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Abstract—The layered structure of the system software stacks
we use today allows for separation of concerns and increases
portability. However, the confluence of widely available virtualiza-
tion and hardware partitioning technology, new OS techniques,
rapidly changing hardware, and significant advances in compiler
technology together present a ripe opportunity for restructuring
the stack, particularly to support effective parallel execution. We
argue that there are cases where layers, particularly the compiler,
run-time, kernel, and hardware, should be interwoven, enabling
new optimizations and abstractions. We present four examples
where we have successfully applied this interweaving model of
system design, and we outline several lines of promising ongoing
work.

Index Terms—interweaving, layering, operating systems, com-
pilers

I. INTRODUCTION

Advances in virtualization and hardware partitioning now

make it possible for a single system to securely host multiple

software stacks simultaneously [9], [59], [38], [39]. Similarly,

in some high performance computing and cloud environments,

systems with diverse software stacks can securely coexist side-

by-side through network traffic segregation. Containerization

simplifies deployment, and fast boot technologies allow us

to think of an entire software stack in much the same way

we have thought about processes in the past. The result of

these advances has been an explosion of innovation across

the software stack, abetted by concomitant hardware advances.

We are no longer bound by the commodity software/hardware

stack. Simply put, we can put whatever stack we want next to

the commodity stack.

We have been working to leverage these advances to im-

prove the state of software/hardware stacks specifically for

parallel programs. As we know from the 50+ year history of

parallelism, parallel programs are quite different from sequen-

tial and ordinary concurrent programs in terms of languages,

patterns, collective behavior, and execution models. Despite

these profound differences, today it is often assumed that only

small variations in the commodity software/hardware stack are

necessary to support parallelism well. At the same time the

This project is made possible by support from the United States National
Science Foundation through awards CNS-1718252, CNS-1763612, CNS-
1763743, CNS-1730689, CCF-1757964, CCF-2029014, CCF-2028851, CCF-
2028958 and CCF-1453853.

commodity software/hardware stack has grown quite rigid,

which restricts the imagination of the designers of parallel

systems including languages, compilers and run-times, and

limits them to a constrained design space. These restrictions

are already limiting today and will become hard limiters as

exploiting parallelism becomes ubiquitous, the scale of the

necessary parallelism expands, and energy efficiency becomes

increasingly important.

a) Example Limitations: Current hardware/software

stacks for parallelism require virtual memory in the form

of paging, which then demands the existence of TLBs and

other hardware structures. These in turn have substantial

overheads in time and energy. This issue is not limited to

parallel systems. Indeed, there is a cottage industry of work

on addressing the limitations of paging in the general systems

and architecture communities as well. Another limitation of

current hardware/software stacks for parallelism is that all

memory is kept cache-coherent by hardware means. When a

parallel language implementation does not require this, there

is a substantial toll on performance and energy. Yet another

limitation is that events in current hardware/software stacks are

based ultimately on hardware timer interrupts, but these exist

at a considerable remove from the parallel runtime because of

the need to cross a kernel/user boundary multiple times. The

extra latency and overhead this introduces artificially limits

the granularity of action in a parallel runtime system.1

b) Big Picture: Our focus is on layering, in particular the

layers of language, compiler, run-time, operating system, and

hardware. While not impermeable, the existence of these layers

inherently warps the design of a parallel system. Another

critical aspect is the notion of privileged (e.g., kernel) versus

unprivileged (e.g., user) execution, which in turn is a major

enforcer of layering. This notion also means that a substantial

portion of the hardware functionality is unavailable to all but

the kernel, and that higher layers are forced to use the kernel’s

own abstractions.

c) Interweaving Model: We have been investigating how

these layers of a parallel system can and should change,

particularly when the privileged/unprivileged distinction is

1Sections IV and V give examples of our interweaving work that address
the example limitations we note here.
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Fig. 1. Example system.

removed. The interweaving model, a particular approach to

layering, is our approach. Here, the specific functionality

needed by a specific parallel system (or even application)

is implemented by integrating (“interweaving”) in a custom

manner functionality formerly kept distinct at each layer. The

custom software/hardware stacks possible in the interweaving

model have the potential to lead to higher performance, more

scalability, and more energy efficiency.

Figure 1 illustrates the compile-time and run-time structure

of the system we are building as we pursue our research

agenda. We build upon Nautilus, a static ( 1 ) and dynamic

kernel framework ( 2 ), which we describe in the next sec-

tion. Nautilus provides predictable behavior through a variety

of means, including hard real-time scheduling. We use the

Clang/LLVM compiler toolchain to build both Nautilus and

the parallel application, with OpenMP applications ( 3 ) being

an important current target. Using custom code transformation

passes, we blend the code of the application and the code

of Nautilus at a low-level ( 4 ), including below the level of

individual functions. Other compiler transformations add code

that allows us to solve traditional problems, such as protection

and mapping of memory, and timing, using alternative means.

Finally, the generated code can take advantage of specialized

hardware features such as FPGA-based operators, or relaxed

coherence, that emerging hardware ( 5 ) can provide and that

higher-level parallel languages can exploit.

Given this setting and the overall interweaving model, we

have developed alternative approaches to a range of systems

problems, which we elaborate on. These provide some evi-

dence that the interweaving approach has legs.

II. RELATED WORK

While the HPC community has been reconsidering operat-

ing system design for tightly-coupled parallel computing for

decades now [45], [30], [48], [8], the strict separation between

layers of the stack has remained largely stagnant, especially

at the user/kernel boundary.

Multi-kernels [63], [28], [61], [75], [7], [37], [27] attempt

to strike a middle ground between general-purpose system

software and specialized OSes by space-sharing OSes across

a system, but leave opportunities for co-design across layers

on the table.

In the cloud landscape, Unikernels, aided by ubiquitous

virtualization, allow for high performance for a specific target

set of workloads [46], [54], [69], [74], [60], [14]. Their success

has bled into other areas, including serverless computing [47]

and high-performance computing [50]; a Unikernel target for

Linux is now in the works [66].

Some Unikernels are constructed from application code

using a high-level language [55], a natural progression from

classic library OSes [24]. As more sophisticated systems

languages like Rust come to prominence, decade-old ideas

on using language features to provide or enhance kernel

mechanisms like protection or isolation [10], [41], [64] are

resurfacing in the form of OSes and Unikernels like The-

seus [13], RedLeaf [58], and RustyHermit [49]. However, the

compiler is left out of the loop here; we argue that there is

significant opportunity for bringing compiler technology and

co-design across layers to bear for efficient parallelism.

III. BACKGROUND: NAUTILUS

We build our exploration of Interweaving on Nautilus [35],

a publicly available, open-source OS kernel2 that currently

runs directly on x64 NUMA hardware, including Xeon Phi.

Nautilus comprises over 331K lines of code and Nautilus was

designed with the goal of supporting hybrid run-times (HRTs).

An HRT is a mash-up of an lightweight OS kernel framework,

such as Nautilus, and a parallel run-time system [34], [33].

Nautilus can help a parallel run-time ported to an HRT

achieve very high performance by providing streamlined ker-

nel primitives such as synchronization and threading facilities.

It provides the minimal set of features needed to support a

tailored parallel run-time environment, avoiding features of

general purpose kernels that inhibit scalability.

Nautilus has a range of features that help make the ex-

ecution of an HRT faster and more predictable. Identity-

mapped paging with the largest possible page size is used. All

addresses are mapped at boot, and there is no swapping or page

movement of any kind. As a consequence, TLB misses are

extremely rare, and, indeed, if the TLB entries can cover the

physical address space of the machine, do not occur at all after

startup. There are no page faults. All memory management,

including for NUMA, is explicit and allocations are done with

buddy system allocators that are selected based on the target

zone. For threads that are bound to specific CPUs, essential

thread (e.g., context, stack) and scheduler state is guaranteed

to always be in the most desirable zone. The core set of I/O

drivers developed for Nautilus have interrupt handler logic

with deterministic path lengths. Finally, interrupts are fully

2https://github.com/hexsa-lab/nautilus

51

Authorized licensed use limited to: Northwestern University. Downloaded on August 02,2022 at 20:58:16 UTC from IEEE Xplore.  Restrictions apply. 



steerable, and thus can largely be avoided on most hardware

threads. Application benchmark speedups from 20–40% over

user-level execution on Linux have been demonstrated, while

benchmarks show that primitives such as thread management

and event signaling are orders of magnitude faster [35], [36].

This background description is reproduced from our prior

work, and more details can be found there [35], [29].

IV. INTERWEAVING EXAMPLES

Below we describe several completed and ongoing ef-

forts within the larger Interweaving umbrella that we believe

demonstrate the promise of our approach.

A. Compiler- and Runtime-based Address Translation

(CARAT)

Nautilus has no protection mechanisms or kernel-user dis-

tinction, by design, and, in fact, has a single-address space

with identity mapping between physical and virtual addresses

using the largest possible page size. The result is that a parallel

program on top of it faces no compromises or surprises in

terms of TLB misses. Can we add the benefits of virtual

memory back into the equation without losing these benefits?

Can the benefits of virtual memory be achieved without paging

and the concomitant entanglement of cache design and TLBs?

We have developed a technique in which compiler-based

analyses and transformations of existing code at the LLVM IR

level make it possible to achieve both protection and mobility

of data without any hardware support—all code runs using

physical addresses. This result frees hardware architects from

constraints that might limit them in the search for highly-

efficient platforms.

Simply put, our analyses identify the subset of memory

accesses and allocations that need to be checked at run-time

while our transformations add tracking and protection checks

to them. We do so while scaling to the entire codebase,

including the kernel. Conceptually, protection check code

is introduced at each read or write, and data movements

operate similarly to a garbage collector in a managed language.

However, our techniques apply, with few limitations, to any

code that can be compiled to LLVM. An important result

is that we can demonstrate that it is possible to massively

reduce the potentially high costs of the compiler-introduced

protection and tracking code in most cases. This is because

modern code analysis techniques can provide the information

necessary to aggregate and hoist protection and tracking code,

thus taking it out of the critical path in most instances. This is

particularly true for parallel codes from a range of benchmarks

from NAS [43], Mantevo [6], and PARSEC [11], where the

overheads are <6% (geometric mean). An additional benefit

of this approach to virtual memory is that memory can be

managed at arbitrary granularity, instead of being restricted to

page sizes. Details of our approach and our evaluation can be

found elsewhere [72].

We have also built an enhanced version of this technique

within Nautilus with support for separate compilation. Based

on the PIK model (Section V-A), a Linux user-level program

CPU 0 CPU 1 CPU N

APIC APIC APIC

TPAL
runtime

TPAL
 worker

TPAL
worker

Hardware

Kernel mode

CPU 0 CPU 1 CPU N

APIC APIC APIC

Hardware

CPU 0 CPU 1 CPU N

Hardware

TPAL
runtime

TPAL worker TPAL worker

Kernel mode

User mode

Nautilus kernel (Nemo)
Linux kernel

1

3

IPI

4
promoted tasks promoted tasks

N

2

{ unsteady
rates

signalsNautilus kernel NK (Nemo)(

Fig. 2. Heartbeat signaling mechanisms in Nautilus (left) and Linux (right).
This figure is reproduced from our prior work [65].

can be compiled, transformed, linked, and cryptographically

attested such that it can run as a part of Nautilus, at kernel-

level, using physical addresses, in a simulacrum of a process.

The “process’s” tracking code and protection code directly in-

teracts with Nautilus, and Nautilus can perform per-“process”

and whole system memory defragmentation.

B. Low-Overhead Event Notifications for Heartbeat Schedul-

ing

Heartbeat scheduling [2] is a recently proposed technique

for scheduling recursively parallel task-based programs within

a work-stealing model, for example, Cilk [12], [26]. The

essential idea is that the programmer exposes all available par-

allelism in the program, and then compiler-based techniques

are used to generate both parallel and sequential variants at all

levels. The runtime system dynamically promotes sequential

code to the parallel variants as needed to “right-size” the

extant parallelism, and it can do so in a sound manner that

provides provable bounds on performance of the algorithm.

The runtime is periodically triggered by a “heartbeat” event

that is ultimately caused by a hardware timer interrupt.

The event mechanisms available in Linux were not designed

for the purpose of driving heartbeat interrupts at fine granu-

larity (typically ♥ = 20µs—100µs or smaller) at the scale

of even a tiny modern machine (e.g., 16 CPUs). As others

have shown [36], existing software mechanisms in Linux are

unable to achieve predictably low latencies for out-of-band

event signaling—these are nowhere near the latencies, rates,

and jitter that the underlying hardware is capable of.

In collaboration with the heartbeat scheduling team, we

developed a Nautilus-based HRT that uses the same com-

pilation process as the user-level implementation, but does

signaling directly using the x64 hardware, and thus can achieve

the lower limit on architected, out-of-band event signaling

the hardware is capable of. Figure 2 illustrates the different

heartbeat mechanisms in Linux and Nautilus. TPAL is the

name of the heartbeat compilation and run-time system. In the

Nautilus implementation, a LAPIC timer interrupt on CPU 0

( 1 ) is broadcast via IPI ( 2 ) to the TPAL workers on other

CPUs ( 3 ), which in turn promote latent parallelism ( 4 ).
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Fig. 3. Achieved and target heartbeat rate in Nautilus and Linux. This figure
is reproduced from our prior work [65].

Across a range of benchmarks, the scheduling overheads are

13–22% on Linux, and reduce to at most 4.9% in Nautilus.

Furthermore, while the best Linux mechanism cannot sustain

heartbeat signals at a consistent rate for all benchmarks, even

at ♥ = 100 µs and a scale of 16 CPUs, Nautilus not only

hits the target, but it also delivers a consistent, stable rate at

both 100 µs and 20 µs (Figure 3). More details can be found

elsewhere [65].

C. Compiler-based Timing for Fine-grain Preemptive Paral-

lelism

Fully exploiting a modern machine of any kind depends

on extracting and leveraging parallelism across a wide range

of granularities ranging from below the level of individual

instructions to beyond the level of independent, long-running

jobs [56], [23], [1]. Future machines are likely to further

expand this requirement [52], [20], [25]. Fine-granularity

parallelism is of significant interest within the HPC com-

munity (e.g., OpenMP tasking [5]), and is an expectation

of theoretically well-grounded parallelism models for higher-

level parallel languages [12], [26], [40], [2]. Others in this

community have pointed out the increasing importance of

granular computing [51].

Preemptive threads are a natural abstraction for many of

these uses, but, unfortunately, due to their high overheads,

are not generally used. The high cost of preemptive threads

is due in large part to the high costs of handling hardware

timer interrupts. Even when there is no kernel/user boundary to

cross, these are consequential. Thus, using preemptive threads

puts too high a bound on the parallel granularity that can be

achieved. Instead, these systems are based on callbacks, with

all the challenges this entails.

The fundamental issue here is that timing is based on

a hardware/software co-design—a hardware timing device

drives a hardware interrupt dispatch mechanism, which leads

into a software-based timing framework, which leads to a

software-based context switch. What if we replace this with a

Compiler-timed 

Fibers Have 4x 

Lower Context 

Switch Costs (No 

Floating Point)

Compiler-timed 

Fibers Have 2.3x 

Lower Context 

Switch Costs (With 

Floating Point)

Fig. 4. Cost of context switches for real-time and non-real-time threads,
fibers, and compiler-timed fibers on specialized kernel on Phi KNL. Linux
non-real-time thread context switches with FP state take about 5000 cycles
on this platform. Compiler-timed fibers can achieve a >4x lower granularity.
Reproduced from our prior work [29].

software/software co-design involving the compiler toolchain

and the kernel? Compiler-based timing does exactly this, and

our design, implementation, and evaluation is described in

more detail elsewhere [29].

In compiler-based timing, the entire codebase of the system,

including the kernel itself, is processed using modern compiler

analyses and transformations to introduce calls into the timer

framework that replace hardware timer interrupts. The timer

framework can in turn induce thread context switches. Because

the timer framework is now invoked with the overhead of a

call instruction instead of the overhead of an interrupt, it

can be invoked more often within the bounds of some limit

on overhead. Furthermore, because no interrupt context is

involved, the design of threads can be considerably simplified

and sped up. In fact, they become fibers, with “preemption”

provided by yield()s executed by the timer framework.

These elements combine to reduce the overhead of threads.

Figure 4 illustrates the benefits on a Intel Phi KNL chip.

For comparison, a (non-real-time (non RT)) Linux user-level

thread context-switch, including floating point state, takes

about 5000 cycles on this platform. Our kernel’s (non-RT)

thread context switch using hardware timers (“Threads (non-

RT, FP)” in the figure) is about half that. Using compiler-

based timing, it is slightly more than halved again (“Fibers-

CompTime (FP)” in the figure)3 . As a consequence, our sys-

tem can support preemptive threads with granularities that are

over four times smaller than those possible in the commodity

Linux environment. The granularity limit on this machine is

less than 600 cycles, which is so low that floating point state

3The remaining bars of the figure illustrate other options in the parameter
space of {RT, non-RT} x {Threads, Fibers } x {Cooperative,Compiler-timed}.
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management becomes the bottleneck.

A major challenge here is that the compiler transform

needs to introduce timing calls statically, so that they occur

dynamically at some desired rate regardless of the code path

taken through the kernel+application ensemble as it runs.

Modern compiler analysis makes this possible.

D. Function-Granularity Virtualization

The need for systems support for fine-grained tasks is

increasing [51], yet cloud systems that support on-demand

scheduling of such tasks (e.g. using the Function-as-a-Service

model (FaaS) with serverless computing [68], [42], [19],

[71], [32]) often rely on legacy software stacks. To support

low-latency startup for such tasks, aggressive snapshotting is

applied [17], [22].

We have investigated low-latency, isolated execution of

individual tasks and functions by applying the Interweaving

model to build such execution contexts from the ground up,

culminating in an abstraction that we call virtines. Virtines

execute in isolated, virtualized environments using a custom

software stack (e.g. a Unikernel or minimal runtime shim

layer). They are enabled by a microhypervisor (Wasp) and

using custom LLVM compiler support. Programmers write

code as shown in Figure 5, and the compiler and runtime

cooperate to run that function in its own, isolated virtual

machine with start-up overheads as low as 100µs.

virtine int fib(int n) {

if (n < 2) return n;

return fib(n - 1) + fib(n - 2);

}

Fig. 5. Virtine programming in C with compiler support.

Our virtine microhypervisor runs as a user-space process on

either Linux or Windows using KVM or Hyper-V, respectively,

to leverage hardware-specific virtualization features. Other ap-

plications (including dynamic compilers and runtime systems)

can link with the runtime library to leverage virtines. Our

virtine framework can be used with existing code with minimal

changes, and with acceptable overheads.

V. INTERWEAVING NEXT STEPS

We now describe several ongoing and future efforts that

push the Interweaving model further.

A. OpenMP

We are in the process of completing our implementation

of a kernel-level OpenMP as shown in Figure 1. OpenMP

involves increasingly complex language, compiler, and run-

time support to make it possible to express and exploit node-

level parallelism. The result is that the OpenMP run-time

system is increasingly looking like a kernel, and we are

interweaving it with the Nautilus kernel framework so that

it becomes the kernel.

Three different approaches have been designed and im-

plemented, all of which leverage OpenMP code generation

(e.g., -fopenmp) in Clang/LLVM. The first, runtime in kernel

Fig. 6. RTK performance relative to Linux as a function of CPUs used:
NAS BT and SP on Phi KNL; higher is better. Baseline (Linux OpenMP)
is horizontal bar at 1.0. t is the single threaded Linux absolute performance.
This figure is reproduced from our prior work [53].

(RTK), involves a port of the libomp OpenMP runtime to the

kernel, allowing any kernel code to use OpenMP pragmas. To

use this approach, OpenMP applications must also be ported

to the kernel. The second, process in kernel (PIK) involves

a specialized process abstraction that allows running Linux

user-level OpenMP code (and all of its various libraries and

runtimes), within the kernel. The code believes it is executing

in a traditional process environment in user-mode, but it is

actually a part of the kernel, running in kernel-mode. To

use PIK, applications need to be recompiled and linked in

a specialized manner, but otherwise no porting is needed.

The third approach, custom compilation for kernel (CCK),

involves compiling OpenMP pragmas (and doing automatic

parallelization) into a form that leverages the kernel framework

without any intermediary. Compilation is porting. Unlike RTK

and PIK, CCK always targets a purely task-based execution

model, which we map directly to the task framework within

Nautilus, which can be viewed as a Linux-like SoftIRQ

framework. Unlike SoftIRQs, however, if the compiler can

estimate task size, its tasks can be run in the scheduler itself,

even in interrupt context.

All three implementations can run the full Edinburgh

OpenMP microbenchmarks [15], [16] and the NAS parallel

benchmarks [43]. Figure 6 gives example results for the NAS

BT and SP benchmarks. The average performance gain of

RTK over Linux OpenMP on Phi KNL across all scales

and benchmarks is 22% (geometric mean). PIK performs

similarly. A repetition of the study on an 8 socket, 192 core
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Fig. 7. Speedup for a dual-socket x64 server with our selective coherence
deactivation feature driven by a high-level parallel language run-time. (2×
3.3 GHz 12-core CPUs with 32K/256K/2.5M L1/L2/L3 cache structures.)

machine found similar results (∼20% for RTK and PIK). CCK

performance is not easily summarized.

More information about this work can be found in a separate

paper [53] that will appear at the SC ’21 main conference

(hopefully contemporaneously with this ROSS paper.)

B. Coherence and Consistency

The one-size-fits-all approach in today’s memory con-

sistency and cache coherence models creates unnecessary

constraints that hinder performance. Ordering constraints in

consistency models serialize all accesses of a particular type,

without selectivity. A fence orders writes that produce data

before setting the done flag, but it also orders all other writes

the thread issued, even if they are unrelated to the intended

use of the fence. Individual writes within a producer’s data

production subroutine could semantically proceed in any order,

yet x86-TSO [62] unnecessarily enforces a total order. Thread-

private data are tracked in the coherence protocol, even though

there are no other sharers for the data [21]. Producers and

consumers keep stealing each other’s cache lines and transfer

them across the interconnect, only for them to be stolen

back, blindly following the rules of today’s reactive coherence

protocols, while involving even a third node (the directory) that

is often located far away from the producer/consumer cores.

We envision a system that is free from these inefficiencies,

where information on parallelism, data sharing, and memory

ordering requirements flows from the higher levels of the

stack (e.g., high-level programming languages) to the lower

levels. Armed with knowledge of the programmer’s intent, the

compiler, runtime, OS and architecture can decouple data with

different requirements from the rest of the data space, and steer

their behavior proactively by instructing the hardware to apply

specialized memory ordering rules, data sharing mechanisms,

and mapping primitives for on-chip data placement. We are

currently working toward realizing this goal in a system as

shown in Figure 1.

We have developed and are in the process of testing a

hardware cache coherence protocol that extends the currently

used MESI protocol with support for selective coherence

deactivation. This support has been designed with high-level

parallel languages in mind, though it is not restricted to them.

Via an implementation of the protocol in Sniper [18], we are

able to simulate current and future x64 machines of different

structures that include the protocol and compare them with

machines that do not. Figure 7 gives an example of the

preliminary results. Here, the PBBS benchmarks [70] are used,

as compiled with a variant of the MPL Parallel ML language

implementation [57], [73] that uses the semantics available in

this language and in how the implementation manages memory

to automatically drive our protocol. In the specific scenario

given in the figure, the average speedup is ∼46%, while the

interconnect energy (not shown) is reduced by ∼53%. The

benefits grow with scale and disaggregation.

C. Blending

We are in the process of reconsidering the Application

Binary Interface (ABI) between processes and between a

process and a kernel. In particular, we are considering the

customization of such ABIs (generated by our compiler) to

enable software to blend together at run-time even when

developed using a very different execution model (e.g., kernel

versus application). Blending continues into the kernel itself.

One candidate application we foresee for blending is sub-

page granularity transparent far memory. Current far memory

systems either operate at page granularity for transparent

swapping to remote nodes [31], [3] or require programmer an-

notations tagging data structures as remotable [67]. Compiler

blending can automatically make these decisions and evacuate

objects to remote memory transparently.

A second concept we are exploring is blended device

drivers. Here, the idea is to merge driver code with code

throughout the kernel and application. This blurring of the

boundary between the driver and everything else may reduce

latency through the use of polling and allow more efficient

execution by executing driver code during even short periods

of waiting elsewhere in the kernel or application. As a proof of

concept, we have already extended the compiler-based timing

work of Section IV-C to support distributed device polling

and applied it to simple drivers. The normally interrupt-

driven logic of the drivers is straightforwardly replaced with a

constant-time poll check, and the compiler injects this polling

check throughout the kernel using compiler-based timing. As a

result, these devices appear to behave as if they were interrupt-

driven, but no interrupts ever occur for them.

D. Pipeline Interrupts

One issue with current hardware (particularly x64 systems,

though not limited to them) that we have run into again and

again is the unbelievably high cost of interrupt (or exception)

dispatch—the time from when an interrupt occurs to the first

instruction of the interrupt handler. We have measured this to

be on the order of 1000 cycles [29], [36]. In a system with

kernel/user separation (e.g., Linux) this cost is generally not

the first-order concern since other, higher costs are involved

(e.g., context switch due to Spectre/Meltdown mitigation,

signal injection cost for delivery to the application) or, for

some HPC hardware, the interrupt can be directly mapped to
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a doorbell for the user-level code. In an interwoven system,

however, the interrupt/exception dispatch cost is a major

concern. The compiler-based timing work of Section IV-C

is all about mitigating it for a specific device (a timer), and

distributed device polling (Section V-C) is attempting to extend

that mitigation for other devices.

We are also considering how to tackle the problem from

the hardware perspective. We have developed a realizable

extension of branch prediction logic that would allow a simple

interrupt (no privilege level change, etc) in an interwoven

system to be delivered as if it were a kind of branch instruction

injected into the instruction fetch logic. MSR manipulation,

similar to the existing syscall instruction, provides the

mechanism to return to the interrupted code. The latency

would be similar to that of a correctly predicted branch

instruction, 100-1000× better. Because the hardware timer

in the LAPIC is already on-chip and next to the core, it

is the first interrupt for consideration. Another interest is

an instruction exception, for example for #MF/#XF, which

would facilitate efficient virtualization of the floating point

ISA, and #GP, which would facilitate handling transparent

far memory (Section V-C) and protection faults/swapping in

CARAT (Section IV-A).

At this point, we have developed an initial proof of concept

of this idea within PIN.

E. Bespoke Contexts

We believe new types of virtualized services will be pos-

sible using bespoke execution contexts, of which the virtines

described in Section IV-D are an initial instantiation. These

are execution environments tailored to a particular workload’s

needs. Bespoke contexts eliminate unnecessary overheads and

carry little “runtime baggage.” For example, if there is no

need for device I/O, a runtime environment (or OS) that

supports I/O drivers is unnecessary. A piece of code which

leverages only integer math need not have the OS layer set

up the floating point unit, and so on. Note that bespoke

contexts go further than Unikernels [50], [69], [4], [55] and

RumpKernels [44], as an application leveraging such services

service might not need an OS at all; a minimal or no runtime

environment may suffice. For example, we may even leave

the machine in 16-bit mode as it boots up for certain simple

services. The key is that these contexts are constructed at

compile time, and in that way they can be seen as a type of

synthesized runtime environment. Bespoke contexts are one

example of an interwoven stack, and the compiler can help to

synthesize them.

F. RISC-V / OpenPiton

Our work has generally been very specific to x64. We are

currently exploring a port of Nautilus and other components to

RISC-V, an open instruction set architecture that includes open

implementations, such as in OpenPiton. By working on open

hardware, we anticipate being able to more deeply explore

hardware changes prompted by the interweaving model. At

the present time, Nautilus partially boots on RISC-V.

G. High-level Parallel Languages As Enablers

Based on our experiences with coherence deactivation (Sec-

tion V-B) and other domains, it has become increasingly

clear that high-level parallel languages are enablers for the

interweaving model. It may seem very counterintuitive that

extremely high-level (indeed, mathematically defined!) ab-

stractions in such languages would have much to do with

the guts of a compiler, kernel, or hardware, but they do. The

main observation is that due to the rich, well-defined semantics

of these languages (including their run-time environment as

seen by the programmer), it is much more straightforward

to understand what an application is doing. Properties that

the lower-level parts of the system could leverage might

require immense effort for code analysis to prove about

C/C++/Fortran+OpenMP/MPI. In contrast, these same proper-

ties are simply available by construction in high-level parallel

languages. Conversely, properties that fall out of programs

written in these languages may prompt new innovation in the

lower-level parts of the system.

We expect that this synergy will become ever more im-

portant with scale and particularly with heterogeneity of

the underlying hardware. Impedance matching heterogeneous

hardware (or reconfigurable hardware) to a high-level parallel

language is a current focus of ours.

VI. CONCLUSION

We have been working to improve the state of the hardware/-

software stack for parallel programs. We demonstrated several

promising examples for which the Interweaving model, where

distinctions between traditionally rigid layers are blurred, can

produce significant improvements. Parallel task scheduling,

event notification, address translation, preemptive scheduling,

lightweight virtualization are just a few areas where there is

demonstrated potential for Interweaving, and we suspect that

there are more.

AVAILABILITY

The systems described in this work are freely and pub-

licly available, and can be found on our web site at http:

//interweaving.org.
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Akhilesh Singhania. The Multikernel: A new OS architecture for
scalable multicore systems. In Proceedings of the 22nd ACM Symposium

on Operating Systems Principles, SOSP ’09, pages 29–44, October 2009.
[8] Pete Beckman. Argo: An exascale operating system. http://www.mcs.

anl.gov/project/argo-exascale-operating-system.
[9] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David

Mazières, and Christos Kozyrakis. Dune: Safe user-level access to priv-
ileged CPU features. In Proceedings of the 10

th USENIX Conference

on Operating Systems Design and Implementation, OSDI ’12, pages
335–348, October 2012.

[10] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer,
Marc E. Fiuczynski, David Becker, Craig Chambers, and Susan Eggers.
Extensibility, safety and performance in the SPIN operating system.
In Proceedings of the 15

th ACM Symposium on Operating Systems

Principles, SOSP ’95, pages 267–283, December 1995.
[11] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,

Princeton University, January 2011.
[12] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,

Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient
multithreaded runtime system. Journal of Parallel and Distributed

Computing, 37(1):55–69, 1996.
[13] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. Theseus:

an experiment in operating system structure and state management. In
Proceedings of the 14

th USENIX Symposium on Operating Systems De-

sign and Implementation‘, OSDI ’20, pages 1–19. USENIX Association,
November 2020.

[14] Alfred Bratterud, Alf-Andre Walla, Harek Haugerud, Paal E. Engelstad,
and Kyrre Begnum. IncludeOS: A minimal, resource efficient unikernel
for cloud services. In Proceedings of the 7

th IEEE International

Conference on Cloud Computing Technology and Science, CloudCom
’15, pages 250–257, November 2015.

[15] J. M. Bull. Measuring synchronisation and scheduling overheads in
openmp. In Proceedings of the First European Workshop on OpenMP,
1999.

[16] J. M. Bull, F. Reid, and N. McDonnell. A microbenchmark suite for
openmp tasks. In Proceedings of the 8th International Conference on

OpenMP in a Heterogeneous World (IWOMP 2012), 2012.
[17] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,

and Jonathan Appavoo. SEUSS: Skip redundant paths to make serverless
fast. In Proceedings of the 15

th European Conference on Computer

Systems, EuroSys ’20, 2020.
[18] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Ex-

ploring the level of abstraction for scalable and accurate parallel multi-
core simulations. In International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), November 2011.

[19] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. The rise of serverless computing. Communications of the

ACM, 62(12):44–54, November 2019.
[20] Julia Chen, Philo Juang, Kevin Ko, Gilberto Contreras, David Penry,

Ram Rangan, Adam Stoler, Li-Shiuan Peh, and Margaret Martonosi.
Hardware-modulated parallelism in chip multiprocessors. SIGARCH

Comput. Archit. News, 33(4):54–63, November 2005.
[21] Abhishek Das, Matt Schuchhardt, Nikos Hardavellas, Gokan Memik,

and Alok Choudhary. Dynamic directories: A mechanism for reducing
on-chip interconnect power in multicores. In Proceedings of the 2012

Design, Automation and Test in Europe Conference, DATE, pages 479–
484, 2012.

[22] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup
for serverless computing with initialization-less booting. In Proceedings

of the 25
th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’20, pages
467–481, April 2020.

[23] A. Duran, J. Corbalan, and E. Ayguade. An adaptive cut-off for task
parallelism. In Proceedings of the 2008 ACM/IEEE Conference on

Supercomputing (SC 2008), 2008.
[24] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole, Jr. Ex-

okernel: An operating system architecture for application-level resource
management. In Proceedings of the 15

th ACM Symposium on Operating

Systems Principles, SOSP ’95, pages 251–266, December 1995.
[25] E. Forbes and E. Rotenberg. Fast register consolidation and migration for

heterogeneous multi-core processors. In Proceedings of the 34th IEEE

International Conference on Computer Design (ICCD 2016), pages 1–8,
2016.

[26] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
implementation of the cilk-5 multithreaded language. In Proceedings of

the ACM SIGPLAN 1998 Conference on Programming Language Design

and Implementation (PLDI 98), pages 212–223, 1998.
[27] Balazs Gerofi, Rolf Riesen, Masamichi Takagi, Taisuke Boku, Kengo

Nakajima, Yutaka Ishikawa, and Robert W. Wisniewski. Performance
and scalability of lightweight multi-kernel based operating systems. In
Proceedings of the 32

nd IEEE International Parallel and Distributed

Processing Symposium, IPDPS ’18, pages 116–125, May 2018.
[28] Balazs Gerofi, Masamichi Takagi, Atsushi Hori, Gou Nakamura, Tomoki

Shirasawa, and Yutaka Ishikawa. On the scalability, performance
isolation and device driver transparency of the IHK/McKernel hybrid
lightweight kernel. In Proceedings of the 30

th IEEE International

Parallel and Distributed Processing Symposium, IPDPS ’16, pages
1041–1050, May 2016.

[29] Souradip Ghosh, Michael Cuevas, Simone Campanoni, and Peter Dinda.
Compiler-based timing for extremely fine-grain preemptive parallelism.
In Proceedings of the ACM/IEEE Conference on High Performance

Networking and Computing (SC 2020), November 2020.
[30] Mark Giampapa, Thomas Gooding, Todd Inglett, and Robert W. Wis-

niewski. Experiences with a lightweight supercomputer kernel: Lessons
learned from Blue Gene’s CNK. In Proceedings of Supercomputing, SC
’10, November 2010.

[31] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. Efficient memory disaggregation with infiniswap.
In Proceedings of the 14

th USENIX Symposium on Networked Systems

Design and Implementation, NSDI ’17, pages 649–667, Boston, MA,
March 2017. USENIX Association.

[32] Faisal Hafeez, Pezhman Nasirifard, and Hans-Arno Jacobsen. A server-
less approach to publish/subscribe systems. In Proceedings of the 19

th

International Middleware Conference (Posters), Middleware ’18, pages
9–10, 2018.

[33] Kyle Hale. Hybrid Runtime Systems. PhD thesis, Northwestern
University, August 2016. Available as Technical Report NWU-EECS-
16-12, Department of Electrical Engineering and Computer Science,
Northwestern University.

[34] Kyle Hale and Peter Dinda. A case for transforming parallel runtime
systems into operating system kernels. In Proceedings of the 24th ACM

Symposium on High-performance Parallel and Distributed Computing

(HPDC 2015), June 2015.
[35] Kyle Hale and Peter Dinda. Enabling hybrid parallel runtimes through

kernel and virtualization support. In Proceedings of the 12th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments (VEE 2016), April 2016.

57

Authorized licensed use limited to: Northwestern University. Downloaded on August 02,2022 at 20:58:16 UTC from IEEE Xplore.  Restrictions apply. 



[36] Kyle Hale and Peter Dinda. An evaluation of asynchronous software
events on modern hardware. In Proceedings of the 26th IEEE Interna-

tional Symposium on the Modeling, Analysis, and Simulaton of Com-

puter and Telecommunication Systems (MASCOTS 2018), September
2018.

[37] Kyle C. Hale and Peter A. Dinda. Enabling hybrid parallel runtimes
through kernel and virtualization support. In Proceedings of the 12

th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, VEE’16, pages 161–175, April 2016.
[38] Kyle C. Hale, Conor Hetland, and Peter A. Dinda. Automatic hybridiza-

tion of runtime systems. In Proceedings of the 25
th ACM International

Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’16, pages 137–140, June 2016.

[39] Kyle C. Hale, Conor Hetland, and Peter A. Dinda. Multiverse: Easy
conversion of runtime systems into OS kernels via automatic hybridiza-
tion. In Proceedings of the 14

th IEEE International Conference on

Autonomic Computing, ICAC’17, July 2017.
[40] Troels Henriksen, Niels Serup, Martin Elsman, Fritz Henglein, and

Cosmin Oancea. Futhark: Purely functional gpu programming with
nested parallelism and in-place array updates. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), June 2017.
[41] Galen C. Hunt and James R. Larus. Singularity: Rethinking the software

stack. SIGOPS Operating Systems Review, 41(2):37–49, April 2007.
[42] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. Formal

foundations of serverless computing. Proceedings of the ACM on

Programming Languages, 3(OOPSLA), October 2019.
[43] H. Jin, M. Frumkin, and J. Yan. The open mp implementation of nas

parallel benchmarks and its performance (nas 3). Technical Report NAS-
99-011, NASA, March 1999.

[44] Antti Kantee. The Design and Implementation of the Anykernel and

Rump Kernels. PhD thesis, Aalto University, Helsinki, Finland, 2012.
[45] Suzanne M. Kelly and Ron Brightwell. Software architecture of the

light weight kernel, Catamount. In Proceedings of the 2005 Cray User

Group Meeting, CUG’05, May 2005.
[46] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don

Marti, and Vlad Zolotarov. OSv—optimizing the operating system for
virtual machines. In Proceedings of the 2014 USENIX Annual Technical

Conference, USENIX ATC ’14, June 2014.
[47] Ricardo Koller and Dan Williams. Will serverless end the dominance

of Linux in the cloud? In Proceedings of the 16
th Workshop on Hot

Topics in Operating Systems, HotOS XVI, pages 169–173, May 2017.
[48] John Lange, Kevin Pedretti, Trammell Hudson, Peter Dinda, Zheng Cui,

Lei Xia, Patrick Bridges, Andy Gocke, Steven Jaconette, Mike Leven-
hagen, and Ron Brightwell. Palacios and Kitten: New high performance
operating systems for scalable virtualized and native supercomputing.
In Proceedings of the 24

th IEEE International Parallel and Distributed

Processing Symposium, IPDPS’10, April 2010.
[49] Stefan Lankes, Jens Breitbart, and Simon Pickartz. Exploring rust

for unikernel development. In Proceedings of the 10
th Workshop on

Programming Languages and Operating Systems, PLOS ’19, pages 8–
15, New York, NY, USA, 2019. Association for Computing Machinery.

[50] Stefan Lankes, Simon Pickartz, and Jens Breitbart. HermitCore: A
unikernel for extreme scale computing. In Proceedings of the 6

th

International Workshop on Runtime and Operating Systems for Super-

computers, ROSS’16, June 2016.
[51] Collin Lee and John Ousterhout. Granular computing. In Proceedings of

the 17
th Workshop on Hot Topics in Operating Systems, HotOS XVII,

pages 149–154, New York, NY, USA, 2019. Association for Computing
Machinery.

[52] M. Lis, Keun Sup Shim, B. Cho, I. Lebedev, and S. Devadas. Hardware-
level thread migration in a 110-core shared-memory multiprocessor. In
2013 IEEE Hot Chips 25 Symposium (HCS), pages 1–27, 2013.

[53] Jiacheng Ma, Wenyi Wang, Aaron Nelson, Michael Cuevas, Brian
Homerding, Conghao Liu, Zhen Huang, Simone Campanoni, Kyle Hale,
and Peter Dinda. Paths to OpenMP in the kernel. In Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’21. IEEE, November 2021.
[54] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas

Gazagnaire, David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry,
Balraj Singh, Jon Ludlam, Jon Crowcroft, and Ian Leslie. Jitsu: Just-
in-time summoning of unikernels. In Proceedings of the 12

th USENIX

Symposium on Networked Systems Design and Implementation, NSDI
’15, pages 559–573, 2015.

[55] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,
Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and
Jon Crowcroft. Unikernels: Library operating systems for the cloud.
In Proceedings of the 18

th International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS
’13, pages 461–472, March 2013.

[56] Xavier Martorell, Eduard Ayguadé, Nacho Navarro, Julita Corbalán,
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