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Abstract. Early afterdepolarizations (EADs) are voltage oscillations that can occur during the5
plateau phase of a cardiac action potential. EADs at the cellular level have been linked to potentially6
deadly tissue-level arrhythmias and the mechanisms for their arisal are not fully understood. There7
is ongoing debate as to which is the predominant biophysical mechanism of EAD production: im-8
balanced interactions between voltage-gated transmembrane currents or over-active Ca2+-dependent9
transmembrane currents brought about by pathological intracellular Ca2+ release dynamics. In this10
article, we address this issue using a foundational 10-dimensional biophysical ventricular action po-11
tential model which contains both electrical and intracellular Ca2+ components. Surprisingly, we12
find that the model can produce EADs through both biophysical mechanisms, which hints at a more13
fundamental dynamical mechanism for EAD production. Fast-slow analysis reveals EADs, in both14
cases, to be canard-induced mixed-mode oscillations. While the voltage-driven EADs arise from15
a fast-slow problem with two slow variables, the Ca2+-driven EADs arise from the addition of a16
third slow variable. Hence, we adapt existing computational methods in order to compute 2D slow17
manifolds and 1D canard orbits in the reduced 7D model from which voltage-driven EADs arise.18
Further, we extend these computational methods in order to compute, for the first time, 2D sets of19
maximal canards which partition the 3D slow manifolds of the 8D problem from which Ca2+-driven20
EADs arise. The canard viewpoint provides a unifying alternative to the voltage- or Ca2+-driven21
viewpoints while also providing explanatory and predictive insights that cannot be obtained through22
the use of the traditional fast-slow approach.23
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1. Introduction. Early afterdepolarizations (EADs) are pathological fluctua-27

tions in the membrane potential that can occur during cardiac action potentials [6]28

(see Fig. 1). These can greatly extend the action potential (AP) duration, and are29

associated with tachycardia (unusually fast heart rate) and sudden death [52, 56].30

Studies with isolated cardiomyocytes have shown that EADs can be induced in a31

number of ways, including hypokalemic environments [28, 39, 40, 57] (i.e., environ-32

ments with unusually low potassium levels), addition of IK channel blockers such as33

cesium (Cs+) [1, 35, 36], and application of anti-arrhythmic drugs such as azimilide34

[59, 60] and E-4031 [37, 47]. Thus, the abnormal oscillations are produced by factors35

intrinsic to a single myocyte, and are not a network effect.36

While it is clear that isolated myocytes can produce EADs, it is not so clear37

why they produce them. Are these abnormal oscillations in the membrane potential38

due to the nonlinear interactions of the ionic currents, or are they a product of the39

intracellular Ca2+ dynamics? Both explanations are feasible, and in fact, there is40

evidence supporting both mechanisms. A classic study of the role Ca2+ plays in EAD41

production found that existent EADs could persist despite the use of either Ca2+-42
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Fig. 1: Standard AP morphology versus an AP with EADs. (a) A standard
AP is generated under standard conditions. (b) An AP with two EADs is generated
under Ca2+ overload conditions.

induced Ca2+ release (CICR) antagonists—which bind to and inactivate intracellular43

Ca2+ channels—or Ca2+ chelators—which bind to intracellular Ca2+ signaling ions44

[35]. A series of more recent studies used the dynamic clamp technique to induce45

EADs in the presence of the Ca2+ channel blocker nifedipine. The inward Ca2+46

current was added back using the dynamic clamp, which uses a mathematical model47

to determine the current based on the cell’s membrane potential. Though the current48

is added back, there is no influx of Ca2+ ions, so the dynamics in intracellular Ca2+49

concentration ([Ca2+]i) had to be simulated in order to reconstruct physiological APs.50

The authors found that when the overlap region between the Ca2+ current activation51

and inactivation (the so-called “Ca2+ window current”) was sufficiently wide and52

EADs were produced, the intracellular Ca2+ dynamics passively followed, rather than53

led, the EAD-laden electrical dynamics [19,34]. These studies provide strong evidence54

for a class of EADs that are voltage-driven. Alternatively, other studies have shown55

that some EADs can be eliminated when CICR from the sarcoplasmic reticulum (SR)56

is inhibited [41,61] or when Ca2+ chelators are added to the bathing solution [14,15].57

These studies provide strong evidence for a Ca2+-driven mechanism for EADs.58

From a biophysical viewpoint then, there appear to be at least two mechanisms59

for EAD production. If, however, one examines the underlying dynamics behind each60

of these, it may be possible that the explanation is the same. That is, there may61

be one dynamical explanation for the very different biophysical mechanisms. Indeed,62

there are precedents for this, such as the mathematical description of Ca2+ oscillations63

due to Ca2+ release from the endoplasmic reticulum recast using similar equations64

to those for the generation of tonic action potentials [29]. The biophysics is entirely65

different, but the mathematical explanation is the same.66

We explore this possibility here, using a mathematical model for ventricular my-67

ocytes that has components for electrical activity and intracellular Ca2+ dynamics,68

and is capable of generating APs that exhibit EADs. We show that, in some cases,69

the EADs can be produced without active participation from the Ca2+ module (i.e.,70

[Ca2+]i is clamped), but this is conditioned on the value of the Ca2+ concentration.71

In other cases, the Ca2+ dynamics are essential for the EAD production. Yet, in both72

cases, the explanation is the same from a dynamical viewpoint: the EADs are due73

to canards induced by folded node singularities. We demonstrate this point using74
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fast-slow analysis, and use this type of analysis to explain the influence of EAD-75

inducing and EAD-inhibiting pharmacological manipulations. This work builds on76

prior mathematical work from our group and others [2, 22, 23, 26, 53], but for the77

first time provides a unified explanation for both purely voltage-dependent EADs and78

those that also require Ca2+ dynamics.79

2. The Luo-Rudy II Model. The Luo-Rudy II model (LRII) of the guinea pig80

ventricular myocyte [31] was developed to account for emerging evidence of the promi-81

nent role played by intracellular Ca2+ dynamics in regulating mammalian cardiac cell82

electrical activity. Many of the more detailed ventricular myocyte models that have83

emerged in the years since retain significant portions of the original formulations from84

[31]. Therefore, we analyze the Luo-Rudy II model for its ability to reproduce myriad85

experimental findings, for its added biophysical detail compared to Luo-Rudy I [30]86

(it includes prominent Ca2+-dependent currents, such as the Na+-Ca2+ exchanger,87

and a more complete description of intracellular [Ca2+]i dynamics), and for its ana-88

lytical tractability. A summary schematic of the model cell with delineated voltage-89

and Ca2+-module constituents is shown in Fig. 2.90

Fig. 2: Summary schematic diagram of the Luo-Rudy II model. The semi-
separable electrical and Ca2+modules are color-coded. Blue arrows denote transmem-
brane currents that belong strictly to the electrical module. Red arrows denote fluxes
belonging to the Ca2+ module. Purple arrows denote Ca2+-dependent transmem-
brane currents that couple the electrical and Ca2+ modules. The light blue and red
spaces denote the myoplasm and the sarcoplasmic reticulum (SR), respectively.

To investigate the role that Ca2+ dynamics play in the emergence and properties91

of EADs in the Luo-Rudy II model, three variants of the model are analyzed. Detailed92

model equations and parameters are provided in Appendix A. The first model variant93

excludes Ca2+ dynamics and takes the form:94

Cm
dV

dt
= −

∑
Iion + Istim

dy

dt
=

y∞(V )− y

τy(V )
, y = {m,h, j, d, f, x}

(2.1)95

where Cm is membrane capacitance (= 1 µF/cm2), Iion is the sum of 11 ionic currents96

which contain 6 dynamic variables, and Istim is a brief pulse of current with 30 µA/cm297

amplitude and 2 ms duration. Here, myoplasmic Ca2+ ([Ca2+]i), which couples the98

electrical and Ca2+ subsystems, is clamped and treated as a parameter. This variant99

of the model is 7-dimensional and bears strong resemblance to the Luo-Rudy I model100
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variant analyzed in [22]; in that work the rapid AP-initiating transient INa dynamics101

were removed, here they are retained.102

The Ca2+-clamped model behaviors are then compared to those of the full model.103

However, the variant of the full model investigated here excludes the spontaneous104

Ca2+ release mechanism included in [31]. This full model variant is the same as105

(2.1) with the addition of 3 dynamic variables that represent Ca2+ concentrations in106

the myoplasm and in each of two sub-compartments of the SR. This full model is107

10-dimensional (see Appendix A).108

The full dynamic Ca2+ model variant presents analytical challenges in that its109

Ca2+ dynamics are formulated with an explicit dependence on time; it is non-autonomous.110

However, dimensional and empirical analysis reveal that the meaningful Ca2+ dy-111

namics, as they effect the emergence and properties of EADs, can be recapitulated112

using a reduced autonomous model. Hence, to understand the dynamics of Ca2+-113

induced EADs we analyze a surrogate autonomous dynamic Ca2+ model where the114

dynamic variables representing the SR subcompartment Ca2+ concentrations are re-115

moved. This reduced dynamic Ca2+ model is 8-dimensional.116

Specific parameters are varied to examine and analyze response behaviors of each117

model where specified. Otherwise, all parameter values are identical to those speci-118

fied in [31] (see Appendix A). When varied, these parameter values are given in the119

corresponding figures or main text. Under all parameter variations considered, except120

where explicitly stated otherwise, each model (absent Istim) possesses 3 equilibria: a121

stable equilibrium, E1, and two additional unstable equilibria, E2 and E3. Equilib-122

rium E1 sets the resting membrane potential of the cell while equilibria E2 and E3123

have depolarized membrane potentials. Equilibrium E2 is a saddle spiral and E3 is124

a saddle point. The model code and computer programs used to generate the results125

are available at: www.math.fsu.edu/∼bertram/software/cardiac.126

2.1. Luo-Rudy II produces EADs without Ca2+ dynamics. We begin127

by analyzing the LRII model cell under clamped-Ca2+ conditions. That is, we fix128

the value of the [Ca2+]i variable and treat it as a parameter of the purely electrical129

subsystem. In this way, we focus on EADs that are purely electrical in nature. This130

treatment separates the two components of the model in a way that is difficult to do131

experimentally.132

One of the prevailing biophysical explanations for the generation of EADs is that133

they occur when inward currents dominate outward currents in magnitude and/or134

duration during the plateau phase of an AP [42,43]. The basis for this explanation lies135

in the EAD-producing effects of many pharmacological interventions which are known136

to either enhance inward Ca2+ or Na+currents or suppress outward K+currents. One137

such EAD-producing chemical element, Cs+, has been shown to block both IK and138

IK1 at high concentrations [12, 36]. In this section, we simulate the application of139

Cs+to test whether this leads to EADs in the clamped-Ca2+ model cell.140

We simulate the application of Cs+by constructing a uniform grid in the two141

parameter (αIK,IK1
, [Ca2+]i) plane (Fig. 3) on which to test model responses. The142

parameter αIK,IK1
is a multiplicative weight that scales both IK and IK1 uniformly;143

the value αIK,IK1=1 corresponds to the default setting while αIK,IK1<1 corresponds144

to decrements in the maximal conductances of IK and IK1. Clamped [Ca2+]i is varied145

from 0.12 µM to 1 µM. The lower bound, 0.12 µM, is the resting level of [Ca2+]i from146

the full model under the default parameter set (see Appendix A). The upper bound, 1147

µM, is approximately the maximum value of the [Ca2+]i transient during a standard148

model AP. To determine behavior, at each point in the 300 × 300 parameter grid the149
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model was integrated for 10,000 ms using equilibrium E1 as initial condition. When150

E1 is stable, it sets the resting membrane potential. To initiate an AP at each grid151

point, a current pulse of amplitude 30 µA/cm2 and 2 ms duration was applied.152

Figure 3a shows the results of these simulations in terms of the type of behavior153

elicited. The light green region (‘No EADs’) denotes parameter sets that produce154

standard APs without EADs. The white region (‘RF’) denotes the set of parameters155

that leads to repolarization failure, where the cell remains depolarized at an elevated156

membrane potential following the pulse. The light pink region (‘Auto’) in the top left157

corner of the panel denotes parameter sets that elicit what is referred to as “auto-158

maticity” in cardiac literature—called “tonic spiking” in neuroscience—in the absence159

of a current pulse. Finally, the red striped region (‘EADs’) denotes parameter sets160

that produce AP-prolonging EADs.
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Fig. 3: Two-parameter diagram of the clamped-Ca2+model responses to
Cs+ administration and varied [Ca2+]i contains phase-2 and phase-3 EADs.
(a) Simulated responses to a single pulse reveal four regions of behavior: No EADs
(light green), EADs (red), RF (repolarization failure, white), and Auto (automaticity,
solid pink). Within the EADs region, the number of EADs elicited is distinguished by
different shades of red (see legend). A superimposed dashed (blue) vertical segment
at αIK,IK1

=0.5248 marks a slice along which EADs are produced at either low or high
[Ca2+]i (blue diamond markers ‘(b)’ and ‘(c)’, resp.). (b) Voltage trace of the ‘(b)’
marker from (a) shows two phase-2 EADs; [Ca2+]i=0.12 µM. (c) Voltage trace of the
‘(c)’ marker from (a) shows one phase-3 EAD; [Ca2+]i=0.7213 µM.

161

The red hue in the EAD region represents the number of EADs evoked with that162

parameter combination. Darker shades indicate more EADs. Within the darkest163

shaded strip, for instance, 6 or more EADs are evoked in the AP that results from a164

single current pulse; some points in this strip near the repolarization failure boundary165

produce as many as 80+ EADs. Hence, for the lower values of the clamped [Ca2+]i,166

as αIK,IK1
is decreased, the response to a current stimulus transitions from a standard167

AP, to an AP with EADs, and finally to repolarization failure at the lowest αIK,IK1
168
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values. In addition, within the ‘EADs region’, the area of a subregion corresponding169

to more EADs is smaller than that corresponding to fewer EADs. Thus, if a point170

is selected in the EADs region at random, then APs exhibiting few EADs are more171

probable than APs exhibiting many EADs.172

The Auto region in Fig. 3a corresponds to parameter values in which the rest173

state, E1, has undergone a Hopf bifurcation and is unstable. The only attractor of174

the system is a stable limit cycle, so APs are produced periodically. The loss of175

stability of E1 is unrelated to the mechanism for EAD generation, so the transition176

from normal APs to repolarization failure may or may not have an intervening interval177

of EADs. That is, for some values of [Ca2+]i the transition is abrupt, switching from178

normal APs to spontaneous periodic AP production as αIK,IK1 is decreased, while179

with other values of [Ca2+]i there is an intervening interval of EADs.180

The clamped-Ca2+ model produces phase-2 and phase-3 EADs. One key181

observation from Fig. 3a is that the relationship between (fixed) [Ca2+]i and EAD182

production is non-monotonic. This is illustrated by following the dashed vertical blue183

line segment superimposed on the grid at αIK,IK1 = 0.5248. EADs are produced184

at both lower (diamond labeled ‘(b)’) and higher (diamond labeled ‘(c)’) values of185

[Ca2+]i, but not at intermediate values. However, the timing of the EADs is very186

different at the low and high [Ca2+]i values. The EADs of Fig. 3b occur during187

the plateau phase, or phase 2, of the AP, and have been termed phase-2 EADs. In188

contrast, the EADs of Fig. 3c occur during the repolarization (i.e., falling) phase,189

or phase 3, of the AP after an abbreviated phase 2; this class of EADs is initiated190

at lower take-off potentials and has been termed phase-3 EADs. This distinction is191

important because it shows that Ca2+ dynamics are not needed for either of these192

two classes of EADs, but the Ca2+ level may be a determining factor in which type193

is generated.194

Though the partitioning of EAD production into those obtained at low [Ca2+]i195

and those obtained at high [Ca2+]i is convenient, it does not capture the cases in which196

EADs are produced for a wide range of intermediate [Ca2+]i levels (see Fig. 3a). A197

more useful approach is to understand the dynamics underlying the EADs, rather198

than taking a biophysical approach that focuses on the contributions of different ionic199

mechanisms. We use this approach next, taking advantage of the timescale separation200

between different sets of variables.201

3. Fast-slow analysis reveals a mechanism for EAD generation. In this202

section, we use fast-slow analysis [3,18] to uncover the EAD-generating mechanisms for203

both of these EAD types produced when Ca2+ is clamped. Fast-slow analysis leverages204

the multi-timescale structure of a model system to split it into lower-dimensional, more205

analytically tractable, subsystems. Each subsystem is analyzed semi-independently206

and the results stitched together to explain and predict system behavior.207

3.1. The Luo-Rudy II Model is a Multi-Timescale System. Dimensional208

analysis of (2.1) reveals that the clamped-Ca2+ Luo-Rudy II model has a multiple209

timescale structure. The voltage, V , and gating variables m (INa activation) and210

h (fast INa inactivation) are superfast with timescales that are O(10−1) ms. The211

gating variables j (slow INa inactivation), and d (ICa-L activation) are fast with212

timescales that are O(100) ms. The variable f (ICa-L inactivation) is slow with213

timescale O(101) ms. The variable x (IK activation) is superslow with timescale214

O(102) ms. Hence, the biophysical clamped-Ca2+ model (2.1) can be recast as a215

singular perturbation problem containing multiple timescales.216
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With more than two timescales identified, the question of how to leverage this217

structure to explain EADs arises. In previous work analyzing EADs in the similarly218

structured Luo-Rudy I model, we found that a two-timescale splitting was sufficient219

for illuminating the dynamical drivers of myriad EAD behaviors [22]. We also found220

that treating both f and x (identically named in that and this model) as comprising221

the slow subsystem provided explanatory and predictive advantages over the more222

traditional 1-slow approach. In what follows, we show that a two-timescale splitting223

of (2.1) with slow variables (f, x) and fast variables (V,m, h, j, d) provides a compre-224

hensive picture of the dynamical drivers underlying EAD behavior. The timescale225

separation is increased when the membrane capacitance, Cm, is reduced, and we re-226

fer to the Cm → 0 limit as the singular limit. The figures and text that follow are227

presented in terms of the original model variables.228

3.2. The Fast Subsystem Lacks a Mechanism for EAD Generation. We229

first analyze the equilibria and bifurcation structure of the fast subsystem, treating the230

slow variables f and x as bifurcation parameters. The equilibria of the fast subsystem231

form a 2D surface, called the critical manifold, within the 7D phase space. The critical232

manifold can be expressed globally as a graph over the coordinates (V, x):233

f =
−
∑

Iion + ICa-L

d∞(V ) fCa([Ca
2+]i) (ĪCa + ĪCa,Na + ĪCa,K)

=: fS(V, x)

m = m∞(V )

h = h∞(V )

j = j∞(V )

d = d∞(V ).

(3.1)234

Figure 4 shows the resulting critical manifold for each parameter set used in Figs. 3b235

and 3c projected into (f, x, V ) phase space. In both cases the critical manifold is236

cubic-shaped with upper and lower attracting sheets, Sa,+
0 and Sa,−

0 (blue surfaces),237

and a middle sheet, Ss
0 (red surface), of saddle-type equilibria. The upper stable sheet,238

Sa,+
0 , meets the unstable sheet, Ss

0 at a 1D curve, L (green), of saddle-node, or fold,239

bifurcations. The lower attracting and saddle sheets also meet at a fold curve, but240

this occurs far outside the physiologically relevant domain and is not shown. These241

1D curves mark the only bifurcations that the fast subsystem undergoes through242

meaningful variation (as parameters) in f and x. That is, the fast subsystem does243

not possess Hopf bifurcations, which have been suggested elsewhere as the dynamical244

mechanism underlying the generation of EADs [25,27,42,51].245

With this equilibrium and bifurcation structure, solutions of the fast subsystem246

that are initialized away from the critical manifold will converge to the appropriate247

attracting sheet in “fast” time. Once solutions of the fast subsystem get sufficiently248

close to an attracting sheet of the critical manifold, the dynamics switch to those249

described by the slow subsystem and evolve in “slow” time.250

3.3. The Slow Subsystem Possesses a Folded Node Singularity. Within251

the slow subsystem, the fast variables V,m, h, j and d are slaved to the critical mani-252

fold, adjusting instantaneously to the slow motions of f and x. The critical manifold253

then is the interface between the fast and slow subsystems: the fast subsystem pro-254

duces rapid contraction to the appropriate attracting sheet, where the slow subsystem255

takes over and guides solutions along this sheet. The dynamics can switch from slow256

back to fast at the regular fold points of the critical manifold.257
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Fig. 4: Two views of the critical manifold, the fast-slow solution approxi-
mation, and the full solution trajectory projected into (f, x, V ) space for
each trace in Figs. 3b and 3c. Each row shows two views of the same projection.
In all panels the critical manifold is comprised of attracting (Sa,±

0 , blue) and saddle-
type (Ss

0 , red) sheets which meet at 1D fold curves. Only the upper fold (L, green)
is shown. Superimposed on each critical manifold is the true solution (black) and
its fast-slow analog (orange). Each fast-slow solution is composed of an initial fast
segment triggered by Istim (double cyan arrows), an ensuing rapid upstroke (double
orange arrows) to Sa,+

0 , a subsequent slow segment along Sa,+
0 (single orange arrow)

toward L, a consequent rapid expulsion from L toward Sa,−
0 (double orange arrows),

and a slow return (single orange arrow) to stable equilibrium, E1 (equilibria E2 and
E3 are unstable). Within L there is a folded node singularity (FN, purple marker) of
the desingularized slow subsystem and γ0

0 (magenta) is its associated singular strong
canard (see main text). (a1) (x, V )-dominant view corresponding to Fig. 3b. (a2)
(f, V )-dominant view corresponding to Fig. 3b. (b1) (x, V )-dominant view corre-
sponding to Fig. 3c. (b2) (f, V )-dominant view corresponding to Fig. 3c.
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For both parameter sets shown in Fig. 4 we find, using the procedure outlined258

in [55], that the slow subsystem possesses two types of singularities: true singulari-259

ties (equilibria) and folded singularities [48]. The positions of the true singularities,260

E1 (stable node), E2 (saddle point), and E3 (saddle point) in phase space remain261

unchanged under variation in Cm. The single folded singularity (Fig. 4, FN, purple262

marker), which lies along the fold, L, is of node type; classification of folded singu-263

larities is determined through linearization of the associated desingularized reduced264

problem. Associated with the folded node are a pair of distinguished slow subsystem265

solutions that correspond to its strong and weak eigendirections. They are respec-266

tively called the singular strong canard (Fig. 4 γ0
0 , magenta) and the singular weak267

canard (not pictured).268

The region of Sa,+
0 bounded above by the singular strong canard, γ0

0 , and below269

by the fold curve, L, is called the singular funnel. Within Sa,+
0 , the singular funnel is270

the basin of attraction for the folded node. Solutions of the slow subsystem initialized271

in the singular funnel evolve toward the folded node, where they cross from Sa,+
0 to Ss

0272

with finite speed, and follow Ss
0 for O(1) times on the slow timescale. These singular273

canards and their non-singular counterparts give rise to small amplitude oscillations274

in the vicinity of the folded node [48,54]. In ours and others’ works, it has been shown275

that EADs are organized by a folded node of the slow subsystem [22,26,53].276

3.4. Singular solution segments along Sa,+
0 predict no EADs. The fast277

and slow subsystems are used to construct singular approximations of the EAD-278

containing solutions shown in Figs. 3b, 3c. This is done by concatenating alternating279

fast and slow solution segments. In contrast to some other models in which fast-280

slow techniques have been applied [25, 26, 45, 53], the generation of APs here is not281

spontaneous and requires a sufficiently large stimulus, Istim.282

Superimposed on both critical manifolds shown in Figure 4 (rows are different283

views of the same projection) is the resulting singular approximation (orange), along-284

side its associated full solution (black), in response to an Istim pulse. Under the285

singular limit, a sufficiently strong stimulus (denoted by double cyan arrows) injects286

the solution into the basin of attraction of Sa,+
0 . The ensuing solution segment,287

governed by the fast subsystem, rapidly converges to Sa,+
0 (double orange arrows up-288

ward). Once on Sa,+
0 , outside the singular funnel, the slow subsystem guides the slow289

segment (single orange arrow) along the critical manifold toward the fold curve, L.290

Once L is reached, the fast subsystem takes over and the orbit transitions rapidly291

(double orange arrows downward) to the lower attracting sheet, Sa,−
0 . On Sa,−

0 , the292

slow subsystem takes over again and returns the solution (single orange arrow) to293

rest, E1, completing the construction.294

Comparing the singular to the full solution in each of Figs. 4 a1 and b1, we find295

that the two are nearly aligned from the initial Istim pulse until the solutions get296

within the vicinity of the fold, L. Both the singular and non-singular solutions lie297

on the left-hand side of γ0
0 , near but just outside of the singular funnel. That is, the298

singular solution trajectory in each case is not funneled through the folded node (FN,299

purple markers) but instead, exhibits relaxation-type fast switching at L. Hence, the300

singular solutions do not predict the occurrence of canard-induced EAD oscillations301

in the full solution. In light of this, we investigate how the critical manifold and its302

singular funnel perturb for 0 < Cm ≤ 1 to determine whether the EADs observed are303

in fact canard-induced.304

4. EADs are generated by evolution along twisted slow manifolds. Al-305

though the singular solution approximations do not predict EADs in the full system,306
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the folded critical manifold and the folded node revealed by our fast-slow analysis307

still leaves open the possibility that canards present away from the singular limit are308

responsible for the EADs. To show that this is indeed the case, we investigate how the309

sheets of the critical manifold smoothly perturb to locally invariant slow manifolds310

for Cm(∝ ϵ) > 0 (small). We further compute continuations of these slow manifolds311

for Cm → 1 and find that the local twisting is key to understanding the genesis and312

properties of EADs.313

4.1. The twisted region of the slow manifold perturbs toward the EAD314

oscillations of full system solutions. Fenichel theory [9, 18] guarantees that the315

sections of the critical manifold bounded away from the fold curve, L, perturb smoothly316

to nearby locally invariant slow manifolds of the perturbed flow. Further, the local317

attraction/repulsion properties of these sets also persist. However, the EAD oscilla-318

tions occur in the vicinity of L—where traditional Fenichel theory does not apply.319

Canard theory [24,54] extends the Fenichel results into the neighborhood of the fold,320

and the folded node in particular.321

(a) (b)

Fig. 5: Sheets of the critical manifold, Sa,+
0 and Ss

0, perturb to twisted slow

manifolds, Sa,+
Cm

and Ss
Cm

, in the vicinity of the folded node, FN . (a) Sheets

Sa,+
0 (blue) and Ss

0 (red) are computed up to the hyperplane Σ (gray) containing FN
(purple marker) with the singular strong canard, γ0

0 (magenta), superimposed. Inset is
the projection of the intersections of Sa,+

0 , Ss
0 , and γ0

0 with Σ into (f, V ) phase space.
(b) Perturbed sheets Sa,+

Cm
(blue) and Ss

Cm
(red), computed up to the hyperplane Σ,

become twisted in the vicinity of FN (see inset) and the strong maximal canard,
γ0 (magenta), shifts toward larger x-coordinate values in phase space. Inset is the
projection of the intersections of Sa,+

Cm
, Ss

Cm
, and γ0 with Σ into (f, V ) phase space.

Note the emergent spiraling.

Canard theory holds that in the vicinity of the folded node, for Cm > 0 small,322

Sa,+
0 and Ss

0 perturb smoothly to slow manifolds Sa,+
Cm

and Ss
Cm

, respectively (see Fig.323

5), which twist around the (perturbed) weak canard [7,48,54]. In cardiac models with324

one fast and two slow variables—the canonical splitting under which canard-induced325

oscillations arise—this local twisting in the vicinity of the folded node induces a finite326

number of transverse intersections of the attracting and repelling slow manifolds [2,327
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26,53]. The solution curves along which the two-dimensional slow manifolds intersect328

in this context are called maximal canards. However, in our system, with two slow and329

five fast variables, maximal canard solutions are no longer transverse intersections of330

Ss
Cm

and Sa,+
Cm

. To facilitate the analysis and computation of canards in such a case,331

center manifold theory has been used to justify reducing a (m,2)–fast-slow problem332

near a fold, with m ≥ 1 but finite, to a (1,2)–fast-slow problem [5, 44]. However,333

we follow [13] and define and compute canards as solutions of the full system (2.1)334

which transition from the stable manifold Sa,+
Cm

to the unstable saddle manifold Ss
Cm

335

and follow Ss
Cm

for long O(1) times on the slow timescale. That is, we show that the336

homotopic continuation methods developed in [13] can be extended to numerically337

compute the canards and slow manifolds of the full 7D model (see Appendix C).338

Figure 5 represents the manner in which the sheets of the critical manifold, Sa,+
0339

(blue) and Ss
0 (red), from Figs. 4a1 and 4a2 persist as slow manifolds, Sa,+

Cm
(blue)340

and Ss
Cm

(red), as Cm is increased from 0 (Fig. 5a) to 0.5 µF/cm2 (Fig. 5b). In341

both cases, the corresponding strong canard (γ0
0 for Cm = 0 and γ0 for Cm = 0.5) is342

superimposed on the critical/slow manifold(s) and the region of the phase space in343

view is fixed. The local structure of the slow manifold unfolding shown in Fig. 5 is344

used to represent what occurs in the vicinity of the folded node for both parameter345

sets pictured in Fig. 4.346

For computation and visualization purposes, all slow manifolds are computed up347

to the codimension-1 hyperplane Σ (see Appendix C). Whereas the standard set-up348

chooses Σ such that it contains the folded singularity, the significant movement of the349

twisted funnel in phase space as we both increase Cm away from the singular limit350

and as we vary system parameters requires a more general set-up. We instead choose351

Σ to contain the turning point of the strong canard, γ0, and let the orientation of352

Σ vary with parameters. Each inset shows the intersection curves Sa,+ ∩ Σ (blue)353

and Ss ∩ Σ (red) along with the intersection point γ0∩Σ (magenta) projected to the354

(f, V )-plane. Although Fig. 5b appears to convey that Sa,+
Cm

(blue) and Ss
Cm

(red)355

intersect one another, this is simply an artifact of projecting the 7D dynamics into a356

lower-dimensional subspace.357

For the parameter set shown in Fig. 5, tracking the movement of the funnel region358

reveals that as Cm is increased from 0, the funnel moves in phase space towards the359

EAD oscillations observed at Cm = 1 µF/cm2. For instance, the x-coordinate of the360

turning point of the strong canard increases from xp = 0.5804 at Cm = 0 µF/cm2 to361

xp = 0.6016 at Cm = 0.5 µF/cm2. Hence, we must fully unfold the slow manifolds362

to Cm = 1 µF/cm2 to determine whether the twisted funnel structure underlies EAD363

generation.364

4.2. Both clamped-Ca2+ EAD behaviors are canard-induced. Here, we365

fully unfold the slow manifolds present for both parameter sets shown in Fig. 4 to366

determine whether the observed EAD behaviors are canard-induced. To do so, we367

must examine the finer structure of the slow manifolds elaborated by canard theory.368

According to canard theory, the maximal canards (γ0, γ1, γ2,..., γn) that result from369

the local twisting of the slow manifolds partition the funnel region of Sa,+
Cm

into ro-370

tational sectors, or strips. Each rotational sector prescribes a particular number of371

small amplitude oscillations to be produced in entrant solutions. Solutions injected372

into the trivial rotational sector outside the funnel region (bounded by γ0) do not373

exhibit small amplitude oscillations, while solutions injected into the rotational sector374

between the maximal canards γi−1 and γi for i = 1, 2, ..., n exhibit i small oscillations375

before exiting the funnel (by rapidly transitioning to either Sa,+
Cm

or Sa,−
Cm

).376
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This canard structure, embedded within the twisted slow manifolds, constrains377

the behavior of entrant solutions. Hence, it can be used to predict whether and378

how many small oscillations, or EADs, will be produced under a given set of model379

conditions. This provides a means of testing whether canards are the dynamical380

mechanism underlying EAD generation and properties.381

Figure 6 shows closeup views of the continuations of the twisted slow manifold382

regions of (f, x, V ) phase space for both low [Ca2+]i phase-2 EADs (Fig. 6a) and high383

[Ca2+]i phase-3 EADs (Fig. 6b). In both cases, the solution trajectory (Γ, black) and384

the leading maximal canards (γ0, magenta; γ1, cyan; γ2, orange) are superimposed on385

the continuations of the slow manifolds, Sa,+
Cm

(blue) and Ss
Cm

(red). Corresponding386

voltage traces are inset.387

Canard theory predicts that solutions that lie in the rotational sector between γ0388

and γ1 should contain one EAD and that solutions that lie in the rotational sector389

between γ1 and γ2 should contain two EADs. The black solution segment shown390

in Figs. 6a lies between maximal canards γ1 and γ2 and, in accordance with canard391

theory, exhibits two small oscillations (EADs) before exiting the funnel. Similarly,392

the black segment in Fig. 6b lies between γ0 and γ1 (see inset) and exhibits one393

EAD oscillation, also in agreement with the predictions from canard theory. This394

affirms that maximal canards demarcate the boundaries in phase space across which395

the number of EADs produced is incremented/decremented. Accordingly, the EADs396

observed under both biophysical conditions are canard-induced oscillations.397

(a) (b)

Fig. 6: Canards underlie low [Ca2+]i phase-2 EADs and high [Ca2+]i phase-
3 EADs Both panels are closeup views of the twisted slow manifolds, Sa,+

Cm
(blue) and

Ss
Cm

(red), in the vicinity of EAD-exhibiting solution segments (Γ, black) in (f, x, V )
phase space. Superimposed are maximal canard segments–γ0 (magenta), γ1 (cyan),
and γ2 (orange)–which serve as phase space boundaries for the addition/reduction
of EAD number. (a) Low [Ca2+]i phase-2 EADs corresponding to trace Fig. 3b (see
inset). (b) High [Ca2+]i phase-3 EADs corresponding to trace Fig. 3c (see inset).

4.3. Canards can explain properties of phase-3 EADs. Viewing EADs398

from the canard viewpoint provides potential insights into the emergence and proper-399

ties of phase-3 EADs. In [42], it is argued that the dynamical mechanism underlying400
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the genesis of phase-3 EADs is the same as the dynamical mechanism underlying401

phase-2 EADs: a Hopf bifurcation in the fast subsystem. However, this explanation402

does not account for the most notable differences between phase-2 and phase-3 EADs.403

First, phase-3 EADs have a significantly lower takeoff potential and larger amplitude404

than phase-2 EADs [10]. Second, phase-3 EADs are more difficult to elicit in isolated405

cell and tissue preparation experiments than phase-2 EADs [10,42]. Neither of these406

findings would be expected if a Hopf bifurcation in the fast subsystem were responsi-407

ble for both phase-2 and phase-3 EADS. However, both findings are expected when408

the EADs are viewed through canard analysis, as we describe next.409

In Fig. 6b, which shows the phase-3 EAD in the (f, x, V ) phase space, the solution410

segment, Γ, lies very close to γ0. The closer a solution lies to γ0, the longer it can411

follow Ss
Cm

before being repelled. Hence, because Γ lies close to γ0, it reaches a much412

lower takeoff potential before jumping back to Sa,+
Cm

. This results in an EAD that413

occurs late in the repolarization phase of the AP, and has large amplitude. These414

are defining properties of a phase-3 EAD. Furthermore, the rarity with which phase-415

3 EADs are observed in experiments can also be explained as a consequence of the416

required proximity between Γ and γ0: it is rare for a solution trajectory to be injected417

so close to a maximal canard.418

5. Canards underlie Ca2+ dynamics-mediated EADs. Our analysis has419

demonstrated that the Ca2+ level can play an important and complex role in the420

generation of different classes of EADs even when [Ca2+]i remains fixed. In doing421

so, we have shown that Ca2+ dynamics are not essential to EAD production; EADs422

can occur even when [Ca2+]i is clamped. Here, we introduce the Ca2+ dynamics (see423

(A.1b)) into our analysis to investigate behaviors that cannot be reproduced when424

the Ca2+ concentration is clamped. For this analysis, the cell is subject to periodic425

pacing, with a stimulus period of 2000 ms, until the pulsed solution converges to a426

periodic attractor. Unless otherwise noted, all of the time courses in the following427

analysis are a single period of this attractor AP.428

5.1. The clamped-Ca2+ model does not reproduce EADs induced by429

Ca2+ overload. In [32], the developers of the LRII model investigated its ability to430

reproduce experimental observations regarding early afterdepolarizations as well as431

other pathologies across species. In one set of numerical experiments, they showed432

that under the combined effects of Na+ ion accumulation, increases in the activity433

of ICa-L, and ensuing Ca2+ overload the model produces robust and repeated EADs434

over consecutive APs (see Fig. 11 of [32]). These EADs occurred during episodes of435

spontaneous AP activity as well as during periodic pacing [32]. That is, under these436

conditions, the full model (see Appendix A) possesses an EAD generating mechanism437

that is separable from the process of spontaneous Ca2+ release from the sarcoplasmic438

reticulum (SR), yet may still rely on Ca2+ dynamics. It is this EAD generating439

mechanism, which arises in the presence of pathological Ca2+ dynamics, that we440

investigate here.441

We first examine whether the EADs produced by the model with Ca2+ dynamics442

(which we refer to as the “dynamic-Ca2+ model”) can be reproduced by the model443

with Ca2+ clamped (which we refer to as the “clamped-Ca2+ model”). In both model444

contexts, key parameters are set to simulate Ca2+ overload ([Na+]i = 15 mmol/L,445

[Ca2+]o = 3 mmol/L, and PCa (max ICa-L amplitude) = 1.3×0.00054 cm/s). Under446

these conditions, the AP generated by the dynamic-Ca2+ model has a long plateau447

and two EADs (black curve in Fig. 7a) and a [Ca2+]i profile consisting of a rapid448

peak with a slow decline during the AP (black curve in Fig. 7b). In our attempt to449
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replicate this voltage timecourse with the clamped-Ca2+ model, four different values of450

[Ca2+]i were used (colored horizontal lines in Fig. 7b). For the lower values of [Ca2+]i,451

the clamped-Ca2+ model produced APs without EADs (blue and magenta traces in452

Fig. 7a), while for the higher values of [Ca2+]i it exhibited automaticity (purple and453

red traces in Fig. 7a). In no case did the clamped-Ca2+ model produce a long AP454

with EADs, in contrast to the dynamic-Ca2+ model which generically produces a long455

AP with EADs in these conditions. Hence, the LRII model reproduces experimental456

findings that show that some classes of EADs can be abolished through the use of457

Ca2+ chelators and CICR antagonists which essentially clamp the Ca2+ concentration.458

(a)

200 400 600

-40
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40

(b)

200 400 600

1

2

3

4

Fig. 7: Ca2+ dynamics are essential for Ca2+ overload-induced EADs. (a)
Voltage traces produced by the dynamic-Ca2+ model (black) and the clamped-Ca2+

model (colored). In each case, parameters were set to replicate the conditions of Ca2+

overload ([Na+]i= 15 mmol/L, [Ca2+]o= 3 mmol/L, 30% increase in ICa-L activity).
An AP with EADs is produced by the dynamic-Ca2+ model, but not by the clamped-
Ca2+ model. (b) Ca2+ levels corresponding to the voltage traces in a are color-coded
accordingly.

5.2. Fast-slow analysis of a minimal dynamic-Ca2+ model reveals a459

curve of folded nodes. Rather than working with the full dynamic-Ca2+ model, we460

found that the essential elements for EAD production could be retained by performing461

a model reduction in which the variables [Ca2+]nsr and [Ca2+]jsr are fixed. To fix462

[Ca2+]nsr, we use its comparatively large timescale and weak coupling to [Ca2+]i.463

To fix [Ca2+]jsr, we rely on its vanishing coupling to [Ca2+]i very shortly after the464

AP upstroke, long before the EADs are generated (for details, see Appendix A).465

With these changes, the 8-dimensional “minimal dynamic-Ca2+ model” (see Appendix466

(A.2)) is retained.467

To perform a fast-slow analysis of the model (A.2), we first determined the char-468

acteristic timescale of [Ca2+]i empirically. The resulting time constant estimate,469

τ[Ca2+]i,decay
≈ 90 ms, is on the order of the timescales observed for the slow variables470

f and x. Hence, [Ca2+]i acts as a third slow variable and the dynamic-Ca2+ model471

can be cast as a singularly perturbed (5,3)–fast-slow problem. This third slow variable472

is what unfolds a set of system behaviors which cannot be seen in the clamped-Ca2+473

model.474

In [55], it was shown that canard theory extends naturally from the case of two475

slow variables to the more general case of k slow variables, for any k ≥ 2 and finite.476

Further, in [11], it was shown that these theoretical advancements could be used to477
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explain anomalous delays in Ca2+ models with three slow variables. Hence, the canard478

mechanism responsible for the production of EADs in the (5,2)–fast-slow clamped-479

Ca2+ model may persist as the EAD generating mechanism in the (5,3)–fast-slow480

dynamic-Ca2+ model. In light of this, we undertake a fast-slow analysis of the minimal481

dynamic-Ca2+ model in search of the requisite singular structure which can give rise482

to canard-mediated EAD behavior.483

In our analysis of the fast subsystem of (2.1), we found that even under ex-484

haustive variation in [Ca2+]i, it lacked an EAD generating mechanism. Hence, the485

fast subsystem of the minimal dynamic-Ca2+ model does not possess an EAD gen-486

erating mechanism and we focus our analysis on the slow subsystem which is a 3D487

approximation of the minimal dynamic-Ca2+ model where the fast variables are at488

quasi-equilibrium.489

The critical manifold, to which solutions are constrained, can be expressed glob-490

ally as a graph over the coordinates ([Ca2+]i, x, V ):491

f =
−
∑

Iion + ICa-L

d∞(V ) fCa([Ca
2+]i) (ĪCa + ĪCa,Na + ĪCa,K)

=: fS2(V, x, [Ca
2+]i)

m = m∞(V )

h = h∞(V )

j = j∞(V )

d = d∞(V ).

(5.1)492

Intuitively, the 3D critical manifold (5.1) can be thought of as a one-parameter493

([Ca2+]i) family of 2D critical manifolds (3.1). Hence, it is comprised of upper and494

lower 3D attracting sets and a middle 3D set of saddle-type. Consequently, the set of495

fold curves along which the upper attracting and middle saddle-type sets meet forms496

a 2D surface. Figure 8 shows two different views of this 2D fold surface (L, green),497

which is located near plateau membrane potentials in ([Ca2+]i, x, V ) phase space.498

Superimposition of the dynamic Ca2+ EAD segment (Γ, black) atop the fold surface499

reveals that the EADs occur near the fold surface.500

Analysis of the (desingularized) slow subsystem further reveals that the fold sur-501

face contains a curve of folded singularities (the collection of orange, red, and purple502

curve segments in Fig. 8). Each folded singularity within the curve possesses a zero503

eigenvalue whose associated eigenvector is tangent to the curve. Hence, the stability504

classification of each folded singularity is determined using the two remaining non-zero505

eigenvalues [55].506

We found that the curve of folded singularities contains segments of folded nodes507

(purple), points which were shown to organize the canard-mediated EAD behavior508

of the clamped-Ca2+ model (2.1). The curve of folded singularities also contains509

segments of folded foci (orange) and folded saddles (red). It appears that the EAD510

solution segment, Γ, interacts with one of the segments of folded nodes before two511

EADs ensue. We focus our analysis on this segment of folded nodes, and its potential512

for understanding EAD production in the dynamic-Ca2+ model.513

As in the case of two slow variables, associated with each folded node along the514

segment is a pair of special slow subsystem solutions, a strong and a weak singular515

canard, which are locally tangent to its strong and weak eigenvectors, respectively.516

Hence, associated with this (and the other) segment of folded node singularities are517

a pair of 2D families of distinguished slow subsystem solutions: one family of strong518

singular canards and the other of weak singular canards. The subset of the family of519
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(a)

V
x

(b)

V

x

Fig. 8: Two views of structures involved in EADs generated by the minimal
dynamic-Ca2+ model. The fold surface (L) is in green. Contained within this
surface is a curve of folded singularities containing folded saddles (red), folded foci
(orange), and folded nodes (purple). Associated with the folded nodes is a surface
of strong singular canards (Γ0

0, magenta). Finally, a portion of the system trajectory
containing two EADS (Γ, black) is superimposed.

strong singular canards associated with this segment of folded nodes that lies above520

the fold surface is pictured in Fig. 8 (Γ 0
0 , magenta).521

In contrast with works, such as [11], in which the limiting geometry of the 3D slow522

subsystem was sufficient to explain fully perturbed solution behavior, our analysis of523

the clamped-Ca2+ model showed that the singular limit can be an unreliable predictor524

of full solution behavior. Hence, in the next section, we extend existing approaches to525

the analysis of problems with three slow variables and unfold the limiting geometry526

of the minimal dynamic-Ca2+ slow subsystem to determine whether the EADs are527

canard-induced.528

5.3. Dynamic-Ca2+ EADS are generated by canards. Fast-slow analysis529

of (A.2) revealed a folded critical manifold, the existence of sets of folded node sin-530

gularities, and, in turn, sets of singular canards. We have shown that the perturbed531

analogs of these structures in the two slow variable problem (2.1) are fundamental532

in organizing EAD behavior. We use a similar unfolding approach here, increasing533

the membrane capacitance, Cm, away from the singular limit Cm → 0. The aim is534

to determine whether the resulting maximal canards are responsible for the EADs535

produced by the dynamic-Ca2+ model (A.2).536

As is the case with two slow variables, Fenichel theory [9] applies to the por-537

tion of the critical manifold that is not near the fold surface. These subsets perturb538

smoothly to locally invariant 3D slow manifolds whose local attractive/repulsive prop-539

erties match those of the critical manifold. Furthermore, canard theory applies in the540

vicinity of the fold surface and, in particular, in the vicinity of the segment of folded541
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node singularities [55]. That is, the 2D sets of singular strong and weak canards asso-542

ciated with folded node singularities perturb to a finite number of 2D sets of maximal543

canards. As in the case of two slow variables, these (2D) surfaces of maximal canards544

partition the (3D) upper attracting and middle saddle-type slow manifolds into (3D)545

rotational sectors.546

The existence of 2D surfaces of maximal canards in the phase space raises ques-547

tions about how to compute them. We found that the homotopic continuation meth-548

ods developed in [13] could be extended to accomplish this task. The technical details549

of the problem set-up and procedure are outlined in Appendix D. Figure 9 shows550

two illustrative projections of the resulting maximal canard sets and the trajectory551

containing two EADS (Γ, black) in phase space. Fig. 9a shows the three leading max-552

imal canard surfaces (Γ0, magenta; Γ1, cyan; Γ2, orange) along with a portion of the553

2-EAD trajectory, projected into (x,[Ca2+]i,V ) space. Although the true dynamics554

are in 8D, the trajectory appears to enter the region of phase space between Γ1 and555

Γ2, where canard theory would predict that an entrant trajectory should exhibit two556

small oscillations. Indeed, this is the case; the trajectory exhibits two EADs.557

(a)

Γ

(b)

0.0.10.20.3
1.

2.

3.

4.

Fig. 9: Evidence that dynamic-Ca2+ EADs are due to canards (a) 2D sets
of maximal canards, Γ0 (magenta), Γ1 (cyan), and Γ2 (orange) are projected into
([Ca2+]i, x, V ) phase space alongside the dynamic-Ca2+ EAD solution trajectory (Γ,
black). (b) Intersections with the plane V = −2 mV (ΣV ). Both views indicate that
the trajectory enters a region of phase space between the maximal canards Γ1 and
Γ2, so that canard theory predicts two small oscillations, in agreement with the two
EADS exhibited by Γ.

In Fig. 9b, a 2D view of this arrangement is obtained by projecting the in-558

tersections of the maximal canard surfaces and the trajectory with the hyperplane559

ΣV = {(V,m, h, j, d, f, x) ∈ R7 |V = −2 mV} (which lies above the fold surface) onto560

the (x,[Ca2+]i)-plane. Here, the canard surfaces become curves (Γ0 ∩ ΣV , magenta;561

Γ1 ∩ ΣV , cyan; Γ2 ∩ ΣV , orange) and the trajectory curve is now a point (Γ ∩ ΣV ,562

black). From this, it is again clear that the trajectory enters the region bounded by563

the maximal canards Γ1 and Γ2 (labeled as ‘2 EADs’), so that canard theory predicts564
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two small oscillations. This match between the canard theory predictions and the565

number of EADs observed indicates that the EADs are produced by canards.566

5.4. Canard theory explains why reducing Ca2+ release from intracel-567

lular stores reduces the number of EADs. It has been shown that manipulations568

that reduce the release of Ca2+ from the SR, such as the use of Ca2+ chelators to569

bind free Ca2+ or the use of ryanodine receptor antagonists to block Ca2+-induced570

Ca2+ release, also tend to reduce the number of EADs produced or eliminate them571

altogether [15, 41, 61]. To examine whether this effect could be explained using ca-572

nard theory, we simulated it by reducing the maximum amplitude of the flux of Ca2+573

release from the SR, Jrel, under Ca
2+ overload conditions. (Grel = 20 reduced to 10574

s−1 in the full model). In the reduced version of the model, this also requires setting575

[Ca
2+

]nsr ≈ 3.5499 mM. All other parameters remain unchanged.576

The effect of this manipulation, in the minimal dynamic-Ca2+ model, is to reduce577

the number of EADs from two to one. This is shown in Fig. 10a, which includes578

the portion of the trajectory near the EAD, and the three leading maximal canard579

surfaces. The intersection of each of these objects with ΣV is shown in Fig. 10b. The580

canard surfaces are only minimally affected by the reduced Ca2+ release. There is581

a greater effect on the trajectory, so that it now enters a different rotational sector.582

Now the trajectory enters the region between Γ0 (magenta) and Γ1 (cyan) which,583

from canard theory, indicates the existence of a single small oscillation. This is again584

in agreement with the single EAD that is produced by the minimal dynamic-Ca2+585

model.586

(a)

Γ

(b)

0.0.10.20.3
1.

2.

3.

4.

Fig. 10: Reduction in CICR amplitude decreases EAD number by changing
the rotational sector in which the solution, Γ, is injected. (a) Reduced CICR
amplitude has little effect on the maximal canard surfaces, but the trajectory is left-
shifted and enters the rotational region between Γ0 (magenta) and Γ1 (cyan). (b) In
the intersection with the plane V = −2 mV (ΣV ), the trajectory lies in the sector in
which one small oscillation is predicted by canard theory, in agreement with the single

EAD produced by the minimal dynamic-Ca2+ model. In this simulation, [Ca
2+

]nsr is
reduced to 3.5499 mM
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5.5. Canards underlie dynamic-Ca2+ phase-3 EADs. We showed that the587

clamped-Ca2+ model produces phase-3 EADs and that it does so as a result of so-588

lutions lying close in proximity to maximal canards. It is reasonable then to ask:589

can the dynamic-Ca2+ model produce phase-3 EADs? If so, is proximity to maximal590

canards still the underlying culprit? Indeed, we find that the dynamic-Ca2+ model591

can produce phase-3 EADs and that they also result from proximity of solutions to592

maximal canards.593

Figure 11 shows a side-by-side comparison of the dynamic-Ca2+ phase-2 EADs594

introduced in Fig. 7 (Fig. 11a) and the phase-3 EAD evoked in response to setting595

the CICR release flux amplitude parameter, Grel = 21.96235 1/s for a single stimulus596

pulse (Fig. 11b). Although not shown, this value of Grel leads to the trajectory being597

injected into the immediate vicinity of Γ1, where the ensuing solution–after an initial598

phase-2 EAD–follows Γ1 to a notably lower take-off potential (≈-31.25 mV in Fig. 11b599

versus ≈-19.5 mV in Fig. 11a) before jumping back up to Sa,+
Cm

. We note that the600

phase-3 EAD signature shown in Fig. 11b bears striking resemblance to some previous601

experimental recordings (e.g., compare to Fig. 9c of [35]).602

(a)

200 400 600

-40

0

40

(b)

phase-2 EAD

phase-3 EAD

Fig. 11: . Phase-2 and Phase-3 EADs are produced with the dynamic-
Ca2+ model. (a) An AP with two phase-2 EADs generated under Ca2+ overload
conditions. (b) Proximity of the solution to the 2D maximal canard surface Γ1 induces
a phase-3 EAD following a phase-2 EAD.

6. Discussion. Prior analyses of EADs produced by low-dimensional mathe-603

matical models of cardiomyocyte electrical activity have revealed that EADs are604

canard-induced small oscillations [2, 22, 23, 26, 53]. This canard-based approach to605

investigating the emergence and properties of EADs provides explanatory and pre-606

dictive insights that cannot be obtained by other means, but it is most easily applied607

to models that retain only the essential features of cardiomyocyte electrical activ-608

ity. Importantly, many of the constituent components of cellular electrical activity609

which are excluded from these analyses have been shown to play prominent roles610

in mediating the emergence, properties, and persistence of EADs in cardiomyocytes611

[4,31,35,41,46]. Thus, there is a gap between the explanatory and predictive insights612

provided by canard analysis of low-dimensional models, and the much more limited613

analysis that comes from computer simulations of higher-dimensional, but more bio-614

physical, models. It is these latter models that are often most helpful in informing615

experimental and clinical practice.616

The current study begins to bridge the gap between the two approaches. It does617
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so by performing a canard analysis of one of the foundational mathematical mod-618

els in cardiac electrophysiology, the Luo–Rudy II model [31]. This model includes619

many biophysical elements that potentially play a role in the generation of EADs,620

but which have yet to be analyzed using canard-based techniques. Such elements621

include intracellular Ca2+ dynamics and the associated Ca2+-dependent transmem-622

brane currents, such as INaCa. We found that even in this more complex model, the623

EADs produced are most fruitfully cast as canard-induced oscillations. That is, we624

have demonstrated that the canard-induced EADs identified in the earlier studies of625

low-dimensional models are still present in a higher-dimensional model. We postulate626

that EADs generated in the more recent, and more complex, models of cardiomyocyte627

electrical activity [38,49,50] are also due to canards.628

One key question in the study of EADs is whether they are mediated by purely629

electrical factors, i.e., the interaction of ion channels through the membrane potential630

[16, 17], or whether they also involve the dynamics of intracellular Ca2+ following631

Ca2+-induced Ca2+ release from the SR [20, 21, 58]. While this mathematical study632

could not weigh in on this question, it has addressed a related question that is best633

approached using a mathematical model. In the model, it is possible to clamp the634

intracellular Ca2+ concentration at any level. This is much more difficult to do in635

experiments, and requires the use of multiple drugs to not only clamp the Ca2+, but636

to set it at the desired concentration. We have taken advantage of this opportunity637

to address the question of whether, in the Luo-Rudy II model, EADs are generated638

by purely electrical elements, or whether Ca2+ dynamics are also required. We found639

that, in all cases, the intracellular Ca2+ level is important in the determination of640

whether or not EADs are produced. However, in many cases, the EADs were pro-641

duced through purely electrical means, with Ca2+ serving only as a fixed input to the642

electrical subsystem. This agrees with experiments in which Ca2+ influx was blocked643

pharmacologically but an electrical Ca2+ curent was introduced using the dynamic644

clamp technique [19,33,34] as well as with experiments that showed EADs to persist645

despite blockade of CICR [35]. However, we also found cases in which EADs are pro-646

duced only if Ca2+ is allowed to vary over the duration of the action potential. That is,647

in some cases, Ca2+ dynamics are an essential ingredient to EAD production. This is648

consistent with findings that EADs were eliminated when Ca2+-induced Ca2+ release649

was blocked pharmacologically [41,46]. Our results may therefore help to resolve the650

sometimes conflicting data on EAD production in cardiomyocytes; sometimes Ca2+651

dynamics are involved in EAD production, and sometimes the EADs are purely elec-652

trical in nature (though, even in this case, the Ca2+ level affects whether the EADs653

are triggered). In either case, the EADs produced by the model are brought about654

by the evolution of solutions along a twisted slow manifold—a twisted slow manifold655

which is subdivided into regions which dictate EAD number (Fig. 9).656

Many of the most well-studied EAD-inducing pharmacological agents exert their657

effects by blocking K+ channels. Some of these agents are non-selective K+ channel658

antagonists (e.g., Cs+). We found that the model can produce EADs under simulated659

administration of these types of agents, even when [Ca2+]i is clamped (Fig. 3). We660

showed that non-selectively blocking K+ channels can induce EADs at both (fixed)661

baseline and elevated Ca2+ levels. Surprisingly, the relationship between [Ca2+]i and662

EAD production in these cases is non-monotonic. The complexity of the relationship663

between [Ca2+]i and EAD production is also demonstrated by the production of both664

phase-2 and phase-3 EADs (Fig. 3c) at elevated [Ca2+]i levels.665

One advantage of fast-slow analysis of a multi-scale mathematical model is that it666

allows one to understand dynamical behavior in a deep way that cannot be achieved667
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through computer simulations alone. For example, we showed that reducing the668

Ca2+ release from intracellular stores had little effect on the canards, but shifted the669

trajectory in phase space in such a way that it was not influenced by the canards670

(Fig. 10). Here, EADs were reduced in number, but the mechanism would not be671

at all apparent from computer simulations alone. Conversely, we demonstrated that672

both phase-2 and phase-3 EADs can be generated by the same dynamical mechanism,673

in spite of the fact that the former occurs during the plateau of an action potential,674

while the latter occurs much later during the repolarizing phase (Fig. 6). These are675

typically treated as entirely different phenomena in the experimental literature [10,42].676

Whether EADs require Ca2+ dynamics, or just [Ca2+]i at an appropriate level,677

we propose that the dynamical mechanism is the same: twisted slow manifolds and678

canards. We have shown this here with the Luo-Rudy II model, and hope that679

future work from our group or others will succeed in testing this proposal in more680

biophysicallly complete cardiac myocyte models.681

Appendix A. Model equations.682

A.1. The full model and varied parameters. The full 11-dimensional vari-683

ant of the Luo-Rudy II model examined includes both electrical and intracellular Ca2+684

dynamics, but excludes potential spontaneous intracellular Ca2+ release included in685

[31]:686

Cm
dV

dt
= −

∑
Iion + Istim

dm

dt
=

m∞ −m

τm
dh

dt
=

h∞ − h

τh
dj

dt
=

j∞ − j

τj
dd

dt
=

d∞ − d

τd
df

dt
=

f∞ − f

τf
dx

dt
=

x∞ − x

τx

(A.1a)687

688
d[Ca]i
dt

= bi(Jin
Acap

2F Vmyo
+ Jrel

Vjsr

Vmyo
+ (Jleak − Jup)

Vnsr

Vmyo
)

d[Ca]jsr
dt

= bsr(Jtr − Jrel)

d[Ca]nsr
dt

= −Jtr
Vjsr

Vnsr
− Jleak + Jup.

(A.1b)689

Here, Iion = {INa, ICa-L, IK, IK1, IKp, INaCa, INaK, InsCa, IpCa, ICab, INab}, which de-690

pend on the dynamic variables (V,m, h, j, d, f, x,[Ca2+]i). The intracellular Ca2+691

fluxes Jin, Jrel, Jleak, Jup, and Jtr depend on the dynamic variables ([Ca2+]i, [Ca
2+]jsr,692

[Ca2+]nsr), with Jrel also depending non-autonomously on time, t. Detailed model ex-693

pressions and default parameter values can be found in the original article [31], from694

which variable, expression, and parameter names herein are duplicated.695
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Sections 2, 3, and 4 analyze the behavior of the clamped-Ca2+ model (A.1a), in696

which [Ca2+]i, [Ca
2+]jsr, and [Ca2+]nsr are fixed and [Ca2+]i alone enters (A.1a) as a697

parameter. Under this purely electrical 7-dimensional model variant, the maximum698

conductance parameters of IK (ḠK) and IK1 (ḠK1) are varied alongside [Ca2+]i to699

invoke EADs and examine solution behavior.700

Section 5 then examines the full dynamic-Ca2+ model through the imposition701

of Ca2+ overload conditions. These conditions are simulated through the parameter702

choices enumerated in [31]: [Ca2+]o = 3 mmol/L, [Na+]i = 15 mmol/L, Prel (max703

ICa-Lconductance) is increased 30%, and Ḡrel(Jrel rate constant) = 20 ms−1. In704

addition, the minimal dynamic-Ca2+ model is analyzed under this same parameter705

regime, with Ḡrel varied to produce phase-3 EADs.706

A.2. Smooth approximation of piece-wise smooth gating functions. To707

facilitate numerical computation, the piecewise continuous voltage-dependent gating708

functions formulated in [31] for the INa conductance are replaced by smooth functions:709

i∞ =
αi

αi + βi
for i ∈ {m,h, j}710

αm =
0.32 (V + 47.13)

1− e−0.1(V+47.13)
and βm = 0.08e−V/11

711

αh = 0.135e−(80+V )/6.8 and βh =
1

0.13(1 + e−(V+10.66)/11.1)
712

αj =
4.784× 10−7

e0.1045(−27.232+V )
and βj =

0.3e−2.535×10−7V

(1 + e−0.1(V+32))
.713

714

A.3. Dynamic-Ca2+ model reduction. Figure 12 shows the simulated time715

courses of [Ca2+]jsr (orange), [Ca2+]nsr (purple), and Ca2+ flux from the SR during716

Ca2+-induced Ca2+ release, Jrel (blue), that accompany the voltage and [Ca2+]i time717

courses shown in Fig. 7 (black curves). The vertical dashed line (red) denotes the718

time at which Istim is initiated and the time window in view terminates at 90%719

repolarization of the AP. The stimulus evokes a rapid pulse of Ca2+ flux and the720

observed dynamics of [Ca2+]nsr and Jrel motivate a reduction of the dynamic-Ca2+721

model.722

We estimated the timescale of [Ca2+]nsr during an AP and found that even though723

τ[Ca2+]nsr
≈ 146 ms is similar to τ̄x, fixing [Ca2+]nsr at its average value over the course724

of an AP produces EADs that are indistinguishable from those produced by the full725

model. Hence, we fix [Ca2+]nsr at its average value ([Ca
2+

]nsr ≈ 3.7082 mM) and726

exclude the [Ca2+]nsrequation.727

Ca2+-induced Ca2+ release from the SR produces a very short-lived Ca2+ flux,728

Jrel, that vanishes just after the initiation of an AP. Since this is the only term729

that couples [Ca2+]jsr to [Ca2+]i, the [Ca2+]jsr and [Ca2+]i differential equations are730

uncoupled throughout the remainder of the AP. Hence, we restrict our analysis to the731

window of time starting just after Jrel has vanished, where the [Ca2+]jsr differential732

equation is uncoupled from the rest of the system and can be excluded from analysis733

without affecting solution behavior.734

As such, the minimal dynamic-Ca2+ model is composed of the remaining differ-735
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Fig. 12: Time courses for [Ca2+]jsr, [Ca2+]nsr, and Jrel during the AP with
EADs produced by the dynamic-Ca2+ model. (a) [Ca2+]jsr (orange) exhibits a
fast downstroke subsequent to Istim pulse initiation (dashed, red) and slowly recovers
over the duration of the AP. [Ca2+]nsr (purple) exhibits slow growth over the course
of the AP. (b) The pulse-like CICR flux, Jrel, which couples [Ca2+]jsr to [Ca2+]i,
immediately follows Istim initiation and vanishes for the remainder of the AP.

ential equations:736

Cm
dV

dt
= −

∑
Iion

dm

dt
=

m∞ −m

τm
dh

dt
=

h∞ − h

τh
dj

dt
=

j∞ − j

τj
dd

dt
=

d∞ − d

τd
df

dt
=

f∞ − f

τf
dx

dt
=

x∞ − x

τx
d[Ca]i
dt

= bi

[
Jin

Acap

2F Vmyo
+ (J̄leak − Jup)

Vnsr

Vmyo

]
,

(A.2)737

where Jrel has been removed from the [Ca2+]i equation, and Jleak, which is dependent738

only on [Ca2+]nsr, is now constant (J̄leak). Because these model reductions are valid739

for all times after the post-Istim Ca2+ spike has decayed, Istim does not appear in the740

V -equation.741

Appendix B. Dimensional analysis of the Ca2+-clamped model.742

Dimensional analysis of (2.1) is performed by averaging the voltage-dependent743

time constants, τi for i ∈ {m,h, j, d, f, x}, over the duration of an AP to obtain744

mean timescales of the variables. We define the AP as beginning when the stimulus745

pulse is initiated and ending when the voltage reaches 90% repolarization. We then746
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non-dimensionalize the system via the rescalings:747

V = cV v, t = ct ts, Iℓ = cI Ĩℓ,(B.1)748

for ℓ ∈ {Na, Ca-L, K, K1, Kp, NaCa, NaK, nsCa, pCa, Cab, Nab}.749

This results in the singularly perturbed dimensionless problem:750

ϵ
dv

dts
= −

∑
Ĩion

ϵ

rm

dm

dts
=

m∞ −m

τ̃m
ϵ

rh

dh

dts
=

h∞ − h

τ̃h
ϵ

rj

dj

dts
=

j∞ − j

τ̃j
ϵ

rd

dd

dts
=

d∞ − d

τ̃d
df

dts
=

f∞ − f

τ̃f
dx

dts
=

τ̄f
τ̄x

x∞ − x

τ̃x

(B.2)751

where cV := 100 mV, ct := τ̄f ≈ 30 ms, and cI := ḡtot = 2 mS/µF are chosen752

as characteristic voltage, timescale, and current amplitude, respectively. As such,753

ϵ := Cm

ḡtot τ̄f
(≪ 1)—the ratio of voltage and characteristic timescales—is a small754

perturbation parameter, ri := Cm

ḡtot τ̄i
for i ∈ {m,h, j, d}, ḡtot ≈

∑
ℓ gℓ/n(ℓ) for ℓ ∈755

{Na, Ca-L, K, K1, Kp, NaCa, NaK, nsCa, pCa, Cab, Nab}, and the right-hand sides756

of (B.2) are O(1) with respect to ϵ.757

Appendix C. Computation of the slow manifolds and their continua-758

tions.759

Here, we outline the numerical set-up used to compute the twisted slow manifolds.760

In Appendix C.1, we describe the adaptation required to track the slow manifolds761

when they are far from the folded node. With this adaptation, we then describe the762

computation of the attracting slow manifold in Appendix C.2 and the saddle slow763

manifold in Appendix C.3.764

C.1. Standardization of Σ. Whereas the standard set-up chooses Σ such that765

it contains the folded singularity, the significant movement of the twisted funnel under766

variation in Cm and other parameters renders this choice inadequate. We choose Σ767

in such a way that it tracks the movement of the twisted funnel. Let p ∈ Rd denote768

the vector of model parameters, which contains elements for Cm and αIK,IK1
. For769

computation and visualization purposes, all slow manifolds are computed up to the770

p-dependent hyperplane771

(C.1) Σ := {(V,m, h, j, d, f, x) ∈ R7 : ap(f − fp) + bp(x− xp) + ep(V − Vp) = 0}772

and projected into (f , x, V )-space. Hence, the tuples (ap, bp, ep) and (fp, xp, Vp) set773

the location of Σ in phase space.774

We first require that the coordinates (fp, xp, Vp), which set the base point of Σ775

in (f, x, V ) space, be the f , x and V coordinates of the turning point of the strong776
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canard. Then, (ap, bp, ep) can be any set of points such that Σ transversely intersects777

the continuations of the slow manifolds, Sa,+
Cm

and Ss
Cm

. However, in practice some778

points work better than others. Through experimentation we found that setting (ap,779

bp, ep) as the normal, in (f, x, V )-space, to the f , x, and V component sub-vectors of780

the 2D unstable eigenspace of equilibrium E2 allowed for robust computation across781

changes in Cm and αIK,IK1 . Hence, Σ is parallel to the 2D unstable eigenspace of E2.782

We reason that orienting Σ this way works because E2 is near enough in parameter783

space to the FSNII/singular Hopf bifurcation from which the canards arise and that784

the local twisting is still oriented with the 2D unstable manifold of E2. Importantly785

however, the canard-induced rotational sectors are alone sufficient to explain EAD786

number; the computed continuations of the slow manifolds do not interact with this787

2D unstable manifold in a way that requires more than the predictions from Fenichel788

and canard theory.789

C.2. 2-point boundary value problem set-up: attracting slow manifold790

computation. Here, we outline the 2-point boundary value problem (2PBVP) set-791

up used in the computation of Sa,+
Cm

of the clamped-Ca2+ 2-slow variable problem. We792

have reprinted the model equations to define shorthand notation for the right-hand793

sides of the vector field:794

V̇ = −1/Cm

∑
Iion := f1(V,m, h, j, d, f, x)

ṁ =
m∞ −m

τm
:= f2(V,m)

ḣ =
h∞ − h

τh
:= f3(V, h)

j̇ =
j∞ − j

τj
:= f4(V, j)

ḋ =
d∞ − d

τd
:= f5(V, d)

ḟ =
f∞ − f

τf
:= s1(V, f)

ẋ =
x∞ − x

τx
:= s2(V, x).

(C.2)795

The 2PBVP set-up can be denoted formally using the condensed notation:796

u =



V
m
h
j
d
f
x


, u̇ = T g(u),

{
u(0) ∈ Σ̃0

u(1) ∈ Σ̃1.
(C.3)797

798

where we follow the boundary condition notation in [13]. The solution integration799

time, T , which is treated as a free parameter is used to scale the time domain, t ∈ [0, 1],800

and g is the vector field.801

Defining a well-posed 2PBVP in 7D requires that the boundary conditions, Σ̃0802

and Σ̃1, define codimension-i and codimension-k hypersurfaces, respectively, such that803
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i+k = 7. As in [13], we compute the 2D attracting slow manifold continuation, Sa,+
Cm

,804

by prescribing BCs:805

(C.4)

{
Σ̃0 := Σ̂0 ∩Σ0 = La

Σ̃1 := Σ
806

where La is a 1D curve on Sa,+
0 sufficiently far above the fold, L, and Σ is our807

codimension-1 hyperplane (C.1) transverse to the flow. The condition808

(C.5) Σ̂0 := {u | V̇ , ṁ, ḣ, j̇, ḋ = 0809

restricts La to lie along Sa,+
0 and the condition810

(C.6) Σ0 := {u |V = 30}811

ensures that La is away from the fold.812

Using a boundary value solver in tandem with pseudo-arclength homotopic con-813

tinuation, facilitated by AUTO [8], we initialized the computations using a trivial814

segment–a single point (T = 0)–which satisfies both sets of BCs. Manifolds were then815

grown as one parameter families of orbit segments through continuation in T .816

C.3. 2-point boundary value problem set-up: saddle slow manifold817

computation. The 2PBVP set-up used in the computation of Ss
Cm

of the clamped-818

Ca2+ problem differs meaningfully from that of Sa,+
Cm

and is described below. Again,819

we rewrite the problem using the condensed notation:820

u̇ = T g(u),

{
u(0) ∈ Σ̃0

u(1) ∈ Σ̃1.
(C.7)821

822

For the computation of Ss
Cm

in R7, we generalize the approach from [13] for823

computing saddle slow manifolds in R4. The general prescribed BCs are as they are824

in [13]:825

(C.8)

{
Σ̃0 := Σ̂0 ∩Σ0

Σ̃1 := Σ̂1 ∩Σ1.
826

Whereas in R4, both Σ̂0 and Σ̂1 are 3D submanifolds, in R7 Σ̂0 is 3D and Σ̂0827

is 6D. Here, as in [13], Σ̂0 and Σ̂1 are chosen transverse to the stable and unstable828

manifolds of the saddle slow manifold Ss
Cm

, respectively. This choice relies on these829

manifolds, in the vicinity of Ss
Cm

, being smooth perturbations of the eigendirections830

of Ss
0 as equilibria of the fast subsystem. Hence, for our particular problem, Σ̂0 and831

Σ̂1 are defined as:832

(C.9)

{
Σ̂0 := {u | ṁ, ḣ, j̇, ḋ = 0} = {u | f2, f3, f4, f5 = 0}
Σ̂1 := {u | V̇ = 0} = {u | f1 = 0}

833

In contrast, Σ0 and Σ1 are 6D manifolds:834

(C.10)

{
Σ0 := Σ

Σ1 := {u |V = −30}
835
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specified to ensure that orbit segments start on the defined cross-section and end far836

from the fold, L. The manifold, Ss
Cm

, is then grown by starting from a trivial segment837

(T = 0) at which all BCs are satisfied and then continuing in T .838

Appendix D. 2-point boundary value problem set-up: computation of839

1D maximal canard orbits and 2D maximal canard sets.840

The procedure in [13] for the computation and continuation of 1D maximal ca-841

nard orbits specifically addresses canards in (2,2)–fast-slow systems. For context in842

outlining the specifics of how these methods are extended for our computations, we843

review the key steps from [13].844

With reference to the BC definitions in Appendix C, the recipe in [13] consists845

of two main steps. First, an orbit segment is computed in which u(0) ∈ La and846

u(1) ∈ Σ1, where the definitions for L
a and Σ1 are equivalent to those used to compute847

Sa,+
Cm

and Ss
Cm

, respectively. Second, this orbit segment is continued by varying u(0)848

along La until the additional condition u(1) ∈ Σ̂1 (∈ Ss
Cm

) is satisfied; maximal849

canards correspond to isolated points along La. The resulting orbit segment, which850

transitions from Sa,+
Cm

to Ss
Cm

and remains on Ss
Cm

until termination, approximates a851

maximal canard.852

In both the 2-slow and 3-slow variable settings, maximal canards can be computed853

as orbit segments which satisfy the general boundary conditions854

(D.1)

{
Σ̃0 := Σ̂0 ∩Σ0 = Sa,+

0 ∩Σ0

Σ̃1 := Σ̂1 ∩Σ1.
855

In both settings, Σ0 and Σ1 are codimension-1 hyperplanes, transverse to the flow,856

which ensure that orbit segments start and end, respectively, on either side of the fold857

set.858

In the case of 2 slow variables, Sa,+
0 ∩Σ0 is the 1D curve, La, where the presence859

of more than 2 fast variables is accounted for in the definition of Sa,+
0 . Hence, in860

this setting, the existing two-step procedure from [13] is easily extended. However,861

in the case of 3 slow variables, Sa,+
0 ∩Σ0 is a 2D plane; instead of corresponding to862

isolated points along the curve, La, maximal canards correspond to 1D loci along this863

2D plane. How to locate and trace out such loci—associated to 1-parameter families864

of maximal canard orbit segments—is not addressed by the existing procedure.865

Our approach to computing 2D sets of maximal canards, in analogy to [13], consist866

of 3 steps. First, we compute an orbit segment in which u(0) ∈ L̂a and u(1) ∈ Σ1.867

Here, L̂a is a 1D curve along Sa,+
0 ∩Σ0, chosen transverse to the 1D loci of maximal868

canard points; the definition of Σ1 is equivalent to its definition in the computation of869

Ss
Cm

. Second, we continue this computed orbit segment along L̂a until u(1) ∈ Σ̂1 (∈870

Ss
Cm

) is satisfied. The resulting orbit segment approximates a maximal canard within871

a 2D set. Third, we remove the constraint u(0) ∈ L̂a and allow u(0) to vary freely872

along the 2D plane, Sa,+
0 ∩Σ0, requiring instead that u(1) ∈ Σ̂1 remains satisfied.873

This traces out a 2D manifold of maximal canard orbits.874

For clarity, we provide the specific BCs used for maximal canard computation in875

the dynamic-Ca2+ problem. For notational brevity, we augment system (C.2) with876

the [Ca2+]i equation877

˙[Ca]i = bi(Jin
Acap

2F Vmyo
+ (J̄leak − Jup)

Vnsr

Vmyo
) := s3(V, d, f, [Ca

2+]i).(D.2)878

This manuscript is for review purposes only.



28 J. KIMREY, T. VO, AND R. BERTRAM

and denote the 2PBVP set-up using the condensed notation:879

u =



V
m
h
j
d
f
x

[Ca2+]i


, u̇ = T g(u),

{
u(0) ∈ Σ̃0

u(1) ∈ Σ̃1.
(D.3)880

881

For the initial homotopy step, we start with a solution segment which satisfies882

the BCs883

(D.4)

{
Σ̃0 := Sa,+

Cm
∩Σ0 ∩ΣL̂a = L̂a

Σ̃1 := Σ1

884

where885

(D.5) Sa,+
Cm

:= {u | V̇ , ṁ, ḣ, j̇, ḋ = 0} = {u | f1, f2, f3, f4, f5 = 0}886

and887

(D.6)


Σ0 := {u |V = 30}
ΣL̂a := {u | [Ca2+]i = 1.5(µM)}
Σ1 := {u |V = −35mV}.

888

In the second step, varying u(0) along L̂a until u(1) ∈ Σ̂1 (∈ Ss
Cm

) is satisfied889

results in a maximal canard solution which obeys the BCs (D.1). Once here, the890

condition u(0) ∈ ΣL̂a is dropped and u(1) ∈ Ss
Cm

is retained to allow for computation891

of the located maximal canard set. Judicious choices for the initial location of u(0) ∈892

L̂a allow for different 2D maximal canard sets to be located and computed.893
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