

1 **CANARDS UNDERLIE BOTH ELECTRICAL AND Ca^{2+} -INDUCED
2 EARLY AFTERDEPOLARIZATIONS IN A MODEL FOR CARDIAC
3 MYOCYTES ***

4 JOSHUA KIMREY[†], THEODORE VO[‡], AND RICHARD BERTRAM[§]

5 **Abstract.** Early afterdepolarizations (EADs) are voltage oscillations that can occur during the
6 plateau phase of a cardiac action potential. EADs at the cellular level have been linked to potentially
7 deadly tissue-level arrhythmias and the mechanisms for their arisal are not fully understood. There
8 is ongoing debate as to which is the predominant biophysical mechanism of EAD production: im-
9 balanced interactions between voltage-gated transmembrane currents or over-active Ca^{2+} -dependent
10 transmembrane currents brought about by pathological intracellular Ca^{2+} release dynamics. In this
11 article, we address this issue using a foundational 10-dimensional biophysical ventricular action po-
12 tential model which contains both electrical and intracellular Ca^{2+} components. Surprisingly, we
13 find that the model can produce EADs through both *biophysical* mechanisms, which hints at a more
14 fundamental *dynamical* mechanism for EAD production. Fast-slow analysis reveals EADs, in both
15 cases, to be canard-induced mixed-mode oscillations. While the voltage-driven EADs arise from
16 a fast-slow problem with two slow variables, the Ca^{2+} -driven EADs arise from the addition of a
17 third slow variable. Hence, we adapt existing computational methods in order to compute 2D slow
18 manifolds and 1D canard orbits in the reduced 7D model from which voltage-driven EADs arise.
19 Further, we extend these computational methods in order to compute, for the first time, 2D sets of
20 maximal canards which partition the 3D slow manifolds of the 8D problem from which Ca^{2+} -driven
21 EADs arise. The canard viewpoint provides a unifying alternative to the voltage- or Ca^{2+} -driven
22 viewpoints while also providing explanatory and predictive insights that cannot be obtained through
23 the use of the traditional fast-slow approach.

24 **Key words.** excitable media, early afterdepolarizations, mixed-mode oscillations, canards,
25 cardiac, numerical continuation

26 **AMS subject classifications.** 37N25, 92B05

27 **1. Introduction.** Early afterdepolarizations (EADs) are pathological fluctua-
28 tions in the membrane potential that can occur during cardiac action potentials [6]
29 (see Fig. 1). These can greatly extend the action potential (AP) duration, and are
30 associated with tachycardia (unusually fast heart rate) and sudden death [52, 56].
31 Studies with isolated cardiomyocytes have shown that EADs can be induced in a
32 number of ways, including hypokalemic environments [28, 39, 40, 57] (i.e., environ-
33 ments with unusually low potassium levels), addition of I_K channel blockers such as
34 cesium (Cs^+) [1, 35, 36], and application of anti-arrhythmic drugs such as azimilide
35 [59, 60] and E-4031 [37, 47]. Thus, the abnormal oscillations are produced by factors
36 intrinsic to a single myocyte, and are not a network effect.

37 While it is clear that isolated myocytes can produce EADs, it is not so clear
38 why they produce them. Are these abnormal oscillations in the membrane potential
39 due to the nonlinear interactions of the ionic currents, or are they a product of the
40 intracellular Ca^{2+} dynamics? Both explanations are feasible, and in fact, there is
41 evidence supporting both mechanisms. A classic study of the role Ca^{2+} plays in EAD
42 production found that existent EADs could persist despite the use of either Ca^{2+} -

*Submitted to the editors March 12, 2021.

Funding: This work was funded by the National Science Foundation, award number DMS 1853342 to T. Vo and R. Bertram

[†]Department of Mathematics, Florida State University, Tallahassee, FL 32306 (jkim-
rey@math.fsu.edu).

[‡]School of Mathematics, Monash University, Clayton, Australia (theodore.vo@monash.edu).

[§]Department of Mathematics, and Programs in Neuroscience and Biophysics, Florida State Uni-
versity, Tallahassee, FL 32306 (bertram@math.fsu.edu).

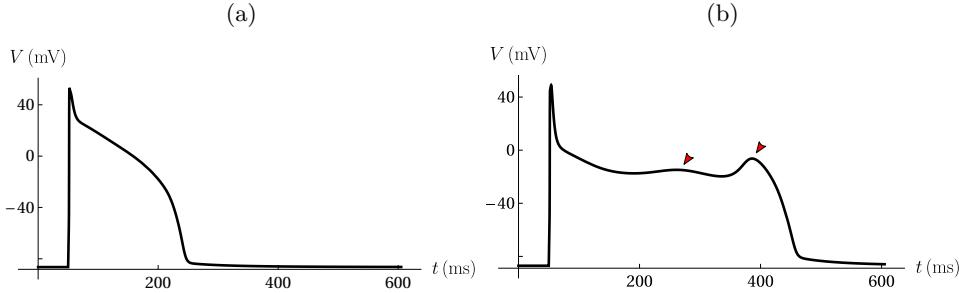


Fig. 1: **Standard AP morphology versus an AP with EADs.** (a) A standard AP is generated under standard conditions. (b) An AP with two EADs is generated under Ca^{2+} overload conditions.

43 induced Ca^{2+} release (CICR) antagonists—which bind to and inactivate intracellular
 44 Ca^{2+} channels—or Ca^{2+} chelators—which bind to intracellular Ca^{2+} signaling ions
 45 [35]. A series of more recent studies used the dynamic clamp technique to induce
 46 EADs in the presence of the Ca^{2+} channel blocker nifedipine. The inward Ca^{2+}
 47 current was added back using the dynamic clamp, which uses a mathematical model
 48 to determine the current based on the cell’s membrane potential. Though the current
 49 is added back, there is no influx of Ca^{2+} ions, so the dynamics in intracellular Ca^{2+}
 50 concentration ($[\text{Ca}^{2+}]_i$) had to be simulated in order to reconstruct physiological APs.
 51 The authors found that when the overlap region between the Ca^{2+} current activation
 52 and inactivation (the so-called “ Ca^{2+} window current”) was sufficiently wide and
 53 EADs were produced, the intracellular Ca^{2+} dynamics passively followed, rather than
 54 led, the EAD-laden electrical dynamics [19,34]. These studies provide strong evidence
 55 for a class of EADs that are voltage-driven. Alternatively, other studies have shown
 56 that some EADs can be eliminated when CICR from the sarcoplasmic reticulum (SR)
 57 is inhibited [41,61] or when Ca^{2+} chelators are added to the bathing solution [14,15].
 58 These studies provide strong evidence for a Ca^{2+} -driven mechanism for EADs.

59 From a biophysical viewpoint then, there appear to be at least two mechanisms
 60 for EAD production. If, however, one examines the underlying dynamics behind each
 61 of these, it may be possible that the explanation is the same. That is, there may
 62 be one *dynamical explanation* for the very different *biophysical mechanisms*. Indeed,
 63 there are precedents for this, such as the mathematical description of Ca^{2+} oscillations
 64 due to Ca^{2+} release from the endoplasmic reticulum recast using similar equations
 65 to those for the generation of tonic action potentials [29]. The biophysics is entirely
 66 different, but the mathematical explanation is the same.

67 We explore this possibility here, using a mathematical model for ventricular myo-
 68 cytes that has components for electrical activity and intracellular Ca^{2+} dynamics,
 69 and is capable of generating APs that exhibit EADs. We show that, in some cases,
 70 the EADs can be produced without active participation from the Ca^{2+} module (i.e.,
 71 $[\text{Ca}^{2+}]_i$ is clamped), but this is conditioned on the value of the Ca^{2+} concentration.
 72 In other cases, the Ca^{2+} dynamics are essential for the EAD production. Yet, in both
 73 cases, the explanation is the same from a dynamical viewpoint: the EADs are due
 74 to canards induced by folded node singularities. We demonstrate this point using

fast-slow analysis, and use this type of analysis to explain the influence of EAD-inducing and EAD-inhibiting pharmacological manipulations. This work builds on prior mathematical work from our group and others [2, 22, 23, 26, 53], but for the first time provides a unified explanation for both purely voltage-dependent EADs and those that also require Ca^{2+} dynamics.

2. The Luo-Rudy II Model. The Luo-Rudy II model (LRII) of the guinea pig ventricular myocyte [31] was developed to account for emerging evidence of the prominent role played by intracellular Ca^{2+} dynamics in regulating mammalian cardiac cell electrical activity. Many of the more detailed ventricular myocyte models that have emerged in the years since retain significant portions of the original formulations from [31]. Therefore, we analyze the Luo-Rudy II model for its ability to reproduce myriad experimental findings, for its added biophysical detail compared to Luo-Rudy I [30] (it includes prominent Ca^{2+} -dependent currents, such as the $\text{Na}^+-\text{Ca}^{2+}$ exchanger, and a more complete description of intracellular $[\text{Ca}^{2+}]_i$ dynamics), and for its analytical tractability. A summary schematic of the model cell with delineated voltage- and Ca^{2+} -module constituents is shown in Fig. 2.

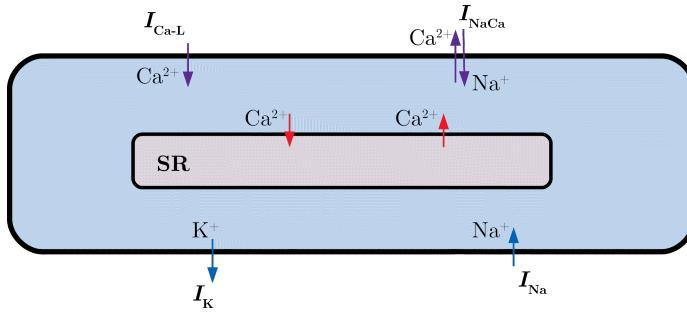


Fig. 2: **Summary schematic diagram of the Luo-Rudy II model.** The semi-separable electrical and Ca^{2+} modules are color-coded. Blue arrows denote transmembrane currents that belong strictly to the electrical module. Red arrows denote fluxes belonging to the Ca^{2+} module. Purple arrows denote Ca^{2+} -dependent transmembrane currents that couple the electrical and Ca^{2+} modules. The light blue and red spaces denote the myoplasm and the sarcoplasmic reticulum (SR), respectively.

To investigate the role that Ca^{2+} dynamics play in the emergence and properties of EADs in the Luo-Rudy II model, three variants of the model are analyzed. Detailed model equations and parameters are provided in Appendix A. The first model variant excludes Ca^{2+} dynamics and takes the form:

$$(2.1) \quad C_m \frac{dV}{dt} = - \sum I_{\text{ion}} + I_{\text{stim}} \\ \frac{dy}{dt} = \frac{y_\infty(V) - y}{\tau_y(V)}, \quad y = \{m, h, j, d, f, x\}$$

where C_m is membrane capacitance ($= 1 \mu\text{F}/\text{cm}^2$), I_{ion} is the sum of 11 ionic currents which contain 6 dynamic variables, and I_{stim} is a brief pulse of current with $30 \mu\text{A}/\text{cm}^2$ amplitude and 2 ms duration. Here, myoplasmic Ca^{2+} ($[\text{Ca}^{2+}]_i$), which couples the electrical and Ca^{2+} subsystems, is clamped and treated as a parameter. This variant of the model is 7-dimensional and bears strong resemblance to the Luo-Rudy I model

101 variant analyzed in [22]; in that work the rapid AP-initiating transient I_{Na} dynamics
 102 were removed, here they are retained.

103 The Ca^{2+} -clamped model behaviors are then compared to those of the full model.
 104 However, the variant of the full model investigated here excludes the spontaneous
 105 Ca^{2+} release mechanism included in [31]. This full model variant is the same as
 106 (2.1) with the addition of 3 dynamic variables that represent Ca^{2+} concentrations in
 107 the myoplasm and in each of two sub-compartments of the SR. This full model is
 108 10-dimensional (see Appendix A).

109 The full dynamic Ca^{2+} model variant presents analytical challenges in that its
 110 Ca^{2+} dynamics are formulated with an explicit dependence on time; it is non-autonomous. ■
 111 However, dimensional and empirical analysis reveal that the meaningful Ca^{2+} dy-
 112 namics, as they effect the emergence and properties of EADs, can be recapitulated
 113 using a reduced autonomous model. Hence, to understand the dynamics of Ca^{2+} -
 114 induced EADs we analyze a surrogate autonomous dynamic Ca^{2+} model where the
 115 dynamic variables representing the SR subcompartment Ca^{2+} concentrations are re-
 116 moved. This reduced dynamic Ca^{2+} model is 8-dimensional.

117 Specific parameters are varied to examine and analyze response behaviors of each
 118 model where specified. Otherwise, all parameter values are identical to those speci-
 119 fied in [31] (see Appendix A). When varied, these parameter values are given in the
 120 corresponding figures or main text. Under all parameter variations considered, except
 121 where explicitly stated otherwise, each model (absent I_{stim}) possesses 3 equilibria: a
 122 stable equilibrium, E_1 , and two additional unstable equilibria, E_2 and E_3 . Equilib-
 123 rium E_1 sets the resting membrane potential of the cell while equilibria E_2 and E_3
 124 have depolarized membrane potentials. Equilibrium E_2 is a saddle spiral and E_3 is
 125 a saddle point. The model code and computer programs used to generate the results
 126 are available at: www.math.fsu.edu/~bertram/software/cardiac.

127 **2.1. Luo-Rudy II produces EADs without Ca^{2+} dynamics.** We begin
 128 by analyzing the LRII model cell under clamped- Ca^{2+} conditions. That is, we fix
 129 the value of the $[\text{Ca}^{2+}]_i$ variable and treat it as a parameter of the purely electrical
 130 subsystem. In this way, we focus on EADs that are purely electrical in nature. This
 131 treatment separates the two components of the model in a way that is difficult to do
 132 experimentally.

133 One of the prevailing biophysical explanations for the generation of EADs is that
 134 they occur when inward currents dominate outward currents in magnitude and/or
 135 duration during the plateau phase of an AP [42, 43]. The basis for this explanation lies
 136 in the EAD-producing effects of many pharmacological interventions which are known
 137 to either enhance inward Ca^{2+} or Na^+ currents or suppress outward K^+ currents. One
 138 such EAD-producing chemical element, Cs^+ , has been shown to block both I_K and
 139 I_{K1} at high concentrations [12, 36]. In this section, we simulate the application of
 140 Cs^+ to test whether this leads to EADs in the clamped- Ca^{2+} model cell.

141 We simulate the application of Cs^+ by constructing a uniform grid in the two
 142 parameter $(\alpha_{I_K, I_{K1}}, [\text{Ca}^{2+}]_i)$ plane (Fig. 3) on which to test model responses. The
 143 parameter $\alpha_{I_K, I_{K1}}$ is a multiplicative weight that scales both I_K and I_{K1} uniformly;
 144 the value $\alpha_{I_K, I_{K1}}=1$ corresponds to the default setting while $\alpha_{I_K, I_{K1}}<1$ corresponds
 145 to decrements in the maximal conductances of I_K and I_{K1} . Clamped $[\text{Ca}^{2+}]_i$ is varied
 146 from $0.12 \mu\text{M}$ to $1 \mu\text{M}$. The lower bound, $0.12 \mu\text{M}$, is the resting level of $[\text{Ca}^{2+}]_i$ from
 147 the full model under the default parameter set (see Appendix A). The upper bound, 1
 148 μM , is approximately the maximum value of the $[\text{Ca}^{2+}]_i$ transient during a standard
 149 model AP. To determine behavior, at each point in the 300×300 parameter grid the

model was integrated for 10,000 ms using equilibrium E_1 as initial condition. When E_1 is stable, it sets the resting membrane potential. To initiate an AP at each grid point, a current pulse of amplitude $30 \mu\text{A}/\text{cm}^2$ and 2 ms duration was applied.

Figure 3a shows the results of these simulations in terms of the type of behavior elicited. The light green region ('No EADs') denotes parameter sets that produce standard APs without EADs. The white region ('RF') denotes the set of parameters that leads to repolarization failure, where the cell remains depolarized at an elevated membrane potential following the pulse. The light pink region ('Auto') in the top left corner of the panel denotes parameter sets that elicit what is referred to as "automaticity" in cardiac literature—called "tonic spiking" in neuroscience—in the absence of a current pulse. Finally, the red striped region ('EADs') denotes parameter sets that produce AP-prolonging EADs.

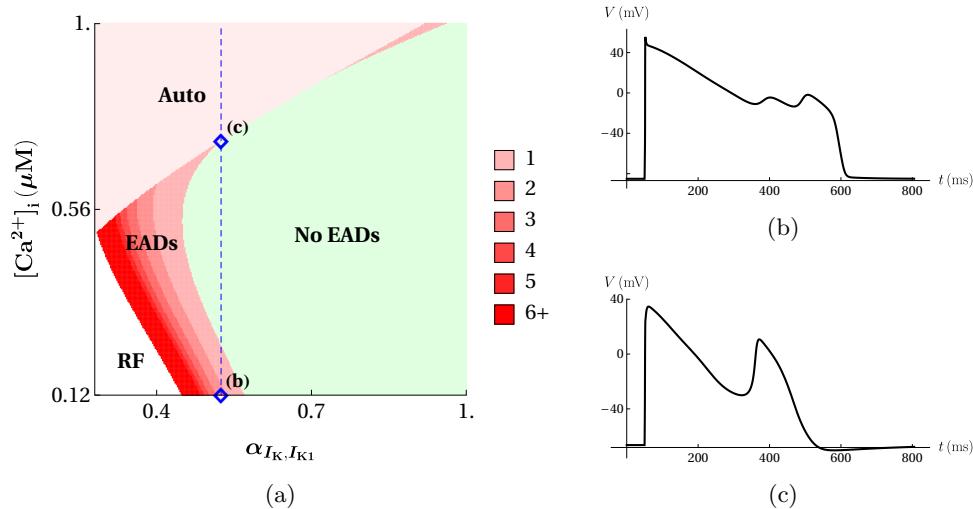


Fig. 3: Two-parameter diagram of the clamped- Ca^{2+} model responses to Cs^+ administration and varied $[\text{Ca}^{2+}]_i$ contains phase-2 and phase-3 EADs.
 (a) Simulated responses to a single pulse reveal four regions of behavior: No EADs (light green), EADs (red), RF (repolarization failure, white), and Auto (automaticity, solid pink). Within the EADs region, the number of EADs elicited is distinguished by different shades of red (see legend). A superimposed dashed (blue) vertical segment at $\alpha_{I_K, I_{K1}} = 0.5248$ marks a slice along which EADs are produced at either low or high $[\text{Ca}^{2+}]_i$ (blue diamond markers '(b)' and '(c)', resp.). (b) Voltage trace of the '(b)' marker from (a) shows two phase-2 EADs; $[\text{Ca}^{2+}]_i = 0.12 \mu\text{M}$. (c) Voltage trace of the '(c)' marker from (a) shows one phase-3 EAD; $[\text{Ca}^{2+}]_i = 0.7213 \mu\text{M}$.

The red hue in the EAD region represents the number of EADs evoked with that parameter combination. Darker shades indicate more EADs. Within the darkest shaded strip, for instance, 6 or more EADs are evoked in the AP that results from a single current pulse; some points in this strip near the repolarization failure boundary produce as many as 80+ EADs. Hence, for the lower values of the clamped $[\text{Ca}^{2+}]_i$, as $\alpha_{I_K, I_{K1}}$ is decreased, the response to a current stimulus transitions from a standard AP, to an AP with EADs, and finally to repolarization failure at the lowest $\alpha_{I_K, I_{K1}}$.

values. In addition, within the ‘EADs region’, the area of a subregion corresponding to more EADs is smaller than that corresponding to fewer EADs. Thus, if a point is selected in the EADs region at random, then APs exhibiting few EADs are more probable than APs exhibiting many EADs.

The Auto region in Fig. 3a corresponds to parameter values in which the rest state, E_1 , has undergone a Hopf bifurcation and is unstable. The only attractor of the system is a stable limit cycle, so APs are produced periodically. The loss of stability of E_1 is unrelated to the mechanism for EAD generation, so the transition from normal APs to repolarization failure may or may not have an intervening interval of EADs. That is, for some values of $[Ca^{2+}]_i$ the transition is abrupt, switching from normal APs to spontaneous periodic AP production as $\alpha_{I_K, I_{K1}}$ is decreased, while with other values of $[Ca^{2+}]_i$ there is an intervening interval of EADs.

The clamped- Ca^{2+} model produces phase-2 and phase-3 EADs. One key observation from Fig. 3a is that the relationship between (fixed) $[Ca^{2+}]_i$ and EAD production is non-monotonic. This is illustrated by following the dashed vertical blue line segment superimposed on the grid at $\alpha_{I_K, I_{K1}} = 0.5248$. EADs are produced at both lower (diamond labeled ‘(b)’) and higher (diamond labeled ‘(c)’) values of $[Ca^{2+}]_i$, but not at intermediate values. However, the timing of the EADs is very different at the low and high $[Ca^{2+}]_i$ values. The EADs of Fig. 3b occur during the plateau phase, or phase 2, of the AP, and have been termed *phase-2 EADs*. In contrast, the EADs of Fig. 3c occur during the repolarization (i.e., falling) phase, or phase 3, of the AP after an abbreviated phase 2; this class of EADs is initiated at lower take-off potentials and has been termed *phase-3 EADs*. This distinction is important because it shows that Ca^{2+} dynamics are not needed for either of these two classes of EADs, but the Ca^{2+} level may be a determining factor in which type is generated.

Though the partitioning of EAD production into those obtained at low $[Ca^{2+}]_i$ and those obtained at high $[Ca^{2+}]_i$ is convenient, it does not capture the cases in which EADs are produced for a wide range of intermediate $[Ca^{2+}]_i$ levels (see Fig. 3a). A more useful approach is to understand the *dynamics underlying the EADs*, rather than taking a biophysical approach that focuses on the contributions of different ionic mechanisms. We use this approach next, taking advantage of the timescale separation between different sets of variables.

3. Fast-slow analysis reveals a mechanism for EAD generation. In this section, we use fast-slow analysis [3,18] to uncover the EAD-generating mechanisms for both of these EAD types produced when Ca^{2+} is clamped. Fast-slow analysis leverages the multi-timescale structure of a model system to split it into lower-dimensional, more analytically tractable, subsystems. Each subsystem is analyzed semi-independently and the results stitched together to explain and predict system behavior.

3.1. The Luo-Rudy II Model is a Multi-Timescale System. Dimensional analysis of (2.1) reveals that the clamped- Ca^{2+} Luo-Rudy II model has a multiple timescale structure. The voltage, V , and gating variables m (I_{Na} activation) and h (fast I_{Na} inactivation) are superfast with timescales that are $\mathcal{O}(10^{-1})$ ms. The gating variables j (slow I_{Na} inactivation), and d (I_{Ca-L} activation) are fast with timescales that are $\mathcal{O}(10^0)$ ms. The variable f (I_{Ca-L} inactivation) is slow with timescale $\mathcal{O}(10^1)$ ms. The variable x (I_K activation) is superslow with timescale $\mathcal{O}(10^2)$ ms. Hence, the biophysical clamped- Ca^{2+} model (2.1) can be recast as a singular perturbation problem containing multiple timescales.

With more than two timescales identified, the question of how to leverage this structure to explain EADs arises. In previous work analyzing EADs in the similarly structured Luo-Rudy I model, we found that a two-timescale splitting was sufficient for illuminating the dynamical drivers of myriad EAD behaviors [22]. We also found that treating both f and x (identically named in that and this model) as comprising the slow subsystem provided explanatory and predictive advantages over the more traditional 1-slow approach. In what follows, we show that a two-timescale splitting of (2.1) with slow variables (f, x) and fast variables (V, m, h, j, d) provides a comprehensive picture of the dynamical drivers underlying EAD behavior. The timescale separation is increased when the membrane capacitance, C_m , is reduced, and we refer to the $C_m \rightarrow 0$ limit as the *singular limit*. The figures and text that follow are presented in terms of the original model variables.

3.2. The Fast Subsystem Lacks a Mechanism for EAD Generation. We first analyze the equilibria and bifurcation structure of the fast subsystem, treating the slow variables f and x as bifurcation parameters. The equilibria of the fast subsystem form a 2D surface, called the *critical manifold*, within the 7D phase space. The critical manifold can be expressed globally as a graph over the coordinates (V, x) :

$$\begin{aligned}
 f &= \frac{-\sum I_{\text{ion}} + I_{\text{Ca-L}}}{d_\infty(V) f_{\text{Ca}}([\text{Ca}^{2+}]_i) (\bar{I}_{\text{Ca}} + \bar{I}_{\text{Ca,Na}} + \bar{I}_{\text{Ca,K}})} =: f_S(V, x) \\
 m &= m_\infty(V) \\
 h &= h_\infty(V) \\
 j &= j_\infty(V) \\
 d &= d_\infty(V).
 \end{aligned}
 \tag{3.1}$$

Figure 4 shows the resulting critical manifold for each parameter set used in Figs. 3b and 3c projected into (f, x, V) phase space. In both cases the critical manifold is cubic-shaped with upper and lower attracting sheets, $S_0^{a,+}$ and $S_0^{a,-}$ (blue surfaces), and a middle sheet, S_0^s (red surface), of saddle-type equilibria. The upper stable sheet, $S_0^{a,+}$, meets the unstable sheet, S_0^s at a 1D curve, L (green), of saddle-node, or fold, bifurcations. The lower attracting and saddle sheets also meet at a fold curve, but this occurs far outside the physiologically relevant domain and is not shown. These 1D curves mark the only bifurcations that the fast subsystem undergoes through meaningful variation (as parameters) in f and x . That is, the fast subsystem does not possess Hopf bifurcations, which have been suggested elsewhere as the dynamical mechanism underlying the generation of EADs [25, 27, 42, 51].

With this equilibrium and bifurcation structure, solutions of the fast subsystem that are initialized away from the critical manifold will converge to the appropriate attracting sheet in “fast” time. Once solutions of the fast subsystem get sufficiently close to an attracting sheet of the critical manifold, the dynamics switch to those described by the slow subsystem and evolve in “slow” time.

3.3. The Slow Subsystem Possesses a Folded Node Singularity. Within the slow subsystem, the fast variables V, m, h, j and d are slaved to the critical manifold, adjusting instantaneously to the slow motions of f and x . The critical manifold then is the interface between the fast and slow subsystems: the fast subsystem produces rapid contraction to the appropriate attracting sheet, where the slow subsystem takes over and guides solutions along this sheet. The dynamics can switch from slow back to fast at the regular fold points of the critical manifold.

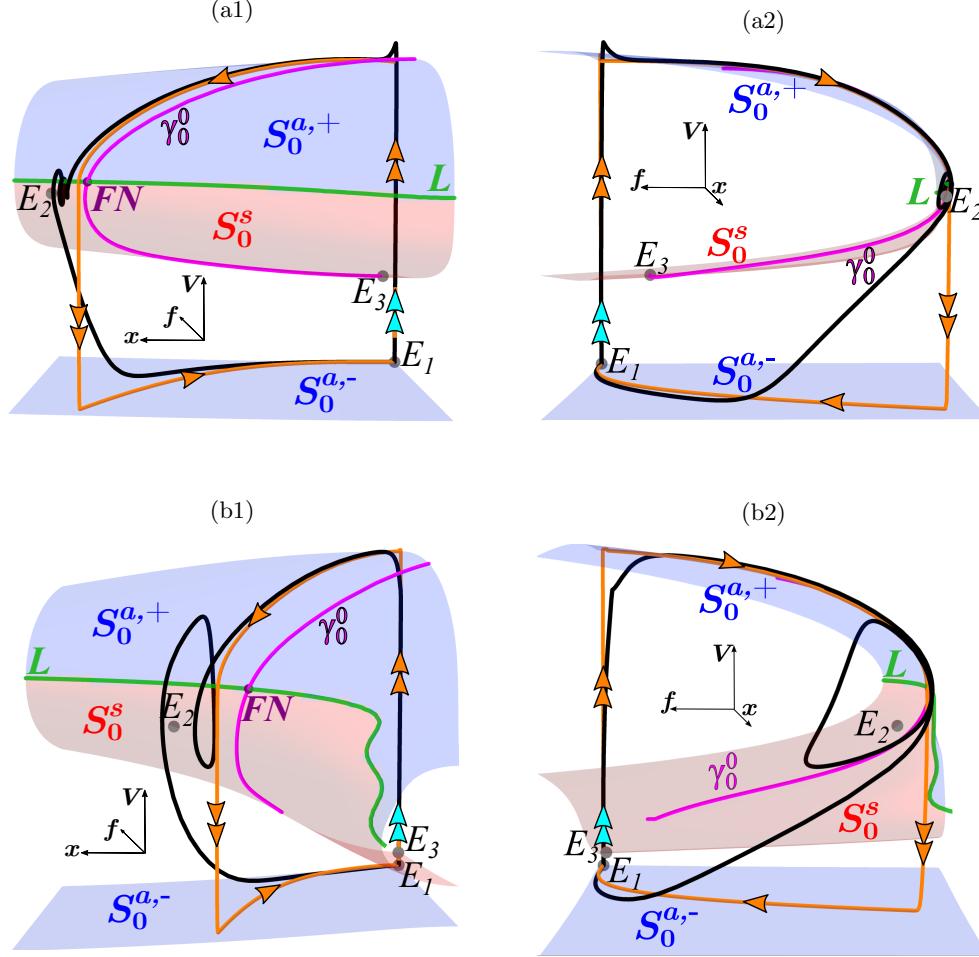


Fig. 4: Two views of the critical manifold, the fast-slow solution approximation, and the full solution trajectory projected into (f, x, V) space for each trace in Figs. 3b and 3c. Each row shows two views of the same projection. In all panels the critical manifold is comprised of attracting ($S_0^{a,\pm}$, blue) and saddle-type (S_0^s , red) sheets which meet at 1D fold curves. Only the upper fold (L , green) is shown. Superimposed on each critical manifold is the true solution (black) and its fast-slow analog (orange). Each fast-slow solution is composed of an initial fast segment triggered by I_{stim} (double cyan arrows), an ensuing rapid upstroke (double orange arrows) to $S_0^{a,+}$, a subsequent slow segment along $S_0^{a,+}$ (single orange arrow) toward L , a consequent rapid expulsion from L toward $S_0^{a,-}$ (double orange arrows), and a slow return (single orange arrow) to stable equilibrium, E_1 (equilibria E_2 and E_3 are unstable). Within L there is a folded node singularity (FN, purple marker) of the desingularized slow subsystem and γ_0^0 (magenta) is its associated singular strong canard (see main text). (a1) (x, V) -dominant view corresponding to Fig. 3b. (a2) (f, V) -dominant view corresponding to Fig. 3b. (b1) (x, V) -dominant view corresponding to Fig. 3c. (b2) (f, V) -dominant view corresponding to Fig. 3c.

258 For both parameter sets shown in Fig. 4 we find, using the procedure outlined
 259 in [55], that the slow subsystem possesses two types of singularities: true singulari-
 260 ties (equilibria) and *folded* singularities [48]. The positions of the true singularities,
 261 E_1 (stable node), E_2 (saddle point), and E_3 (saddle point) in phase space remain
 262 unchanged under variation in C_m . The single folded singularity (Fig. 4, FN, purple
 263 marker), which lies along the fold, L , is of node type; classification of folded singu-
 264 larities is determined through linearization of the associated desingularized reduced
 265 problem. Associated with the folded node are a pair of distinguished slow subsystem
 266 solutions that correspond to its strong and weak eigendirections. They are respec-
 267 tively called the *singular strong canard* (Fig. 4 γ_0^0 , magenta) and the *singular weak*
 268 *canard* (not pictured).

269 The region of $S_0^{a,+}$ bounded above by the singular strong canard, γ_0^0 , and below
 270 by the fold curve, L , is called the *singular funnel*. Within $S_0^{a,+}$, the singular funnel is
 271 the basin of attraction for the folded node. Solutions of the slow subsystem initialized
 272 in the singular funnel evolve toward the folded node, where they cross from $S_0^{a,+}$ to S_0^s
 273 with finite speed, and follow S_0^s for $\mathcal{O}(1)$ times on the slow timescale. These *singular*
 274 *canards* and their non-singular counterparts give rise to small amplitude oscillations
 275 in the vicinity of the folded node [48,54]. In ours and others' works, it has been shown
 276 that EADs are organized by a folded node of the slow subsystem [22, 26, 53].

277 **3.4. Singular solution segments along $S_0^{a,+}$ predict no EADs.** The fast
 278 and slow subsystems are used to construct singular approximations of the EAD-
 279 containing solutions shown in Figs. 3b, 3c. This is done by concatenating alternating
 280 fast and slow solution segments. In contrast to some other models in which fast-
 281 slow techniques have been applied [25, 26, 45, 53], the generation of APs here is not
 282 spontaneous and requires a sufficiently large stimulus, I_{stim} .

283 Superimposed on both critical manifolds shown in Figure 4 (rows are different
 284 views of the same projection) is the resulting singular approximation (orange), along-
 285 side its associated full solution (black), in response to an I_{stim} pulse. Under the
 286 singular limit, a sufficiently strong stimulus (denoted by double cyan arrows) injects
 287 the solution into the basin of attraction of $S_0^{a,+}$. The ensuing solution segment,
 288 governed by the fast subsystem, rapidly converges to $S_0^{a,+}$ (double orange arrows up-
 289 ward). Once on $S_0^{a,+}$, outside the singular funnel, the slow subsystem guides the slow
 290 segment (single orange arrow) along the critical manifold toward the fold curve, L .
 291 Once L is reached, the fast subsystem takes over and the orbit transitions rapidly
 292 (double orange arrows downward) to the lower attracting sheet, $S_0^{a,-}$. On $S_0^{a,-}$, the
 293 slow subsystem takes over again and returns the solution (single orange arrow) to
 294 rest, E_1 , completing the construction.

295 Comparing the singular to the full solution in each of Figs. 4 a1 and b1, we find
 296 that the two are nearly aligned from the initial I_{stim} pulse until the solutions get
 297 within the vicinity of the fold, L . Both the singular and non-singular solutions lie
 298 on the left-hand side of γ_0^0 , near but just outside of the singular funnel. That is, the
 299 singular solution trajectory in each case is not funneled through the folded node (FN,
 300 purple markers) but instead, exhibits relaxation-type fast switching at L . Hence, the
 301 singular solutions do not predict the occurrence of canard-induced EAD oscillations
 302 in the full solution. In light of this, we investigate how the critical manifold and its
 303 singular funnel perturb for $0 < C_m \leq 1$ to determine whether the EADs observed are
 304 in fact canard-induced.

305 **4. EADs are generated by evolution along twisted slow manifolds.** Al-
 306 though the singular solution approximations do not predict EADs in the full system,

307 the folded critical manifold and the folded node revealed by our fast-slow analysis
 308 still leaves open the possibility that canards present away from the singular limit are
 309 responsible for the EADs. To show that this is indeed the case, we investigate how the
 310 sheets of the critical manifold smoothly perturb to *locally invariant slow manifolds*
 311 for $C_m(\propto \epsilon) > 0$ (small). We further compute continuations of these slow manifolds
 312 for $C_m \rightarrow 1$ and find that the local twisting is key to understanding the genesis and
 313 properties of EADs.

314 **4.1. The twisted region of the slow manifold perturbs toward the EAD
 315 oscillations of full system solutions.** Fenichel theory [9, 18] guarantees that the
 316 sections of the critical manifold bounded away from the fold curve, L , perturb smoothly
 317 to nearby locally invariant slow manifolds of the perturbed flow. Further, the local
 318 attraction/repulsion properties of these sets also persist. However, the EAD oscillations
 319 occur in the vicinity of L —where traditional Fenichel theory does not apply.
 320 Canard theory [24, 54] extends the Fenichel results into the neighborhood of the fold,
 321 and the folded node in particular.

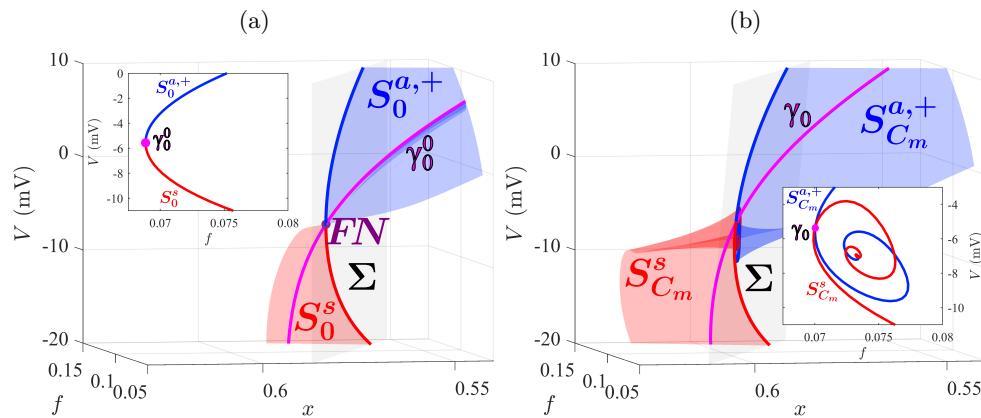


Fig. 5: **Sheets of the critical manifold, $S_0^{a,+}$ and S_0^s , perturb to twisted slow manifolds, $S_{C_m}^{a,+}$ and $S_{C_m}^s$, in the vicinity of the folded node, FN .** (a) Sheets $S_0^{a,+}$ (blue) and S_0^s (red) are computed up to the hyperplane Σ (gray) containing FN (purple marker) with the singular strong canard, γ_0^0 (magenta), superimposed. Inset is the projection of the intersections of $S_0^{a,+}$, S_0^s , and γ_0^0 with Σ into (f, V) phase space. (b) Perturbed sheets $S_{C_m}^{a,+}$ (blue) and $S_{C_m}^s$ (red), computed up to the hyperplane Σ , become twisted in the vicinity of FN (see inset) and the strong maximal canard, γ_0 (magenta), shifts toward larger x -coordinate values in phase space. Inset is the projection of the intersections of $S_{C_m}^{a,+}$, $S_{C_m}^s$, and γ_0 with Σ into (f, V) phase space. Note the emergent spiraling.

322 Canard theory holds that in the vicinity of the folded node, for $C_m > 0$ small,
 323 $S_0^{a,+}$ and S_0^s perturb smoothly to slow manifolds $S_{C_m}^{a,+}$ and $S_{C_m}^s$, respectively (see Fig.
 324 5), which twist around the (perturbed) weak canard [7, 48, 54]. In cardiac models with
 325 one fast and two slow variables—the canonical splitting under which canard-induced
 326 oscillations arise—this local twisting in the vicinity of the folded node induces a finite
 327 number of transverse intersections of the attracting and repelling slow manifolds [2,

26,53]. The solution curves along which the two-dimensional slow manifolds intersect in this context are called *maximal canards*. However, in our system, with two slow and five fast variables, maximal canard solutions are no longer transverse intersections of $S_{C_m}^s$ and $S_{C_m}^{a,+}$. To facilitate the analysis and computation of canards in such a case, center manifold theory has been used to justify reducing a $(m,2)$ -fast-slow problem near a fold, with $m \geq 1$ but finite, to a $(1,2)$ -fast-slow problem [5, 44]. However, we follow [13] and define and compute canards as solutions of the full system (2.1) which transition from the stable manifold $S_{C_m}^{a,+}$ to the unstable saddle manifold $S_{C_m}^s$ and follow $S_{C_m}^s$ for long $\mathcal{O}(1)$ times on the slow timescale. That is, we show that the homotopic continuation methods developed in [13] can be extended to numerically compute the canards and slow manifolds of the full 7D model (see Appendix C).

Figure 5 represents the manner in which the sheets of the critical manifold, $S_0^{a,+}$ (blue) and S_0^s (red), from Figs. 4a1 and 4a2 persist as slow manifolds, $S_{C_m}^{a,+}$ (blue) and $S_{C_m}^s$ (red), as C_m is increased from 0 (Fig. 5a) to $0.5 \mu\text{F}/\text{cm}^2$ (Fig. 5b). In both cases, the corresponding strong canard (γ_0^0 for $C_m = 0$ and γ_0 for $C_m = 0.5$) is superimposed on the critical/slow manifold(s) and the region of the phase space in view is fixed. The local structure of the slow manifold unfolding shown in Fig. 5 is used to represent what occurs in the vicinity of the folded node for both parameter sets pictured in Fig. 4.

For computation and visualization purposes, all slow manifolds are computed up to the codimension-1 hyperplane Σ (see Appendix C). Whereas the standard set-up chooses Σ such that it contains the folded singularity, the significant movement of the twisted funnel in phase space as we both increase C_m away from the singular limit and as we vary system parameters requires a more general set-up. We instead choose Σ to contain the turning point of the strong canard, γ_0 , and let the orientation of Σ vary with parameters. Each inset shows the intersection curves $S^{a,+} \cap \Sigma$ (blue) and $S^s \cap \Sigma$ (red) along with the intersection point $\gamma_0 \cap \Sigma$ (magenta) projected to the (f, V) -plane. Although Fig. 5b appears to convey that $S_{C_m}^{a,+}$ (blue) and $S_{C_m}^s$ (red) intersect one another, this is simply an artifact of projecting the 7D dynamics into a lower-dimensional subspace.

For the parameter set shown in Fig. 5, tracking the movement of the funnel region reveals that as C_m is increased from 0, the funnel moves in phase space towards the EAD oscillations observed at $C_m = 1 \mu\text{F}/\text{cm}^2$. For instance, the x -coordinate of the turning point of the strong canard increases from $x_p = 0.5804$ at $C_m = 0 \mu\text{F}/\text{cm}^2$ to $x_p = 0.6016$ at $C_m = 0.5 \mu\text{F}/\text{cm}^2$. Hence, we must fully unfold the slow manifolds to $C_m = 1 \mu\text{F}/\text{cm}^2$ to determine whether the twisted funnel structure underlies EAD generation.

4.2. Both clamped- Ca^{2+} EAD behaviors are canard-induced. Here, we fully unfold the slow manifolds present for both parameter sets shown in Fig. 4 to determine whether the observed EAD behaviors are canard-induced. To do so, we must examine the finer structure of the slow manifolds elaborated by canard theory. According to canard theory, the maximal canards ($\gamma_0, \gamma_1, \gamma_2, \dots, \gamma_n$) that result from the local twisting of the slow manifolds partition the funnel region of $S_{C_m}^{a,+}$ into rotational sectors, or strips. Each rotational sector prescribes a particular number of small amplitude oscillations to be produced in entrant solutions. Solutions injected into the trivial rotational sector outside the funnel region (bounded by γ_0) do not exhibit small amplitude oscillations, while solutions injected into the rotational sector between the maximal canards γ_{i-1} and γ_i for $i = 1, 2, \dots, n$ exhibit i small oscillations before exiting the funnel (by rapidly transitioning to either $S_{C_m}^{a,+}$ or $S_{C_m}^{a,-}$).

377 This canard structure, embedded within the twisted slow manifolds, constrains
 378 the behavior of entrant solutions. Hence, it can be used to predict whether and
 379 how many small oscillations, or EADs, will be produced under a given set of model
 380 conditions. This provides a means of testing whether canards are the dynamical
 381 mechanism underlying EAD generation and properties.

382 Figure 6 shows closeup views of the continuations of the twisted slow manifold
 383 regions of (f, x, V) phase space for both low $[\text{Ca}^{2+}]_i$ phase-2 EADs (Fig. 6a) and high
 384 $[\text{Ca}^{2+}]_i$ phase-3 EADs (Fig. 6b). In both cases, the solution trajectory (Γ , black) and
 385 the leading maximal canards (γ_0 , magenta; γ_1 , cyan; γ_2 , orange) are superimposed on
 386 the continuations of the slow manifolds, $S_{C_m}^{a,+}$ (blue) and $S_{C_m}^s$ (red). Corresponding
 387 voltage traces are inset.

388 Canard theory predicts that solutions that lie in the rotational sector between γ_0
 389 and γ_1 should contain one EAD and that solutions that lie in the rotational sector
 390 between γ_1 and γ_2 should contain two EADs. The black solution segment shown
 391 in Figs. 6a lies between maximal canards γ_1 and γ_2 and, in accordance with canard
 392 theory, exhibits two small oscillations (EADs) before exiting the funnel. Similarly,
 393 the black segment in Fig. 6b lies between γ_0 and γ_1 (see inset) and exhibits one
 394 EAD oscillation, also in agreement with the predictions from canard theory. This
 395 affirms that maximal canards demarcate the boundaries in phase space across which
 396 the number of EADs produced is incremented/decremented. Accordingly, the EADs
 397 observed under both biophysical conditions are canard-induced oscillations.

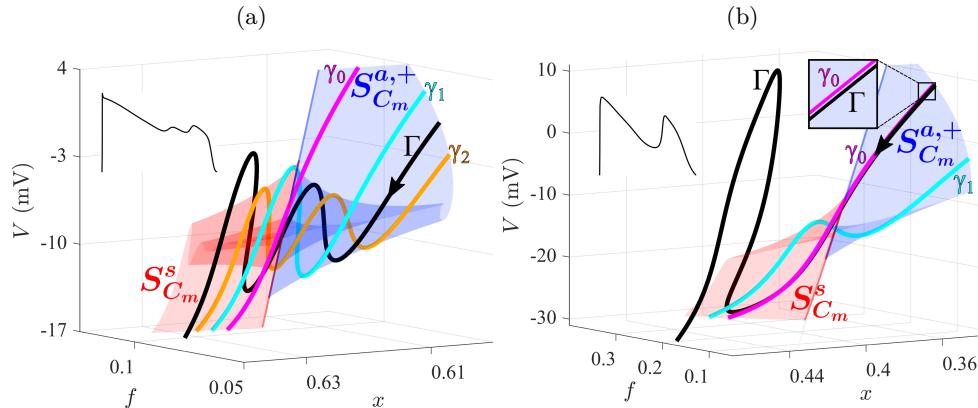


Fig. 6: **Canards underlie low $[\text{Ca}^{2+}]_i$ phase-2 EADs and high $[\text{Ca}^{2+}]_i$ phase-3 EADs** Both panels are closeup views of the twisted slow manifolds, $S_{C_m}^{a,+}$ (blue) and $S_{C_m}^s$ (red), in the vicinity of EAD-exhibiting solution segments (Γ , black) in (f, x, V) phase space. Superimposed are maximal canard segments— γ_0 (magenta), γ_1 (cyan), and γ_2 (orange)—which serve as phase space boundaries for the addition/reduction of EAD number. (a) Low $[\text{Ca}^{2+}]_i$ phase-2 EADs corresponding to trace Fig. 3b (see inset). (b) High $[\text{Ca}^{2+}]_i$ phase-3 EADs corresponding to trace Fig. 3c (see inset).

398 **4.3. Canards can explain properties of phase-3 EADs.** Viewing EADs
 399 from the canard viewpoint provides potential insights into the emergence and proper-
 400 ties of phase-3 EADs. In [42], it is argued that the dynamical mechanism underlying

401 the genesis of phase-3 EADs is the same as the dynamical mechanism underlying
 402 phase-2 EADs: a Hopf bifurcation in the fast subsystem. However, this explanation
 403 does not account for the most notable differences between phase-2 and phase-3 EADs.
 404 First, phase-3 EADs have a significantly lower takeoff potential and larger amplitude
 405 than phase-2 EADs [10]. Second, phase-3 EADs are more difficult to elicit in isolated
 406 cell and tissue preparation experiments than phase-2 EADs [10, 42]. Neither of these
 407 findings would be expected if a Hopf bifurcation in the fast subsystem were responsi-
 408 ble for both phase-2 and phase-3 EADS. However, both findings are expected when
 409 the EADs are viewed through canard analysis, as we describe next.

410 In Fig. 6b, which shows the phase-3 EAD in the (f, x, V) phase space, the solution
 411 segment, Γ , lies very close to γ_0 . The closer a solution lies to γ_0 , the longer it can
 412 follow $S_{C_m}^s$ before being repelled. Hence, because Γ lies close to γ_0 , it reaches a much
 413 lower takeoff potential before jumping back to $S_{C_m}^{a,+}$. This results in an EAD that
 414 occurs late in the repolarization phase of the AP, and has large amplitude. These
 415 are defining properties of a phase-3 EAD. Furthermore, the rarity with which phase-
 416 3 EADs are observed in experiments can also be explained as a consequence of the
 417 required proximity between Γ and γ_0 : it is rare for a solution trajectory to be injected
 418 so close to a maximal canard.

419 **5. Canards underlie Ca^{2+} dynamics-mediated EADs.** Our analysis has
 420 demonstrated that the Ca^{2+} level can play an important and complex role in the
 421 generation of different classes of EADs even when $[\text{Ca}^{2+}]_i$ remains fixed. In doing
 422 so, we have shown that Ca^{2+} dynamics are not essential to EAD production; EADs
 423 can occur even when $[\text{Ca}^{2+}]_i$ is clamped. Here, we introduce the Ca^{2+} dynamics (see
 424 (A.1b)) into our analysis to investigate behaviors that cannot be reproduced when
 425 the Ca^{2+} concentration is clamped. For this analysis, the cell is subject to periodic
 426 pacing, with a stimulus period of 2000 ms, until the pulsed solution converges to a
 427 periodic attractor. Unless otherwise noted, all of the time courses in the following
 428 analysis are a single period of this attractor AP.

429 **5.1. The clamped- Ca^{2+} model does not reproduce EADs induced by
 430 Ca^{2+} overload.** In [32], the developers of the LRII model investigated its ability to
 431 reproduce experimental observations regarding early afterdepolarizations as well as
 432 other pathologies across species. In one set of numerical experiments, they showed
 433 that under the combined effects of Na^+ ion accumulation, increases in the activity
 434 of $I_{\text{Ca-L}}$, and ensuing Ca^{2+} overload the model produces robust and repeated EADs
 435 over consecutive APs (see Fig. 11 of [32]). These EADs occurred during episodes of
 436 spontaneous AP activity as well as during periodic pacing [32]. That is, under these
 437 conditions, the full model (see Appendix A) possesses an EAD generating mechanism
 438 that is separable from the process of spontaneous Ca^{2+} release from the sarcoplasmic
 439 reticulum (SR), yet may still rely on Ca^{2+} dynamics. It is this EAD generating
 440 mechanism, which arises in the presence of pathological Ca^{2+} dynamics, that we
 441 investigate here.

442 We first examine whether the EADs produced by the model with Ca^{2+} dynamics
 443 (which we refer to as the “dynamic- Ca^{2+} model”) can be reproduced by the model
 444 with Ca^{2+} clamped (which we refer to as the “clamped- Ca^{2+} model”). In both model
 445 contexts, key parameters are set to simulate Ca^{2+} overload ($[\text{Na}^+]_i = 15 \text{ mmol/L}$,
 446 $[\text{Ca}^{2+}]_o = 3 \text{ mmol/L}$, and P_{Ca} (max $I_{\text{Ca-L}}$ amplitude) = $1.3 \times 0.00054 \text{ cm/s}$). Under
 447 these conditions, the AP generated by the dynamic- Ca^{2+} model has a long plateau
 448 and two EADs (black curve in Fig. 7a) and a $[\text{Ca}^{2+}]_i$ profile consisting of a rapid
 449 peak with a slow decline during the AP (black curve in Fig. 7b). In our attempt to

450 replicate this voltage timecourse with the clamped- Ca^{2+} model, four different values of
 451 $[\text{Ca}^{2+}]_i$ were used (colored horizontal lines in Fig. 7b). For the lower values of $[\text{Ca}^{2+}]_i$,
 452 the clamped- Ca^{2+} model produced APs without EADs (blue and magenta traces in
 453 Fig. 7a), while for the higher values of $[\text{Ca}^{2+}]_i$ it exhibited automaticity (purple and
 454 red traces in Fig. 7a). In no case did the clamped- Ca^{2+} model produce a long AP
 455 with EADs, in contrast to the dynamic- Ca^{2+} model which generically produces a long
 456 AP with EADs in these conditions. Hence, the LRII model reproduces experimental
 457 findings that show that some classes of EADs can be abolished through the use of
 458 Ca^{2+} chelators and CICR antagonists which essentially clamp the Ca^{2+} concentration.

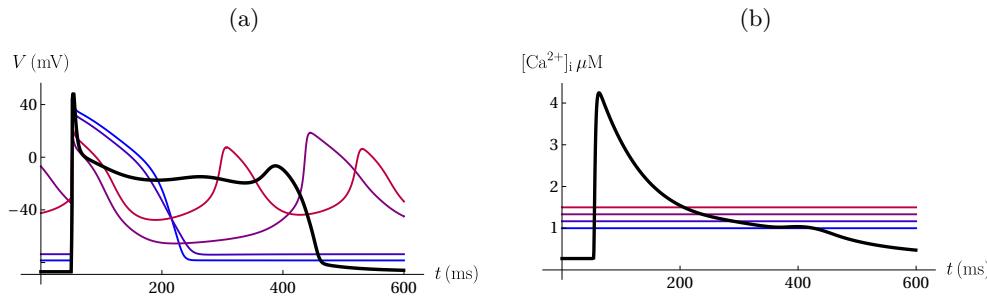


Fig. 7: **Ca^{2+} dynamics are essential for Ca^{2+} overload-induced EADs.** (a) Voltage traces produced by the dynamic- Ca^{2+} model (black) and the clamped- Ca^{2+} model (colored). In each case, parameters were set to replicate the conditions of Ca^{2+} overload ($[\text{Na}^+]_i = 15 \text{ mmol/L}$, $[\text{Ca}^{2+}]_o = 3 \text{ mmol/L}$, 30% increase in $I_{\text{Ca-L}}$ activity). An AP with EADs is produced by the dynamic- Ca^{2+} model, but not by the clamped- Ca^{2+} model. (b) Ca^{2+} levels corresponding to the voltage traces in a are color-coded accordingly.

459 **5.2. Fast-slow analysis of a minimal dynamic- Ca^{2+} model reveals a**
 460 **curve of folded nodes.** Rather than working with the full dynamic- Ca^{2+} model, we
 461 found that the essential elements for EAD production could be retained by performing
 462 a model reduction in which the variables $[\text{Ca}^{2+}]_{\text{nsr}}$ and $[\text{Ca}^{2+}]_{\text{jsr}}$ are fixed. To fix
 463 $[\text{Ca}^{2+}]_{\text{nsr}}$, we use its comparatively large timescale and weak coupling to $[\text{Ca}^{2+}]_i$.
 464 To fix $[\text{Ca}^{2+}]_{\text{jsr}}$, we rely on its vanishing coupling to $[\text{Ca}^{2+}]_i$ very shortly after the
 465 AP upstroke, long before the EADs are generated (for details, see Appendix A).
 466 With these changes, the 8-dimensional “minimal dynamic- Ca^{2+} model” (see Appendix
 467 (A.2)) is retained.

468 To perform a fast-slow analysis of the model (A.2), we first determined the char-
 469 acteristic timescale of $[\text{Ca}^{2+}]_i$ empirically. The resulting time constant estimate,
 470 $\tau_{[\text{Ca}^{2+}]_i, \text{decay}} \approx 90 \text{ ms}$, is on the order of the timescales observed for the slow variables
 471 f and x . Hence, $[\text{Ca}^{2+}]_i$ acts as a third slow variable and the dynamic- Ca^{2+} model
 472 can be cast as a singularly perturbed (5,3)-fast-slow problem. This third slow variable
 473 is what unfolds a set of system behaviors which cannot be seen in the clamped- Ca^{2+}
 474 model.

475 In [55], it was shown that canard theory extends naturally from the case of two
 476 slow variables to the more general case of k slow variables, for any $k \geq 2$ and finite.
 477 Further, in [11], it was shown that these theoretical advancements could be used to

478 explain anomalous delays in Ca^{2+} models with three slow variables. Hence, the canard
 479 mechanism responsible for the production of EADs in the (5,2)-fast-slow clamped-
 480 Ca^{2+} model may persist as the EAD generating mechanism in the (5,3)-fast-slow
 481 dynamic- Ca^{2+} model. In light of this, we undertake a fast-slow analysis of the minimal
 482 dynamic- Ca^{2+} model in search of the requisite singular structure which can give rise
 483 to canard-mediated EAD behavior.

484 In our analysis of the fast subsystem of (2.1), we found that even under ex-
 485 haustive variation in $[\text{Ca}^{2+}]_i$, it lacked an EAD generating mechanism. Hence, the
 486 fast subsystem of the minimal dynamic- Ca^{2+} model does not possess an EAD gen-
 487 erating mechanism and we focus our analysis on the slow subsystem which is a 3D
 488 approximation of the minimal dynamic- Ca^{2+} model where the fast variables are at
 489 quasi-equilibrium.

490 The critical manifold, to which solutions are constrained, can be expressed glob-
 491 ally as a graph over the coordinates $([\text{Ca}^{2+}]_i, x, V)$:

$$492 \quad (5.1) \quad \begin{aligned} f &= \frac{-\sum I_{\text{ion}} + I_{\text{Ca-L}}}{d_\infty(V) f_{\text{Ca}}([\text{Ca}^{2+}]_i) (\bar{I}_{\text{Ca}} + \bar{I}_{\text{Ca,Na}} + \bar{I}_{\text{Ca,K}})} =: f_{S_2}(V, x, [\text{Ca}^{2+}]_i) \\ m &= m_\infty(V) \\ h &= h_\infty(V) \\ j &= j_\infty(V) \\ d &= d_\infty(V). \end{aligned}$$

493 Intuitively, the 3D critical manifold (5.1) can be thought of as a one-parameter
 494 $([\text{Ca}^{2+}]_i)$ family of 2D critical manifolds (3.1). Hence, it is comprised of upper and
 495 lower 3D attracting sets and a middle 3D set of saddle-type. Consequently, the set of
 496 fold curves along which the upper attracting and middle saddle-type sets meet forms
 497 a 2D surface. Figure 8 shows two different views of this 2D fold surface (L , green),
 498 which is located near plateau membrane potentials in $([\text{Ca}^{2+}]_i, x, V)$ phase space.
 499 Superimposition of the dynamic Ca^{2+} EAD segment (Γ , black) atop the fold surface
 500 reveals that the EADs occur near the fold surface.

501 Analysis of the (desingularized) slow subsystem further reveals that the fold sur-
 502 face contains a curve of folded singularities (the collection of orange, red, and purple
 503 curve segments in Fig. 8). Each folded singularity within the curve possesses a zero
 504 eigenvalue whose associated eigenvector is tangent to the curve. Hence, the stability
 505 classification of each folded singularity is determined using the two remaining non-zero
 506 eigenvalues [55].

507 We found that the curve of folded singularities contains segments of folded nodes
 508 (purple), points which were shown to organize the canard-mediated EAD behavior
 509 of the clamped- Ca^{2+} model (2.1). The curve of folded singularities also contains
 510 segments of folded foci (orange) and folded saddles (red). It appears that the EAD
 511 solution segment, Γ , interacts with one of the segments of folded nodes before two
 512 EADs ensue. We focus our analysis on this segment of folded nodes, and its potential
 513 for understanding EAD production in the dynamic- Ca^{2+} model.

514 As in the case of two slow variables, associated with each folded node along the
 515 segment is a pair of special slow subsystem solutions, a strong and a weak singular
 516 canard, which are locally tangent to its strong and weak eigenvectors, respectively.
 517 Hence, associated with this (and the other) segment of folded node singularities are
 518 a pair of 2D families of distinguished slow subsystem solutions: one family of strong
 519 singular canards and the other of weak singular canards. The subset of the family of

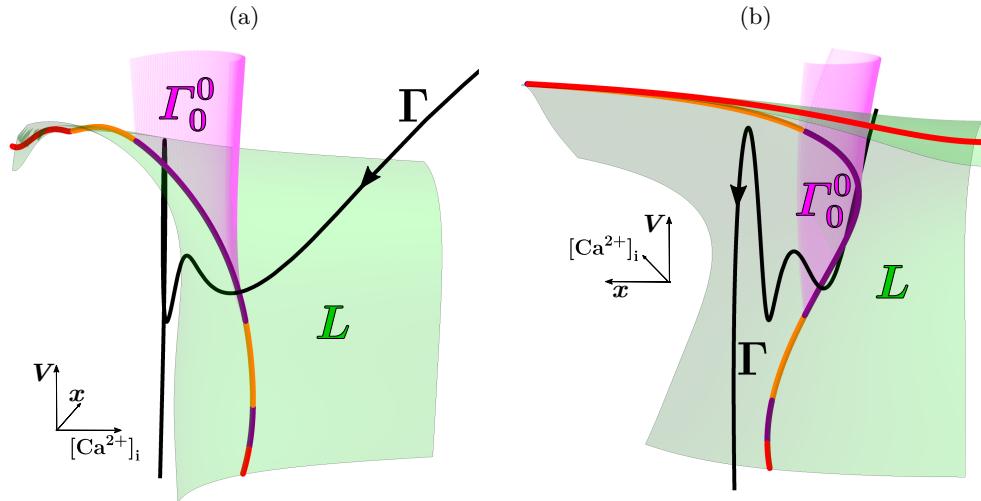


Fig. 8: **Two views of structures involved in EADs generated by the minimal dynamic-Ca²⁺ model.** The fold surface (L) is in green. Contained within this surface is a curve of folded singularities containing folded saddles (red), folded foci (orange), and folded nodes (purple). Associated with the folded nodes is a surface of strong singular canards (Γ_0^0 , magenta). Finally, a portion of the system trajectory containing two EADS (Γ , black) is superimposed.

520 strong singular canards associated with this segment of folded nodes that lies above
 521 the fold surface is pictured in Fig. 8 (Γ_0^0 , magenta).

522 In contrast with works, such as [11], in which the limiting geometry of the 3D slow
 523 subsystem was sufficient to explain fully perturbed solution behavior, our analysis of
 524 the clamped-Ca²⁺ model showed that the singular limit can be an unreliable predictor
 525 of full solution behavior. Hence, in the next section, we extend existing approaches to
 526 the analysis of problems with three slow variables and unfold the limiting geometry
 527 of the minimal dynamic-Ca²⁺ slow subsystem to determine whether the EADs are
 528 canard-induced.

529 **5.3. Dynamic-Ca²⁺ EADS are generated by canards.** Fast-slow analysis
 530 of (A.2) revealed a folded critical manifold, the existence of sets of folded node sin-
 531 gularities, and, in turn, sets of singular canards. We have shown that the perturbed
 532 analogs of these structures in the two slow variable problem (2.1) are fundamental
 533 in organizing EAD behavior. We use a similar unfolding approach here, increasing
 534 the membrane capacitance, C_m , away from the singular limit $C_m \rightarrow 0$. The aim is
 535 to determine whether the resulting maximal canards are responsible for the EADs
 536 produced by the dynamic-Ca²⁺ model (A.2).

537 As is the case with two slow variables, Fenichel theory [9] applies to the por-
 538 tion of the critical manifold that is not near the fold surface. These subsets perturb
 539 smoothly to locally invariant 3D slow manifolds whose local attractive/repulsive prop-
 540 erties match those of the critical manifold. Furthermore, canard theory applies in the
 541 vicinity of the fold surface and, in particular, in the vicinity of the segment of folded

542 node singularities [55]. That is, the 2D sets of singular strong and weak canards asso-
 543 ciated with folded node singularities perturb to a finite number of 2D sets of maximal
 544 canards. As in the case of two slow variables, these (2D) surfaces of maximal canards
 545 partition the (3D) upper attracting and middle saddle-type slow manifolds into (3D)
 546 rotational sectors.

547 The existence of 2D surfaces of maximal canards in the phase space raises ques-
 548 tions about how to compute them. We found that the homotopic continuation meth-
 549 ods developed in [13] could be extended to accomplish this task. The technical details
 550 of the problem set-up and procedure are outlined in Appendix D. Figure 9 shows
 551 two illustrative projections of the resulting maximal canard sets and the trajectory
 552 containing two EADS (Γ , black) in phase space. Fig. 9a shows the three leading max-
 553 imal canard surfaces (Γ_0 , magenta; Γ_1 , cyan; Γ_2 , orange) along with a portion of the
 554 2-EAD trajectory, projected into $(x, [\text{Ca}^{2+}]_i, V)$ space. Although the true dynamics
 555 are in 8D, the trajectory appears to enter the region of phase space between Γ_1 and
 556 Γ_2 , where canard theory would predict that an entrant trajectory should exhibit two
 557 small oscillations. Indeed, this is the case; the trajectory exhibits two EADs.

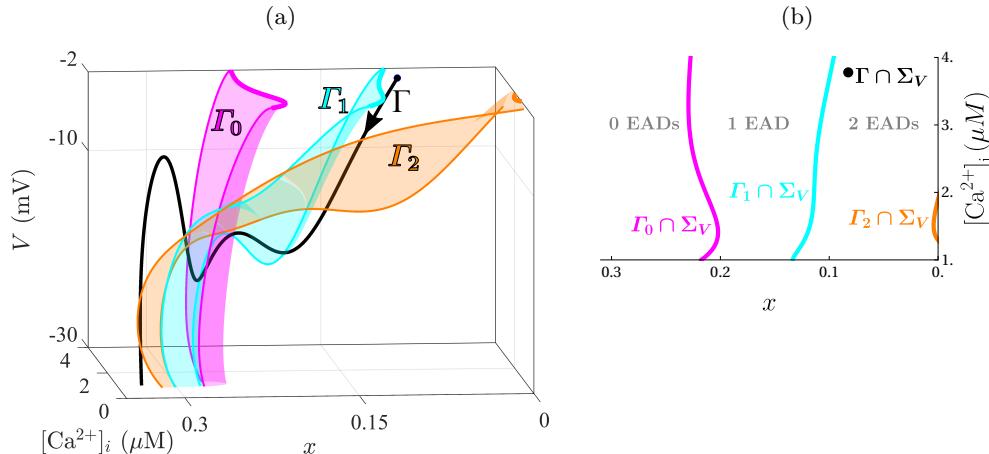


Fig. 9: **Evidence that dynamic- Ca^{2+} EADs are due to canards** (a) 2D sets of maximal canards, Γ_0 (magenta), Γ_1 (cyan), and Γ_2 (orange) are projected into $([\text{Ca}^{2+}]_i, x, V)$ phase space alongside the dynamic- Ca^{2+} EAD solution trajectory (Γ , black). (b) Intersections with the plane $V = -2 \text{ mV}$ (Σ_V). Both views indicate that the trajectory enters a region of phase space between the maximal canards Γ_1 and Γ_2 , so that canard theory predicts two small oscillations, in agreement with the two EADS exhibited by Γ .

558 In Fig. 9b, a 2D view of this arrangement is obtained by projecting the in-
 559 tersections of the maximal canard surfaces and the trajectory with the hyperplane
 560 $\Sigma_V = \{(V, m, h, j, d, f, x) \in \mathbb{R}^7 \mid V = -2 \text{ mV}\}$ (which lies above the fold surface) onto
 561 the $(x, [\text{Ca}^{2+}]_i)$ -plane. Here, the canard surfaces become curves ($\Gamma_0 \cap \Sigma_V$, magenta;
 562 $\Gamma_1 \cap \Sigma_V$, cyan; $\Gamma_2 \cap \Sigma_V$, orange) and the trajectory curve is now a point ($\Gamma \cap \Sigma_V$,
 563 black). From this, it is again clear that the trajectory enters the region bounded by
 564 the maximal canards Γ_1 and Γ_2 (labeled as ‘2 EADs’), so that canard theory predicts

565 two small oscillations. This match between the canard theory predictions and the
 566 number of EADs observed indicates that the EADs are produced by canards.

567 **5.4. Canard theory explains why reducing Ca^{2+} release from intracellular stores reduces the number of EADs.** It has been shown that manipulations
 568 that reduce the release of Ca^{2+} from the SR, such as the use of Ca^{2+} chelators to
 569 bind free Ca^{2+} or the use of ryanodine receptor antagonists to block Ca^{2+} -induced
 570 Ca^{2+} release, also tend to reduce the number of EADs produced or eliminate them
 571 altogether [15, 41, 61]. To examine whether this effect could be explained using ca-
 572 nard theory, we simulated it by reducing the maximum amplitude of the flux of Ca^{2+}
 573 release from the SR, J_{rel} , under Ca^{2+} overload conditions. ($\bar{G}_{\text{rel}} = 20$ reduced to 10
 574 s^{-1} in the full model). In the reduced version of the model, this also requires setting
 575 $[\text{Ca}^{2+}]_{\text{nsr}} \approx 3.5499 \text{ mM}$. All other parameters remain unchanged.

576 The effect of this manipulation, in the minimal dynamic- Ca^{2+} model, is to reduce
 577 the number of EADs from two to one. This is shown in Fig. 10a, which includes
 578 the portion of the trajectory near the EAD, and the three leading maximal canard
 579 surfaces. The intersection of each of these objects with Σ_V is shown in Fig. 10b. The
 580 canard surfaces are only minimally affected by the reduced Ca^{2+} release. There is
 581 a greater effect on the trajectory, so that it now enters a different rotational sector.
 582 Now the trajectory enters the region between Γ_0 (magenta) and Γ_1 (cyan) which,
 583 from canard theory, indicates the existence of a single small oscillation. This is again
 584 in agreement with the single EAD that is produced by the minimal dynamic- Ca^{2+}
 585 model.

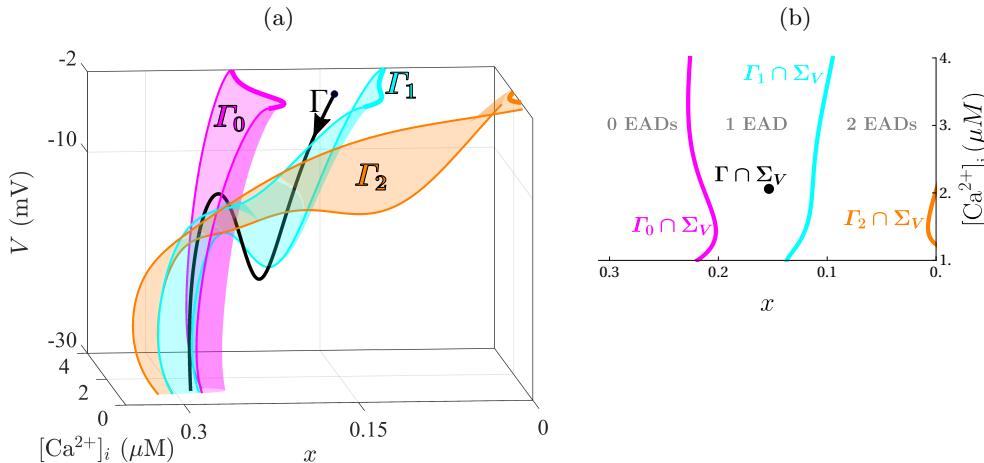


Fig. 10: **Reduction in CICR amplitude decreases EAD number by changing the rotational sector in which the solution, Γ , is injected.** (a) Reduced CICR amplitude has little effect on the maximal canard surfaces, but the trajectory is left-shifted and enters the rotational region between Γ_0 (magenta) and Γ_1 (cyan). (b) In the intersection with the plane $V = -2 \text{ mV}$ (Σ_V), the trajectory lies in the sector in which one small oscillation is predicted by canard theory, in agreement with the single EAD produced by the minimal dynamic- Ca^{2+} model. In this simulation, $[\text{Ca}^{2+}]_{\text{nsr}}$ is reduced to 3.5499 mM .

587 **5.5. Canards underlie dynamic- Ca^{2+} phase-3 EADs.** We showed that the
 588 clamped- Ca^{2+} model produces phase-3 EADs and that it does so as a result of sol-
 589 lutions lying close in proximity to maximal canards. It is reasonable then to ask:
 590 can the dynamic- Ca^{2+} model produce phase-3 EADs? If so, is proximity to maximal
 591 canards still the underlying culprit? Indeed, we find that the dynamic- Ca^{2+} model
 592 can produce phase-3 EADs and that they also result from proximity of solutions to
 593 maximal canards.

594 Figure 11 shows a side-by-side comparison of the dynamic- Ca^{2+} phase-2 EADs
 595 introduced in Fig. 7 (Fig. 11a) and the phase-3 EAD evoked in response to setting
 596 the CICR release flux amplitude parameter, $\bar{G}_{\text{rel}} = 21.96235 \text{ 1/s}$ for a single stimulus
 597 pulse (Fig. 11b). Although not shown, this value of \bar{G}_{rel} leads to the trajectory being
 598 injected into the immediate vicinity of Γ_1 , where the ensuing solution—after an initial
 599 phase-2 EAD—follows Γ_1 to a notably lower take-off potential ($\approx -31.25 \text{ mV}$ in Fig. 11b
 600 versus $\approx -19.5 \text{ mV}$ in Fig. 11a) before jumping back up to $S_{C_m}^{a,+}$. We note that the
 601 phase-3 EAD signature shown in Fig. 11b bears striking resemblance to some previous
 602 experimental recordings (e.g., compare to Fig. 9c of [35]).

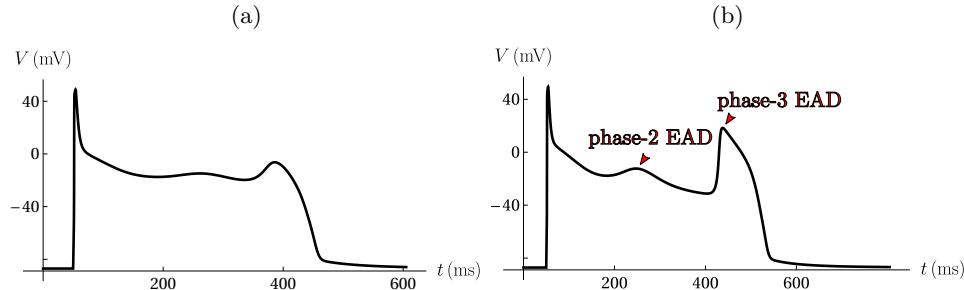


Fig. 11: . Phase-2 and Phase-3 EADs are produced with the dynamic- Ca^{2+} model. (a) An AP with two phase-2 EADs generated under Ca^{2+} overload conditions. (b) Proximity of the solution to the 2D maximal canard surface Γ_1 induces a phase-3 EAD following a phase-2 EAD.

603 **6. Discussion.** Prior analyses of EADs produced by low-dimensional mathe-
 604 matical models of cardiomyocyte electrical activity have revealed that EADs are
 605 canard-induced small oscillations [2, 22, 23, 26, 53]. This canard-based approach to
 606 investigating the emergence and properties of EADs provides explanatory and pre-
 607 dictive insights that cannot be obtained by other means, but it is most easily applied
 608 to models that retain only the essential features of cardiomyocyte electrical activ-
 609 ity. Importantly, many of the constituent components of cellular electrical activity
 610 which are excluded from these analyses have been shown to play prominent roles
 611 in mediating the emergence, properties, and persistence of EADs in cardiomyocytes
 612 [4, 31, 35, 41, 46]. Thus, there is a gap between the explanatory and predictive insights
 613 provided by canard analysis of low-dimensional models, and the much more limited
 614 analysis that comes from computer simulations of higher-dimensional, but more bio-
 615 physical, models. It is these latter models that are often most helpful in informing
 616 experimental and clinical practice.

617 The current study begins to bridge the gap between the two approaches. It does

618 so by performing a canard analysis of one of the foundational mathematical mod-
 619 els in cardiac electrophysiology, the Luo–Rudy II model [31]. This model includes
 620 many biophysical elements that potentially play a role in the generation of EADs,
 621 but which have yet to be analyzed using canard-based techniques. Such elements
 622 include intracellular Ca^{2+} dynamics and the associated Ca^{2+} -dependent transmem-
 623 brane currents, such as I_{NaCa} . We found that even in this more complex model, the
 624 EADs produced are most fruitfully cast as canard-induced oscillations. That is, we
 625 have demonstrated that the canard-induced EADs identified in the earlier studies of
 626 low-dimensional models are still present in a higher-dimensional model. We postulate
 627 that EADs generated in the more recent, and more complex, models of cardiomyocyte
 628 electrical activity [38, 49, 50] are also due to canards.

629 One key question in the study of EADs is whether they are mediated by purely
 630 electrical factors, i.e., the interaction of ion channels through the membrane potential
 631 [16, 17], or whether they also involve the dynamics of intracellular Ca^{2+} following
 632 Ca^{2+} -induced Ca^{2+} release from the SR [20, 21, 58]. While this mathematical study
 633 could not weigh in on this question, it has addressed a related question that is best
 634 approached using a mathematical model. In the model, it is possible to clamp the
 635 intracellular Ca^{2+} concentration at any level. This is much more difficult to do in
 636 experiments, and requires the use of multiple drugs to not only clamp the Ca^{2+} , but
 637 to set it at the desired concentration. We have taken advantage of this opportunity
 638 to address the question of whether, in the Luo–Rudy II model, EADs are generated
 639 by purely electrical elements, or whether Ca^{2+} dynamics are also required. We found
 640 that, in all cases, the intracellular Ca^{2+} level is important in the determination of
 641 whether or not EADs are produced. However, in many cases, the EADs were pro-
 642 duced through purely electrical means, with Ca^{2+} serving only as a fixed input to the
 643 electrical subsystem. This agrees with experiments in which Ca^{2+} influx was blocked
 644 pharmacologically but an electrical Ca^{2+} current was introduced using the dynamic
 645 clamp technique [19, 33, 34] as well as with experiments that showed EADs to persist
 646 despite blockade of CICR [35]. However, we also found cases in which EADs are pro-
 647 duced only if Ca^{2+} is allowed to vary over the duration of the action potential. That is,
 648 in some cases, Ca^{2+} dynamics are an essential ingredient to EAD production. This is
 649 consistent with findings that EADs were eliminated when Ca^{2+} -induced Ca^{2+} release
 650 was blocked pharmacologically [41, 46]. Our results may therefore help to resolve the
 651 sometimes conflicting data on EAD production in cardiomyocytes; sometimes Ca^{2+}
 652 dynamics are involved in EAD production, and sometimes the EADs are purely elec-
 653 trical in nature (though, even in this case, the Ca^{2+} level affects whether the EADs
 654 are triggered). In either case, the EADs produced by the model are brought about
 655 by the evolution of solutions along a twisted slow manifold—a twisted slow manifold
 656 which is subdivided into regions which dictate EAD number (Fig. 9).

657 Many of the most well-studied EAD-inducing pharmacological agents exert their
 658 effects by blocking K^+ channels. Some of these agents are non-selective K^+ channel
 659 antagonists (e.g., Cs^+). We found that the model can produce EADs under simulated
 660 administration of these types of agents, even when $[\text{Ca}^{2+}]_i$ is clamped (Fig. 3). We
 661 showed that non-selectively blocking K^+ channels can induce EADs at both (fixed)
 662 baseline and elevated Ca^{2+} levels. Surprisingly, the relationship between $[\text{Ca}^{2+}]_i$ and
 663 EAD production in these cases is non-monotonic. The complexity of the relationship
 664 between $[\text{Ca}^{2+}]_i$ and EAD production is also demonstrated by the production of both
 665 phase-2 and phase-3 EADs (Fig. 3c) at elevated $[\text{Ca}^{2+}]_i$ levels.

666 One advantage of fast-slow analysis of a multi-scale mathematical model is that it
 667 allows one to understand dynamical behavior in a deep way that cannot be achieved

668 through computer simulations alone. For example, we showed that reducing the
 669 Ca^{2+} release from intracellular stores had little effect on the canards, but shifted the
 670 trajectory in phase space in such a way that it was not influenced by the canards
 671 (Fig. 10). Here, EADs were reduced in number, but the mechanism would not be
 672 at all apparent from computer simulations alone. Conversely, we demonstrated that
 673 both phase-2 and phase-3 EADs can be generated by the same dynamical mechanism,
 674 in spite of the fact that the former occurs during the plateau of an action potential,
 675 while the latter occurs much later during the repolarizing phase (Fig. 6). These are
 676 typically treated as entirely different phenomena in the experimental literature [10,42].

677 Whether EADs require Ca^{2+} dynamics, or just $[\text{Ca}^{2+}]_i$ at an appropriate level,
 678 we propose that the dynamical mechanism is the same: twisted slow manifolds and
 679 canards. We have shown this here with the Luo-Rudy II model, and hope that
 680 future work from our group or others will succeed in testing this proposal in more
 681 biophysically complete cardiac myocyte models.

682 **Appendix A. Model equations.**

683 **A.1. The full model and varied parameters.** The full 11-dimensional vari-
 684 ant of the Luo-Rudy II model examined includes both electrical and intracellular Ca^{2+}
 685 dynamics, but excludes potential spontaneous intracellular Ca^{2+} release included in
 686 [31]:

$$\begin{aligned}
 687 \quad (A.1a) \quad C_m \frac{dV}{dt} &= - \sum I_{\text{ion}} + I_{\text{stim}} \\
 \frac{dm}{dt} &= \frac{m_\infty - m}{\tau_m} \\
 \frac{dh}{dt} &= \frac{h_\infty - h}{\tau_h} \\
 \frac{dj}{dt} &= \frac{j_\infty - j}{\tau_j} \\
 \frac{dd}{dt} &= \frac{d_\infty - d}{\tau_d} \\
 \frac{df}{dt} &= \frac{f_\infty - f}{\tau_f} \\
 \frac{dx}{dt} &= \frac{x_\infty - x}{\tau_x}
 \end{aligned}$$

$$\begin{aligned}
 688 \quad (A.1b) \quad \frac{d[\text{Ca}]_i}{dt} &= b_i (J_{\text{in}} \frac{A_{\text{cap}}}{2F V_{\text{myo}}} + J_{\text{rel}} \frac{V_{\text{jsr}}}{V_{\text{myo}}} + (J_{\text{leak}} - J_{\text{up}}) \frac{V_{\text{nsr}}}{V_{\text{myo}}}) \\
 \frac{d[\text{Ca}]_{\text{jsr}}}{dt} &= b_{sr} (J_{\text{tr}} - J_{\text{rel}}) \\
 \frac{d[\text{Ca}]_{\text{nsr}}}{dt} &= -J_{\text{tr}} \frac{V_{\text{jsr}}}{V_{\text{nsr}}} - J_{\text{leak}} + J_{\text{up}}.
 \end{aligned}$$

690 Here, $I_{\text{ion}} = \{I_{\text{Na}}, I_{\text{Ca-L}}, I_{\text{K}}, I_{\text{K1}}, I_{\text{Kp}}, I_{\text{NaCa}}, I_{\text{NaK}}, I_{\text{nsCa}}, I_{\text{pCa}}, I_{\text{Cab}}, I_{\text{Nab}}\}$, which de-
 691 pend on the dynamic variables $(V, m, h, j, d, f, x, [\text{Ca}^{2+}]_i)$. The intracellular Ca^{2+}
 692 fluxes J_{in} , J_{rel} , J_{leak} , J_{up} , and J_{tr} depend on the dynamic variables $([\text{Ca}^{2+}]_i, [\text{Ca}^{2+}]_{\text{jsr}},$
 693 $[\text{Ca}^{2+}]_{\text{nsr}})$, with J_{rel} also depending non-autonomously on time, t . Detailed model ex-
 694 pressions and default parameter values can be found in the original article [31], from
 695 which variable, expression, and parameter names herein are duplicated.

696 Sections 2, 3, and 4 analyze the behavior of the clamped- Ca^{2+} model (A.1a), in
 697 which $[\text{Ca}^{2+}]_i$, $[\text{Ca}^{2+}]_{\text{jsr}}$, and $[\text{Ca}^{2+}]_{\text{nsr}}$ are fixed and $[\text{Ca}^{2+}]_i$ alone enters (A.1a) as a
 698 parameter. Under this purely electrical 7-dimensional model variant, the maximum
 699 conductance parameters of I_K (\bar{G}_K) and I_{K1} (\bar{G}_{K1}) are varied alongside $[\text{Ca}^{2+}]_i$ to
 700 invoke EADs and examine solution behavior.

701 Section 5 then examines the full dynamic- Ca^{2+} model through the imposition
 702 of Ca^{2+} overload conditions. These conditions are simulated through the parameter
 703 choices enumerated in [31]: $[\text{Ca}^{2+}]_o = 3 \text{ mmol/L}$, $[\text{Na}^+]_i = 15 \text{ mmol/L}$, P_{rel} (max
 704 $I_{\text{Ca-L}}$ conductance) is increased 30%, and $\bar{G}_{\text{rel}}(J_{\text{rel}}$ rate constant) = 20 ms^{-1} . In
 705 addition, the minimal dynamic- Ca^{2+} model is analyzed under this same parameter
 706 regime, with \bar{G}_{rel} varied to produce phase-3 EADs.

707 **A.2. Smooth approximation of piece-wise smooth gating functions.** To
 708 facilitate numerical computation, the piecewise continuous voltage-dependent gating
 709 functions formulated in [31] for the I_{Na} conductance are replaced by smooth functions:

$$\begin{aligned}
 710 \quad i_\infty &= \frac{\alpha_i}{\alpha_i + \beta_i} \text{ for } i \in \{m, h, j\} \\
 711 \quad \alpha_m &= \frac{0.32(V + 47.13)}{1 - e^{-0.1(V+47.13)}} \text{ and } \beta_m = 0.08e^{-V/11} \\
 712 \quad \alpha_h &= 0.135e^{-(80+V)/6.8} \text{ and } \beta_h = \frac{1}{0.13(1 + e^{-(V+10.66)/11.1})} \\
 713 \quad \alpha_j &= \frac{4.784 \times 10^{-7}}{e^{0.1045(-27.232+V)}} \text{ and } \beta_j = \frac{0.3e^{-2.535 \times 10^{-7}V}}{(1 + e^{-0.1(V+32)})}.
 \end{aligned}$$

715 **A.3. Dynamic- Ca^{2+} model reduction.** Figure 12 shows the simulated time
 716 courses of $[\text{Ca}^{2+}]_{\text{jsr}}$ (orange), $[\text{Ca}^{2+}]_{\text{nsr}}$ (purple), and Ca^{2+} flux from the SR during
 717 Ca^{2+} -induced Ca^{2+} release, J_{rel} (blue), that accompany the voltage and $[\text{Ca}^{2+}]_i$ time
 718 courses shown in Fig. 7 (black curves). The vertical dashed line (red) denotes the
 719 time at which I_{stim} is initiated and the time window in view terminates at 90%
 720 repolarization of the AP. The stimulus evokes a rapid pulse of Ca^{2+} flux and the
 721 observed dynamics of $[\text{Ca}^{2+}]_{\text{nsr}}$ and J_{rel} motivate a reduction of the dynamic- Ca^{2+}
 722 model.

723 We estimated the timescale of $[\text{Ca}^{2+}]_{\text{nsr}}$ during an AP and found that even though
 724 $\tau_{[\text{Ca}^{2+}]_{\text{nsr}}} \approx 146 \text{ ms}$ is similar to $\bar{\tau}_x$, fixing $[\text{Ca}^{2+}]_{\text{nsr}}$ at its average value over the course
 725 of an AP produces EADs that are indistinguishable from those produced by the full
 726 model. Hence, we fix $[\text{Ca}^{2+}]_{\text{nsr}}$ at its average value ($[\text{Ca}^{2+}]_{\text{nsr}} \approx 3.7082 \text{ mM}$) and
 727 exclude the $[\text{Ca}^{2+}]_{\text{nsr}}$ equation.

728 Ca^{2+} -induced Ca^{2+} release from the SR produces a very short-lived Ca^{2+} flux,
 729 J_{rel} , that vanishes just after the initiation of an AP. Since this is the only term
 730 that couples $[\text{Ca}^{2+}]_{\text{jsr}}$ to $[\text{Ca}^{2+}]_i$, the $[\text{Ca}^{2+}]_{\text{jsr}}$ and $[\text{Ca}^{2+}]_i$ differential equations are
 731 uncoupled throughout the remainder of the AP. Hence, we restrict our analysis to the
 732 window of time starting just after J_{rel} has vanished, where the $[\text{Ca}^{2+}]_{\text{jsr}}$ differential
 733 equation is uncoupled from the rest of the system and can be excluded from analysis
 734 without affecting solution behavior.

735 As such, the minimal dynamic- Ca^{2+} model is composed of the remaining differ-

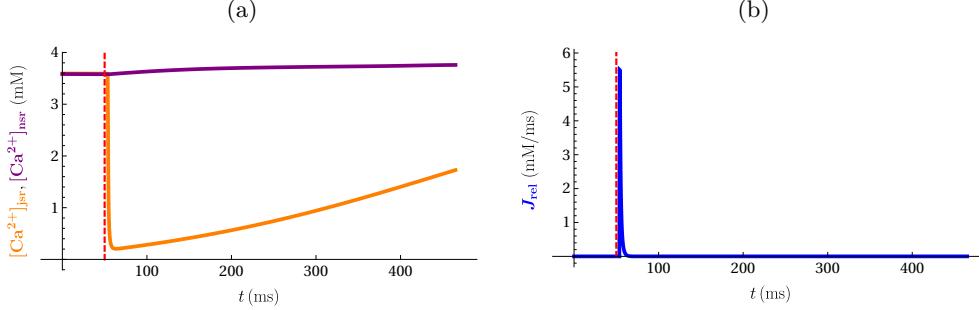


Fig. 12: **Time courses for $[Ca^{2+}]_{jsr}$, $[Ca^{2+}]_{nsr}$, and J_{rel} during the AP with EADs produced by the dynamic- Ca^{2+} model.** (a) $[Ca^{2+}]_{jsr}$ (orange) exhibits a fast downstroke subsequent to I_{stim} pulse initiation (dashed, red) and slowly recovers over the duration of the AP. $[Ca^{2+}]_{nsr}$ (purple) exhibits slow growth over the course of the AP. (b) The pulse-like CICR flux, J_{rel} , which couples $[Ca^{2+}]_{jsr}$ to $[Ca^{2+}]_i$, immediately follows I_{stim} initiation and vanishes for the remainder of the AP.

736 ential equations:

$$\begin{aligned}
 737 \quad (A.2) \quad & C_m \frac{dV}{dt} = - \sum I_{ion} \\
 & \frac{dm}{dt} = \frac{m_\infty - m}{\tau_m} \\
 & \frac{dh}{dt} = \frac{h_\infty - h}{\tau_h} \\
 & \frac{dj}{dt} = \frac{j_\infty - j}{\tau_j} \\
 & \frac{dd}{dt} = \frac{d_\infty - d}{\tau_d} \\
 & \frac{df}{dt} = \frac{f_\infty - f}{\tau_f} \\
 & \frac{dx}{dt} = \frac{x_\infty - x}{\tau_x} \\
 & \frac{d[Ca]_i}{dt} = b_i \left[J_{in} \frac{A_{cap}}{2F V_{myo}} + (\bar{J}_{leak} - J_{up}) \frac{V_{nsr}}{V_{myo}} \right],
 \end{aligned}$$

738 where J_{rel} has been removed from the $[Ca^{2+}]_i$ equation, and J_{leak} , which is dependent
 739 only on $[Ca^{2+}]_{nsr}$, is now constant (\bar{J}_{leak}). Because these model reductions are valid
 740 for all times after the post- I_{stim} Ca^{2+} spike has decayed, I_{stim} does not appear in the
 741 V -equation.

742 Appendix B. Dimensional analysis of the Ca^{2+} -clamped model.

743 Dimensional analysis of (2.1) is performed by averaging the voltage-dependent
 744 time constants, τ_i for $i \in \{m, h, j, d, f, x\}$, over the duration of an AP to obtain
 745 mean timescales of the variables. We define the AP as beginning when the stimulus
 746 pulse is initiated and ending when the voltage reaches 90% polarization. We then

747 non-dimensionalize the system via the rescalings:

748 (B.1)
$$V = c_V v, \quad t = c_t t_s, \quad I_\ell = c_I \tilde{I}_\ell,$$

749 for $\ell \in \{\text{Na, Ca-L, K, K1, Kp, NaCa, NaK, nsCa, pCa, Cab, Nab}\}$.

750 This results in the singularly perturbed dimensionless problem:

751 (B.2)
$$\begin{aligned} \epsilon \frac{dv}{dt_s} &= - \sum \tilde{I}_{\text{ion}} \\ \frac{\epsilon}{r_m} \frac{dm}{dt_s} &= \frac{m_\infty - m}{\tilde{\tau}_m} \\ \frac{\epsilon}{r_h} \frac{dh}{dt_s} &= \frac{h_\infty - h}{\tilde{\tau}_h} \\ \frac{\epsilon}{r_j} \frac{dj}{dt_s} &= \frac{j_\infty - j}{\tilde{\tau}_j} \\ \frac{\epsilon}{r_d} \frac{dd}{dt_s} &= \frac{d_\infty - d}{\tilde{\tau}_d} \\ \frac{df}{dt_s} &= \frac{f_\infty - f}{\tilde{\tau}_f} \\ \frac{dx}{dt_s} &= \frac{\bar{\tau}_f}{\bar{\tau}_x} \frac{x_\infty - x}{\tilde{\tau}_x} \end{aligned}$$

752 where $c_V := 100$ mV, $c_t := \bar{\tau}_f \approx 30$ ms, and $c_I := \bar{g}_{\text{tot}} = 2$ mS/ μ F are chosen
 753 as characteristic voltage, timescale, and current amplitude, respectively. As such,
 754 $\epsilon := \frac{C_m}{\bar{g}_{\text{tot}} \bar{\tau}_f} (\ll 1)$ —the ratio of voltage and characteristic timescales—is a small
 755 perturbation parameter, $r_i := \frac{C_m}{\bar{g}_{\text{tot}} \bar{\tau}_i}$ for $i \in \{m, h, j, d\}$, $\bar{g}_{\text{tot}} \approx \sum_\ell g_\ell / n(\ell)$ for $\ell \in$
 756 $\{\text{Na, Ca-L, K, K1, Kp, NaCa, NaK, nsCa, pCa, Cab, Nab}\}$, and the right-hand sides
 757 of (B.2) are $\mathcal{O}(1)$ with respect to ϵ .

758 **Appendix C. Computation of the slow manifolds and their continuations.**

760 Here, we outline the numerical set-up used to compute the twisted slow manifolds.
 761 In Appendix C.1, we describe the adaptation required to track the slow manifolds
 762 when they are far from the folded node. With this adaptation, we then describe the
 763 computation of the attracting slow manifold in Appendix C.2 and the saddle slow
 764 manifold in Appendix C.3.

765 **C.1. Standardization of Σ .** Whereas the standard set-up chooses Σ such that
 766 it contains the folded singularity, the significant movement of the twisted funnel under
 767 variation in C_m and other parameters renders this choice inadequate. We choose Σ
 768 in such a way that it tracks the movement of the twisted funnel. Let $p \in \mathbb{R}^d$ denote
 769 the vector of model parameters, which contains elements for C_m and $\alpha_{I_K, I_{K1}}$. For
 770 computation and visualization purposes, all slow manifolds are computed up to the
 771 p -dependent hyperplane

772 (C.1)
$$\Sigma := \{(V, m, h, j, d, f, x) \in \mathbb{R}^7 : a_p(f - f_p) + b_p(x - x_p) + e_p(V - V_p) = 0\}$$

773 and projected into (f, x, V) -space. Hence, the tuples (a_p, b_p, e_p) and (f_p, x_p, V_p) set
 774 the location of Σ in phase space.

775 We first require that the coordinates (f_p, x_p, V_p) , which set the base point of Σ
 776 in (f, x, V) space, be the f , x and V coordinates of the turning point of the strong

777 canard. Then, (a_p, b_p, e_p) can be any set of points such that Σ transversely intersects
 778 the continuations of the slow manifolds, $S_{C_m}^{a,+}$ and $S_{C_m}^s$. However, in practice some
 779 points work better than others. Through experimentation we found that setting $(a_p,$
 780 $b_p, e_p)$ as the normal, in (f, x, V) -space, to the f , x , and V component sub-vectors of
 781 the 2D unstable eigenspace of equilibrium E_2 allowed for robust computation across
 782 changes in C_m and $\alpha_{I_K, I_{K1}}$. Hence, Σ is parallel to the 2D unstable eigenspace of E_2 .

783 We reason that orienting Σ this way works because E_2 is near enough in parameter
 784 space to the FSNII/singular Hopf bifurcation from which the canards arise and that
 785 the local twisting is still oriented with the 2D unstable manifold of E_2 . Importantly
 786 however, the canard-induced rotational sectors are alone sufficient to explain EAD
 787 number; the computed continuations of the slow manifolds do not interact with this
 788 2D unstable manifold in a way that requires more than the predictions from Fenichel
 789 and canard theory.

790 **C.2. 2-point boundary value problem set-up: attracting slow manifold
 791 computation.** Here, we outline the 2-point boundary value problem (2PBVP) set-
 792 up used in the computation of $S_{C_m}^{a,+}$ of the clamped- Ca^{2+} 2-slow variable problem. We
 793 have reprinted the model equations to define shorthand notation for the right-hand
 794 sides of the vector field:

$$\begin{aligned}
 \dot{V} &= -1/C_m \sum I_{\text{ion}} := f_1(V, m, h, j, d, f, x) \\
 \dot{m} &= \frac{m_\infty - m}{\tau_m} := f_2(V, m) \\
 \dot{h} &= \frac{h_\infty - h}{\tau_h} := f_3(V, h) \\
 \dot{j} &= \frac{j_\infty - j}{\tau_j} := f_4(V, j) \\
 \dot{d} &= \frac{d_\infty - d}{\tau_d} := f_5(V, d) \\
 \dot{f} &= \frac{f_\infty - f}{\tau_f} := s_1(V, f) \\
 \dot{x} &= \frac{x_\infty - x}{\tau_x} := s_2(V, x).
 \end{aligned} \tag{C.2}$$

796 The 2PBVP set-up can be denoted formally using the condensed notation:

$$u = \begin{pmatrix} V \\ m \\ h \\ j \\ d \\ f \\ x \end{pmatrix}, \quad \dot{u} = T \mathbf{g}(u), \quad \begin{cases} u(0) \in \tilde{\Sigma}_0 \\ u(1) \in \tilde{\Sigma}_1. \end{cases} \tag{C.3}$$

797 where we follow the boundary condition notation in [13]. The solution integration
 798 time, T , which is treated as a free parameter is used to scale the time domain, $t \in [0, 1]$,
 800 and \mathbf{g} is the vector field.

801 Defining a well-posed 2PBVP in 7D requires that the boundary conditions, $\tilde{\Sigma}_0$
 802 and $\tilde{\Sigma}_1$, define codimension- i and codimension- k hypersurfaces, respectively, such that

804 $i + k = 7$. As in [13], we compute the 2D attracting slow manifold continuation, $S_{C_m}^{a,+}$,
 805 by prescribing BCs:

806 (C.4)
$$\begin{cases} \tilde{\Sigma}_0 := \hat{\Sigma}_0 \cap \Sigma_0 = L^a \\ \tilde{\Sigma}_1 := \Sigma \end{cases}$$

807 where L^a is a 1D curve on $S_0^{a,+}$ sufficiently far above the fold, L , and Σ is our
 808 codimension-1 hyperplane (C.1) transverse to the flow. The condition

809 (C.5)
$$\hat{\Sigma}_0 := \{u \mid \dot{V}, \dot{m}, \dot{h}, \dot{j}, \dot{d} = 0\}$$

810 restricts L^a to lie along $S_0^{a,+}$ and the condition

811 (C.6)
$$\Sigma_0 := \{u \mid V = 30\}$$

812 ensures that L^a is away from the fold.

813 Using a boundary value solver in tandem with pseudo-arc length homotopic con-
 814 tinuation, facilitated by AUTO [8], we initialized the computations using a trivial
 815 segment—a single point ($T = 0$)—which satisfies both sets of BCs. Manifolds were then
 816 grown as one parameter families of orbit segments through continuation in T .

817 **C.3. 2-point boundary value problem set-up: saddle slow manifold**
 818 **computation.** The 2PBVP set-up used in the computation of $S_{C_m}^s$ of the clamped-
 819 Ca^{2+} problem differs meaningfully from that of $S_{C_m}^{a,+}$ and is described below. Again,
 820 we rewrite the problem using the condensed notation:

821 (C.7)
$$\dot{u} = T \mathbf{g}(u), \quad \begin{cases} u(0) \in \tilde{\Sigma}_0 \\ u(1) \in \tilde{\Sigma}_1. \end{cases}$$

823 For the computation of $S_{C_m}^s$ in \mathbb{R}^7 , we generalize the approach from [13] for
 824 computing saddle slow manifolds in \mathbb{R}^4 . The general prescribed BCs are as they are
 825 in [13]:

826 (C.8)
$$\begin{cases} \tilde{\Sigma}_0 := \hat{\Sigma}_0 \cap \Sigma_0 \\ \tilde{\Sigma}_1 := \hat{\Sigma}_1 \cap \Sigma_1. \end{cases}$$

827 Whereas in \mathbb{R}^4 , both $\hat{\Sigma}_0$ and $\hat{\Sigma}_1$ are 3D submanifolds, in \mathbb{R}^7 $\hat{\Sigma}_0$ is 3D and $\hat{\Sigma}_1$
 828 is 6D. Here, as in [13], $\hat{\Sigma}_0$ and $\hat{\Sigma}_1$ are chosen transverse to the stable and unstable
 829 manifolds of the saddle slow manifold $S_{C_m}^s$, respectively. This choice relies on these
 830 manifolds, in the vicinity of $S_{C_m}^s$, being smooth perturbations of the eigendirections
 831 of S_0^s as equilibria of the fast subsystem. Hence, for our particular problem, $\hat{\Sigma}_0$ and
 832 $\hat{\Sigma}_1$ are defined as:

833 (C.9)
$$\begin{cases} \hat{\Sigma}_0 := \{u \mid \dot{m}, \dot{h}, \dot{j}, \dot{d} = 0\} = \{u \mid f_2, f_3, f_4, f_5 = 0\} \\ \hat{\Sigma}_1 := \{u \mid \dot{V} = 0\} = \{u \mid f_1 = 0\} \end{cases}$$

834 In contrast, Σ_0 and Σ_1 are 6D manifolds:

835 (C.10)
$$\begin{cases} \Sigma_0 := \Sigma \\ \Sigma_1 := \{u \mid V = -30\} \end{cases}$$

836 specified to ensure that orbit segments start on the defined cross-section and end far
 837 from the fold, L . The manifold, $S_{C_m}^s$, is then grown by starting from a trivial segment
 838 ($T = 0$) at which all BCs are satisfied and then continuing in T .

839 **Appendix D. 2-point boundary value problem set-up: computation of
 840 1D maximal canard orbits and 2D maximal canard sets.**

841 The procedure in [13] for the computation and continuation of 1D maximal ca-
 842 nard orbits specifically addresses canards in (2,2)-fast-slow systems. For context in
 843 outlining the specifics of how these methods are extended for our computations, we
 844 review the key steps from [13].

845 With reference to the BC definitions in Appendix C, the recipe in [13] consists
 846 of two main steps. First, an orbit segment is computed in which $u(0) \in L^a$ and
 847 $u(1) \in \Sigma_1$, where the definitions for L^a and Σ_1 are equivalent to those used to compute
 848 $S_{C_m}^{a,+}$ and $S_{C_m}^s$, respectively. Second, this orbit segment is continued by varying $u(0)$
 849 along L^a until the additional condition $u(1) \in \hat{\Sigma}_1$ ($\in S_{C_m}^s$) is satisfied; maximal
 850 canards correspond to isolated points along L^a . The resulting orbit segment, which
 851 transitions from $S_{C_m}^{a,+}$ to $S_{C_m}^s$ and remains on $S_{C_m}^s$ until termination, approximates a
 852 maximal canard.

853 In both the 2-slow and 3-slow variable settings, maximal canards can be computed
 854 as orbit segments which satisfy the general boundary conditions

855 (D.1)
$$\begin{cases} \tilde{\Sigma}_0 := \hat{\Sigma}_0 \cap \Sigma_0 = S_0^{a,+} \cap \Sigma_0 \\ \tilde{\Sigma}_1 := \hat{\Sigma}_1 \cap \Sigma_1. \end{cases}$$

856 In both settings, Σ_0 and Σ_1 are codimension-1 hyperplanes, transverse to the flow,
 857 which ensure that orbit segments start and end, respectively, on either side of the fold
 858 set.

859 In the case of 2 slow variables, $S_0^{a,+} \cap \Sigma_0$ is the 1D curve, L^a , where the presence
 860 of more than 2 fast variables is accounted for in the definition of $S_0^{a,+}$. Hence, in
 861 this setting, the existing two-step procedure from [13] is easily extended. However,
 862 in the case of 3 slow variables, $S_0^{a,+} \cap \Sigma_0$ is a 2D plane; instead of corresponding to
 863 isolated points along the curve, L^a , maximal canards correspond to 1D loci along this
 864 2D plane. How to locate and trace out such loci—associated to 1-parameter families
 865 of maximal canard orbit segments—is not addressed by the existing procedure.

866 Our approach to computing 2D sets of maximal canards, in analogy to [13], consist
 867 of 3 steps. First, we compute an orbit segment in which $u(0) \in \hat{L}^a$ and $u(1) \in \Sigma_1$.
 868 Here, \hat{L}^a is a 1D curve along $S_0^{a,+} \cap \Sigma_0$, chosen transverse to the 1D loci of maximal
 869 canard points; the definition of Σ_1 is equivalent to its definition in the computation of
 870 $S_{C_m}^s$. Second, we continue this computed orbit segment along \hat{L}^a until $u(1) \in \hat{\Sigma}_1$ (\in
 871 $S_{C_m}^s$) is satisfied. The resulting orbit segment approximates a maximal canard within
 872 a 2D set. Third, we remove the constraint $u(0) \in \hat{L}^a$ and allow $u(0)$ to vary freely
 873 along the 2D plane, $S_0^{a,+} \cap \Sigma_0$, requiring instead that $u(1) \in \hat{\Sigma}_1$ remains satisfied.
 874 This traces out a 2D manifold of maximal canard orbits.

875 For clarity, we provide the specific BCs used for maximal canard computation in
 876 the dynamic- Ca^{2+} problem. For notational brevity, we augment system (C.2) with
 877 the $[\text{Ca}^{2+}]_i$ equation

878 (D.2)
$$[\dot{\text{Ca}}]_i = b_i(J_{\text{in}} \frac{A_{\text{cap}}}{2F V_{\text{myo}}} + (\bar{J}_{\text{leak}} - J_{\text{up}}) \frac{V_{\text{nsr}}}{V_{\text{myo}}}) := s_3(V, d, f, [\text{Ca}^{2+}]_i).$$

879 and denote the 2PBVP set-up using the condensed notation:

880 (D.3)
$$u = \begin{pmatrix} V \\ m \\ h \\ j \\ d \\ f \\ x \\ [\text{Ca}^{2+}]_i \end{pmatrix}, \quad \dot{u} = T \mathbf{g}(u), \quad \begin{cases} u(0) \in \tilde{\Sigma}_0 \\ u(1) \in \tilde{\Sigma}_1. \end{cases}$$

881

882 For the initial homotopy step, we start with a solution segment which satisfies
883 the BCs

884 (D.4)
$$\begin{cases} \tilde{\Sigma}_0 := S_{C_m}^{a,+} \cap \Sigma_0 \cap \Sigma_{\hat{L}^a} = \hat{L}^a \\ \tilde{\Sigma}_1 := \Sigma_1 \end{cases}$$

885 where

886 (D.5)
$$S_{C_m}^{a,+} := \{u \mid \dot{V}, \dot{m}, \dot{h}, \dot{j}, \dot{d} = 0\} = \{u \mid f_1, f_2, f_3, f_4, f_5 = 0\}$$

887 and

888 (D.6)
$$\begin{cases} \Sigma_0 := \{u \mid V = 30\} \\ \Sigma_{\hat{L}^a} := \{u \mid [\text{Ca}^{2+}]_i = 1.5(\mu\text{M})\} \\ \Sigma_1 := \{u \mid V = -35 \text{ mV}\}. \end{cases}$$

889 In the second step, varying $u(0)$ along \hat{L}^a until $u(1) \in \hat{\Sigma}_1$ ($\in S_{C_m}^s$) is satisfied
890 results in a maximal canard solution which obeys the BCs (D.1). Once here, the
891 condition $u(0) \in \Sigma_{\hat{L}^a}$ is dropped and $u(1) \in S_{C_m}^s$ is retained to allow for computation
892 of the located maximal canard set. Judicious choices for the initial location of $u(0) \in$
893 \hat{L}^a allow for different 2D maximal canard sets to be located and computed.

894 **Acknowledgments.** This work was partially funded by grant number DMS
895 1853342 to T. Vo and R. Bertram from the National Science Foundation

896

REFERENCES

897 [1] D. S. BAILIE, H. INOUE, S. KASEDA, J. BEN-DAVID, AND D. P. ZIPES, *Magnesium suppression*
898 *of early afterdepolarizations and ventricular tachyarrhythmias induced by cesium in dogs.*,
899 *Circulation*, 77 (1988), pp. 1395–402, <http://www.ncbi.nlm.nih.gov/pubmed/3370776>.

900 [2] R. BARRIO, M. A. MARTÍNEZ, L. PÉREZ, AND E. PUEYO, *Bifurcations and slow-fast analysis in*
901 *a cardiac cell model for investigation of early afterdepolarizations*, *Mathematics*, 8 (2020),
902 p. 880, <https://doi.org/10.3390/math8060880>.

903 [3] R. BERTRAM AND J. E. RUBIN, *Multi-timescale systems and fast-slow analysis*, *Math. Biosci.*,
904 287 (2017), pp. 105–121, <https://doi.org/10.1016/j.mbs.2016.07.003>.

905 [4] N. BÖGEHOLZ, P. PAULS, B. K. BAUER, J. S. SCHULTE, D. G. DECHERING, G. FROMMAYER,
906 U. KIRCHHEFER, J. I. GOLDHABER, F. U. MÜLLER, L. ECKARDT, AND C. POTT, *Suppression*
907 *of early and late afterdepolarizations by heterozygous knockout of the $\text{Na}^+/\text{Ca}^{2+}$ exchanger*
908 *in a murine model*, *Circ. Arrhythm. Electrophysiol.*, 8 (2015), pp. 1210–1218, <https://doi.org/10.1161/CIRCEP.115.002927>.

909 [5] M. BRØNS, M. KRUPA, AND M. WECHSELBERGER, *Mixed mode oscillations due to the generalized*
910 *canard phenomenon*, in *Fields Inst. Commun.*, W. Nagata and N. S. Namarchehtvaya,
911 eds., vol. 49, American Mathematical Society, Providence, Rhode Island, 2006, pp. 39–64,
912 <https://doi.org/10.1090/fic/049/03>.

914 [6] P. F. CRANEFIELD, A. L. WIT, AND B. F. HOFFMAN, *Conduction of the cardiac impulse:*
 915 *III. Characteristics of very slow conduction.*, J. Gen. Physiol., 59 (1972), pp. 227–46,
 916 <http://www.ncbi.nlm.nih.gov/pubmed/5058476>.

917 [7] M. DESROCHES, B. KRAUSKOPF, AND H. M. OSINGA, *The geometry of slow manifolds near a*
 918 *folded node*, SIAM J. Appl. Dyn. Syst., 7 (2008), pp. 1131–1162, <https://doi.org/10.1137/070708810>.

919 [8] E. J. DOEDEL, B. E. OLDEMAN, A. R. CHAMPNEYS, F. DERCOLE, T. FAIRGRIEVE,
 920 Y. KUZNETSOV, R. PAFFENROTH, B. SANDSTEDE, X. WANG, AND C. ZHANG, *AUTO-07P :*
 921 *Continuation and Bifurcation Software for Ordinary Differential Equations*, 2012.

922 [9] N. FENICHEL, *Geometric singular perturbation theory for ordinary differential equations*, J.
 923 Differ. Equations, 31 (1979), pp. 53–98, [https://doi.org/10.1016/0022-0396\(79\)90152-9](https://doi.org/10.1016/0022-0396(79)90152-9).

924 [10] D. GUO, X. ZHAO, Y. WU, T. LIU, P. R. KOWEY, AND G.-X. YAN, *L-Type calcium current*
 925 *reactivation contributes to arrhythmogenesis associated with action potential triangulation*,
 926 J. Cardiovasc. Electr., 18 (2007), pp. 196–203, <https://doi.org/10.1111/j.1540-8167.2006.00698.x>.

927 [11] E. HARVEY, V. KIRK, H. OSINGA, J. SNEYD, AND M. WECHSELBERGER, *Understanding*
 928 *anomalous delays in a model of intracellular calcium dynamics*, Chaos, 20 (2010),
 929 p. 045104, [moz-extension://6352bd84-90fc-454d-b951-c6ae2bb1e5cf/enhanced-reader.html?openApp&pdf=https%3A%2F%2Faip.scitation.org%2Fdoi%2Fpdf%2F10.1063%2F1.3523264">https://doi.org/10.1063/1.3523264](https://doi.org/10.1063/1.3523264).

930 [12] R. D. HARVEY AND R. E. TEN EICK, *Voltage-dependent block of cardiac inward-rectifying*
 931 *potassium current by monovalent cations*, J. Gen. Physiol., 94 (1989), pp. 349–361.

932 [13] C. R. HASAN, B. KRAUSKOPF, AND H. M. OSINGA, *Saddle slow manifolds and canard orbits*
 933 *in \mathbb{R}^4 and application to the full Hodgkin-Huxley model*, J. Math. Neurosci., 8 (2018),
 934 <https://doi.org/10.1186/s13408-018-0060-1>.

935 [14] B. HORVATH, T. BANYASZ, Z. JIAN, B. HEGYI, K. C. KISTAMAS, P. P. NANASI, L. T. IZU,
 936 Y. CHEN-IZU, AND Y. EDU, *Dynamics of the Late Na^+ current during cardiac action*
 937 *potential and its contribution to afterdepolarizations*, J. Mol. Cell. Cardiol., 64 (2013),
 938 <https://doi.org/10.1016/j.yjmcc.2013.08.010>.

939 [15] B. HORVÁTH, B. HEGYI, K. KISTAMÁS, K. VÁCZI, T. BÁNYÁSZ, J. MAGYAR, N. SZENTANDRÁSSY,
 940 AND P. P. NÁNÁSI, *Cytosolic calcium changes affect the incidence of early afterdepolarizations*
 941 *in canine ventricular myocytes*, Can. J. Physiol. Pharm., 93 (2015), pp. 527–534,
 942 <https://doi.org/10.1139/cjpp-2014-0511>.

943 [16] C. T. JANUARY AND J. M. RIDDELL, *Early afterdepolarizations: mechanism of induction and*
 944 *block. A role for L-type Ca^{2+} current*, Circ. Res., 64 (1989), pp. 977–90, <https://doi.org/10.1161/01.RES.64.5.977>.

945 [17] C. T. JANUARY, J. M. RIDDELL, AND J. J. SALATA, *A model for early afterdepolarizations:*
 946 *induction with the Ca^{2+} channel agonist Bay K 8644*, Circ. Res., 62 (1988), pp. 563–71,
 947 <https://doi.org/10.1161/01.RES.62.3.563>.

948 [18] C. K. R. T. JONES, *Geometric singular perturbation theory*, in *Dynamical Systems*, Springer,
 949 Berlin, 1995, pp. 44–118, <https://doi.org/10.1007/BFb0095239>.

950 [19] S. KETTLEWELL, P. SAXENA, J. DEMPSTER, M. A. COLMAN, R. C. MYLES, G. L. SMITH, AND
 951 A. J. WORKMAN, *Dynamic clamping human and rabbit atrial calcium current: narrowing*
 952 *I_{CaL} window abolishes early afterdepolarizations*, J. Physiol., 597 (2019), pp. 3619–3638,
 953 <https://doi.org/10.1111/JP277827>.

954 [20] J. J. KIM, J. NĚMEC, Q. LI, AND G. SALAMA, *Synchronous Systolic Subcellular Ca^{2+} -Elevations*
 955 *Underlie Ventricular Arrhythmia in Drug-Induced Long QT Type 2*, Circ. Arrhythm. Elec-
 956 *trophysiol.*, 8 (2015), pp. 703–712, <https://doi.org/10.1161/CIRCEP.114.002214>.

957 [21] J. J. KIM, J. NĚMEC, R. PAPP, R. STRONGIN, J. J. ABRAMSON, AND G. SALAMA, *Bradycardia*
 958 *alters Ca^{2+} dynamics enhancing dispersion of repolarization and arrhythmia risk*, Am. J.
 959 Physiol., 304 (2013), p. H848, <https://doi.org/10.1152/AJPHEART.00787.2012>.

960 [22] J. KIMREY, T. VO, AND R. BERTRAM, *Big Ducks in the Heart: Canard Analysis Can Explain*
 961 *Large Early Afterdepolarizations in Cardiomyocytes*, SIAM J. Appl. Dyn. Syst., 19 (2020),
 962 pp. 1701–1735, <https://doi.org/10.1137/19m1300777>.

963 [23] J. KIMREY, T. VO, AND R. BERTRAM, *Canard analysis reveals why a large Ca^{2+} window current*
 964 *promotes early afterdepolarizations in cardiac myocytes*, PLOS Comput. Biol., 16 (2020),
 965 p. e1008341, <https://doi.org/10.1371/journal.pcbi.1008341>.

966 [24] M. KRUPA AND P. SZMOLYAN, *Extending geometric singular perturbation theory to nonhyper-*
 967 *bolic points - fold and canard points in two dimensions*, SIAM J. Math. Anal., 33 (2001),
 968 pp. 286–314, <https://doi.org/10.1137/S0036141099360919>.

969 [25] P. KÜGLER, *Early afterdepolarizations with growing amplitudes via delayed subcritical hopf*
 970 *bifurcations and unstable manifolds of saddle foci in cardiac action potential dynamics*,

976 PLoS ONE, 11 (2017), p. e0151178, <https://doi.org/10.1371/journal.pone.0151178>.

977 [26] P. KÜGLER, A. H. ERHARDT, AND M. A. K. BULELZAI, *Early afterdepolarizations in cardiac*
978 *action potentials as mixed mode oscillations due to a folded node singularity*, PLoS ONE,
979 13 (2018), p. e0209498, <https://doi.org/10.1371/journal.pone.0209498>.

980 [27] Y. KURATA, K. TSUMOTO, K. HAYASHI, I. HISATOME, Y. KUDA, AND M. TANIDA, *Multiple dy-*
981 *namic mechanisms of phase-2 early afterdepolarizations in a human ventricular myocyte*
982 *model: involvement of spontaneous SR Ca^{2+} release*, Front. Physiol., 10 (2020), p. 1545,
983 <https://doi.org/10.3389/fphys.2019.01545>, www.frontiersin.org.

984 [28] J. KUUSELA, K. LARSSON, D. SHAH, C. PRAJAPATI, AND K. AALTO-SETÄLÄ, *Low extracellular*
985 *potassium prolongs repolarization and evokes early afterdepolarization in human induced*
986 *pluripotent stem cell-derived cardiomyocytes.*, Biol. Open, 6 (2017), pp. 777–784, <https://doi.org/10.1242/bio.024216>.

987 [29] Y. X. LI AND J. RINZEL, *Equations for $InsP3$ receptor-mediated $[Ca^{2+}]_i$ oscillations derived*
988 *from a detailed kinetic model: A Hodgkin-Huxley like formalism*, J. Theor. Biol., 166
989 (1994), pp. 461–473, <https://doi.org/10.1006/jtbi.1994.1041>.

990 [30] C.-H. LUO AND Y. RUDY, *A model of the ventricular cardiac action potential*, Circ. Res., 68
991 (1991), pp. 1501–1526, <https://doi.org/10.1161/01.RES.68.6.1501>.

992 [31] C.-H. LUO AND Y. RUDY, *A dynamic model of the cardiac ventricular action potential. I.*
993 *Simulations of ionic currents and concentration changes.*, Circ. Res., 74 (1994), pp. 1071–
994 96, <https://doi.org/10.1161/01.RES.74.6.1071>.

995 [32] C.-H. LUO AND Y. RUDY, *A dynamic model of the cardiac ventricular action potential II.*
996 *Afterdepolarizations, triggered activity, and potentiation*, Circ. Res., 74 (1994), pp. 1097–
997 113.

998 [33] R. V. MADHVANI, M. ANGELINI, Y. XIE, A. PANTAZIS, S. SURIANY, N. P. BORGSTROM,
1000 A. GARFINKEL, Z. QU, J. N. WEISS, AND R. OLCESE, *Targeting the late component of*
1001 *the cardiac L-type Ca^{2+} current to suppress early afterdepolarizations*, J. Gen. Physiol.,
1002 145 (2015), pp. 395–404, <https://doi.org/10.1085/jgp.201411288>.

1003 [34] R. V. MADHVANI, Y. XIE, A. PANTAZIS, A. GARFINKEL, Z. QU, J. N. WEISS, AND R. OL-
1004 CESE, *Shaping a new Ca^{2+} conductance to suppress early afterdepolarizations in cardiac*
1005 *myocytes*, J. Physiol., 589 (2011), pp. 6081–6092, <https://doi.org/10.1113/jphysiol.2011.219600>.

1006 [35] E. MARBAN, S. W. ROBINSON, AND W. G. WIER, *Mechanisms of arrhythmogenic delayed and*
1007 *early afterdepolarizations in ferret ventricular muscle.*, The Journal of Clinical Investigation,
1008 78 (1986), pp. 1185–92, <https://doi.org/10.1172/JCI112701>.

1009 [36] C. F. MEIER AND B. G. KATZUNG, *Cesium blockade of delayed outward currents and electrically*
1010 *induced pacemaker activity in mammalian ventricular myocardium*, J. Gen. Physiol., 77
1011 (1981), pp. 531–547.

1012 [37] L. NALOS, R. VARKEVISSE, M. K. JONSSON, M. J. HOUTMAN, J. D. BEEKMAN, R. VAN DER
1013 NAGEL, M. B. THOMSEN, G. DUKER, P. SARTIPY, T. P. DE BOER, M. PESCHAR, M. B.
1014 ROOK, T. A. VAN VEEN, M. A. VAN DER HEYDEN, AND M. A. VOS, *Comparison of the I_{Kr}*
1015 *blockers moxifloxacin, dofetilide and E-4031 in five screening models of pro-arrhythmia re-*
1016 *veals lack of specificity of isolated cardiomyocytes*, Brit. J. Pharmacol., 165 (2012), pp. 467–
1017 478, <https://doi.org/10.1111/j.1476-5381.2011.01558.x>.

1018 [38] T. O'HARA, L. VIRÁG, A. VARRÓ, AND Y. RUDY, *Simulation of the Undiseased Human Cardiac*
1019 *Ventricular Action Potential: Model Formulation and Experimental Validation*, PLOS
1020 Comput. Biol., 7 (2011), p. 1002061, <https://doi.org/10.1371/journal.pcbi.1002061>.

1021 [39] O. E. OSADCHII, *Mechanisms of hypokalemia-induced ventricular arrhythmogenicity*, Fund.
1022 Clin. Pharmacol., 24 (2010), pp. 547–559, <https://doi.org/10.1111/j.1472-8206.2010.00835.x>.

1023 [40] A. PEZHOUMAN, N. SINGH, Z. SONG, M. NIVALA, A. ESKANDARI, H. CAO, A. BAPAT, C. Y.
1024 KO, T. P. NGUYEN, Z. QU, H. S. KARAGUEUZIAN, AND J. N. WEISS, *Molecular basis*
1025 *of hypokalemia-induced ventricular fibrillation*, Circulation, 132 (2015), pp. 1528–1537,
1026 <https://doi.org/10.1161/CIRCULATIONAHA.115.016217>.

1027 [41] S. G. PRIORI AND P. B. CORR, *Mechanisms underlying early and delayed afterdepolarizations*
1028 *induced by catecholamines*, Am. J. Physiol., 256 (1990), pp. H1796–H1805, <https://doi.org/10.1152/ajpheart.1990.258.6.h1796>.

1029 [42] Z. QU, L.-H. XIE, R. OLCESE, H. S. KARAGUEUZIAN, P.-S. CHEN, A. GARFINKEL, AND J. N.
1030 WEISS, *Early afterdepolarizations in cardiac myocytes: beyond reduced repolarization re-*
1031 *serve.*, Cardiovasc. Res., 99 (2013), pp. 6–15, <https://doi.org/10.1093/cvr/cvt104>.

1032 [43] D. M. RODEN, *Taking the "Idio" out of "Idiosyncratic": predicting Torsades de Pointes*, PACE,
1033 21 (1998), pp. 1029–1034, <https://doi.org/10.1111/j.1540-8159.1998.tb00148.x>.

1034 [44] J. RUBIN AND M. WECHSELBERGER, *Giant squid-hidden canard: The 3D geometry of the*

1038 *Hodgkin-Huxley model*, Biol. Cybern., 97 (2007), pp. 5–32, <https://doi.org/10.1007/s00422-007-0153-5>.

1039

1040 [45] D. SATO, L.-H. XIE, T. P. NGUYEN, J. N. WEISS, AND Z. QU, *Irregularly appearing early after-1041 depolarizations in cardiac myocytes: random fluctuations or dynamical chaos?*, Biophys. 1042 J., 99 (2010), pp. 765–773, <https://doi.org/10.1016/J.BPJ.2010.05.019>.

1043 [46] C. I. SPENCER AND J. S. K. SHAM, *Effects of Na^+ / Ca^{2+} exchange induced by SR Ca^{2+} release* 1044 *on action potentials and afterdepolarizations in guinea pig ventricular myocytes*, Am. J. 1045 Physiol., 285 (2003), pp. H2552–H2562, <https://doi.org/10.1152/ajpheart.00274.2003>.

1046 [47] C. R. STUDENIK, Z. ZHOU, AND C. T. JANURY, *Differences in action potential and early* 1047 *afterdepolarization properties in LQT2 and LQT3 models of long QT syndrome*, Brit. J. 1048 Pharmacol., 132 (2001), pp. 85–92, www.nature.com/bjp.

1049 [48] P. SZMOLYAN AND M. WECHSELBERGER, *Canards in \mathbb{R}^3* , J. Differ. Equations, 177 1050 (2001), pp. 419–453, <https://doi.org/10.1006/jdeq.2001.4001>, <https://arxiv.org/abs/NIHMS150003>.

1051 [49] K. H. TEN TUSSCHER, D. NOBLE, P. J. NOBLE, AND A. V. PANFILOV, *A model for human* 1052 *ventricular tissue*, Am. J. Physiol., 286 (2004), pp. H1573–89, <https://doi.org/10.1152/ajpheart.00794.2003>.

1053 [50] J. TOMEK, A. BUENO-OROVIO, E. PASSINI, X. ZHOU, A. MINCHOLE, O. BRITTON, C. BAR- 1054 TOLUCCI, S. SEVERI, A. SHRIER, L. VIRAG, A. VARRO, AND B. RODRIGUEZ, *Development,* 1055 *calibration, and validation of a novel human ventricular myocyte model in health, disease,* 1056 *and drug block*, eLife, 8 (2019), p. e48890, <https://doi.org/10.7554/eLife.48890>.

1057 [51] D. X. TRAN, D. SATO, A. YOCHELIS, J. N. WEISS, A. GARFINKEL, AND Z. QU, *Bifurcation* 1058 *and chaos in a model of cardiac early afterdepolarizations*, Phys. Rev. Lett., 102 (2009), 1059 p. 258103, <https://doi.org/10.1103/PhysRevLett.102.258103>.

1060 [52] G. TSE, *Mechanisms of cardiac arrhythmias*, J. Arrhythmia, 32 (2016), pp. 75–81, <https://doi.org/10.1016/j.joa.2015.11.003>.

1061 [53] T. VO AND R. BERTRAM, *Why pacing frequency affects the production of early afterdepolarizations in cardiomyocytes: An explanation revealed by slow-fast analysis of a minimal* 1062 *model*, Phys. Rev. E, 99 (2019), <https://doi.org/10.1103/PhysRevE.99.052205>.

1063 [54] M. WECHSELBERGER, *Existence and bifurcation of canards in \mathbb{R}^3 in the case of a folded node*, 1064 SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 101–139, <https://doi.org/10.1137/030601995>.

1065 [55] M. WECHSELBERGER, *Apropos canards*, Trans. Amer. Math. Soc., 364 (2012), pp. 3289–3309.

1066 [56] J. N. WEISS, A. GARFINKEL, H. S. KARAGUEUZIAN, P.-S. CHEN, AND Z. QU, *Early after- 1067 depolarizations and cardiac arrhythmias*, Heart Rhythm, 7 (2010), pp. 1891–9, <https://doi.org/10.1016/j.hrthm.2010.09.017>.

1068 [57] J. N. WEISS, Z. QU, AND K. SHIVKUMAR, *Electrophysiology of hypokalemia and hyperkalemia*, 1069 Circ. Arrhythm. Electrophysiol., 10 (2017), <https://doi.org/10.1161/CIRCEP.116.004667>.

1070 [58] D. WILSON, B. ERMENTROUT, J. NÉMEC, AND G. SALAMA, *A model of cardiac ryanodine* 1071 *receptor gating predicts experimental Ca^{2+} -dynamics and Ca^{2+} -triggered arrhythmia in* 1072 *the long QT syndrome*, Chaos, 27 (2017), <https://doi.org/10.1063/1.5000711>.

1073 [59] G.-X. YAN, Y. WU, T. LIU, J. WANG, R. A. MARINCHAK, AND P. R. KOWEY, *Phase 2 early* 1074 *afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-QT* 1075 *Syndrome: direct evidence from intracellular recordings in the intact left ventricular wall*, 1076 Circulation, 103 (2001), pp. 2851–2856.

1077 [60] J. A. YAO AND G. N. TSENG, *Azimilide (NE-10064) can prolong or shorten the action potential* 1078 *duration in canine ventricular myocytes: Dependence on blockade of K, Ca, and Na channels*, 1079 J. Cardiovasc. Electr., 8 (1997), pp. 184–198, <https://doi.org/10.1111/j.1540-8167.1997.tb00780.x>.

1080 [61] Z. ZHAO, H. WEN, N. FEFEOVA, C. ALLEN, A. BABA, T. MATSUDA, L.-H. XIE, AND L.- 1081 H. XIE, *Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: 1082 predominant by Ca waves or Ca currents?*, Am. J. Physiol., 302 (2012), pp. H1636–H1644, 1083 <https://doi.org/10.1152/ajpheart.00742.2011.-Early>.

1084

1085

1086

1087

1088

1089