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Scientific Significance Statement

Tidal marsh migration into displaced inland ecosystems could potentially allow marshes to
survive sea level rise, but it remains unknown how spatial gradients in land use and topography
will limit ecosystem migration. We use high resolution mapping to demonstrate that future marsh
migration area will greatly exceed historical observations and likely compensate for near
complete tidal marsh area loss in the Chesapeake Bay region, United States. However, in
contrast to previous work that emphasizes anthropogenic constraints, our work suggests that
topography rather than land use drives spatial heterogeneity in local coastal responses along the
predominantly rural U.S. coast. Future global marsh extent likely depends on migration into rural
(forested, agricultural) portions of North American coasts as more developed coasts elsewhere
limit marsh resilience.

Data Availability Statement:
Data are available in the Environmental Data Initiative repository at
https://doi.org/10.6073/pasta/d57c¢49f666bd8b7ad692a5230573e020.

Abstract

Sea level rise (SLR) and saltwater intrusion are driving inland shifts in coastal ecosystems. Here,
we make high-resolution (1 m) predictions of land conversion under future SLR scenarios in 81
watersheds surrounding Chesapeake Bay, United States, a hotspot for accelerated SLR and
saltwater intrusion. We find that 1050-3748 km? of marsh could be created by 2100, largely at
the expense of forested wetlands. Predicted marsh migration exceeds total current tidal marsh
area and is ~4x greater than historical observations. Anthropogenic land use in marsh migration
areas is concentrated within a few watersheds and minimally impacts calculated metrics of marsh
resilience. Despite regional marsh area maintenance, local ecosystem service replacement within
vulnerable watersheds remains uncertain. However, our work suggests that topography rather
than land use drives spatial variability in wetland vulnerability regionally, and that rural land
conversion is needed to compensate for extensive areal losses on heavily developed coasts
globally.

Key words:
Saltwater intrusion, forested wetlands, tidal wetlands, marsh vulnerability, land use, Chesapeake
Bay
Introduction

Global climate change is leading to permanent, directional shifts in ecotones along
abiotic gradients (Osland et al. 2013; Smith and Goetz 2021). Salt marshes, tidal forests, and
mangroves, are all migrating landward at increasing rates, driven largely by SLR and associated

increases in salinity (White and Kaplan 2017; Yao and Liu 2017). However, it remains uncertain

whether this migration can occur fast enough for ecosystems to persist in the face of climate
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change, and whether transgression can occur as ecosystems migrate into developed portions of
the coast (Haasnoot et al. 2021).

The predicted response of coastal wetlands to SLR is hotly debated (Térnqvist et al.
2021). Geologic reconstructions suggest a tipping point in SLR rates, after which extensive
drowning will occur (Horton et al. 2018; Saintilan et al. 2020). Yet numerical models suggest
wetlands could expand with accelerated SLR by migrating inland (Kirwan et al. 2016; Schuerch
et al. 2018). Saltwater intrusion inhibits germination and kills saplings of wetland tree species
which have low salinity tolerance, allowing for tidal marsh replacement as mature trees die
during extreme events (Williams et al. 1999). Forest mortality and marsh migration are well
documented along the North American Atlantic and Gulf coasts (Smith 2013; Kirwan and Gedan
2019; White et al. 2021), compensating for loss of existing tidal marsh in several regions (Raabe
and Stumpf 2016; Schieder et al. 2018).

However, the ability of marshes to migrate into adjacent upland and freshwater
ecosystems may be limited by steep uplands and anthropogenic barriers, resulting in “coastal
squeeze” (Enwright et al. 2016; Flester and Blum 2020). Less than 10% of low-lying areas on the
U.S. Atlantic coast have been set aside for conservation (Titus et al. 2009); and future
urbanization may further limit migration as available uplands become developed (Enwright et al.
2016). Yet low-lying, salinized agricultural land is already being abandoned (Gedan and
Fernandez-Pascual 2019). Therefore, it remains uncertain whether marsh migration can
compensate for predicted marsh loss, and how natural and anthropogenic barriers may limit
transgression. Our work combines marsh-forest boundary delineations (Molino et al. 2021) with

regional land use at a higher resolution than previous studies (Holmquist et al. 2021) to uniquely
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predict that salinization of uplands can maintain marsh area regionally, although functional

compensation remains uncertain.

Methods
Study region

We quantified potential marsh migration area (i.e., sea-level driven conversion of upland
to marsh) in the low elevation region surrounding Chesapeake Bay and its tributary rivers. The
Chesapeake Bay is the largest estuary in the United States, and its mixture of forested,
agricultural, and developed land uses are broadly representative of the North American coastal
plain. Like the U.S. coast as a whole, the upland land types most at risk from SLR are non-tidal
wetlands, including palustrine emergent, forested, and scrub/shrub wetlands (Epanchin-Niell et
al. 2017; Holmquist et al. 2021). Urban-dominated watersheds comprise a small fraction of the
U.S. coast vulnerable to SLR (Holmquist et al. 2021). Nevertheless, the largely rural Chesapeake
region includes substantial pockets of dense development (i.e., Hampton Roads, Virginia), and
the regional population at risk from SLR ranks 5 in the U.S. (Hauer et al. 2016).

Marsh migration is well documented in Chesapeake Bay (Hussein 2009; Gedan et al.
2020). Approximately 400 km? of uplands have converted to tidal marsh over the past 150 years
(Schieder et al. 2018) and rates of marsh migration are accelerating (Schieder and Kirwan 2019),
driven by inundation of the low-lying gently sloping coastal-plain by relative SLR 2-3x the
global average (Engelhart et al. 2009). However, marshes in this region are vulnerable to
drowning due to low sediment input, microtidal tides, and accelerating rates of SLR (Stevenson

et al. 1985; Kearney et al. 2002; Schepers et al. 2017). As a result, migration is a primary
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mechanism of tidal marsh survival in Chesapeake Bay, making this region a model system to

determine if upland conversion can compensate for loss.

Analytical Methods

We quantified migration of the current tidal marsh-forest boundary with SLR to estimate
potential marsh migration area for the entire Chesapeake Bay coastal-plain, following a general
approach established for the U.S. Gulf coast (Enwright et al. 2016). In ArcMap 10.7, we started
with a previously delineated tidal marsh-forest boundary dataset of >200,000 points at 30-m
resolution (Molino et al. 2020,2021). We then extracted the elevation of each point from the U.S.
Geological Survey (USGS) Coastal National Elevation Database (CoNED) Topobathymetric
Digital Elevation Model (Danielson and Tyler 2016). Inaccurate points were eliminated to
minimize error associated with misrepresentation of the marsh-forest boundary and locations
with poor elevation data (Supplemental Information). We calculated the median elevation of the
tidal marsh-forest transition boundary, hereafter referred to as the threshold elevation, for USGS
HUC10 (Hydrologic Unit) watersheds (USGS 2020) to account for spatial variability in
processes that likely influence threshold elevation (e.g. tidal range, salinity) and quantify marsh
migration at the watershed scale (Supplemental Figure 1).

Increments of SLR were added to the transition threshold elevation of each watershed to
quantify potential marsh migration area, using National Oceanic and Atmospheric
Administration (NOAA) global Low (0.45 m), Intermediate (1.22 m), and High (2.66 m)
scenarios adjusted for the Chesapeake Bay region (Sweet et al. 2017). Land between the
threshold elevation and the threshold elevation plus the SLR scenario was considered to be

potential marsh migration area. Following previous approaches, we neglect accretional and
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erosional processes that affect the longevity of converted tidal marsh area (Enwright et al. 2016;
Borchert et al. 2018; Holmquist et al. 2021). Thus, our estimates of potential marsh migration
area should not be considered predictions of long-term marsh extent, as future marsh extent
would be vulnerable to losses at the seaward edge (Tornqvist et al. 2021).

We assume that transition threshold elevations determined from the marsh-forest
boundary are representative of marsh-upland boundaries in general given that forested uplands
comprise more than half of total upland land use, and that other upland land uses (e.g.
agriculture), are typically separated from wetlands by a forested buffer. Preliminary observations
suggest that threshold elevations for non-forested boundaries are similar to the elevations of the
marsh-forest boundary (Supplemental Table 1). However, more work is needed to refine this
method for other land uses. We also assume that migration is not limited by hydrological
connectivity (Poulter and Halpin 2008), or highly localized freshwater inputs that cannot be
inferred at the scale of HUC10 watersheds. Future work that includes hydrodynamic modeling
could resolve these predictions at even finer spatial scales.

Following Gesch (2012), we calculated uncertainty envelopes for area converted under
the localized NOAA predictions by adding and subtracting the RMSE of CoNED (20 cm) from
the new marsh-upland elevation within each watershed (Danielson and Tyler, 2016). Current
marsh area was determined from the National Wetlands Inventory (NWI) (U.S. Fish and Wildlife
Service 2018). The current land use of predicted marsh migration areas was assessed using the
Chesapeake Conservancy High Resolution Land Use and Land Cover datasets (Chesapeake
Conservancy 2018a;b) for six categories: forest, forested wetlands, turf grass, agriculture,
impervious, and other (Supplemental Table 2). Forested wetlands were included separately from

the forest category because their physiographic position results in a higher sensitivity to flooding
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and salinity stresses (Doyle et al. 2007). The “other” category includes mixed open and mixed
impervious as well as marsh located at elevations above the median threshold value for each

watershed.

Results

Median tidal marsh-forest boundary elevations were determined for 81 watersheds from a
final dataset of 95,286 points. The median threshold elevation of transition from tidal marsh to
forest around Chesapeake Bay is 0.54 m NAVD88. Median threshold elevations for HUC10
watersheds range from 0.20 m NAVDS&S in the southernmost watersheds, to 1.05 m NAVDS88
along the Atlantic coastal lagoons (Figure 1). Unique land conversion estimates for each
watershed (Supplemental Table 3) were combined to produce an estimate of potential upland
conversion for the entire Chesapeake Bay coastal-plain (Figure 2). Extensive areas of land
conversion are predicted along the main stem of Chesapeake Bay (Figure 2B,D), with limited
migration along the western shore tributaries and in the Atlantic coastal lagoons at each SLR
scenario (Figure 2A,C) (Molino et al. 2022).

Marsh migration area increased through time and with the magnitude of SLR, ranging
from 1050 km* (NOAA Low) to 3748 km? (NOAA High) by 2100 (Figure 3A;Supplemental
Table 4) and is currently dominated by terrestrial and wetland forests. Developed land uses,
including agriculture and impervious surfaces, generally occupy less than 10% of predicted
migration areas in individual watersheds, despite more extensive development in watersheds
overall (Figure 3B;Supplemental Table 5). For example, Elizabeth River surrounding Norfolk,

VA is one of the most developed watersheds in the Chesapeake Bay and the U.S., but impervious
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surfaces occupy only 16% of potential marsh migration area under 1 m of SLR, compared to

31% for the entire watershed (Supplemental Table 6).

Discussion
Quantifying elevation thresholds

Predictions of coastal ecosystem migration typically depend on establishing threshold
elevations, beyond which inundation drives state change (Enwright et al. 2016; Borchert et al.
2018; Mitchell et al. 2020). A single threshold elevation is often determined for large areas (e.g.
county, estuary) despite potential spatial variation in the processes that control threshold
elevation. For example, the elevation range of vegetated tidal marsh in Chesapeake Bay is
thought to be controlled by tidal range, weather events, and salinity, where marshes exposed to
greater water level fluctuations and higher salinities tend to have higher threshold elevations
(Boon et al. 1977). Alternatively, previous modeling and remote sensing studies of marsh
vulnerability typically assume that the upper elevation limit of marsh corresponds to
astronomical tidal datums alone (e.g. highest astronomical tide (HAT)) (Thorne et al. 2018;
Mitchell et al. 2020; Holmquist et al. 2021). However, we demonstrate that salinity is also a
driver of threshold elevation (Figure 1B;Supplemental Figure 2). Our study relies on tidal marsh-
forest boundaries determined independently from these metrics (Molino et al. 2021), allowing us
to capture small-scale variability from both tidal range and salinity, despite a large study area.
Our median threshold elevation (0.54 m) determined across the entire Chesapeake Bay from
aerial imagery is largely in agreement with the threshold elevation determined from mean HAT
in Virginia (0.61 m) (Mitchell et al. 2020). However, we find that threshold elevations vary more

than 5-fold across our study region, from 0.20 m NAVDS88 in low salinity watersheds to 1.05 m
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NAVDSS8 in exposed, high salinity watersheds (Figure 1;St-Laurent et al. 2020). These results
suggest that using a single threshold elevation for large sections of the coast could result in
significant under- or over-estimations of future marsh migration at smaller spatial scales and

precludes attempts to account for spatial variability in wetland vulnerability.

Natural and anthropogenic barriers to marsh migration

Steep topography and anthropogenic land uses are well-known barriers to marsh
migration (Torio and Chmura 2013; Enwright et al. 2016). We found extensive marsh migration
predicted in the gently sloping watersheds of the Eastern Shore of Chesapeake Bay, and more
limited marsh migration predicted in watersheds with steep topography along the western shore
tributaries and Atlantic coast (Figure 4B). These finding are consistent with observations of rapid
forest retreat in other low slope portions of the Atlantic coastal plain (Smith 2013; Schieder and
Kirwan 2019; Ury et al. 2021), and the conceptual understanding that topography constrains
marsh migration (Kirwan et al. 2016; Mitchell et al. 2017). Moreover, these findings suggest that
although marsh migration will be extensive in Chesapeake Bay, natural topographic variability
will lead to substantial gradients in potential marsh migration and vulnerability to SLR.

Anthropogenic land uses also potentially limit upland conversion into marsh, especially
in regions of the world with large urban centers and extensive agriculture (Schuerch et al. 2018).
Like the U.S. coast as a whole, the Chesapeake Bay region is largely rural with pockets of
intensive development (Holmquist et al. 2021). Our high-resolution, spatially-explicit approach
allows us to take advantage of that heterogeneity and evaluate specific land use limitations by
examining responses in watersheds with major urban centers and agricultural land use. We found

that developed land use (impervious + agricultural) within low elevation areas most vulnerable to



246 marsh migration (i.e., land <1.0 m above current threshold elevations) was concentrated within a
247  minority of watersheds and was usually dominated by one developed land use class (Figure 4).
248  Regionally, impervious land use in potential marsh migration areas was minimal through high
249  SLR scenarios (Figure 3B). For example, three of the five major urban centers in our study

250 region (Hampton, VA; Annapolis, MD; Baltimore, MD) are located in watersheds with only

251  small areas of potential marsh migration. Two urban centers (Norfolk and Newport News, VA)
252  were located in watersheds with moderate marsh migration, but impervious cover only accounted
253 for 14-16% of predicted marsh migration area despite extensive development inland. Despite the
254 perception that major urban centers will heavily limit marsh migration, our high-resolution

255  predictions suggest that the most vulnerable land in the Chesapeake Bay remains largely

256  undeveloped, even in urban watersheds with extensive development.

257 Agricultural land use was more widespread in watersheds with extensive predicted marsh
258  migration area and dominated developed land use. Agricultural land exceeded 10% of predicted
259  marsh migration area in twenty-three watersheds whereas impervious land cover exceeded 10%
260  in only nine watersheds (Supplemental Table 6). Recent abandonment of agricultural fields with
261  saltwater intrusion is being documented (Gedan et al. 2020). The majority of future marsh

262  migration area under 1.0 m of SLR is predicted to come at the expense of freshwater forested
263  ecosystems (870 km?; Figure 3B), which are more prevalent than developed land in low-lying
264  areas in 78 of 81 watersheds (Supplemental Table 7). Together, these observations suggest that
265  highly variable land use across the broader Chesapeake region has relatively small influence on
266  regional marsh migration, and that gradients in topography rather than anthropogenic land uses
267  are the primary influence on spatial variability of marsh migration potential.
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Implications for marsh vulnerability

Coastal wetlands are threatened by global SLR and declining riverine sediment yields to
the coast (Syvitski et al. 2005; Tornqvist et al. 2021). Predictions of wetland fate range from
place-based estimates of loss (Crosby et al. 2016; Mitchell et al. 2020) to generalized models of
expansion (Kirwan et al. 2016; Schuerch et al. 2018), depending largely on the ability of
wetlands to migrate inland at rates faster than existing wetlands convert to open water. Our work
shows unequivocally that future land conversion will be extensive in the Chesapeake Bay region.
Across the entire Chesapeake Bay, we predict that 1050-3748 km? of new marshes will
potentially be created by 2100 (Figure 3A). Thus, predictions of potential marsh migration area
over the next 80 years are approximately 2-9x greater than that inferred from historical maps
over the last 150 years (400 km?; Schieder et al. 2018). Moreover, predicted marsh migration
area under Low to Intermediate SLR scenarios is similar to the current total area of marshes
today (1454 km?), and is more than twice the current tidal marsh area under faster scenarios
(Figure 3). These predictions of extensive land conversion suggest that, at the scale of the entire
Chesapeake Bay, marsh migration could compensate for tidal marsh area loss under most SLR
scenarios, even if all existing marshes drowned or were lost to erosion.

Marsh resilience is controlled by the interplay between vertical and lateral ecosystem
vulnerabilities (Ganju et al. 2017; Fitzgerald and Hughes 2019). Following Holmquist et al.
2021, we estimate a marsh lateral resilience index as the ratio between marsh migration area
under 1.0 m of SLR and current tidal marsh area for each watershed. Watersheds with ratios >1
are considered resilient to SLR as inland migration could compensate for even a complete loss of
existing marshes. Conversely, watersheds with ratios <1 are considered potentially vulnerable.

We found substantial spatial variability in lateral marsh resilience (Figure 5) largely attributable

11
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314

to geomorphological differences throughout the region. For example, watersheds comprising the
Atlantic coastal lagoons are vulnerable because extensive tidal marshes today are bounded by
relatively steep adjacent topography (Figure SA). Watersheds along Mobjack Bay (Figure 2D)
are considered resilient as the low-lying area predicted to be inundated with 1.0 m of SLR is
more than double current tidal marsh area (Figure 5A). Interestingly, the watershed with the
largest tidal marshes and most extensive marsh loss (i.e., Blackwater River) (Kearney et al. 2002;
Schepers et al. 2017) is only moderately vulnerable to SLR because migration areas are large
enough to compensate for a near complete loss of existing tidal marsh (ratio 0.90).

Landowners may perceive marsh migration negatively, and may attempt to defend
developed land uses from SLR (Field et al. 2017; Van Dolah et al. 2020). Interestingly, we find
that lateral tidal marsh vulnerability increased only slightly when anthropogenic land uses were
completely removed from the marsh migration area: (i.e., only two watersheds shift from
resilient to vulnerable) (Figure 5B). Six of the eight most developed watersheds have a resilience
index greater than one, and the remaining two watersheds have a resilience index of less than one
with or without including developed land in the migration area (Supplemental Table 5;Figure
5B). In contrast, tidal marsh vulnerability is very sensitive to the inclusion of freshwater forested
ecosystem area (Supplemental Table 6;Figure 5C). Thus, our work points to extensive marsh
migration regardless of land use, though tidal marsh resilience comes at the expense of forests
and forested wetlands.

The largescale conversion of forests and forested wetlands to tidal marsh has significant
implications for ecosystem function. Salinization of forested wetlands could exacerbates coastal
eutrophication (Noe et al. 2013) and loss of critical habitat for avian species (Brittain and Craft

2012). While marsh carbon burial rates surpass that of coastal forests, extensive time to
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replacement could limit carbon sequestration compensation (Smith and Kirwan 2021). Moreover,
migrating marshes are typically dominated by invasive Phragmites australis rather than native
wetland species (Smith 2013; Langston et al. 2021), making functional compensation uncertain
despite areal maintenance. Future work could help to better distinguish between forest and
forested wetlands in remotely sensed imagery, and to quantify potential loss of ecosystem
services.

Previous work at a variety of scales emphasized the spatial heterogeneity of coastal
responses to SLR and saltwater intrusion (Pendleton et al. 2010; Lentz et al. 2016). More
specifically, tidal marshes along gently sloping, natural coastlines are considered more resilient
to SLR than marshes along steep, anthropogenic-dominated coastlines (Kirwan and Megonigal
2013; Holmquist et al. 2021). Our approach to defining threshold elevations at the scale of
individual watersheds allows for a more precise assessment of spatial variability and the
influence of salinity. Our findings of wide variability in threshold elevations (0.20-1.05 m
NAVDSS), marsh migration areas (<1-131 km?), and lateral tidal marsh vulnerability indices
(0.1-106.9) are consistent with the paradigm that spatial variability in topography and land use
will lead to a heterogenous response. However, we uniquely find that low-lying areas are largely
undeveloped, even in watersheds with substantial agriculture and urbanization. Therefore, we
suggest that spatial gradients in forest mortality, sea-level driven land conversion, and marsh
vulnerability are more fundamentally related to topography than anthropogenic land use in the
Chesapeake Bay.

Strong spatial gradients in topography and land use imprinted on a largely rural landscape
also define the land vulnerable to SLR on the U.S. coast as a whole (Borchert et al. 2018;

Holmquist et al. 2021). This suggests that observations from the Chesapeake Bay may be more
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broadly applicable. However, our findings that marsh migration and resilience are not overly
limited by anthropogenic land use does not apply to regions of the world with higher population
densities and extensive hardened shorelines (e.g. Europe, Asia) (Kabat et al. 2005; Ma et al.
2014; CIESIN 2017). Therefore, spatial gradients at the scale of individual watersheds in the
Chesapeake Bay may resemble larger-scale gradients, where global marsh extent will only be
maintained if marsh loss in developed portions of the world are offset by migration into more

rural regions.
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Figure 2. Potential upland converted to marsh under five generalized sea level rise
scenarios. Current tidal marsh area based on the National Wetlands Inventory (NWI)
emergent wetland class is depicted in light gray. A) Patuxent River, Maryland; B)
Blackwater, Maryland; C) Atlantic coastal lagoons; D) Mobjack Bay, Virginia. Data used
to generate this figure are available in the Metadata (Molino et al., 2022).
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Figure 3. A) Potential upland area converted to marsh under three NOAA sea level rise scenarios. Sea level
scenarios follow Sweet et al., 2017, where Low scenario (0.45 m) is in purple, Intermediate scenario (1.22 m) is in
green, and High scenario (2.66 m) is in orange. Uncertainty envelopes account for root mean square error (RMSE)
of the underlying elevation data (Gesch 2012). B) Land use type of potential upland converted to marsh under five
generalized sea level rise scenarios. Categories based on merged classes from the Chesapeake Conservancy High-
Resolution Land Use and Land Class datasets (Supp. Table 2).

S

Figure 4. A) Estimates of marsh migration area under 1.0 m of sea level rise (SLR) for each HUC10 watershed; B) Median
slope for each HUC10 watershed calculated from slope values at the tidal marsh-forest boundary provided by Molino et al.,
2021. C) Percent developed land (impervious and agricultural) within the potential marsh migration area for 1.0 m of SLR.
Land use classes based on the Chesapeake Conservancy High-Resolution Land Use and Land Cover projects (Chesapeake
Conservancy 2018a; b).
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Figure 5. A) Estimates of marsh migration area under 1.0 m of sea level rise plotted against current marsh area
(National Wetlands Inventory) for each HUC10 watershed; B) Estimates of marsh migration area under 1.0 m of
sea level rise with developed land (agriculture and impervious) removed plotted against current marsh area for
each HUC10 watershed. C) Estimates of marsh migration area under 1.0 m of sea level rise with terrestrial forest
and forested wetlands removed plotted against current tidal marsh area for each HUC10 watershed. Dots are
colored to represent the watershed threshold elevation value from Figure 1 A where blue is low threshold
elevation and red is high threshold elevation. Dot size corresponds to current marsh extent within the watershed.
Data points above black line is 1:1 line represent watersheds with resilient marsh, where marsh migration could
compensate for even a complete loss of existing tidal marsh. Mobjack Bay (Virginia) and Blackwater River
(Maryland) are examples of high marsh migration watersheds, while the Atlantic lagoons are representative of
watersheds with low marsh migration potential. Norfolk (Elizabeth River watershed in Virginia) is an example of
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watersheds with high agricultural land use within the marsh migration area. Data used to generate this figure are

available in the Metadata (Molino et al., 2022).
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Supplemental Information

Detailed Methods

Study area

Chesapeake Bay is microtidal, with the highest mean tidal range of 0.9 m at the mouth,
and the lowest mean tidal range of 0.3 m at Annapolis, Maryland (Xiong and Berger 2010). Like
much of the Mid-Atlantic, Chesapeake Bay is a global hotspot of relative sea level rise due to
regional subsidence coupled with weakening of the Gulf Stream (Engelhart et al. 2009; Sallenger
et al. 2012). Relative rates of sea level rise in the 1930s were 1-3 mm/yr! . In 2011, SLR rates
were 4-11 mm/yr and accelerating (Ezer and Corlett 2012; Ezer and Atkinson 2015). Low marsh
vegetation typically includes Spartina alterniflora, and high marsh vegetation includes Spartina
patens, Distichlis spicata, and Juncus romerianus (Perry et al. 2001). Coastal terrestrial forests
which exist upland to adjacent marshes within this low elevation coastal area are typically
comprised of Pinus taeda and Juniperus virginiana (Perry et al. 2001). Freshwater forested
wetlands are primarily dominated by Nyssa biflora and Acer rubrum (Noe et al. 2021). Bands of
Phragmites australis often occur at the marsh-forest boundary and are a sign of ecosystem
change as the invasive reed colonizes areas of disturbance before marsh vegetation can establish
(Smith 2013).

Part of the Mid-Atlantic, the Chesapeake Bay region is dominated by forest,
cultivated/pastureland, and developed land uses (Epanchin-Niell et al. 2017). These land uses are
distributed heterogeneously in the low-lying areas immediately surrounding Chesapeake Bay.
Rural land uses, such as forests and palustrine forested wetlands, are the dominate land use
classes. Southeastern Virginia, the Hampton Roads region, holds the majority of developed land
use near the coast and has the highest concentration of people at risk from inundation with sea
level rise in the region (Hauer et al. 2016). The Eastern Shore of Maryland and Virginia contains
widespread agricultural land uses, including soybean fields and poultry production (USDA
2019).

Interestingly, the Chesapeake Bay region well represents the United States coastline
which is largely rural, with pockets of major development. Along the North Atlantic Coastal
Plain, 96% of land use within 1-m of sea level rise is rural (Epanchin-Niell et al. 2017), which
includes our forest and forested wetland categories. Under higher sea level scenarios, 74% of
U.S. watersheds vulnerable to sea level rise consist of inundated land that is predominantly rural,
non-tidal wetlands, while only 16% of watersheds have developed land uses predominantly at
risk for inundation (Holmquist et al. 2021). There are high concentrations of the U.S. population
in major urban centers along the coast, typically not associated with the Chesapeake Bay.
However, the Chesapeake Bay region (Virginia, Maryland, Washington D.C.) has the 5" largest
population at risk from 0.9 m of sea level rise, behind only Florida, Louisiana, California, and
New Jersey (Hauer et al. 2016); this is based on 2010 Census Block Groups and is projected to
increase with population growth. The largely rural nature of the Chesapeake Bay with pockets of
concentrated development makes this region generally representative of the U.S. coast as a
whole, and well positioned for a discussion of marsh migration potential beyond the Mid-
Atlantic. The United States has a much lower coastal population compared to other countries
located in regions of the world where marshes are prevalent (CIESIN - Columbia University
2017). In northwestern Europe and Asia, extensive levee systems protect these coastal

1 https://tidesandcurrents.noaa.gov/sltrends/regionalcomparison.html?region=USNA
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populations, and limit the ability of marshes to migrate laterally (Kabat et al. 2005; Ma et al.
2014; Schuerch et al. 2018). This makes understanding where marshes have the potential to
migrate landward in the United States increasingly important for estimates of future global marsh
extent.

Data sources

The marsh-forest boundary points were obtained from a previously delineated marsh-
forest boundary dataset comprised of over 200,000 points at a 30-m resolution along marsh-
forest boundaries throughout Chesapeake Bay (Figure 1A) (Molino et al. 2020, 2021). This
dataset used the National Wetlands Inventory (NWI) estuarine intertidal emergent wetlands
category for salt marsh extent and forest data from the Chesapeake Conservancy to determine the
boundary using geographic information system (GIS) analyses (Chesapeake Conservancy 2018a;
b; U.S. Fish and Wildlife Service 2018). To determine the elevation along this boundary, we
used the U.S. Geological Survey (USGS) Coastal National Elevation Database (CoNED)
Topobathymetric Digital Elevation Model (Figure 1B), which has a 1-m resolution (Danielson
and Tyler 2016). Current salt marsh extent within Chesapeake Bay was determined from the
NWI shapefiles (U.S. Fish and Wildlife Service 2018).

We used two different SLR projections for this study. The first were general SLR
estimates of 0.5, 1.0, 1.5, 2.0 and 2.5 m. The second sea level rise projections were based on the
Sweet et al., 2017 projections provided at each National Oceanographic and Atmospheric
Administration (NOAA) tide gauge (Sweet et al. 2017). We used the projections for tide gauges
which fell within our study region and calculated a Delauney Triangulation between the points.
We then took a spatially weighted average to determine a single SLR value for the entire
Chesapeake Bay. This method was repeated at every 10-year time step for each NOAA sea level
rise scenario we considered: global Low (0.3 m), Intermediate (1.0 m), and High (2.0 m)
scenario estimates for 2100 (corresponding to 0.45, 1.22, and 2.66 m of SLR, respectively)
(Sweet et al. 2017).

Land use of area converted under the general SLR scenarios was assessed using the
Chesapeake Conservancy High Resolution (1 m) Land Use and Land Cover datasets
(Chesapeake Conservancy 2018a; b). We merged the land use types into five categories: forest
(value = 8), turf grass (values =9, 11, 12, 13, 15), agriculture (values = 16, 17), impervious
(values =1, 2, 3), and other (values =5, 6, 7, 10, 14) (Supplemental Table 2). A sixth category
was also included, forested wetlands, which was calculated by the overlap in land use wetland
classes (values = 5, 6, 7) and the land cover tree canopy class (value = 3). This category was
included separately from the wetland and forest categories because the physiographic position of
forested wetlands results in a higher sensitivity of this ecosystem to flooding and salinity stresses
(Doyle et al. 2007). The “other” category includes mixed open and mixed impervious as well as
marsh that is located at elevations above the median threshold value for each watershed. For a
given threshold elevation, we assume all land below this value is already marsh, and all land
above this value is not marsh. However, because the threshold is based on the median elevation
of all the marsh-forest boundary points, there is land below the threshold that is not marsh (i.e.
forests and forested wetlands), and there is land above the median that is already marsh. We
quantified the forest and forested wetland areas below threshold elevations for each watershed
and found that it was greater than the area of marsh currently above the threshold elevation.
Therefore, we include marsh above the threshold elevation in our estimates of potential upland
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area converted as a conservative estimate for the forest and forested wetland area below the
threshold elevation which we assume will convert to marsh under each future SLR scenario.

Analytical approach

We quantified the area between the current marsh-forest boundary and multiple
increments of sea level rise in ArcMap 10.7 to obtain an estimate of potential marsh migration
area for the entire Chesapeake Bay coastal plain (Enwright et al. 2016). We took the points from
the previously delineated marsh-forest boundary dataset for the Chesapeake Bay (Molino et al.
2020, 2021) and extracted the elevation of each point from the USGS CoNED topobathy (Figure
1B). We then eliminated points which were located along boundaries with >4% slope to
minimize error associated with offset in lateral position. Additionally, points with an elevation
value of less than 0.1 m NAVDS88 (North American Vertical Datum of 1988) were removed as
these were often located in marsh channels or other bodies of water, and points with an elevation
greater than 2.0 m NAVDS88 were removed as these were mostly located in residential areas
adjacent to marshes. Together, these steps helped minimize any potential error associated with
gross misclassification of the marsh-forest boundary. The inaccuracy of the point locations was
due to misrepresentation of the marsh-forest boundary delineated prior to this study.

We then calculated the median elevation of the marsh-forest boundary, hereafter referred
to as the threshold elevation, for USGS HUC10 (Hydrologic Unit) watersheds (USGS 2020).
This approach allows us to account for spatial variability in the processes that likely influence
the threshold elevation (e.g. tidal range, salinity) and quantify marsh migration at the watershed
scale. The points along the marsh-forest boundary were contained within 86 HUC10 watersheds
along the Chesapeake Bay (Figure 1C) (Molino et al. 2022). Four watersheds were removed
because they contained areas of abrupt elevation shifts (>1 m change) corresponding to where
individual elevation datasets had been combined to create the CONED topobathy. For 11
watersheds that contained less than 100 points each, the threshold elevation was determined by
additionally including all points from a neighboring watershed with similar topobathymetric
features. One watershed that contained less than ten points was removed as it had no neighboring
watersheds from which to combine points. Thus, our analysis includes 81 of 86 HUC10
watersheds surrounding Chesapeake Bay where elevation of the marsh-forest boundary can be
most precisely defined.

To determine areas of future marsh migration, we added increments of sea level rise to
the threshold elevation of each watershed and quantified the area between the original marsh-
forest boundary and new marsh-upland boundary. To do this, we split the CoNED topobathy
raster into 81 watersheds and set the unique threshold elevation for each watershed as the
baseline. Below this threshold, all land was assumed to be either water or marsh. We then
reclassified the raster values by adding the increment of sea level rise we were interested in to
the baseline and quantifying the area in between the threshold elevation and the threshold
elevation plus the SLR scenario. For example, a watershed with a threshold elevation of 0.32 m
assumes that the land which would convert to marsh with 0.5 m of SLR would be land from 0.32
m to 0.82 m (0.32m + 0.50m) in elevation. We used the reclassify tool in ArcMap which
quantified the raster cells whose elevation fell between these elevations for each SLR scenario.
This was completed for each watershed for the general SLR scenarios as well as the Chesapeake
Bay specific predictions derived from the NOAA data. Marsh migration areas for each watershed
were combined for a bay-wide projection of potential marsh migration area (Molino et al. 2022).
Like previous work, we only consider land available for marsh migration, and do not account for
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accretion or edge erosion (Enwright et al. 2016; Borchert et al. 2018; Holmquist et al. 2021).
However, we are also not accounting for processes such as peat collapse which could accelerate
marsh migration (Miller et al. 2021). Following Gesch (2012), we calculated uncertainty
envelopes for area converted under the localized NOAA predictions by adding and subtracting
the root mean square error (RMSE) of the CoNED dataset (20 cm) from the new marsh-upland
elevation within each watershed (Danielson and Tyler, 2016).

Land use inundated under each SLR scenario was quantified by individual watershed. To
do this, we extracted the land use within the area that was projected to convert to marsh under
the different sea level rise scenarios determined during the reclassification process described
above. We combined these numbers for a bay-wide assessment of land use within the potential
marsh migration area. This allowed us to examine how local variations in land use influenced
marsh migration area regionally.

Limitations

We assume that the threshold elevations determined from the marsh-forest boundary are
representative of marsh-upland boundaries in general given that forested uplands make up more
than half of the upland land use and that other upland land use types, such as agricultural land,
are often separated from wetlands by a thin band of forest. Preliminary results from analyses of
marsh-agriculture, forested wetlands, impervious, and turf boundaries suggest threshold
elevations for other land uses are similar to that of the marsh-forest boundary (Supplemental
Table 1). The marsh-agricultural boundary was significantly higher in elevation from the marsh-
forest boundary, which we hypothesize is for two reasons. First, some agricultural areas are
located on high elevation river bluffs. The very steep, but narrow change in elevation means that
the boundary between these two land uses is at a very high elevation. The second and most
common reason is that agricultural areas often have small earthen levees (~1 m in height) to
protect them from tidal inundation. Without these anthropogenic features, the natural elevation
between marsh-agriculture would likely be similar to the other boundary elevations. However,
more work is needed to refine this method for other land uses.

It should be noted that we do not directly assess the effect of connectivity on our
calculated marsh migration area. When using high resolution digital elevation models for
inundation estimates, it is possible that some isolated low-lying areas will be counted in the area
of potential marsh migration even though they are not hydrologically connected to other marsh
or water. However, this issue is minimized because our approach to calculating potential marsh
migration includes only land that is above a watershed’s threshold elevation. For example, there
is a quarry in a northern watershed of Chesapeake Bay that is excluded from the analysis because
it has elevations below the watershed’s threshold elevation. As described earlier, our approach
explicitly calculates marsh migration by counting the number of raster cells with elevations
between the threshold elevation and the threshold elevation plus an increment of sea level rise
(i.e., migration area includes locations with elevations between 0.61 and 1.61 m for a watershed
with a threshold elevation of 0.61 m and a 1 m increment of sea level rise). In that example,
elevations between 0.61-1.61 m NAVD would be counted as potential migration area, regardless
of connectivity. However, previous inundation mapping with high resolution (6 m) DEMs in
coastal North Carolina suggests that connectivity effects are minimal for SLR scenarios greater
than about 0.4 m (Poulter and Halpin 2008). For a 1 m SLR scenario, there was less than 3%
difference in cumulative area inundated between approaches that did not consider connectivity
and those which considered 4-sided or 8-sided connectivity (Poulter and Halpin 2008). Six of our
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eight sea level rise scenarios use projections greater than 1 m which suggests that the
overestimation of area from low-lying area upslope is minimal. Nevertheless, future steps
quantifying this potential area would improve local estimates of marsh migration on a watershed
scale.

Additionally, our quantification of land use is limited by the accuracy of the land use and
land cover datasets. In particular, forest and forested wetlands can be confused by remote sensing
techniques (McCarthy et al. 2018). As a result, we combine all forested areas when delineating
the marsh-forest boundary as those measurements rely on precise delineation between ecosystem
types. Future work could benefit from improvements in identifying between forest and forested
wetlands.
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Supp. Figure 1: Original 86 HUC10 (Hydrologic Unit) watersheds for the Chesapeake Bay
region considered for this study, labeled with the corresponding ID number. Watersheds 24, 26,
62, 64, and 67 were not used in the analyses due to lack of a reliable number of points or issues
with the underlying elevation data. A shapefile of these HUC watersheds is available in the
Metadata (Molino et al., 2022). Inset shows location of study area on the Mid-Atlantic coast of
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Supp. Figure 2: Kernel density estimates of threshold elevation for all points in Chesapeake Bay region (black)
with median (0.54 m) plotted as black line. Threshold elevation points within Pamunkey (teal) and Machipongo
(pink) watersheds, which have comparable tidal range (0.9-1.15 m from NOAA VDATUM
(https://vdatum.noaa.gov/; date accessed December 12, 2020)) but are end members of salinity (1.4 and 32.0 ppt
respectively) highlighting the influence of salinity on threshold elevation (St-Laurent et al., 2021). The
Pamunkey watershed is HUC ID# 77 (Supp. Figure 1), containing the Pamunkey River which is a tributary of
the York River and ultimately the Chesapeake Bay. The Machipongo watershed is HUC ID# 38 (Supp. Figure 1)
which contains a portion of the Atlantic coastal lagoons. Data used to generate this figure are available in the
Metadata (Molino et al., 2022).

Supp. Table 1: Median threshold elevations for different marsh-upland boundaries in the state of Virginia,
United States. The “Forest” category includes all the marsh-forest boundary points in Virginia used to determine
threshold elevations in this study. “Forested wetlands” are a subset of the “Forest” points. For a description of
each category, see Supp. Table 2.

Marsh-upland boundaries - Virginia

Median threshold elevation (m NAVD88)

Forest 0.56
Forested wetlands 0.59
Agricultural 1.06
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0.55
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0.63

Supp. Table 2: Chesapeake Conservancy High Resolution (1 m) Land Use categories included in the merged
categories used in this study. Specific code from raster file included in parentheses. Forested wetlands were
created using the overlap in Chesapeake Conservancy Land Use wetlands category and the Chesapeake

Conservancy Land Cover Forest category

Merged Land Use Category

Chesapeake Conservancy Land Use Category

Impervious Impervious, roads (1), impervious, non-roads (2),
tree canopy over impervious (3)

Agriculture cropland (16), pastureland (17)

Turf grass Tree canopy over turf (9), fractional turf, small
(11), fractional turf, medium (12), fractional turf,
large (13), turf grass (15)

Forest Forest (8)

Forested wetlands

Tidal wetland (5), floodplain wetland (6), other
wetland (7) overlap with CC Land Cover tree
canopy (3)

Other

Tidal wetland (5), floodplain wetland (6), other
wetland (7), mixed open (10), fractional
impervious (14)

Supp. Table 3: HUC10 watersheds considered for this study labeled with the corresponding ID number,
threshold elevation, and total marsh migration area. Watersheds not considered in the analyses (24, 26, 62, 64,
and 67) have values of NA. Please note that watersheds 19 and 23 have the same name — this is not a mistake,
those are the names from the original source data. Instead we differentiate them by their unique HUC ID
numbers. For the location of each watershed, see Supp. Figure 1.

HUC | Name Elevation Marsh Migration | Marsh Migration

ID# (m NAVDS88) | Area 1.0m SLR Area 2.5m SLR
(km?) (km?)

0 Northwest River 0.20 19.3 66.8

1 North Landing River 0.32 76.9 162.8

2 Currituck Sound 0.34 62.3 108.3

3 Nansemond River 0.57 12.0 17.7

4 Powhatan Creek-James River 0.47 10.7 18.5

5 Pagan River-James River 0.49 22.7 35.9

6 Hampton Roads 0.46 4.7 30.8

7 Dividing Creek-Pocomoke River 0.45 42.4 80.7

8 Lower Tangier Sound 0.52 16.5 171

9 Marumsco Creek-Pocomoke Sound 0.53 54.5 94.6
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10 Deep Creek-Pocomoke Sound 0.57 18.1 39.0
11 Nanjemoy Creek-Potomac River 0.58 104 26.2
12 Great Wicomico River-Frontal 0.43 154 52.6
Chesapeake Bay
13 Messongo Creek-Frontal Pocomoke 0.59 414 64.3
Sound
14 Piankatank River-Frontal 0.41 12.1 34.9
Chesapeake Bay
15 Mobjack Bay-Frontal Chesapeke Bay | 0.71 67.8 164.7
16 Pungoteague Creek-Frontal 0.53 33.2 76.9
Chesapeake Bay
17 Cherrystone Inlet-Frontal 043 8.3 29.5
Chesapeake Bay
18 Pitts Creek-Pocomoke River 0.42 14.2 45.6
19 Back River-Frontal Chesapeake Bay | 0.72 35.5 98.3
20 Elizabeth River 0.70 271 143.2
21 Upper Chincoteague Bay 0.47 29.1 74.7
22 Assateague Island-Atlantic Ocean 1.05 3.9 7.5
23 Back River-Frontal Chesapeake Bay | 0.50 6.1 15.8
24 North East River-Frontal Chesapeake | NA NA NA
Bay
25 Fairlee Creek-Frontal Chesapeake 0.62 10.8 24.3
Bay
26 Romney Creek-Frontal Chesapeake NA NA NA
Bay
27 Patapsco River-Frontal Chesapeake 0.57 7.8 28.7
Bay
28 Chester River 0.63 247 58.5
29 Western Branch Patuxent River 0.51 1.3 2.2
30 Zekiah Swamp Run 0.65 2.0 3.9
31 Transquaking River 0.32 50.3 106.0
32 Blackwater River 0.36 131.0 181.8
33 Lower Nanticoke River 0.46 445 94.7
34 Wicomico River 0.58 48.9 89.6
35 Assawoman Bay 0.58 19.6 48.5
36 Lower Chincoteague Bay 0.54 42.9 61.4
37 Metompkin Bay-Burtons Bay 0.71 201 47.0
38 Machipongo River-Hog Island Bay 1.05 32.0 52.7
39 Magothy Bay-Cobb Bay 1.03 10.6 15.6
40 Parramore Island-Atlantic Ocean 1.05 4.1 4.5
41 Manokin River-Frontal Tangier Sound | 0.60 64.7 112.6
42 Upper Tangier Sound 0.73 3.8 5.1
43 Potomac Creek-Potomac River 0.37 5.6 9.5
44 Gunpowder River-Frontal 0.50 11.7 204
Chesapeake Bay
45 Magothy River-Frontal Chesapeake 0.68 2.5 5.5

Bay
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46 Severn River-Frontal Chesapeake 0.65 4.6 10.7
Ba
47 He?lring Bay-Frontal Chesapeake Bay | 0.60 20.3 62.3
48 Huntington Creek-Choptank River 0.46 7.8 16.7
49 Little Choptank River 0.48 95.6 122.3
50 Wicomico River-Frontal Potomac 0.65 5.7 16.4
River
51 Choptank River-Frontal Chesapeake | 0.55 51.5 161.0
Ba
52 Ho?:ga River-Frontal Chesapeake 0.48 62.6 63.4
Ba
53 Weﬁts Creek-Choptank River 0.27 4.5 7.8
54 Saint Clements Bay-Frontal Potomac | 0.56 8.8 23.0
River
55 Saint Marys River-Frontal Potomac 0.57 12.2 27.2
River
56 Nomini Creek-Frontal Potomac River | 0.45 12.5 37.5
57 Occoquan River-Potomac River 0.42 5.6 8.7
58 Upper Machodoc Creek-Frontal 0.39 5.1 10.6
Potomac River
59 Lynnhaven River-Frontal Chesapeake | 0.49 13.6 58.5
Ba
60 Ru}(;ee Inlet-Atlantic Ocean 0.48 0.6 5.0
61 Upper Nanticoke River 0.39 4.5 94
62 Falling Creek-James River NA NA NA
63 Lawnes Creek-James River 0.47 10.4 17.9
64 Lower Gunpowder Falls NA NA NA
65 Patapsco River 0.58 14 3.0
66 Eastern Bay 0.81 24.3 87.4
67 Winters Run-Bush River NA NA NA
68 South River-Chesapeake Bay 0.64 29 6.8
69 Tuckahoe Creek 0.28 2.6 4.9
70 Upper Patuxent River 0.46 3.9 6.2
71 Middle Patuxent River 0.47 8.7 14.8
72 Lower Patuxent River 0.54 9.8 221
73 Quantico Creek-Potomac River 0.42 6.0 11.6
74 Sassafras River 0.63 3.2 7.3
75 Marshyhope Creek 0.39 5.9 121
76 Elk River 0.65 71 16.3
77 Lower Pamunkey River 0.34 24.6 31.6
78 Upper York River 0.65 12.7 30.1
79 Lower York River 0.54 11.7 28.5
80 Occupacia Creek-Rappahannock 0.50 12.5 26.7
River
81 Cat Point Creek-Rappahannock River | 0.46 13.5 244
82 Totuskey Creek-Rappahannock River | 0.49 7.3 15.7
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83 Lancaster Creek-Rappahannock 0.47 8.5 20.2
River

84 Corrotoman River-Rappahannock 0.40 8.3 15.9
River

85 Garnetts Creek-Mattaponi River 0.49 13.0 214

Supp. Table 4: Area of uplands converted by 2100 under NOAA Low, Intermediate, and High SLR predictions and
five generalized sea level rise (SLR) scenarios. Uncertainty envelopes were calculated for the NOAA scenarios
based on the CoNED topobathy root mean square error (20 cm). Blank cells indicate SLR scenarios for which
uncertainty estimates were not conducted.

NOAA SLR Lower Uncertainty (km?) | Land converted (km?) | Upper Uncertainty (km?)
Low (0.45 m) 664 1050 1516
Intermediate (1.22 m) 1577 1961 2504

High (2.66 m) 3374 3748 4275

General SLR (m)

0.5 1073

1.0 1638

1.5 2231

2.0 2852

2.5 3444

Supp. Table 5: Area of land use types (km?) predicted to convert to marsh under each sea level rise (SLR) scenario.

SLR (m) | Forest | Forested Wetlands | Turf Grass | Agriculture | Impervious | Other | Total (km?)
0.5 252 383 69 79 20 271 1073
1 425 514 154 179 53 312 1638
1.5 599 639 253 301 98 341 2231
2 776 767 361 422 159 368 2852
25 945 863 475 545 227 389 3444
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Supp. Table 6: Percentage of agricultural, impervious, and developed (combined agriculture and impervious) land
use within predicted marsh migration area for 1.0 m of sea level rise (SLR) for each HUC watershed. Adjusted
1:1 has the developed land use removed from the marsh migration area when calculating the resilience index.
Please note that watersheds 19 and 23 have the same name — this is not a mistake, those are the names from the
original source data. Instead we differentiate them by their unique HUC ID numbers. For the location of each
watershed, see Supp. Figure 1.

HUC | Name Agricultural | Impervious | Total Original | Adjusted
ID# Land Use Land Use Developed | 1:1 1:1
Land Use

0 Northwest River 2.8% 0.3% 3.1% 17.9 17.3

1 North Landing River 1.4% 0.7% 2.1% 6.3 6.2

2 Currituck Sound 17.1% 2.6% 19.7% 23 1.9

3 Nansemond River 0.0% 0.8% 0.9% 0.7 0.7

4 Powhatan Creek- 0.3% 0.8% 1.0% 70.3 69.6
James River

5 Pagan River-James 0.0% 1.7% 1.8% 0.9 0.8
River

6 Hampton Roads 0.0% 19.3% 19.3% 3.1 2.5

7 Dividing Creek- 5.9% 0.8% 6.7% 6.4 6.0
Pocomoke River

8 Lower Tangier Sound | 4.4% 10.4% 14.9% 04 0.4

9 Marumsco Creek- 12.7% 2.4% 15.1% 1.1 1.0
Pocomoke Sound

10 Deep Creek- 10.0% 2.5% 12.5% 0.7 0.6
Pocomoke Sound

11 Nanjemoy Creek- 3.4% 1.3% 4.7% 1.0 1.0
Potomac River

12 Great Wicomico River- | 4.9% 2.3% 7.2% 4.9 4.6
Frontal Chesapeake
Bay

13 Messongo Creek- 4.6% 1.5% 6.1% 1.0 0.9
Frontal Pocomoke
Sound

14 Piankatank River- 4.4% 3.0% 7.4% 3.6 3.4
Frontal Chesapeake
Bay

15 Mobjack Bay-Frontal 8.0% 2.6% 10.6% 2.6 2.4
Chesapeke Bay

16 Pungoteague Creek- 15.1% 1.8% 16.9% 2.5 21
Frontal Chesapeake
Bay

17 Cherrystone Inlet- 4.5% 1.6% 6.1% 24 2.2
Frontal Chesapeake
Bay

18 Pitts Creek-Pocomoke | 19.8% 1.2% 21.0% 1.6 1.3
River

19 Back River-Frontal 1.3% 14.1% 15.5% 1.2 1.0
Chesapeake Bay

20 Elizabeth River 0.1% 16.2% 16.2% 2.5 2.1
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21 Upper Chincoteague 15.0% 2.4% 17.4% 0.9 0.7
Bay

22 Assateague Island- 0.0% 20.2% 20.2% 16.0 12.8
Atlantic Ocean

23 Back River-Frontal 1.7% 12.1% 13.8% 3.1 2.7
Chesapeake Bay

25 Fairlee Creek-Frontal 11.8% 5.7% 17.5% 26 21
Chesapeake Bay

27 Patapsco River- 0.7% 18.0% 18.7% 5.0 4.0
Frontal Chesapeake
Bay

28 Chester River 16.0% 3.2% 19.2% 1.7 14

29 Western Branch 3.9% 0.1% 4.0% 1.6 1.6
Patuxent River

30 Zekiah Swamp Run 16.3% 0.2% 16.5% 0.8 0.7

31 Transquaking River 18.1% 0.8% 18.9% 1.7 14

32 Blackwater River 10.8% 1.1% 11.9% 0.9 0.8

33 Lower Nanticoke River | 12.2% 1.0% 13.2% 0.8 0.7

34 Wicomico River 13.4% 2.0% 15.4% 1.0 0.8

35 Assawoman Bay 8.3% 23.0% 31.3% 1.8 1.2

36 Lower Chincoteague 3.0% 4.9% 7.8% 0.6 0.6
Bay

37 Metompkin Bay- 8.5% 0.7% 9.2% 0.3 0.2
Burtons Bay

38 Machipongo River- 12.4% 1.3% 13.7% 04 0.3
Hog Island Bay

39 Magothy Bay-Cobb 1.9% 0.4% 2.3% 0.1 0.1
Bay

40 Parramore Island- 0.0% 0.0% 0.0% 21 2.1
Atlantic Ocean

41 Manokin River-Frontal | 23.8% 2.3% 26.0% 0.9 0.6
Tangier Sound

42 Upper Tangier Sound | 2.3% 7.6% 9.9% 0.1 0.1

43 Potomac Creek- 1.4% 0.8% 2.2% 1.6 1.6
Potomac River

44 Gunpowder River- 1.5% 3.4% 4.9% 1.5 14
Frontal Chesapeake
Bay

45 Magothy River-Frontal | 1.1% 6.3% 7.4% 5.6 5.2
Chesapeake Bay

46 Severn River-Frontal 1.7% 12.6% 14.3% 4.9 4.2
Chesapeake Bay

47 Herring Bay-Frontal 10.9% 6.1% 17.1% 3.0 2.5
Chesapeake Bay

48 Huntington Creek- 12.0% 1.1% 13.1% 0.7 0.6
Choptank River

49 Little Choptank River 27.5% 2.5% 30.0% 5.5 3.8

50 Wicomico River- 9.5% 2.5% 12.0% 1.0 0.9
Frontal Potomac River

51 Choptank River- 34.1% 3.7% 37.8% 3.9 2.4

Frontal Chesapeake
Bay
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52 Honga River-Frontal 7.2% 2.7% 9.9% 0.9 0.8
Chesapeake Bay

53 Watts Creek- 1.2% 0.5% 1.7% 2.0 2.0
Choptank River

54 Saint Clements Bay- 71% 3.7% 10.8% 2.8 2.5
Frontal Potomac River

55 Saint Marys River- 10.4% 3.0% 13.3% 3.7 3.2
Frontal Potomac River

56 Nomini Creek-Frontal | 1.8% 1.6% 3.4% 26 2.5
Potomac River

57 Occoquan River- 0.5% 1.9% 2.4% 7.0 6.9
Potomac River

58 Upper Machodoc 0.5% 1.0% 1.5% 1.3 1.3
Creek-Frontal
Potomac River

59 Lynnhaven River- 0.0% 9.2% 9.2% 3.4 3.1
Frontal Chesapeake
Bay

60 Rudee Inlet-Atlantic 0.0% 5.1% 5.1% 2.8 2.7
Ocean

61 Upper Nanticoke River | 2.9% 0.3% 3.3% 106.9 103.4

63 Lawnes Creek-James | 0.0% 1.4% 1.4% 1.1 1.1
River

65 Patapsco River 0.8% 1.8% 2.6% 2.7 2.6

66 Eastern Bay 18.0% 4.1% 22.1% 2.4 1.8

68 South River- 1.1% 8.9% 9.9% 3.4 3.1
Chesapeake Bay

69 Tuckahoe Creek 2.9% 0.2% 3.1% 13.0 12.6

70 Upper Patuxent River | 5.5% 0.2% 5.7% 2.6 2.5

71 Middle Patuxent River | 21.5% 0.3% 21.8% 0.6 0.5

72 Lower Patuxent River | 21.2% 4.6% 25.8% 2.0 1.5

73 Quantico Creek- 0.6% 0.9% 1.5% 1.5 1.5
Potomac River

74 Sassafras River 5.8% 2.6% 8.4% 1.0 0.9

75 Marshyhope Creek 1.7% 0.5% 2.2% 188.6 184.4

76 Elk River 5.8% 2.9% 8.7% 1.8 1.6

77 Lower Pamunkey 0.4% 0.3% 0.8% 1.1 1.1
River

78 Upper York River 3.7% 0.8% 4.5% 0.6 0.6

79 Lower York River 2.8% 1.9% 4.7% 1.1 1.1

80 Occupacia Creek- 8.8% 0.2% 9.0% 1.4 1.2
Rappahannock River

81 Cat Point Creek- 5.6% 1.0% 6.6% 0.8 0.8
Rappahannock River

82 Totuskey Creek- 1.0% 0.8% 1.7% 1.2 1.2
Rappahannock River

83 Lancaster Creek- 3.6% 1.2% 4.8% 1.5 14
Rappahannock River

84 Corrotoman River- 0.6% 2.5% 3.1% 26 2.6

Rappahannock River
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Garnetts Creek-
Mattaponi River

0.4% 0.4%

0.8%

1.3 1.3

Supp. Table 7: Percentage of forest and forested wetland land use within predicted marsh migratio§94
area for 1.0 m of sea level rise (SLR) for each HUC watershed. Adjusted 1:1 has the forest and

forested wetland land use removed from the marsh migration area when calculating the resilience
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index. Please note that watersheds 19 and 23 have the same name — this is not a mistake, those are
names from the original source data. Instead we differentiate them by their unique HUC ID numbers.
For the location of each watershed, see Supp. Figure 1.
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HUC | Name Forest + Forested Wetland | Original 1:1 | Adjusted 1:1

ID# Land Use

0 Northwest River 17.889 17.9 1.35

1 North Landing River 67.648 6.3 0.76

2 Currituck Sound 36.229 2.3 0.98

3 Nansemond River 8.183 0.7 0.21

4 Powhatan Creek- 7.758 70.3 19.38
James River

5 Pagan River-James 16.270 0.9 0.24
River

6 Hampton Roads 1.185 3.1 2.29

7 Dividing Creek- 34.730 6.4 1.16
Pocomoke River

8 Lower Tangier Sound 3.701 0.4 0.34

9 Marumsco Creek- 25.201 1.1 0.62
Pocomoke Sound

10 Deep Creek-Pocomoke | 9.177 0.7 0.36
Sound

11 Nanjemoy Creek- 6.248 1.0 0.41
Potomac River

12 Great Wicomico River- | 10.092 4.9 1.70
Frontal Chesapeake
Bay

13 Messongo Creek- 20.378 1.0 0.48
Frontal Pocomoke
Sound

14 Piankatank River- 6.300 3.6 1.74
Frontal Chesapeake
Bay

15 Mobjack Bay-Frontal 44.495 2.6 0.90
Chesapeke Bay

16 Pungoteague Creek- 19.699 2.5 1.03
Frontal Chesapeake
Bay

17 Cherrystone Inlet- 4.395 2.4 1.12
Frontal Chesapeake
Bay
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18 Pitts Creek-Pocomoke | 5.691 1.6 0.95
River

19 Back River-Frontal 14.209 1.2 0.72
Chesapeake Bay

20 Elizabeth River 10.016 2.5 1.59

21 Upper Chincoteague 14.020 0.9 0.45
Bay

22 Assateague Island- 0.412 16.0 14.30
Atlantic Ocean

23 Back River-Frontal 2.053 3.1 2.04
Chesapeake Bay

25 Fairlee Creek-Frontal 4.010 2.6 1.63
Chesapeake Bay

27 Patapsco River-Frontal | 1.873 5.0 3.78
Chesapeake Bay

28 Chester River 12.220 1.7 0.88

29 Western Branch 0.729 1.6 0.72
Patuxent River

30 Zekiah Swamp Run 1.291 0.8 0.27

31 Transquaking River 26.333 1.7 0.79

32 Blackwater River 49.137 0.9 0.56

33 Lower Nanticoke River | 18.795 0.8 0.46

34 Wicomico River 24.921 1.0 0.48

35 Assawoman Bay 5.974 1.8 1.23

36 Lower Chincoteague 18.309 0.6 0.35
Bay

37 Metompkin Bay- 7.353 0.3 0.16
Burtons Bay

38 Machipongo River-Hog | 19.268 0.4 0.15
Island Bay

39 Magothy Bay-Cobb 5.478 0.1 0.06
Bay

40 Parramore Island- 0.097 21 210
Atlantic Ocean

41 Manokin River-Frontal | 27.412 0.9 0.50
Tangier Sound

42 Upper Tangier Sound 1.189 0.1 0.10

43 Potomac Creek- 3.837 1.6 0.51
Potomac River

44 Gunpowder River- 4.233 1.5 0.95
Frontal Chesapeake
Bay

45 Magothy River-Frontal | 0.907 5.6 3.58
Chesapeake Bay

46 Severn River-Frontal 1.727 4.9 3.03
Chesapeake Bay

47 Herring Bay-Frontal 7.924 3.0 1.84
Chesapeake Bay

48 Huntington Creek- 3.810 0.7 0.35
Choptank River

49 Little Choptank River 47.444 55 2.76
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50 Wicomico River-Frontal | 2.705 1.0 0.52
Potomac River

51 Choptank River-Frontal | 16.997 3.9 2.60
Chesapeake Bay

52 Honga River-Frontal 25.901 0.9 0.51
Chesapeake Bay

53 Watts Creek-Choptank | 3.344 2.0 0.50
River

54 Saint Clements Bay- 3.366 2.8 1.73
Frontal Potomac River

55 Saint Marys River- 5.854 3.7 1.95
Frontal Potomac River

56 Nomini Creek-Frontal 8.163 2.6 0.89
Potomac River

57 Occoquan River- 3.921 7.0 2.08
Potomac River

58 Upper Machodoc 3.808 1.3 0.33
Creek-Frontal Potomac
River

59 Lynnhaven River- 6.846 3.4 1.69
Frontal Chesapeake
Bay

60 Rudee Inlet-Atlantic 0.182 2.8 1.92
Ocean

61 Upper Nanticoke River | 4.644 106.9 10.02

63 Lawnes Creek-James 8.074 1.1 0.26
River

65 Patapsco River 0.498 2.7 1.72

66 Eastern Bay 10.426 2.4 1.34

68 South River- 1.181 3.4 2.04
Chesapeake Bay

69 Tuckahoe Creek 1.975 13.0 4.09

70 Upper Patuxent River 2.338 2.6 1.07

71 Middle Patuxent River | 3.832 0.6 0.32

72 Lower Patuxent River 3.491 2.0 1.32

73 Quantico Creek- 3.976 1.5 0.51
Potomac River

74 Sassafras River 1.804 1.0 0.44

75 Marshyhope Creek 5.059 188.6 26.19

76 Elk River 3.411 1.8 0.93

77 Lower Pamunkey River | 11.069 1.1 0.63

78 Upper York River 7.519 0.6 0.26

79 Lower York River 7.405 1.1 0.42

80 Occupacia Creek- 7.979 1.4 0.50
Rappahannock River

81 Cat Point Creek- 5.407 0.8 0.49
Rappahannock River

82 Totuskey Creek- 4.088 1.2 0.54
Rappahannock River

83 Lancaster Creek- 4.781 1.5 0.64

Rappahannock River
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84 Corrotoman River- 5.549 2.6 0.86
Rappahannock River
85 Garnetts Creek- 5.304 1.3 0.78

Mattaponi River
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