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CANARDS UNDERLIE BOTH ELECTRICAL AND Ca2?t-INDUCED
EARLY AFTERDEPOLARIZATIONS IN A MODEL FOR CARDIAC
MYOCYTES *

JOSHUA KIMREYT, THEODORE VO¥, AND RICHARD BERTRAMS?

Abstract. Early afterdepolarizations (EADs) are voltage oscillations that can occur during the
plateau phase of a cardiac action potential. EADs at the cellular level have been linked to potentially
deadly tissue-level arrhythmias and the mechanisms for their arisal are not fully understood. There
is ongoing debate as to which is the predominant biophysical mechanism of EAD production: im-
balanced interactions between voltage-gated transmembrane currents or over-active Ca?t-dependent
transmembrane currents brought about by pathological intracellular Ca2t release dynamics. In this
article, we address this issue using a foundational 10-dimensional biophysical ventricular action po-
tential model which contains both electrical and intracellular Ca?® components. Surprisingly, we
find that the model can produce EADs through both biophysical mechanisms, which hints at a more
fundamental dynamical mechanism for EAD production. Fast-slow analysis reveals EADs, in both
cases, to be canard-induced mixed-mode oscillations. While the voltage-driven EADs arise from
a fast-slow problem with two slow variables, the Ca?t-driven EADs arise from the addition of a
third slow variable. Hence, we adapt existing computational methods in order to compute 2D slow
manifolds and 1D canard orbits in the reduced 7D model from which voltage-driven EADs arise.
Further, we extend these computational methods in order to compute, for the first time, 2D sets of
maximal canards which partition the 3D slow manifolds of the 8D problem from which Ca2*-driven
EADs arise. The canard viewpoint provides a unifying alternative to the voltage- or Ca2*t-driven
viewpoints while also providing explanatory and predictive insights that cannot be obtained through
the use of the traditional fast-slow approach.

Key words. excitable media, early afterdepolarizations, mixed-mode oscillations, canards,
cardiac, numerical continuation

AMS subject classifications. 37TN25, 92B05

1. Introduction. Early afterdepolarizations (EADs) are pathological fluctua-
tions in the membrane potential that can occur during cardiac action potentials [6]
(see Fig. 1). These can greatly extend the action potential (AP) duration, and are
associated with tachycardia (unusually fast heart rate) and sudden death [52, 56].
Studies with isolated cardiomyocytes have shown that EADs can be induced in a
number of ways, including hypokalemic environments [28, 39, 40, 57] (i.e., environ-
ments with unusually low potassium levels), addition of Ik channel blockers such as
cesium (Cs™) [1,35,36], and application of anti-arrhythmic drugs such as azimilide
[59,60] and E-4031 [37,47]. Thus, the abnormal oscillations are produced by factors
intrinsic to a single myocyte, and are not a network effect.

While it is clear that isolated myocytes can produce EADs, it is not so clear
why they produce them. Are these abnormal oscillations in the membrane potential
due to the nonlinear interactions of the ionic currents, or are they a product of the
intracellular Ca?t dynamics? Both explanations are feasible, and in fact, there is
evidence supporting both mechanisms. A classic study of the role Ca?* plays in EAD
production found that existent EADs could persist despite the use of either Ca?*-

*Submitted to the editors March 12, 2021.

Funding: This work was funded by the National Science Foundation, award number DMS
1853342 to T. Vo and R. Bertram

tDepartment of Mathematics, Florida State University, Tallahassee, FL 32306 (jkim-
rey@math.fsu.edu).

¥School of Mathematics, Monash University, Clayton, Australia (theodore.vo@monash.edu).

$Department of Mathematics, and Programs in Neuroscience and Biophysics, Florida State Uni-
versity, Tallahassee, FL 32306 (bertram@math.fsu.edu).

1

This manuscript is for review purposes only.


mailto:jkimrey@math.fsu.edu
mailto:jkimrey@math.fsu.edu
mailto:theodore.vo@monash.edu
mailto:bertram@math.fsu.edu

66

S D & J

e B B BN

=W NN =

2 J. KIMREY, T. VO, AND R. BERTRAM

(a) (b)
V (mV) V (mV)
a0t 4o0r
0 [Us » »
_40+ —40r
! t (ms) - . ! t (ms)
200 400 600 200 400 600

Fig. 1: Standard AP morphology versus an AP with EADs. (a) A standard
AP is generated under standard conditions. (b) An AP with two EADs is generated
under Ca?" overload conditions.

induced Ca?T release (CICR) antagonists—which bind to and inactivate intracellular
Ca®t channels—or Ca?* chelators—which bind to intracellular Ca?* signaling ions
[35]. A series of more recent studies used the dynamic clamp technique to induce
EADs in the presence of the Ca?t channel blocker nifedipine. The inward Ca2*
current was added back using the dynamic clamp, which uses a mathematical model
to determine the current based on the cell’s membrane potential. Though the current
is added back, there is no influx of Ca?* ions, so the dynamics in intracellular CaZ*
concentration ([Ca?*];) had to be simulated in order to reconstruct physiological APs.
The authors found that when the overlap region between the Ca2* current activation
and inactivation (the so-called “Ca?" window current”) was sufficiently wide and
EADs were produced, the intracellular Ca?* dynamics passively followed, rather than
led, the EAD-laden electrical dynamics [19,34]. These studies provide strong evidence
for a class of EADs that are voltage-driven. Alternatively, other studies have shown
that some EADs can be eliminated when CICR, from the sarcoplasmic reticulum (SR)
is inhibited [41,61] or when Ca?* chelators are added to the bathing solution [14,15].
These studies provide strong evidence for a Ca?*-driven mechanism for EADs.

From a biophysical viewpoint then, there appear to be at least two mechanisms
for EAD production. If, however, one examines the underlying dynamics behind each
of these, it may be possible that the explanation is the same. That is, there may
be one dynamical explanation for the very different biophysical mechanisms. Indeed,
there are precedents for this, such as the mathematical description of Ca?* oscillations
due to Ca?T release from the endoplasmic reticulum recast using similar equations
to those for the generation of tonic action potentials [29]. The biophysics is entirely
different, but the mathematical explanation is the same.

We explore this possibility here, using a mathematical model for ventricular my-
ocytes that has components for electrical activity and intracellular Ca?* dynamics,
and is capable of generating APs that exhibit EADs. We show that, in some cases,
the EADs can be produced without active participation from the Ca?* module (i.e.,
[Ca?T]; is clamped), but this is conditioned on the value of the Ca?* concentration.
In other cases, the Ca?t dynamics are essential for the EAD production. Yet, in both
cases, the explanation is the same from a dynamical viewpoint: the EADs are due
to canards induced by folded node singularities. We demonstrate this point using
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CANARDS UNDERLIE EADS IN CARDIOMYOCYTES 3

fast-slow analysis, and use this type of analysis to explain the influence of EAD-
inducing and EAD-inhibiting pharmacological manipulations. This work builds on
prior mathematical work from our group and others [2,22, 23,26, 53], but for the
first time provides a unified explanation for both purely voltage-dependent EADs and
those that also require Ca?* dynamics.

2. The Luo-Rudy IT Model. The Luo-Rudy IT model (LRII) of the guinea pig
ventricular myocyte [31] was developed to account for emerging evidence of the promi-
nent role played by intracellular Ca?* dynamics in regulating mammalian cardiac cell
electrical activity. Many of the more detailed ventricular myocyte models that have
emerged in the years since retain significant portions of the original formulations from
[31]. Therefore, we analyze the Luo-Rudy IT model for its ability to reproduce myriad
experimental findings, for its added biophysical detail compared to Luo-Rudy I [30]
(it includes prominent Ca?*-dependent currents, such as the Nat-Ca2* exchanger,
and a more complete description of intracellular [Ca?*]; dynamics), and for its ana-
lytical tractability. A summary schematic of the model cell with delineated voltage-
and Ca?t-module constituents is shown in Fig. 2.

I, ) Liaca
¢ L| Ca’ 4|
Ca2'+ NNa*
Ca'| Ca’' )
Y ]

KI* Na"4
* I
IK INa

Fig. 2: Summary schematic diagram of the Luo-Rudy II model. The semi-
separable electrical and Ca?tmodules are color-coded. Blue arrows denote transmem-
brane currents that belong strictly to the electrical module. Red arrows denote fluxes
belonging to the Ca?* module. Purple arrows denote Ca?*-dependent transmem-
brane currents that couple the electrical and Ca?* modules. The light blue and red
spaces denote the myoplasm and the sarcoplasmic reticulum (SR), respectively.

To investigate the role that Ca?t dynamics play in the emergence and properties
of EADs in the Luo-Rudy II model, three variants of the model are analyzed. Detailed
model equations and parameters are provided in Appendix A. The first model variant
excludes Ca?t dynamics and takes the form:

dv
C = _Zlion+lstim

ma
(2.1) 1
dy  ye(V) —y _ .
dt - Ty(V) ) y_{m7ha]7d7f7x}

where C},, is membrane capacitance (= 1 uF/ cm2), Lion 1s the sum of 11 ionic currents
which contain 6 dynamic variables, and Iy, is a brief pulse of current with 30 pA/ cm?
amplitude and 2 ms duration. Here, myoplasmic Ca?* ([Ca?*];), which couples the
electrical and Ca2™ subsystems, is clamped and treated as a parameter. This variant
of the model is 7-dimensional and bears strong resemblance to the Luo-Rudy I model
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101 variant analyzed in [22]; in that work the rapid AP-initiating transient Iy, dynamics
102 were removed, here they are retained.

103 The Ca?*-clamped model behaviors are then compared to those of the full model.
104 However, the variant of the full model investigated here excludes the spontaneous
105 Ca®* release mechanism included in [31]. This full model variant is the same as

106 (2.1) with the addition of 3 dynamic variables that represent Ca?* concentrations in
107 the myoplasm and in each of two sub-compartments of the SR. This full model is
108 10-dimensional (see Appendix A).

109 The full dynamic Ca?t model variant presents analytical challenges in that its
110 Ca?* dynamics are formulated with an explicit dependence on time; it is non-autonomous.|]
111 However, dimensional and empirical analysis reveal that the meaningful Ca?t dy-
112 namics, as they effect the emergence and properties of EADs, can be recapitulated
113 using a reduced autonomous model. Hence, to understand the dynamics of Ca?*t-
114 induced EADs we analyze a surrogate autonomous dynamic Ca?* model where the
115 dynamic variables representing the SR subcompartment Ca?* concentrations are re-
116 moved. This reduced dynamic Ca?* model is 8-dimensional.

117 Specific parameters are varied to examine and analyze response behaviors of each
118 model where specified. Otherwise, all parameter values are identical to those speci-
119 fied in [31] (see Appendix A). When varied, these parameter values are given in the
120 corresponding figures or main text. Under all parameter variations considered, except
121 where explicitly stated otherwise, each model (absent Iy, ) possesses 3 equilibria: a
122 stable equilibrium, F;, and two additional unstable equilibria, F5 and FE3. Equilib-
123 rium E; sets the resting membrane potential of the cell while equilibria Ey and Fs
124 have depolarized membrane potentials. Equilibrium FE5 is a saddle spiral and Fj is
125 a saddle point. The model code and computer programs used to generate the results
126 are available at: www.math.fsu.edu/~bertram/software/cardiac.

127 2.1. Luo-Rudy II produces EADs without Ca2?t dynamics. We begin
128 by analyzing the LRII model cell under clamped-Ca?* conditions. That is, we fix
129 the value of the [Ca?T]; variable and treat it as a parameter of the purely electrical
130 subsystem. In this way, we focus on EADs that are purely electrical in nature. This
131 treatment separates the two components of the model in a way that is difficult to do
132 experimentally.

133 One of the prevailing biophysical explanations for the generation of EADs is that
134 they occur when inward currents dominate outward currents in magnitude and/or
135 duration during the plateau phase of an AP [42,43]. The basis for this explanation lies
136 in the EAD-producing effects of many pharmacological interventions which are known
137 to either enhance inward Ca?t or Natcurrents or suppress outward K+currents. One
138 such EAD-producing chemical element, Cs™, has been shown to block both Ik and
139 Ix1 at high concentrations [12,36]. In this section, we simulate the application of
140 Cs*to test whether this leads to EADs in the clamped-Ca?* model cell.

141 We simulate the application of Cstby constructing a uniform grid in the two
142 parameter (o 1, [Ca*T];) plane (Fig. 3) on which to test model responses. The
143 parameter oy, r,is a multiplicative weight that scales both Ik and Ik; uniformly;
144 the value o, 1, =1 corresponds to the default setting while oy, 1, <1 corresponds
115 to decrements in the maximal conductances of Ik and I;. Clamped [Ca?*]; is varied
146 from 0.12 uM to 1 uM. The lower bound, 0.12 uM, is the resting level of [Ca?T]; from
147 the full model under the default parameter set (see Appendix A). The upper bound, 1
148 uM, is approximately the maximum value of the [Ca?T]; transient during a standard
149  model AP. To determine behavior, at each point in the 300 x 300 parameter grid the
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CANARDS UNDERLIE EADS IN CARDIOMYOCYTES 5

model was integrated for 10,000 ms using equilibrium F; as initial condition. When
E is stable, it sets the resting membrane potential. To initiate an AP at each grid
point, a current pulse of amplitude 30 uA/cm? and 2 ms duration was applied.

Figure 3a shows the results of these simulations in terms of the type of behavior
elicited. The light green region (‘No EADs’) denotes parameter sets that produce
standard APs without EADs. The white region (‘REF’) denotes the set of parameters
that leads to repolarization failure, where the cell remains depolarized at an elevated
membrane potential following the pulse. The light pink region (‘Auto’) in the top left
corner of the panel denotes parameter sets that elicit what is referred to as “auto-
maticity” in cardiac literature—called “tonic spiking” in neuroscience—in the absence
of a current pulse. Finally, the red striped region (‘EADs’) denotes parameter sets
that produce AP-prolonging EADs.

V (mV)

i 40
Auto i 0
1(c) —40
o ©
= ! o1
E; | 2 200 400 600 soo (M)
—= 0.56 i
I 3
;c:s 5 | No EADs = 4 (b)
O | -
_ i [RS) V (mV)
i B 6+
RF ! 0
0 12 L A‘(b) L |
' 04 0.7 1 40
QI Irca 200 400 S0 s0 |
(a) (c)

Fig. 3: Two-parameter diagram of the clamped-Ca2?tmodel responses to
Cst administration and varied [Ca2?*]; contains phase-2 and phase-3 EADs.
(a) Simulated responses to a single pulse reveal four regions of behavior: No EADs
(light green), EADs (red), RF (repolarization failure, white), and Auto (automaticity,
solid pink). Within the EADs region, the number of EADs elicited is distinguished by
different shades of red (see legend). A superimposed dashed (blue) vertical segment
at a1, =0.5248 marks a slice along which EADs are produced at either low or high
[Ca?t]; (blue diamond markers ‘(b)” and ‘(c)’, resp.). (b) Voltage trace of the ‘(b)’
marker from (a) shows two phase-2 EADs; [Ca?];=0.12 uM. (c) Voltage trace of the
‘(c)’ marker from (a) shows one phase-3 EAD; [Ca?"];=0.7213 uM.

The red hue in the EAD region represents the number of EADs evoked with that
parameter combination. Darker shades indicate more EADs. Within the darkest
shaded strip, for instance, 6 or more EADs are evoked in the AP that results from a
single current pulse; some points in this strip near the repolarization failure boundary
produce as many as 80+ EADs. Hence, for the lower values of the clamped [Ca®*];,
as a1, is decreased, the response to a current stimulus transitions from a standard
AP, to an AP with EADs, and finally to repolarization failure at the lowest oy, 1.,
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6 J. KIMREY, T. VO, AND R. BERTRAM

values. In addition, within the ‘EADs region’, the area of a subregion corresponding
to more EADs is smaller than that corresponding to fewer EADs. Thus, if a point
is selected in the EADs region at random, then APs exhibiting few EADs are more
probable than APs exhibiting many EADs.

The Auto region in Fig. 3a corresponds to parameter values in which the rest
state, F1, has undergone a Hopf bifurcation and is unstable. The only attractor of
the system is a stable limit cycle, so APs are produced periodically. The loss of
stability of E; is unrelated to the mechanism for EAD generation, so the transition
from normal APs to repolarization failure may or may not have an intervening interval
of EADs. That is, for some values of [Ca?*]; the transition is abrupt, switching from
normal APs to spontaneous periodic AP production as oy, 1, is decreased, while
with other values of [Ca?*]; there is an intervening interval of EADs.

The clamped-Ca?* model produces phase-2 and phase-3 EADs. One key
observation from Fig. 3a is that the relationship between (fixed) [Ca?*]; and EAD
production is non-monotonic. This is illustrated by following the dashed vertical blue
line segment superimposed on the grid at ar r,, = 0.5248. EADs are produced
at both lower (diamond labeled ‘(b)’) and higher (diamond labeled ‘(c)’) values of
[Ca?t];, but not at intermediate values. However, the timing of the EADs is very
different at the low and high [Ca2?*]; values. The EADs of Fig. 3b occur during
the plateau phase, or phase 2, of the AP, and have been termed phase-2 FADs. In
contrast, the EADs of Fig. 3¢ occur during the repolarization (i.e., falling) phase,
or phase 3, of the AP after an abbreviated phase 2; this class of EADs is initiated
at lower take-off potentials and has been termed phase-3 EADs. This distinction is
important because it shows that Ca?* dynamics are not needed for either of these
two classes of EADs, but the Ca?* level may be a determining factor in which type
is generated.

Though the partitioning of EAD production into those obtained at low [Ca®*];
and those obtained at high [Ca?*]; is convenient, it does not capture the cases in which
EADs are produced for a wide range of intermediate [Ca?*]; levels (see Fig. 3a). A
more useful approach is to understand the dynamics underlying the EADs, rather
than taking a biophysical approach that focuses on the contributions of different ionic
mechanisms. We use this approach next, taking advantage of the timescale separation
between different sets of variables.

3. Fast-slow analysis reveals a mechanism for EAD generation. In this
section, we use fast-slow analysis [3,18] to uncover the EAD-generating mechanisms for
both of these EAD types produced when Ca?* is clamped. Fast-slow analysis leverages
the multi-timescale structure of a model system to split it into lower-dimensional, more
analytically tractable, subsystems. Each subsystem is analyzed semi-independently
and the results stitched together to explain and predict system behavior.

3.1. The Luo-Rudy II Model is a Multi-Timescale System. Dimensional
analysis of (2.1) reveals that the clamped-Ca?* Luo-Rudy II model has a multiple
timescale structure. The voltage, V, and gating variables m (In, activation) and
h (fast In, inactivation) are superfast with timescales that are O(107!) ms. The
gating variables j (slow Iy, inactivation), and d (Ic,.1, activation) are fast with
timescales that are O(10°) ms. The variable f (Ic..1 inactivation) is slow with
timescale O(10') ms. The variable 2 (Ix activation) is superslow with timescale
O(10%) ms. Hence, the biophysical clamped-Ca?* model (2.1) can be recast as a
singular perturbation problem containing multiple timescales.
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CANARDS UNDERLIE EADS IN CARDIOMYOCYTES 7

With more than two timescales identified, the question of how to leverage this
structure to explain EADs arises. In previous work analyzing EADs in the similarly
structured Luo-Rudy I model, we found that a two-timescale splitting was sufficient
for illuminating the dynamical drivers of myriad EAD behaviors [22]. We also found
that treating both f and z (identically named in that and this model) as comprising
the slow subsystem provided explanatory and predictive advantages over the more
traditional 1-slow approach. In what follows, we show that a two-timescale splitting
of (2.1) with slow variables (f,z) and fast variables (V, m, h, j,d) provides a compre-
hensive picture of the dynamical drivers underlying EAD behavior. The timescale
separation is increased when the membrane capacitance, C,,, is reduced, and we re-
fer to the C,, — 0 limit as the singular limit. The figures and text that follow are
presented in terms of the original model variables.

3.2. The Fast Subsystem Lacks a Mechanism for EAD Generation. We
first analyze the equilibria and bifurcation structure of the fast subsystem, treating the
slow variables f and = as bifurcation parameters. The equilibria of the fast subsystem
form a 2D surface, called the critical manifold, within the 7D phase space. The critical
manifold can be expressed globally as a graph over the coordinates (V, x):

- Z Iion:" ICa;L _
doo(v) fCa([CaQ+]i) (ICa + ICa,Na + ICa,K)

[= = fS(V7$)

(3.1) )
J = jOO(V)
d=dus(V)

Figure 4 shows the resulting critical manifold for each parameter set used in Figs. 3b
and 3c projected into (f,z,V) phase space. In both cases the critical manifold is
cubic-shaped with upper and lower attracting sheets, Sg'* and S5~ (blue surfaces),
and a middle sheet, S§ (red surface), of saddle-type equilibria. The upper stable sheet,
So "+ meets the unstable sheet, S& at a 1D curve, L (green), of saddle-node, or fold,
bifurcations. The lower attracting and saddle sheets also meet at a fold curve, but
this occurs far outside the physiologically relevant domain and is not shown. These
1D curves mark the only bifurcations that the fast subsystem undergoes through
meaningful variation (as parameters) in f and x. That is, the fast subsystem does
not possess Hopf bifurcations, which have been suggested elsewhere as the dynamical
mechanism underlying the generation of EADs [25,27,42,51].

With this equilibrium and bifurcation structure, solutions of the fast subsystem
that are initialized away from the critical manifold will converge to the appropriate
attracting sheet in “fast” time. Once solutions of the fast subsystem get sufficiently
close to an attracting sheet of the critical manifold, the dynamics switch to those
described by the slow subsystem and evolve in “slow” time.

3.3. The Slow Subsystem Possesses a Folded Node Singularity. Within
the slow subsystem, the fast variables V, m, h,j and d are slaved to the critical mani-
fold, adjusting instantaneously to the slow motions of f and x. The critical manifold
then is the interface between the fast and slow subsystems: the fast subsystem pro-
duces rapid contraction to the appropriate attracting sheet, where the slow subsystem
takes over and guides solutions along this sheet. The dynamics can switch from slow
back to fast at the regular fold points of the critical manifold.

This manuscript is for review purposes only.
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(b1)
Set 7
L
S F| FN
]
x f E3

Sg,_ Sg/)'

Fig. 4: Two views of the critical manifold, the fast-slow solution approxi-
mation, and the full solution trajectory projected into (f,z, V) space for
each trace in Figs. 3b and 3c. Each row shows two views of the same projection.
In all panels the critical manifold is comprised of attracting (S ’i, blue) and saddle-
type (S§, red) sheets which meet at 1D fold curves. Only the upper fold (L, green)
is shown. Superimposed on each critical manifold is the true solution (black) and
its fast-slow analog (orange). Each fast-slow solution is composed of an initial fast
segment triggered by Igim (double cyan arrows), an ensuing rapid upstroke (double
orange arrows) to Sy "+ a subsequent slow segment along So o+ (single orange arrow)
toward L, a consequent rapid expulsion from L toward S;°~ (double orange arrows),
and a slow return (single orange arrow) to stable equilibrium, E; (equilibria Fy and
Es5 are unstable). Within L there is a folded node singularity (FN, purple marker) of
the desingularized slow subsystem and 7 (magenta) is its associated singular strong
canard (see main text). (al) (z,V)-dominant view corresponding to Fig. 3b. (a2)
(f,V)-dominant view corresponding to Fig. 3b. (bl) (z,V)-dominant view corre-
sponding to Fig. 3c. (b2) (f,V)-dominant view corresponding to Fig. 3c.
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CANARDS UNDERLIE EADS IN CARDIOMYOCYTES 9

For both parameter sets shown in Fig. 4 we find, using the procedure outlined
in [55], that the slow subsystem possesses two types of singularities: true singulari-
ties (equilibria) and folded singularities [48]. The positions of the true singularities,
E, (stable node), Fy (saddle point), and F3 (saddle point) in phase space remain
unchanged under variation in Cy,. The single folded singularity (Fig. 4, FN, purple
marker), which lies along the fold, L, is of node type; classification of folded singu-
larities is determined through linearization of the associated desingularized reduced
problem. Associated with the folded node are a pair of distinguished slow subsystem
solutions that correspond to its strong and weak eigendirections. They are respec-
tively called the singular strong canard (Fig. 4 ~J, magenta) and the singular weak
canard (not pictured).

The region of Sy "+ bounded above by the singular strong canard, 7, and below
by the fold curve, L, is called the singular funnel. Within Sg "+ the singular funnel is
the basin of attraction for the folded node. Solutions of the slow subsystem initialized
in the singular funnel evolve toward the folded node, where they cross from Sy " to S§
with finite speed, and follow S§ for O(1) times on the slow timescale. These singular
canards and their non-singular counterparts give rise to small amplitude oscillations
in the vicinity of the folded node [48,54]. In ours and others’ works, it has been shown
that EADs are organized by a folded node of the slow subsystem [22,26,53].

3.4. Singular solution segments along Sg’+ predict no EADs. The fast
and slow subsystems are used to construct singular approximations of the EAD-
containing solutions shown in Figs. 3b, 3c. This is done by concatenating alternating
fast and slow solution segments. In contrast to some other models in which fast-
slow techniques have been applied [25,26,45,53], the generation of APs here is not
spontaneous and requires a sufficiently large stimulus, Isim.

Superimposed on both critical manifolds shown in Figure 4 (rows are different
views of the same projection) is the resulting singular approximation (orange), along-
side its associated full solution (black), in response to an Iy, pulse. Under the
singular limit, a sufficiently strong stimulus (denoted by double cyan arrows) injects
the solution into the basin of attraction of Sy . The ensuing solution segment,
governed by the fast subsystem, rapidly converges to S o+ (double orange arrows up-
ward). Once on Sj "+ outside the singular funnel, the slow subsystem guides the slow
segment (single orange arrow) along the critical manifold toward the fold curve, L.
Once L is reached, the fast subsystem takes over and the orbit transitions rapidly
(double orange arrows downward) to the lower attracting sheet, Sg'~. On Sy, the
slow subsystem takes over again and returns the solution (single orange arrow) to
rest, F1, completing the construction.

Comparing the singular to the full solution in each of Figs. 4 al and b1, we find
that the two are nearly aligned from the initial Ig iy pulse until the solutions get
within the vicinity of the fold, L. Both the singular and non-singular solutions lie
on the left-hand side of 4J, near but just outside of the singular funnel. That is, the
singular solution trajectory in each case is not funneled through the folded node (FN,
purple markers) but instead, exhibits relaxation-type fast switching at L. Hence, the
singular solutions do not predict the occurrence of canard-induced EAD oscillations
in the full solution. In light of this, we investigate how the critical manifold and its
singular funnel perturb for 0 < C},, <1 to determine whether the EADs observed are
in fact canard-induced.

4. EADs are generated by evolution along twisted slow manifolds. Al-
though the singular solution approximations do not predict EADs in the full system,
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the folded critical manifold and the folded node revealed by our fast-slow analysis
still leaves open the possibility that canards present away from the singular limit are
responsible for the EADs. To show that this is indeed the case, we investigate how the
sheets of the critical manifold smoothly perturb to locally invariant slow manifolds
for Cy,(ox €) > 0 (small). We further compute continuations of these slow manifolds
for C,, — 1 and find that the local twisting is key to understanding the genesis and
properties of EADs.

4.1. The twisted region of the slow manifold perturbs toward the EAD
oscillations of full system solutions. Fenichel theory [9, 18] guarantees that the
sections of the critical manifold bounded away from the fold curve, L, perturb smoothlyll
to nearby locally invariant slow manifolds of the perturbed flow. Further, the local
attraction/repulsion properties of these sets also persist. However, the EAD oscilla-
tions occur in the vicinity of L—where traditional Fenichel theory does not apply.
Canard theory [24,54] extends the Fenichel results into the neighborhood of the fold,
and the folded node in particular.

(b)

V (mV)

0.07 0.075
I

V (mV)

0.075

0.08

-20

0.15
0'10.05

0.55

Fig. 5: Sheets of the critical manifold, Sg"" and S§3, perturb to twisted slow
manifolds, Sg’: and S¢_, in the vicinity of the folded node, FN. (a) Sheets

ST (blue) and S (red) are computed up to the hyperplane ¥ (gray) containing FN
(purple marker) with the singular strong canard, 7§ (magenta), superimposed. Inset is
the projection of the intersections of Sg’+, Sg, and 7§ with ¥ into (f, V') phase space.
(b) Perturbed sheets Sg: (blue) and S, =~ (red), computed up to the hyperplane %,
become twisted in the vicinity of FN (see inset) and the strong maximal canard,
vo (magenta), shifts toward larger z-coordinate values in phase space. Inset is the
projection of the intersections of Sé’:, S¢, , and yo with ¥ into (f, V) phase space.
Note the emergent spiraling.

Canard theory holds that in the vicinity of the folded node, for C),, > 0 small,
So + and S§ perturb smoothly to slow manifolds S’gi and S¢, , respectively (see Fig.
5), which twist around the (perturbed) weak canard [7,48,54]. In cardiac models with
one fast and two slow variables—the canonical splitting under which canard-induced
oscillations arise—this local twisting in the vicinity of the folded node induces a finite
number of transverse intersections of the attracting and repelling slow manifolds [2,
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CANARDS UNDERLIE EADS IN CARDIOMYOCYTES 11

26,53]. The solution curves along which the two-dimensional slow manifolds intersect
in this context are called mazimal canards. However, in our system, with two slow and
five fast variables, maximal canard solutions are no longer transverse intersections of
S¢.and S . To facilitate the analysis and computation of canards in such a case,
center manlfold theory has been used to justify reducing a (m,2)—fast-slow problem
near a fold, with m > 1 but finite, to a (1,2)-fast-slow problem [5,44]. However,
we follow [13] and define and compute canards as solutions of the full system (2.1)
which transition from the stable manifold SC+ to the unstable saddle manifold S¢,
and follow S¢, for long O(1) times on the slow timescale. That is, we show that the
homotopic continuation methods developed in [13] can be extended to numerically
compute the canards and slow manifolds of the full 7D model (see Appendix C).

Figure 5 represents the manner in which the sheets of the critical manifold, S’
(blue) and S§ (red), from Figs. 4al and 4a2 persist as slow manifolds, S¢” o (blue)
and S§ (red), as C, is increased from 0 (Fig. 5a) to 0.5 uF/cm? (Flg 5b) In
both cases, the corresponding strong canard (v for C,, = 0 and g for C,,, = 0.5) is
superimposed on the critical/slow manifold(s) and the region of the phase space in
view is fixed. The local structure of the slow manifold unfolding shown in Fig. 5 is
used to represent what occurs in the vicinity of the folded node for both parameter
sets pictured in Fig. 4.

For computation and visualization purposes, all slow manifolds are computed up
to the codimension-1 hyperplane ¥ (see Appendix C). Whereas the standard set-up
chooses X such that it contains the folded singularity, the significant movement of the
twisted funnel in phase space as we both increase C,, away from the singular limit
and as we vary system parameters requires a more general set-up. We instead choose
3. to contain the turning point of the strong canard, -y, and let the orientation of
Y vary with parameters. Each inset shows the intersection curves S»* N X (blue)
and S* N XY (red) along with the intersection point vpNY (magenta) projected to the
(f,V)-plane. Although Fig. 5b appears to convey that S“+ (blue) and S¢, (red)
intersect one another, this is simply an artifact of projecting ‘the 7D dynamics into a
lower-dimensional subspace.

For the parameter set shown in Fig. 5, tracking the movement of the funnel region
reveals that as Cy, is increased from 0, the funnel moves in phase space towards the
EAD oscillations observed at C,,, = 1 uF/cm?. For instance, the z-coordinate of the
turning point of the strong canard increases from z,, = 0.5804 at C,,, = 0 uF/cm? to
z, = 0.6016 at C,, = 0.5 uF/cm?. Hence, we must fully unfold the slow manifolds
to Cy, = 1 pF/cm? to determine whether the twisted funnel structure underlies EAD
generation.

4.2. Both clamped-Ca?t EAD behaviors are canard-induced. Here, we
fully unfold the slow manifolds present for both parameter sets shown in Fig. 4 to
determine whether the observed EAD behaviors are canard-induced. To do so, we
must examine the finer structure of the slow manifolds elaborated by canard theory.
According to canard theory, the maximal canards (vo, V1, V2,---, Vn) that rebult from
the local twisting of the slow manifolds partition the funnel region of S¢; * into ro-
tational sectors, or strips. Each rotational sector prescribes a partlcular number of
small amplitude oscillations to be produced in entrant solutions. Solutions injected
into the trivial rotational sector outside the funnel region (bounded by 7g) do not
exhibit small amplitude oscillations, while solutions injected into the rotational sector
between the maximal canards v;_1 and ~; for ¢ = 1,2, ..., n exhibit ¢ small oscillations
before exiting the funnel (by rapidly transitioning to either Sa: or Sa:)
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This canard structure, embedded within the twisted slow manifolds, constrains
the behavior of entrant solutions. Hence, it can be used to predict whether and
how many small oscillations, or EADs, will be produced under a given set of model
conditions. This provides a means of testing whether canards are the dynamical
mechanism underlying EAD generation and properties.

Figure 6 shows closeup views of the continuations of the twisted slow manifold
regions of (f,z, V) phase space for both low [Ca?*]; phase-2 EADs (Fig. 6a) and high
[Ca?*]; phase-3 EADs (Fig. 6b). In both cases, the solution trajectory (T, black) and
the leading maximal canards (7o, magenta; v, cyan; ¥z, orange) are superimposed on
the continuations of the slow manifolds, Sg:: (blue) and S¢,  (red). Corresponding
voltage traces are inset.

Canard theory predicts that solutions that lie in the rotational sector between ~q
and -1 should contain one EAD and that solutions that lie in the rotational sector
between v, and -9 should contain two EADs. The black solution segment shown
in Figs. 6a lies between maximal canards v; and 79 and, in accordance with canard
theory, exhibits two small oscillations (EADs) before exiting the funnel. Similarly,
the black segment in Fig. 6b lies between 79 and v; (see inset) and exhibits one
EAD oscillation, also in agreement with the predictions from canard theory. This
affirms that maximal canards demarcate the boundaries in phase space across which
the number of EADs produced is incremented/decremented. Accordingly, the EADs
observed under both biophysical conditions are canard-induced oscillations.

(a) (b)

A | A
a,+
(@
Y1
L SCT”,
S — —
—_— T
03 02 o1 044 04 0.36
f x

Fig. 6: Canards underlie low [Ca%T]; phase-2 EADs and high [Ca?*]; phase-
3 EADs Both panels are closeup views of the twisted slow manifolds, Sg: (blue) and
S¢,  (red), in the vicinity of EAD-exhibiting solution segments (I", black) in (f,z,V)
phase space. Superimposed are maximal canard segments—yy (magenta), ;1 (cyan),
and v, (orange)-which serve as phase space boundaries for the addition/reduction
of EAD number. (a) Low [Ca?*t]; phase-2 EADs corresponding to trace Fig. 3b (see

inset). (b) High [Ca®*]; phase-3 EADs corresponding to trace Fig. 3c (see inset).

4.3. Canards can explain properties of phase-3 EADs. Viewing EADs
from the canard viewpoint provides potential insights into the emergence and proper-
ties of phase-3 EADs. In [42], it is argued that the dynamical mechanism underlying
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CANARDS UNDERLIE EADS IN CARDIOMYOCYTES 13

the genesis of phase-3 EADs is the same as the dynamical mechanism underlying
phase-2 EADs: a Hopf bifurcation in the fast subsystem. However, this explanation
does not account for the most notable differences between phase-2 and phase-3 EADs.
First, phase-3 EADs have a significantly lower takeoff potential and larger amplitude
than phase-2 EADs [10]. Second, phase-3 EADs are more difficult to elicit in isolated
cell and tissue preparation experiments than phase-2 EADs [10,42]. Neither of these
findings would be expected if a Hopf bifurcation in the fast subsystem were responsi-
ble for both phase-2 and phase-3 EADS. However, both findings are expected when
the EADs are viewed through canard analysis, as we describe next.

In Fig. 6b, which shows the phase-3 EAD in the (f, x, V) phase space, the solution
segment, ') lies very close to 9. The closer a solution lies to =y, the longer it can
follow S¢,  before being repelled. Hence, because I' lies close to 7, it reaches a much

lower takeoff potential before jumping back to S&j This results in an EAD that
occurs late in the repolarization phase of the AP, and has large amplitude. These
are defining properties of a phase-3 EAD. Furthermore, the rarity with which phase-
3 EADs are observed in experiments can also be explained as a consequence of the
required proximity between I' and ~y: it is rare for a solution trajectory to be injected
so close to a maximal canard.

5. Canards underlie Ca?t dynamics-mediated EADs. Our analysis has
demonstrated that the Ca?t level can play an important and complex role in the
generation of different classes of EADs even when [Ca®"]; remains fixed. In doing
so, we have shown that Ca?t dynamics are not essential to EAD production; EADs
can occur even when [Ca?*t]; is clamped. Here, we introduce the Ca?* dynamics (see
(A.1Db)) into our analysis to investigate behaviors that cannot be reproduced when
the Ca?t concentration is clamped. For this analysis, the cell is subject to periodic
pacing, with a stimulus period of 2000 ms, until the pulsed solution converges to a
periodic attractor. Unless otherwise noted, all of the time courses in the following
analysis are a single period of this attractor AP.

5.1. The clamped-Ca?t model does not reproduce EADs induced by
Ca%t overload. In [32], the developers of the LRII model investigated its ability to
reproduce experimental observations regarding early afterdepolarizations as well as
other pathologies across species. In one set of numerical experiments, they showed
that under the combined effects of Na™ ion accumulation, increases in the activity
of Iga1, and ensuing Ca?t overload the model produces robust and repeated EADs
over consecutive APs (see Fig. 11 of [32]). These EADs occurred during episodes of
spontaneous AP activity as well as during periodic pacing [32]. That is, under these
conditions, the full model (see Appendix A) possesses an EAD generating mechanism
that is separable from the process of spontaneous Ca?* release from the sarcoplasmic
reticulum (SR), yet may still rely on Ca?* dynamics. It is this EAD generating
mechanism, which arises in the presence of pathological Ca?t dynamics, that we
investigate here.

We first examine whether the EADs produced by the model with Ca?* dynamics
(which we refer to as the “dynamic-Ca?* model”) can be reproduced by the model
with Ca?* clamped (which we refer to as the “clamped-Ca?* model”). In both model
contexts, key parameters are set to simulate Ca?t overload ([Na*]; = 15 mmol/L,
[Ca?T], = 3 mmol/L, and Pc, (max Ic,1, amplitude) = 1.3x0.00054 cm/s). Under
these conditions, the AP generated by the dynamic-Ca?t model has a long plateau
and two EADs (black curve in Fig. 7a) and a [Ca?"]; profile consisting of a rapid
peak with a slow decline during the AP (black curve in Fig. 7b). In our attempt to
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replicate this voltage timecourse with the clamped-Ca?* model, four different values of
[Ca?*]; were used (colored horizontal lines in Fig. 7b). For the lower values of [Ca?T];,
the clamped-Ca?T model produced APs without EADs (blue and magenta traces in
Fig. 7a), while for the higher values of [Ca?*]; it exhibited automaticity (purple and
red traces in Fig. 7a). In no case did the clamped-Ca?™ model produce a long AP
with EADs, in contrast to the dynamic-Ca?* model which generically produces a long
AP with EADs in these conditions. Hence, the LRII model reproduces experimental
findings that show that some classes of EADs can be abolished through the use of
Ca?* chelators and CICR antagonists which essentially clamp the Ca2* concentration.

(a) (b)
V (mV) [Ca**); pM
40+ 4
3 L
0 L
ol
—40k —
! \
. . ‘\' . L L L t S
200 400 600 | (tms) 200 400 600 (me)

Fig. 7. Ca?t dynamics are essential for Ca?t overload-induced EADs. (a)
Voltage traces produced by the dynamic-Ca?* model (black) and the clamped-Ca?*
model (colored). In each case, parameters were set to replicate the conditions of Ca?*
overload ([Na*];= 15 mmol/L, [Ca?T],= 3 mmol/L, 30% increase in Ic,1, activity).
An AP with EADs is produced by the dynamic-Ca?* model, but not by the clamped-
Ca?* model. (b) Ca?* levels corresponding to the voltage traces in a are color-coded
accordingly.

5.2. Fast-slow analysis of a minimal dynamic-Ca?t model reveals a
curve of folded nodes. Rather than working with the full dynamic-Ca?* model, we
found that the essential elements for EAD production could be retained by performing
a model reduction in which the variables [Ca®],s and [Ca?t]j, are fixed. To fix
[Ca?t],s, We use its comparatively large timescale and weak coupling to [Ca?*];.
To fix [Ca?t]js, we rely on its vanishing coupling to [Ca®T]; very shortly after the
AP upstroke, long before the EADs are generated (for details, see Appendix A).
With these changes, the 8-dimensional “minimal dynamic-Ca?* model” (see Appendix
(A.2)) is retained.

To perform a fast-slow analysis of the model (A.2), we first determined the char-
acteristic timescale of [Ca?t]; empirically. The resulting time constant estimate,
T(Ca2H]; decay ~ 90 ms, is on the order of the timescales observed for the slow variables
f and z. Hence, [Ca®t]; acts as a third slow variable and the dynamic-Ca®* model
can be cast as a singularly perturbed (5,3)—fast-slow problem. This third slow variable
is what unfolds a set of system behaviors which cannot be seen in the clamped-Ca?*
model.

In [55], it was shown that canard theory extends naturally from the case of two
slow variables to the more general case of k slow variables, for any £ > 2 and finite.
Further, in [11], it was shown that these theoretical advancements could be used to
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explain anomalous delays in Ca?* models with three slow variables. Hence, the canard
mechanism responsible for the production of EADs in the (5,2)-fast-slow clamped-
Ca?T model may persist as the EAD generating mechanism in the (5,3)fast-slow
dynamic-Ca?* model. In light of this, we undertake a fast-slow analysis of the minimal
dynamic-Ca?* model in search of the requisite singular structure which can give rise
to canard-mediated EAD behavior.

In our analysis of the fast subsystem of (2.1), we found that even under ex-
haustive variation in [Ca?*];, it lacked an EAD generating mechanism. Hence, the
fast subsystem of the minimal dynamic-Ca?T model does not possess an EAD gen-
erating mechanism and we focus our analysis on the slow subsystem which is a 3D
approximation of the minimal dynamic-Ca?* model where the fast variables are at
quasi-equilibrium.

The critical manifold, to which solutions are constrained, can be expressed glob-
ally as a graph over the coordinates ([Ca®*];,z,V):

— _Zlion +ICa—L N . a2+ ‘
I = ) Fnl a2 ) (To + Toma + Tewg) 955 (G
Gy o=
' h = heo(V)
Jj= joo(v)
d=dw(V)

Intuitively, the 3D critical manifold (5.1) can be thought of as a one-parameter
([Ca2*];) family of 2D critical manifolds (3.1). Hence, it is comprised of upper and
lower 3D attracting sets and a middle 3D set of saddle-type. Consequently, the set of
fold curves along which the upper attracting and middle saddle-type sets meet forms
a 2D surface. Figure 8 shows two different views of this 2D fold surface (L, green),
which is located near plateau membrane potentials in ([Ca?t];, z,V) phase space.
Superimposition of the dynamic Ca?t EAD segment (I, black) atop the fold surface
reveals that the EADs occur near the fold surface.

Analysis of the (desingularized) slow subsystem further reveals that the fold sur-
face contains a curve of folded singularities (the collection of orange, red, and purple
curve segments in Fig. 8). Each folded singularity within the curve possesses a zero
eigenvalue whose associated eigenvector is tangent to the curve. Hence, the stability
classification of each folded singularity is determined using the two remaining non-zero
eigenvalues [55].

We found that the curve of folded singularities contains segments of folded nodes
(purple), points which were shown to organize the canard-mediated EAD behavior
of the clamped-Ca** model (2.1). The curve of folded singularities also contains
segments of folded foci (orange) and folded saddles (red). It appears that the EAD
solution segment, I', interacts with one of the segments of folded nodes before two
EADs ensue. We focus our analysis on this segment of folded nodes, and its potential
for understanding EAD production in the dynamic-Ca?* model.

As in the case of two slow variables, associated with each folded node along the
segment is a pair of special slow subsystem solutions, a strong and a weak singular
canard, which are locally tangent to its strong and weak eigenvectors, respectively.
Hence, associated with this (and the other) segment of folded node singularities are
a pair of 2D families of distinguished slow subsystem solutions: one family of strong
singular canards and the other of weak singular canards. The subset of the family of
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Fig. 8: Two views of structures involved in EADs generated by the minimal
dynamic-Ca?t model. The fold surface (L) is in green. Contained within this
surface is a curve of folded singularities containing folded saddles (red), folded foci
(orange), and folded nodes (purple). Associated with the folded nodes is a surface
of strong singular canards (', magenta). Finally, a portion of the system trajectory
containing two EADS (T, black) is superimposed.

strong singular canards associated with this segment of folded nodes that lies above
the fold surface is pictured in Fig. 8 (I{, magenta).

In contrast with works, such as [11], in which the limiting geometry of the 3D slow
subsystem was sufficient to explain fully perturbed solution behavior, our analysis of
the clamped-Ca?* model showed that the singular limit can be an unreliable predictor
of full solution behavior. Hence, in the next section, we extend existing approaches to
the analysis of problems with three slow variables and unfold the limiting geometry
of the minimal dynamic-Ca?* slow subsystem to determine whether the EADs are
canard-induced.

5.3. Dynamic-Ca?+ EADS are generated by canards. Fast-slow analysis
of (A.2) revealed a folded critical manifold, the existence of sets of folded node sin-
gularities, and, in turn, sets of singular canards. We have shown that the perturbed
analogs of these structures in the two slow variable problem (2.1) are fundamental
in organizing EAD behavior. We use a similar unfolding approach here, increasing
the membrane capacitance, C,,, away from the singular limit C,,, — 0. The aim is
to determine whether the resulting maximal canards are responsible for the EADs
produced by the dynamic-Ca?* model (A.2).

As is the case with two slow variables, Fenichel theory [9] applies to the por-
tion of the critical manifold that is not near the fold surface. These subsets perturb
smoothly to locally invariant 3D slow manifolds whose local attractive/repulsive prop-
erties match those of the critical manifold. Furthermore, canard theory applies in the
vicinity of the fold surface and, in particular, in the vicinity of the segment of folded
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node singularities [55]. That is, the 2D sets of singular strong and weak canards asso-
ciated with folded node singularities perturb to a finite number of 2D sets of maximal
canards. As in the case of two slow variables, these (2D) surfaces of maximal canards
partition the (3D) upper attracting and middle saddle-type slow manifolds into (3D)
rotational sectors.

The existence of 2D surfaces of maximal canards in the phase space raises ques-
tions about how to compute them. We found that the homotopic continuation meth-
ods developed in [13] could be extended to accomplish this task. The technical details
of the problem set-up and procedure are outlined in Appendix D. Figure 9 shows
two illustrative projections of the resulting maximal canard sets and the trajectory
containing two EADS (T, black) in phase space. Fig. 9a shows the three leading max-
imal canard surfaces (I, magenta; I'1, cyan; I, orange) along with a portion of the
2-EAD trajectory, projected into (x,[Ca?T];,V) space. Although the true dynamics
are in 8D, the trajectory appears to enter the region of phase space between I} and
I5, where canard theory would predict that an entrant trajectory should exhibit two
small oscillations. Indeed, this is the case; the trajectory exhibits two EADs.

(a) (b)
2 4.
F % *TNYy
1 r‘ N —
0 Iy / 0EADs| 1EAD 2 EADs 1. 21
/ I =
— I
> 12. Ncg
G S
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230
NN
2
0
. 0.3 0.15 0
[Ca®*]; (M) x

Fig. 9: Evidence that dynamic-Ca?t EADs are due to canards (a) 2D sets
of maximal canards, Ij (magenta), Iy (cyan), and I (orange) are projected into
([Ca2*];, #, V) phase space alongside the dynamic-Ca?T EAD solution trajectory (T,
black). (b) Intersections with the plane V= —2 mV (3y). Both views indicate that
the trajectory enters a region of phase space between the maximal canards I} and
I, so that canard theory predicts two small oscillations, in agreement with the two
EADS exhibited by T'.

In Fig. 9b, a 2D view of this arrangement is obtained by projecting the in-
tersections of the maximal canard surfaces and the trajectory with the hyperplane
v ={(V,m,h,j,d, f,x) € R"|V = —2 mV} (which lies above the fold surface) onto
the (x,[Ca?T];)-plane. Here, the canard surfaces become curves (Iy N Xy, magenta;
I N Xy, cyan; Iy N Xy, orange) and the trajectory curve is now a point (I' N Xy,
black). From this, it is again clear that the trajectory enters the region bounded by
the maximal canards I'; and Iy (labeled as ‘2 EADs’), so that canard theory predicts
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565 two small oscillations. This match between the canard theory predictions and the
566  number of EADs observed indicates that the EADs are produced by canards.

567 5.4. Canard theory explains why reducing Ca?* release from intracel-
568 lular stores reduces the number of EADs. It has been shown that manipulations
that reduce the release of Ca?* from the SR, such as the use of Ca?* chelators to
bind free Ca?T or the use of ryanodine receptor antagonists to block Ca?*-induced
Ca?* release, also tend to reduce the number of EADs produced or eliminate them
altogether [15,41,61]. To examine whether this effect could be explained using ca-
nard theory, we simulated it by reducing the maximum amplitude of the flux of Ca%*
release from the SR, J.1, under Ca2* overload conditions. (G.e = 20 reduced to 10
571 in the full model). In the reduced version of the model, this also requires setting

[Cau2+]nsr ~ 3.5499 mM. All other parameters remain unchanged.

The effect of this manipulation, in the minimal dynamic-Ca?t model, is to reduce
the number of EADs from two to one. This is shown in Fig. 10a, which includes
the portion of the trajectory near the EAD, and the three leading maximal canard
surfaces. The intersection of each of these objects with Xy is shown in Fig. 10b. The
canard surfaces are only minimally affected by the reduced Ca?* release. There is
a greater effect on the trajectory, so that it now enters a different rotational sector.
Now the trajectory enters the region between I (magenta) and I (cyan) which,
from canard theory, indicates the existence of a single small oscillation. This is again
in agreement with the single EAD that is produced by the minimal dynamic-Ca?*
586  model.
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Fig. 10: Reduction in CICR amplitude decreases EAD number by changing
the rotational sector in which the solution, T, is injected. (a) Reduced CICR
amplitude has little effect on the maximal canard surfaces, but the trajectory is left-
shifted and enters the rotational region between Iy (magenta) and Iy (cyan). (b) In
the intersection with the plane V' = —2 mV (3y/), the trajectory lies in the sector in
which one small oscillation is predicted by canard theory, in agreement with the single

EAD produced by the minimal dynamic-Ca?* model. In this simulation, [Ca2+]nsr is
reduced to 3.5499 mM
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5.5. Canards underlie dynamic-Ca?* phase-3 EADs. We showed that the
clamped-Ca?* model produces phase-3 EADs and that it does so as a result of so-
lutions lying close in proximity to maximal canards. It is reasonable then to ask:
can the dynamic-Ca?* model produce phase-3 EADs? If so, is proximity to maximal
canards still the underlying culprit? Indeed, we find that the dynamic-Ca?™ model
can produce phase-3 EADs and that they also result from proximity of solutions to
maximal canards.

Figure 11 shows a side-by-side comparison of the dynamic-Ca?* phase-2 EADs
introduced in Fig. 7 (Fig. 11a) and the phase-3 EAD evoked in response to setting
the CICR release flux amplitude parameter, Gy = 21.96235 1/s for a single stimulus
pulse (Fig. 11b). Although not shown, this value of G, leads to the trajectory being
injected into the immediate vicinity of I}, where the ensuing solution—after an initial
phase-2 EAD—follows I to a notably lower take-off potential (~-31.25 mV in Fig. 11b
versus ~-19.5 mV in Fig. 11a) before jumping back up to Sgi We note that the
phase-3 EAD signature shown in Fig. 11b bears striking resemblance to some previous
experimental recordings (e.g., compare to Fig. 9c of [35]).

(a) (b)
V (mV) V (mV)
400 40t phase-3 EAD
»
phase-2 EAD
0 or >
—40} -40F
. . t (ms) - . : t (ms)
200 400 600 200 400 600

Fig. 11: . Phase-2 and Phase-3 EADs are produced with the dynamic-
Ca?T model. (a) An AP with two phase-2 EADs generated under Ca?* overload
conditions. (b) Proximity of the solution to the 2D maximal canard surface Iy induces
a phase-3 EAD following a phase-2 EAD.

6. Discussion. Prior analyses of EADs produced by low-dimensional mathe-
matical models of cardiomyocyte electrical activity have revealed that EADs are
canard-induced small oscillations [2, 22, 23,26, 53]. This canard-based approach to
investigating the emergence and properties of EADs provides explanatory and pre-
dictive insights that cannot be obtained by other means, but it is most easily applied
to models that retain only the essential features of cardiomyocyte electrical activ-
ity. Importantly, many of the constituent components of cellular electrical activity
which are excluded from these analyses have been shown to play prominent roles
in mediating the emergence, properties, and persistence of EADs in cardiomyocytes
[4,31,35,41,46]. Thus, there is a gap between the explanatory and predictive insights
provided by canard analysis of low-dimensional models, and the much more limited
analysis that comes from computer simulations of higher-dimensional, but more bio-
physical, models. It is these latter models that are often most helpful in informing
experimental and clinical practice.

The current study begins to bridge the gap between the two approaches. It does
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so by performing a canard analysis of one of the foundational mathematical mod-
els in cardiac electrophysiology, the Luo—Rudy II model [31]. This model includes
many biophysical elements that potentially play a role in the generation of EADs,
but which have yet to be analyzed using canard-based techniques. Such elements
include intracellular Ca?* dynamics and the associated Ca?t-dependent transmem-
brane currents, such as Inaca. We found that even in this more complex model, the
EADs produced are most fruitfully cast as canard-induced oscillations. That is, we
have demonstrated that the canard-induced EADs identified in the earlier studies of
low-dimensional models are still present in a higher-dimensional model. We postulate
that EADs generated in the more recent, and more complex, models of cardiomyocyte
electrical activity [38,49,50] are also due to canards.

One key question in the study of EADs is whether they are mediated by purely
electrical factors, i.e., the interaction of ion channels through the membrane potential
[16,17], or whether they also involve the dynamics of intracellular Ca?* following
Ca?T-induced Ca?T release from the SR [20,21,58]. While this mathematical study
could not weigh in on this question, it has addressed a related question that is best
approached using a mathematical model. In the model, it is possible to clamp the
intracellular Ca?t concentration at any level. This is much more difficult to do in
experiments, and requires the use of multiple drugs to not only clamp the Ca?*, but
to set it at the desired concentration. We have taken advantage of this opportunity
to address the question of whether, in the Luo-Rudy II model, EADs are generated
by purely electrical elements, or whether Ca?* dynamics are also required. We found
that, in all cases, the intracellular Ca2?* level is important in the determination of
whether or not EADs are produced. However, in many cases, the EADs were pro-
duced through purely electrical means, with Ca?* serving only as a fixed input to the
electrical subsystem. This agrees with experiments in which Ca?* influx was blocked
pharmacologically but an electrical Ca?t curent was introduced using the dynamic
clamp technique [19,33,34] as well as with experiments that showed EADs to persist
despite blockade of CICR [35]. However, we also found cases in which EADs are pro-
duced only if Ca?* is allowed to vary over the duration of the action potential. That is,
in some cases, Ca?t dynamics are an essential ingredient to EAD production. This is
consistent with findings that EADs were eliminated when Ca?*-induced Ca2* release
was blocked pharmacologically [41,46]. Our results may therefore help to resolve the
sometimes conflicting data on EAD production in cardiomyocytes; sometimes Ca?*+
dynamics are involved in EAD production, and sometimes the EADs are purely elec-
trical in nature (though, even in this case, the Ca?* level affects whether the EADs
are triggered). In either case, the EADs produced by the model are brought about
by the evolution of solutions along a twisted slow manifold—a twisted slow manifold
which is subdivided into regions which dictate EAD number (Fig. 9).

Many of the most well-studied EAD-inducing pharmacological agents exert their
effects by blocking K™ channels. Some of these agents are non-selective K™ channel
antagonists (e.g., CsT). We found that the model can produce EADs under simulated
administration of these types of agents, even when [Ca?*]; is clamped (Fig. 3). We
showed that non-selectively blocking K+ channels can induce EADs at both (fixed)
baseline and elevated Ca?T levels. Surprisingly, the relationship between [Ca?*]; and
EAD production in these cases is non-monotonic. The complexity of the relationship
between [Ca?t]; and EAD production is also demonstrated by the production of both
phase-2 and phase-3 EADs (Fig. 3c) at elevated [Ca?T]; levels.

One advantage of fast-slow analysis of a multi-scale mathematical model is that it
allows one to understand dynamical behavior in a deep way that cannot be achieved
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through computer simulations alone. For example, we showed that reducing the
Ca?* release from intracellular stores had little effect on the canards, but shifted the
trajectory in phase space in such a way that it was not influenced by the canards
(Fig. 10). Here, EADs were reduced in number, but the mechanism would not be
at all apparent from computer simulations alone. Conversely, we demonstrated that
both phase-2 and phase-3 EADs can be generated by the same dynamical mechanism,
in spite of the fact that the former occurs during the plateau of an action potential,
while the latter occurs much later during the repolarizing phase (Fig. 6). These are
typically treated as entirely different phenomena in the experimental literature [10,42].

Whether EADs require Ca?t dynamics, or just [Ca?*]; at an appropriate level,
we propose that the dynamical mechanism is the same: twisted slow manifolds and
canards. We have shown this here with the Luo-Rudy II model, and hope that
future work from our group or others will succeed in testing this proposal in more
biophysicallly complete cardiac myocyte models.

Appendix A. Model equations.

A.1. The full model and varied parameters. The full 11-dimensional vari-
ant of the Luo-Rudy II model examined includes both electrical and intracellular Ca?*
dynamics, but excludes potential spontaneous intracellular Ca?* release included in
[31]:

g = - Zlion + Lstim

mdt
dm _ meo —m
dt o Tm
dh_ hoo =l
dat 7,
(A.1la) dt T;
dd _ doo —d
dt 74
dt Tf
do _ oo =
dt 7
d[Ca), A \ v
L = b;(Jin v re = eak ™ “u =
= (Jinge - +J Vo + (Jieak — J p)meo)
d[ca] T
(A.1Db) TJS = bor(Jor — Jre1)
dCal, _ 5 Vis
q = *Jtr@ - Jleak + Jup'

Here, Iion = {INav Icat, Ik, Ix1, IKpa INacas INak s Insca, IpCaa Ican, INab}7 which de-
pend on the dynamic variables (V,m,h,j,d, f,z,[Ca®T];). The intracellular Ca?*
fluxes Jin, Jrel, Jieak, Jups and Ji, depend on the dynamic variables ([Ca?t];, [Ca®T g,
[Ca?T],sr), With Jie also depending non-autonomously on time, t. Detailed model ex-
pressions and default parameter values can be found in the original article [31], from
which variable, expression, and parameter names herein are duplicated.
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Sections 2, 3, and 4 analyze the behavior of the clamped-Ca?"™ model (A.1a), in
which [Ca?T];, [Ca?t]j, and [Ca?T],s are fixed and [Ca®*]; alone enters (A.la) as a
parameter. Under this purely electrical 7-dimensional model variant, the maximum
conductance parameters of Ix (Gk) and Ix; (Gk1) are varied alongside [Ca%*]; to
invoke EADs and examine solution behavior.

Section 5 then examines the full dynamic-Ca?* model through the imposition
of Ca?* overload conditions. These conditions are simulated through the parameter
choices enumerated in [31]: [Ca®*], = 3 mmol/L, [Na*]; = 15 mmol/L, P, (max
Ica.conductance) is increased 30%, and Grel(Jrel rate constant) = 20 ms~1. In
addition, the minimal dynamic-Ca?* model is analyzed under this same parameter
regime, with G, varied to produce phase-3 EADs.

A.2. Smooth approximation of piece-wise smooth gating functions. To
facilitate numerical computation, the piecewise continuous voltage-dependent gating
functions formulated in [31] for the Iy, conductance are replaced by smooth functions:

oo = —
T+ B
0.32 (V + 47.13)

Am = 1 — ¢~ 0.1(V+47.13) and S, = 0.08eV/11

for i € {m,h,j}

1
— ~(80+V)/6.8 _
ap, = 0.135¢ and B, = 013(1 5 o (VFIome)/iia)
4.784 x 1077 0.3e~2:535x107V

% = J0.1045(—27.2324V) and f; = (1 + e 01(V+32))°

A.3. Dynamic-Ca?T model reduction. Figure 12 shows the simulated time
courses of [Ca?t]j, (orange), [Ca?T],, (purple), and Ca®* flux from the SR during
Ca?T-induced Ca?* release, Jye (blue), that accompany the voltage and [Ca?T]; time
courses shown in Fig. 7 (black curves). The vertical dashed line (red) denotes the
time at which Iy, is initiated and the time window in view terminates at 90%
repolarization of the AP. The stimulus evokes a rapid pulse of Ca?T flux and the
observed dynamics of [Ca2+]n5r and J,.; motivate a reduction of the dynamic-Ca?*
model.

We estimated the timescale of [Caz+]nsr during an AP and found that even though
T(Ca2H e ~ 146 ms is similar to 7., fixing [CaLQ‘*‘]nSr at its average value over the course
of an AP produces EADs that are indistinguishable from those produced by the full

model. Hence, we fix [Ca2t],q at its average value ([Ca’®] _ ~ 3.7082 mM) and
exclude the [Ca?t],sequation.

Ca?*-induced Ca?* release from the SR produces a very short-lived Ca?* flux,
Jrel, that vanishes just after the initiation of an AP. Since this is the only term
that couples [Ca?T]js to [Ca?t];, the [Cat]js, and [Ca?t]; differential equations are
uncoupled throughout the remainder of the AP. Hence, we restrict our analysis to the
window of time starting just after J,, has vanished, where the [CaQ*‘]jsr differential
equation is uncoupled from the rest of the system and can be excluded from analysis
without affecting solution behavior.

As such, the minimal dynamic-Ca?* model is composed of the remaining differ-

nsr
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(a) (b)

,[CaF) s (mM)

n
Jrel (mM/ms)

100 200 300 400 200 300 400
t (ms) t (ms)

Fig. 12: Time courses for [Ca% ], [Ca?T] s, and Jyel during the AP with
EADs produced by the dynamic-Ca?t model. (a) [Ca’"];s, (orange) exhibits a
fast downstroke subsequent to Iy, pulse initiation (dashed, red) and slowly recovers
over the duration of the AP. [Ca?T], (purple) exhibits slow growth over the course
of the AP. (b) The pulse-like CICR flux, Jye, which couples [Ca®!];s, to [Ca?T];,
immediately follows I, initiation and vanishes for the remainder of the AP.

ential equations:

dVv
Cmg - - Zjion

dm me —m

dt Tm,
dh  he—h
dt o Th
dt Tj
(A.2) dd  de —d
a o Td
% _ foo B f
dt Tf
dj T — T
dt 7
d[Ca] Aca = Vnsr
L= bz inip eak — Ju )
at i GV g | et = Jun) 7

where J;¢ has been removed from the [Ca2+]i equation, and Jjeak, Which is dependent
only on [Ca2+]nsr, is now constant (jleak). Because these model reductions are valid
for all times after the post-Im Ca?t spike has decayed, Iy does not appear in the
V-equation.

Appendix B. Dimensional analysis of the Ca%?t-clamped model.

Dimensional analysis of (2.1) is performed by averaging the voltage-dependent
time constants, 7; for ¢ € {m,h,j,d, f,x}, over the duration of an AP to obtain
mean timescales of the variables. We define the AP as beginning when the stimulus
pulse is initiated and ending when the voltage reaches 90% repolarization. We then
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non-dimensionalize the system via the rescalings:
(Bl) V:CVU, t:Ctts, IgZC[jg,

for ¢ € {Na, Ca-L, K, K1, Kp, NaCa, NaK, nsCa, pCa, Cab, Nab}.
This results in the singularly perturbed dimensionless problem:

6((;1;; = *Zjion

e dm Mo —m

T dt Tm
€ dh hoo —h
rndts
€dji _ Joo—J
(B-2) rdt, 5
e dd  dye—d
radty g
Af e f
dt Ty
drz  TfTeo —
Aty T T
where ¢y := 100 mV, ¢, := 7y ~ 30 ms, and ¢; = Gior = 2 mS/uF are chosen
as characteristic voltage, timescale, and current amplitude, respectively. As such,
€ 1= 5757 (< 1)—the ratio of voltage and characteristic timescales—is a small
perturbation parameter, r; := ggznﬂ fori € {m,h,j,d}, Grot = >, 9¢/n(l) for £ €

{Na, Ca-L, K, K1, Kp, NaCa, NaK, nsCa, pCa, Cab, Nab}, and the right-hand sides
of (B.2) are O(1) with respect to e.

Appendix C. Computation of the slow manifolds and their continua-
tions.

Here, we outline the numerical set-up used to compute the twisted slow manifolds.
In Appendix C.1, we describe the adaptation required to track the slow manifolds
when they are far from the folded node. With this adaptation, we then describe the
computation of the attracting slow manifold in Appendix C.2 and the saddle slow
manifold in Appendix C.3.

C.1. Standardization of X. Whereas the standard set-up chooses ¥ such that
it contains the folded singularity, the significant movement of the twisted funnel under
variation in C,, and other parameters renders this choice inadequate. We choose X
in such a way that it tracks the movement of the twisted funnel. Let p € R? denote
the vector of model parameters, which contains elements for C,, and oy r.,. For
computation and visualization purposes, all slow manifolds are computed up to the
p-dependent hyperplane

(Cl) Y= {(Mm7haj7d7 f,l') € R7 : ap(f - f[)) + bl)(gj _'1:10) + EP(V - ‘/p) = O}

and projected into (f, =, V)-space. Hence, the tuples (ayp, by, €,) and (fp, zp, V) set
the location of ¥ in phase space.

We first require that the coordinates (f,, zp, V,), which set the base point of 3
in (f,z,V) space, be the f, z and V coordinates of the turning point of the strong
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canard. Then, (ap, by, €,) can be any set of points such that ¥ transversely intersects
the continuations of the slow manifolds, Sg: and S¢, . However, in practice some
points work better than others. Through experimentation we found that setting (a,,
by, ep) as the normal, in (f,z, V)-space, to the f, x, and V component sub-vectors of
the 2D unstable eigenspace of equilibrium Fs allowed for robust computation across
changes in C), and ay, r,. Hence, ¥ is parallel to the 2D unstable eigenspace of Es.

We reason that orienting ¥ this way works because Fs is near enough in parameter
space to the FSNII/singular Hopf bifurcation from which the canards arise and that
the local twisting is still oriented with the 2D unstable manifold of E5. Importantly
however, the canard-induced rotational sectors are alone sufficient to explain EAD
number; the computed continuations of the slow manifolds do not interact with this
2D unstable manifold in a way that requires more than the predictions from Fenichel
and canard theory.

C.2. 2-point boundary value problem set-up: attracting slow manifold
computation. Here, we outline the 2-point boundary value problem (2PBVP) set-
up used in the computation of Sa:of the clamped-Ca?* 2-slow variable problem. We
have reprinted the model equations to define shorthand notation for the right-hand
sides of the vector field:

V: —]./sz-[ion = fl(‘/amvhvjvdvam)

= T = (Vim)
="t v
(C2) J= j"‘;j_j = f1(V.])
d= =0 v
foled v
b= = (Vo)

(C.3) u=

B as >3 <

<
1
~
=N
&
——
l

where we follow the boundary condition notation in [13]. The solution integration
time, T, which is treated as a free parameter is used to scale the time domain, ¢ € [0, 1],
and g is the vector field.

Defining a well-posed 2PBVP in 7D requires that the boundary conditions, 2o
and X1, define codimension-i and codimension-k hypersurfaces, respectively, such that
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i+k ="7. As in [13], we compute the 2D attracting slow manifold continuation, Sg’:,
by prescribing BCs:

(C4) {20 =5 N5y =1L

21 =X

where L® is a 1D curve on Sg’+ sufficiently far above the fold, L, and X is our
codimension-1 hyperplane (C.1) transverse to the flow. The condition

(C.5) Xy = {u\V,m,h,j,dzo
restricts L* to lie along S "+ and the condition
(C.6) Yo :={u|V =30}

ensures that L% is away from the fold.

Using a boundary value solver in tandem with pseudo-arclength homotopic con-
tinuation, facilitated by AUTO [8], we initialized the computations using a trivial
segment—a single point (7" = 0)-which satisfies both sets of BCs. Manifolds were then
grown as one parameter families of orbit segments through continuation in 7.

C.3. 2-point boundary value problem set-up: saddle slow manifold
computation. The 2PBVP set-up used in the computation of S¢, of the clamped-

Ca?*t problem differs meaningfully from that of Sg: and is described below. Again,
we rewrite the problem using the condensed notation:

S (
(C.7) u=Tg(u), {u(l) €5

For the computation of S¢ —in R”, we generalize the approach from [13] for
computing saddle slow manifolds in R*. The general prescribed BCs are as they are
in [13]:

(08) {ZO = 20 N Eo

21 = 21 n 21.

Whereas in R%, both ﬁ’o and ¥ are 3D submanifolds, in R” ﬁ‘o is 3D and 20
is 6D. Here, as in [13], S and 3 are chosen transverse to the stable and unstable
manifolds of the saddle slow manifold S¢, , respectively. This choice relies on these
manifolds, in the vicinity of S¢ , being smooth perturbations of the eigendirections

of S§ as equilibria of the fast subsystem. Hence, for our particular problem, Yo and
Y1 are defined as:

{ZA‘O = {U‘m,h,j,d: 0} = {u|f2af37f4af5 :0}

(C.9) 5= {u|V =0} = {u| fi =0}

In contrast, Xy and X are 6D manifolds:

20 =
(C.10) {21 = {u|V = -30}
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specified to ensure that orbit segments start on the defined cross-section and end far
from the fold, L. The manifold, S¢, , is then grown by starting from a trivial segment
(T' = 0) at which all BCs are satisfied and then continuing in T'.

Appendix D. 2-point boundary value problem set-up: computation of
1D maximal canard orbits and 2D maximal canard sets.

The procedure in [13] for the computation and continuation of 1D maximal ca-
nard orbits specifically addresses canards in (2,2)—fast-slow systems. For context in
outlining the specifics of how these methods are extended for our computations, we
review the key steps from [13].

With reference to the BC definitions in Appendix C, the recipe in [13] consists
of two main steps. First, an orbit segment is computed in which «(0) € L* and
u(1l) € Xy, where the definitions for L* and X are equivalent to those used to compute
S&j and S¢ , respectively. Second, this orbit segment is continued by varying u(0)

along L until the additional condition u(1) € S (€ Sg ) is satisfied; maximal
canards correspond to isolated points along L®. The resulting orbit segment, which
transitions from Sg: to S¢ and remains on S¢ until termination, approximates a
maximal canard.

In both the 2-slow and 3-slow variable settings, maximal canards can be computed
as orbit segments which satisfy the general boundary conditions

(D.1) 0T
21 = El n El.

{20 = ﬁo N EO = Sg’+ N 20

In both settings, Yy and X are codimension-1 hyperplanes, transverse to the flow,
which ensure that orbit segments start and end, respectively, on either side of the fold
set.

In the case of 2 slow variables, S; N X, is the 1D curve, L%, where the presence
of more than 2 fast variables is accounted for in the definition of Sy . Hence, in
this setting, the existing two-step procedure from [13] is easily extended. However,
in the case of 3 slow variables, Sg "+ N X, is a 2D plane; instead of corresponding to
isolated points along the curve, L*, maximal canards correspond to 1D loci along this
2D plane. How to locate and trace out such loci—associated to 1-parameter families
of maximal canard orbit segments—is not addressed by the existing procedure.

Our approach to computing 2D sets of maximal canards, in analogy to [13], consist
of 3 steps. First, we compute an orbit segment in which «(0) € L* and u(1) € X.
Here, L% is a 1D curve along Sy "+ N %y, chosen transverse to the 1D loci of maximal
canard points; the definition of X' is equivalent to its definition in the computation of
S¢. . Second, we continue this computed orbit segment along L until u(l) € S (e
S¢, ) is satisfied. The resulting orbit segment approximates a maximal canard within
a 2D set. Third, we remove the constraint u(0) € L® and allow u(0) to vary freely
along the 2D plane, Sg"" N Xy, requiring instead that u(1) € 31 remains satisfied.
This traces out a 2D manifold of maximal canard orbits.

For clarity, we provide the specific BCs used for maximal canard computation in
the dynamic-Ca?* problem. For notational brevity, we augment system (C.2) with
the [Ca?T]; equation

VI’]SI‘
meo

(D-2) [Cal, = by(Jyy o

inm + (Jieak — Jup)

) :=s3(V,d, f,[Ca®T];).
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and denote the 2PBVP set-up using the condensed notation:

v
m
h
j . u 0) S ZO
D.3 = , =T , -
f
x
[Ca®*];
For the initial homotopy step, we start with a solution segment which satisfies
the BCs
Yo:=8%"TNXynx., =1L
(D.4) _0 T O S0
21 = 21
where
(D'S) S?j’,: = {U|V)m7h7.77d = 0} = {u|f17f27f37f4af5 = 0}
and
Yo :={u|V =30}
(D.6) Yia = {u] [Ca?t]; = 1.5(uM)}

Y ={u|V =-35mV}.

In the second step, varying u(0) along L% until u(1) € % (€ S¢, ) is satisfied

results in a maximal canard solution which obeys the BCs (D.1). Once here, the
condition u(0) € X;, is dropped and u(1) € Sg, is retained to allow for computation
of the located maximal canard set. Judicious choices for the initial location of u(0) €
L* allow for different 2D maximal canard sets to be located and computed.
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