit using preferred inferential techniques.
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1. Introduction

We introduce a trivially parallelizable approach to quickly and accurately approximate
the cumulative distribution function (cdf ) of multivariate Gaussian distributions with
highly structured covariance matrices, such as those arising from spatial Gaussian
processes. The multivariate Gaussian distribution is by far the most widely used for
modeling multivariate and spatial data. To a large degree, its near universal adop-
tion is the result of its simplicity; it is concisely and intuitively parametrized by a
mean vector and pairwise dependence in the form of a covariance matrix. Prominent
examples of its use include time series models like autoregressive and moving aver-
age models, which consider the joint distribution of the observations taken at discrete
time points to be multivariate Gaussian, as well as geostatistics models, which consider
spatially-indexed observations to be realizations of a Gaussian process, usually with a
parsimoniously parametrized covariance structure. Even multivariate models that do
not assume Gaussian responses often represent dependence using some kind of latent
multivariate Gaussian distribution.

In most situations, likelihood-based inference on popular models just requires cal-
culation of the joint density of all observations. The probability density function (pdf )
for a multivariate Gaussian random variable is

f(x;µ,Σ) ≡ φµ,Σ(x) = (2π)−k/2 det(Σ)−1/2 exp
[

−
1

2
(x− µ)′Σ−1(x− µ)

]

, (1)

where µ is the mean vector of length D and Σ is the D ×D covariance matrix.
In principle, there is nothing difficult about calculating this density; it simply re-

quires commonplace operations like calculating an exponent, matrix determinant, ma-



trix multiplication, and matrix inversion. However this is not an easy task in practice
when the dimension D is large. The complexity of calculating the determinant and
inverse of a D × D matrix is typically O(D3) for algorithms in common use. This
means that for large values of D, the calculation of the pdf becomes prohibitive.

Computing the Gaussian cdf, which is a much more difficult problem, has received
much less attention. The problem has increased in prominence recently with advances
in spatial modeling of extreme events. State-of-the-art approaches for spatial extremes
like Wadsworth and Tawn [1], Thibaud et al. [2], de Fondeville and Davison [3], and
Huser andWadsworth [4] all require high-dimensional Gaussian cdf s for inference. This
turns out to be the dominant computational bottleneck, and all but de Fondeville and
Davison [3] restricted their analyses to fewer than 20 spatial locations because larger
datasets are computationally intractable using widely-used techniques for computing
the Gaussian cdf. In real-world spatial applications, one should expect to see many
more spatial locations, and existing approaches are not equipped to handle datasets
of even moderate size.

Multivariate Gaussian cdf s appear in other contexts as well; for example the density
of multivariate skewed Gaussian and t random variables are functions of the multi-
variate Gaussian cdf [5]. Here, we will focus on the case of spatial extremes. To make
things concrete, we will use the example of the Gaussian scale mixture model from
[6], although our computational strategy would work equally well in any context with
highly-structured covariance matrices.

Most approaches to calculating multivariate Gaussian probabilities are intended for
problems of small or moderate dimension. Genz [7] proposed a transformation from the
original integral over RD to an integral over a unit hypercube. Transforming to a finite
region then allows the use any standard numerical integration method. Genz [8] derived
formulas to calculate bivariate and trivariate Gaussian cdf s with high precision using
Gauss-Legendre numerical integration. The calculations are fast and precise but do not
apply in higher dimensions. Miwa et al. [9] proposed a two-stage recursive approach to
estimate the Gaussian cdf. Their approach does not scale to high dimensions because
it requires a sum over a combinatorially exploding (in D) number of terms.

The most popular approach for approximating Gaussian cdf s in moderate dimen-
sions was proposed by Genz and Bretz [10]. They describe the use of Monte Carlo (MC)
and quasi-Monte Carlo (QM) methods to estimate the joint cdf. Their QM methods
have smaller asymptotic errors than the MC versions, and hence are the more widely
used.

More recently, Genton et al. [11] sped up the Genz and Bretz [10] QM algorithm
by performing matrix computations with fast hierarchical matrix libraries [12]. As a
follow-up, Cao et al. [13] combined hierarchical matrix computations with a blocking
technique to further speed up computations. These approaches are much faster than
their predecessors and work for Gaussian random variables with arbitrary covariance
structures. They lean heavily on linking to specialized libraries for matrix operations.
Our approach achieves speedups using a fundamentally different strategy, by specifi-
cally leveraging the properties of highly-structured covariance forms arising from, for
example, time series or spatial data. It requires no exotic software, and is trivially
parallelizable using simple tools in R.
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2. A Vecchia Approximation for the Multivariate Gaussian Distribution

Function

The multivariate Gaussian cdf that we wish to calculate is simply the integral of the
pdf (1),

P (X < x;µ,Σ) ≡ Φµ,Σ(x) =

∫ x1

−∞
· · ·

∫ xk

−∞
φµ,Σ(y) dy1 . . . dyD. (2)

To calculate the integral (2), one must resort to numerical techniques, as it is well-
known that no closed form exists, even in a single dimension. In high dimensions,
numerical integration is very difficult simply due to geometry and the curse of dimen-
sionality. The difficulty is compounded in the case of the Gaussian cdf because while
the curse of dimensionality requires an exponentially (in D) increasing number of eval-
uations of the integrand, the cost of each evaluation of the integration itself grows as
D3. We seek a technique that simultaneously 1) reduces the effective dimension of the
integral and 2) reduces the dimension of the pdf in the integrand.

2.1. Vecchia Approximation for the Gaussian pdf

Vecchia [14] introduced a way to approximate high-dimensional Gaussian pdf s arising
from spatial data, which is particularly amenable to modification for our purposes.
The starting point of the Vecchia [14] approximation is to write the joint density as a
product of cascading conditional densities,

f(x) = f(x1)

D
∏

i=2

f(xi |x1:i−1). (3)

Here, f(x1) is the univariate Gaussian density with mean µ1 and variance Σ11,
and, for i = 2, . . . , k, the conditional density f(xi |x1:i−1) is the univariate Gaus-
sian density with mean µi +Σ[i,1:i−1]Σ

−1
[1:i−1,1:i−1](x1:i−1 − µ1:i−1) and variance Σi,i −

Σ[i,1:i−1]Σ
−1
[1:i−1,1:i−1]Σ[1:i−1,i]. The leading terms in this product are fast to calculate,

but for terms corresponding to large i, the computations are nearly as burdensome as
those of the original representation (1).

To help solve this problem, Vecchia [14] proposed an approximation to the full joint
distribution, in the setting where the random vectorX is observed from a spatial Gaus-
sian process. He modified the cascading conditional representation (3) by replacing the
conditioning on high-dimensional vectors x1:i−1 with conditioning on well-chosen vec-
tors that have much smaller dimension. By limiting the conditioning sets to vectors of
length m << D, this strategy replaces expensive O(D3) matrix operations with much
faster O(m3) matrix operations. The approximation of the joint density is then

f(x) ≈ f(x1)

D
∏

i=2

f(xi |xNi
), (4)

where Ni is the conditioning set of size m (more precisely, min(m, i − 1)) chosen for
the component xi, for i = 2, . . . , D.
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A good choice for a conditioning set to approximate the complete conditional density
of each xi might be the m components that are most correlated with xi. In the context
where the random vector X = (X(s1), . . . , X(sk))

T arises from a stationary spatial
Gaussian process observed at locations s1, . . . , sk, the components most correlated
with Xi ≡ X(si) will be those observed at locations that are the m nearest neighbors
to si (under covariance models in common use). Other strategies for constructing
conditioning sets have also been explored [15,16].

Vecchia’s approximation has been found to be quite accurate under many covariance
models and sampling scenarios relevant to analysis of spatial Gaussian processes [16].
Moreover, it is very fast to compute, even using the most naive implementation. How-
ever, its power is fully realized when the D components of the product are computed
in parallel, which is trivially easy to implement using standard tools in R.

2.2. Extending the Vecchia Approximation for the Gaussian cdf

Our approach to approximating the high-dimensional Gaussian cdf is to re-write the
joint cdf as a telescoping product of conditional cdf s, analogously to (3), and then
to approximate each complete conditional cdf with cdf that conditions on a smaller
collection of components, analogously to (4). In the case of the pdf , this strategy of
choosing smaller conditioning sets eliminates the need to compute high-dimensional
matrix computations required by (1), whereas in the case of the cdf , this strategy
eliminates the need to compute the high-dimensional integral required by (2).

Specifically, we can re-write any joint cdf as

F (x) = P (X < x) = P (X1 < x1)

D
∏

i=2

P (Xi < xi |X1 < x1, . . . , Xi−1 < xi−1)

= P (X1 < x1)

D
∏

i=2

P (Xi < xi |X1:i−1 < x1:i−1) (5)

Then, just as in the approximation to the pdf (4), in the cdf (5) each conditional
probability in the product can be approximated by reducing the size of the conditioning
set to at most m components. Thus, our Vecchia approximation for the Gaussian cdf

is

F (x) ≈ P (X1 < x1)

D
∏

i=2

P (Xi < xi |XNi
< xNi

)

= P (X1 < x1)

D
∏

i=2

P (Xi < xi,XNi
< xNi

)

P (XNi
< xNi

)

= Φ(x1)

D
∏

i=2

Φ(x{i,Ni})

Φ(xNi
)
, (6)

where again Ni is the conditioning set of size min(m, i− 1) chosen for the component
xi, for i = 2, . . . , D.

The approximation given by (6) reduces computational costs by replacing the D-
dimensional integral in (2) with a series of much simpler integrals of dimension m+1
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and m, for m << D. Furthermore, all of the elements in the product can be computed
in parallel.

The multivariate cdf s in (6) still have to be evaluated numerically. For all but the
smallest possible choices of m, best practices suggest using a QM method like that of
Genz and Bretz [10] to approximate the numerator and denominator.

Similarly to the original Vecchia approximation to the Gaussian pdf , choosing the
conditioning sets involves a trade-off; choose m too small and the accuracy of the
approximation will suffer, but choose m too large and the computational benefits will
diminish.

3. Simulation Study

To assess the accuracy and speed of this approximation, and to explore the trade-off
inherent in the choice of m, we conduct a simulation study. Since the true value of
the cdf is not available, the best we can do to check for accuracy is to see whether
it is consistent with results obtained from direct use of the Genz and Bretz [10] QM
approach. We simulate a Gaussian process observed on equally spaced grids of five
different sizes, 15× 15, 30× 30, 50× 50, 75× 75 and 100× 100. We try two different
covariance functions for the Gaussian process to see whether this has an impact on
the cdf estimation: an exponential model with range parameter 1 and and exponential
model with range parameter 5, each with unit variance. This makes a total of 10
different scenarios. For each scenario, we used four different sizes of conditioning sets,
choosing m = 5, 10, 30 and 50 closest neighbors. For comparison, we computed the
Genz and Bretz [10] QM method using 499 and 3,607 sample points. We use the
implementation of the Genz and Bretz [10] algorithm in the mvPot package [17] for R.
In principle, the accuracy and computational requirements of the QM grows with the
number of sample points (which, here, must be a prime number). Since the algorithms
are stochastic, we repeated each calculation five times and plotted each replication as
a dot in Figures 1, 2, 3, and 4.

Figure 1 shows the value of the estimated log cdf for all grid sizes and all esti-
mation methods for the simulated Gaussian process with range parameter 1. The log
cdf estimated with the Vecchia approximation increases with the number of neighbors
until it stabilizes for 30 neighbors, after which it is consistent with the two QM ap-
proximations. This suggests that, under this scenario, it is advisable to use at least 30
neighbors in order to estimate the log cdf . For the two smaller grids, it appears that
the Vecchia approximation has a similar variance to the QM approximation using 499
sample points, but a higher variance that the QM approximation using 3,607 sample
points. For the larger grids, the Vecchia approximation appears to have a lower vari-
ance than both QM approximations. Figure 2 shows the same as Figure 1, but for
exponential Gaussian processes with range parameter 5. The story is similar to the
case with the shorter range process, except it appears that 50 neighbors may be neces-
sary in order to stabilize the estimated log cdf . It may be the case that the number of
neighbors necessary to accurately approximate the log cdf increases with length of the
dependence of the Gaussian process. Intuitively, this may occur because for processes
with longer-range dependence, a smaller proportion of the information in data may be
captured by local approximations.

[Figure 1 about here.]

[Figure 2 about here.]

5



Figures 3 and 4 show the time required to approximate the log cdf , on a single core,
for Gaussian processes with range parameters of 1 and 5, respectively. The computa-
tion time is influenced by both the number of observations and number of neighbors
used in the Vecchia approximation. Computational costs increase with the number of
observations, for both the Vecchia and QM approximation methods, and also increase
with the number of neighbors in the conditioning set. Oddly, the empirical computa-
tion time did not increase for the QM approximation with the larger set of sample
points. For smaller grid sizes, the QM methods are faster than the Vecchia approx-
imations, except when the size of the conditioning set very small. For grids of size
50× 50 and larger, computation time of the approximation using 30 neighbors was as
fast as or faster than the QM method. When the number of observations is extremely
large, in the case of the 100 × 100 grid, the computation time was much smaller for
the Vecchia approximation compared to the QM approximation. This suggests that
for high-dimensional datasets the use of the Vecchia approximation is preferable to
the QM method, even if computations are done sequentially.

[Figure 3 about here.]

[Figure 4 about here.]

3.1. Parallel Computing

Since each term of the Vecchia cdf approximation (6) is independent of every term, it is
trivial to parallelize the computations. In practice, we compute all of the required low-
dimensional Gaussian cdf s on the log scale, and then sum them at the end. In principal,
the speedup should be linear in the number of cores used for the calculation. To explore
this relationship, we compute the cdf approximation based on a Gaussian process
observed at 10,000 locations, varying the number of compute cores used between 5
and 40. For each setup, we repeat the computation 15 times. Figure 5 shows time
required to compute the log cdf approximation. The computing time decreases with
the number of cores. We observe roughly the expected linear relationship up to 20 cores,
when a jump occurs before again decreasing. We suspect that this is behavior a result
of the particular hardware configuration we used, which consists of networked 20-core
processors. That is, we guess that once an additional physical processor is engaged,
which occurs beyond 20 cores, overhead costs increase and attenuate the expected
computational gains. When 40 cores were used, it took less than 1 minute to compute
the log cdf approximation for 10,000 observations. There are clearly some diminishing
returns due to communication overhead, but in principle, this approximation could be
made arbitrarily fast with a big enough computing system.

[Figure 5 about here.]

3.2. Effect of Neighbor Selection and Joint Estimation

The representation defined by equation (5) and its approximation (6) calculates the
joint probability as the product of univariate conditional distributions. However it is
also possible to write the full joint cdf as a cascading product of multivariate, rather
than univariate, conditional cdf s. Under equation 6, it is necessary to calculate the
n univariate conditional probabilities, each of which requires a m+ 1-dimensional cdf
calculation. If instead we divide the components into q groups of p joint observations,
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such that q × p = n, we would only need to calculate the product of q conditional
probabilities. However, doing so would make the dimensionality of each individual
Gaussian cdf calculation in (6) between m + p and pm + p. So it would trade the
cost of computing higher-dimensional cdf terms for the benefit of computing fewer
terms. Such a trade-off could affect both the accuracy and computational efficiency of
the approximation. Guinness [16] explored this possibility in the context of pdf s and
found that it can be advantageous to consider multivariate conditional densities in the
Vecchia density approximation. To explore the effect of calculating higher dimensional
conditional probabilities, we calculate the log cdf approximation based on groupings
of observations of different sizes.

An additional consideration that could effect the accuracy and speed of the approx-
imation is the construction of the conditioning sets. Using the nearest neighbors, as we
have done above, requires the additional step of ordering the components by distance,
which could be slow. Choosing randomly-selected conditioning sets could potentially
speed up the computation by avoiding this sorting step.

Figures 6 and 7 show the estimated log cdf and time (in seconds) to compute the
approximated log cdf , using the 100 × 100 grid. We used approximations based on
joint conditional cdf s of dimension 2, 5, 10, 20, 30, and 50. For each grouping size, we
constructed conditioning sets using 3 different methods. The first method conditions on
the m most correlated observations (in this case simply the nearest neighbors) for each
observation in the joint grouping, resulting in a conditioning set of size pm. The second
method simply conditions on m random observations. The third method conditions on
m random observations per element of the multivariate conditional calculation, again
resulting of a conditioning set of size pm.

From Figure 6 it is clear that simply conditioning on m random observations fails
to yield an acceptable approximation. Performance can be improved by conditioning
on more random observations, which is what the third method does. Method 3 shows
somewhat improved behavior, however it was only able to perform acceptably when
both the dimensionality p of the joint conditional probability and the size of the condi-
tioning set pm were both large. It is clear from Figure 6 that conditioning on random
neighbors is much less accurate than conditioning on the most highly correlated neigh-
bors. For conditioning sets consisting of small numbers m of neighbors per element in
the joint conditional probability, the use of a large group p of joint observations had
a better result, probably simply due to fact that the total number pm of neighbors in
the conditioning set was larger. However, when the number m of correlated neighbors
gets large enough the number p of joint observations does not seem to affect result of
the approximation.

[Figure 6 about here.]

Figure 7 shows the computation time required for all of the approximation schemes
depicted in Figure 6. The clear trend is that choosing a small conditioning set of
random observations is very fast (middle panel), using higher-dimensional joint condi-
tional cdf s is slower than using lower-dimensional joint conditional cdf s (all panels),
and for the same size conditioning set, the time required to find the nearest neighbors
is not a major bottleneck (right and left panels). This conclusion is different from ex-
ploration of the same issues, in the context of the pdf , found in Guinness [16]. There,
using higher-dimensional joint conditional calculations was found to be beneficial, and
the time required to find nearest neighbors was substantial enough to warrant the use
of a fast approximate ordering algorithm. In the case of the cdf approximation, code
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profiling confirmed that the time required to order the observations was insignificant,
with the overwhelming majority of the computation time being used in calculating the
lower-dimensional joint cdf s using the QM technique.

[Figure 7 about here.]

4. Example: A Gaussian Scale Mixture for Spatial Extremes

Recent advances in the statistics of extremal spatial phenomena have produced models
that are flexible enough to accommodate both strong and weak spatial dependence
in the far joint tails. One prominent strategy for achieving this is to construct scale
mixtures of Gaussian processes, where the mixing distribution is chosen carefully so as
to produce the desired tail dependence characteristics [4,6,18,19]. The preferred flavor
of maximum likelihood inference for these models requires computing a Gaussian cdf

whose dimension is roughly equal to the number of spatial locations in the dataset.
Other state-of-the-art models for spatial extremes also rely on high-dimensional Gaus-
sian cdf s [1–3]. To show the usefulness of our cdf approximation, we analyze data from
precipitation gauges in Europe using the Gaussian scale mixture model from Huser
et al. [6], which we describe below.

The class of scale mixtures of Gaussian processes is defined generically by

X(s) = R×W (s)

R ∼ FR ⊥⊥W (s). (7)

Here,W (s) is a standard Gaussian process (i.e. with unit variance) on some domain D
indexed by s ∈ D. For a collection of k observations, the finite dimensional distribution
of the Gaussian component is W ∼ Nk(0,Σ(θ)), where Σ(θ) is a D × D covariance
matrix constructed using a chosen covariance model that is indexed by parameter θ.

The random scaling R comes from distribution FR. The choice of FR is criti-
cal and determines the strength of the tail dependence in the resulting model [20].
A key quantity for summarizing the strength of tail dependence is the conditional
probability χu(si, sj) = P{X(si) > u |X(sj > u}, for spatial locations si and sj . If
limu→∞ χu(si, sj) = 0 for all si, sj ∈ D, we say thatX(s) is asymptotically independent,
while if limu→∞ χu(si, sj) > 0 for all si, sj ∈ D, we say that X(s) is asymptotically

dependent.
While many choices are available for the mixing distribution FR, Huser et al. [6] sug-

gest the parametric model defined by equation (8). When β > 0, the mixture process
X(s) is asymptotically independent, and when β = 0, X(s) is asymptotically depen-
dent. Therefore, this class of scale mixtures is rich enough to include both asymptotic
independence and asymptotic dependence as nontrivial sub-models.

FR(r) =

{

1− exp{−γ(rβ − 1)/β}, for β > 0

1− rγ , for β = 0.
(8)

To construct the likelihood for maximum likelihood estimation, we must integrate
out R from the model (7). Equations (9) and (10) show the marginal multivariate cdf

and pdf , respectively, for a finite collection of observations X from X(s) defined in (7).
Here ΦD represents the D-dimensional multivariate cdf from a Gaussian distribution
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with mean vector 0 and covariance matrix Σ(θ), and φD represents the D-dimensional
multivariate pdf from a Gaussian distribution with mean 0 and covariance matrixΣ(θ).
There are no closed forms for these expressions, so it is necessary to use numerical
methods to evaluate the (one-dimensional) integrals.

G(x) =

∫ ∞

0
ΦD(x/r;Σ)fR(r)dr (9)

g(x) =

∫ ∞

0
φD(x/r;Σ)r−DfR(r)dr. (10)

The preferred strategy for maximum likelihood estimation of extremal dependence
models is to treat all observations falling below a high threshold as left censored [21].
This leads to a favorable balance between using the data as efficiently as possible,
while not allowing data in the bulk of the distribution to have a large effect on depen-
dence estimation. The censored likelihood for each temporal replicate is obtained by
taking one partial derivative of (9) for every observation that falls above the threshold.
Thus, (10) is the relevant likelihood when all observations, at one particular temporal
replicate, are above the threshold, so nothing is censored. However, since the threshold
is chosen to be a high quantile to prioritize inference on the tail, most observations
are usually censored for any temporal replicate. When all observations fall below the
threshold, the relevant likelihood is (9).

Most often, in any temporal replicate, there will be a mixture of observations above
and below the threshold. In this case, the relevant joint likelihood of x is defined by
equation (11), which results from taking partial derivatives of (9) with respect to only
the un-censored observations. If we let I be the set of points above the threshold and
Ic be the points below, then

GI(x) :=
∂|I|

∂xI
G(x) =

∫ ∞

0

∂|I|

∂xI
Φk(x/r;Σ)fR(r)dr

=

∫ ∞

0
Φ|Ic|{(xIc −ΣIc;IΣ

−1
I;IxI)/r;ΣIc|I}φ|I|(xI/r;ΣI;I)r

−|I|fR(r)dr, (11)

where dependence of the covariance matrices on θ is suppressed for brevity, and the
notation ΣA;A refers to rows and columns of Σ pertinent to the points in A. The

matrix ΣIc|I = ΣIc;Ic − ΣIc; IΣ−1
I;IΣI;Ic is the covariance matrix of the conditional

normal distribution of the censored observations given the un-censored observations.
The computational issue arises because the integrand (11) contains a Gaussian cdf of

dimension |Ic|, the number of censored observations in a temporal replicate. Again, for
most replicates, this number |Ic| is close to the total number of observation locations
D because the censoring threshold is chosen to be high, such that most observations
fall below the threshold and are therefore censored.

4.1. Precipitation Over Europe

Our dataset consists of weekly maximum precipitation observations between January,
2000 and April, 2019, in the western and central region of continental Europe, north of
the mountain ranges the Pyrenees, Alps, and Carpathians. The 6 countries we consider
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are Germany, Poland, Netherlands, Belgium, Czech Republic, and France. Figure 8
shows the locations of the observation stations distributed over Europe. This dataset
consists of 1,006 weekly maxima from D = 528 weather stations. For context, the
computational bottleneck from the Gaussian cdf limited the analysis in Huser et al. [6]
to a dataset of D = 12 locations, even though analysis was performed on a large high-
performance computing cluster. We use the weekly maximum daily accumulations at
each location to break temporal dependence that might arise from storms that persist
for more than one day. Out of the 531,168 total observations, 32.6% were missing
values. For each weekly maximum, only the available data was used for estimation,
and all missing observations were disregarded.

[Figure 8 about here.]

The covariance model we use for the underlying Gaussian processes is an anisotropic
exponential, Σij(θ) = exp{−hij/ρ}, where ρ is the range parameter and hij is
the Mahalanobis distance between locations si and sj . The Mahalanois distance is
parametrized as

h2ij = ΩTΩ, whereΩ = (si − sj)
T

(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)−1(
1 0
0 A

)

,

for rotation angle φ ∈ [0, π) and and aspect ratio A > 1. Thus, after fixing the mixing
parameter γ at 1, as it plays a much less significant role than the parameter β in
determining tail dependence characteristics, we arrive at a total of 4 parameters to
estimate, ψ = (β, ρ, φ,A)T.

The first step in estimating the dependence is to transform the observations to be
on the same marginal scale. To do this, we start by applying a rank transformation to
standard uniform, independently for each station. That is, for each station k = 1, . . . , D
and each time point t = 1, . . . T , the observation Xkt on the uniform scale is

Ukt =
rank(Xkt)

T + 1
.

We next choose a high threshold to be the 0.95 marginal empirical quantile at each
location. Then, denoting the marginal cdf and pdf of each Xkt, respectively, as
GM (x) =

∫∞
0 Φ(x/r)f(r)dr and gM (x) =

∫∞
0 φ(x/r)r−1f(r)dr (we assume station-

arity, so the marginal distribution is assumed to be the same at each location), and
letting the vector vt = (max{u1t, 0.95}, . . . ,max{uDt, 0.95})

T, the copula censored
likelihood for each time replicate k is

L(ψ;vt) =















G{G−1
M (v1t), . . . , G

−1
M (vDt)} if all obs. are below the threshold

g{G−1

M
(v1t),...,G

−1

M
(vDt)}∏

D

k=1
gM{G−1

M
(vkt)}

if all obs. are above the threshold

GIt
{G−1

M
(v1t),...,G

−1

M
(vDt)}∏

D

k∈Ii
gm{G−1

M
(vkt)}

if some obs. are above and some below the threshold

Finally, the log likelihood across all time points t for the parameter vector ψ is

l(ψ;v) =

T
∑

t=1

log(L(ψ;vt)).
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We found the maximum likelihood estimator (MLE) by applying the Nelder-Mead
numerical optimizer in the R function optim. MLEs are shown in Table 1. The MLE
for the mixing parameter β is 0.82, which in this context is fairly far away from zero—
far enough to strongly suggest that the process is asymptotically independent. The
MLEs for the anisotropy parameters suggest pronounced eccentricity. To interpret and
visualize the estimated dependence model implied by the MLEs shown in Table 1, we
plot level curves in the resulting χu function for u = 0.95 on the quantile scale, shown
in Figure 8. Each ellipse represents a constant value of χu=0.95(s) = P{FM [X(s)] >
0.95 |FM [X(s0)] > 0.95}, for an arbitrarily-chosen reference point s0 near the center
of the map. The level curves are ellipses due to the anisotropic construction, with
the major axis roughly along a northeast-southwest orientation, and joint exceedances
more likely with decreasing distance from s0.

[Table 1 about here.]

5. Discussion

The main objective of this paper was to propose fast approximation to high-
dimensional Gaussian cdf s that arise from spatial Gaussian processes. We modified
Vecchia’s approximation for Gaussian pdf s to the context of Gaussian cdf s. Simu-
lations showed that for large numbers of locations and relatively small conditioning
sets, this approximation gives results consistent with state-of-the-art QM methods,
and reduces computational time considerably, even when computations are performed
sequentially. Furthermore, the approximation is trivially easy to code in parallel using
standard R packages, and requires no linking to specialized software libraries.

We demonstrated the utility of our fast cdf approximation by using it to find maxi-
mum censored likelihood estimates for the scale mixture model of Huser et al. [6]. This
model is attractive because of its flexible tail dependence characteristics, but is ham-
pered by computational difficulties arising from the need to compute high-dimensional
Gaussian cdf s during inference. We fit this model to a precipitation dataset consisting
over 500 spatial locations, whereas previous efforts using conventional QM techniques
were limited to just 12 locations.

One drawback that we noticed during the data analysis is that conventional opti-
mization routines had trouble converging, due to the stochastic nature of the likeli-
hood objective function. For future studies, one possible approach to circumventing
this problem is to use stochastic optimization algorithms, which may be better suited
to optimizing random objective functions.

Code to reproduce the simulations can be found in our Git repository. https:
//github.com/Recca2012/CDFApprox.git
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Parameter MLE
ρ 1.31
β 0.82
φ 1.10
A 2.29

Table 1. Maximum likelihood estimates of dependence parameters
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Figure 8. D = 528 weather stations located over 6 European countries
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