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dom revisited, and the compartmentalization of representation and analysis ideas within a
domain due to inconsistency in complex systems language. In this work we propose basic,
domain-agnostic language in order to advance toward a more cohesive vocabulary. We use
this language to evaluate each step of the complex systems analysis pipeline, beginning
with the system under study and data collected, then moving through different mathe-
matical frameworks for encoding the observed data (i.e., graphs, simplicial complexes, and
hypergraphs), and relevant computational methods for each framework. At each step we
consider different types of dependencies; these are properties of the system that describe
how the existence of an interaction among a set of units in a system may affect the pos-
sibility of the existence of another relation. We discuss how dependencies may arise and
how they may alter the interpretation of results or the entirety of the analysis pipeline.
We close with two real-world examples using coauthorship data and email communications
data that illustrate how the system under study, the dependencies therein, the research
question, and the choice of mathematical representation influence the results. We hope this
work can serve as an opportunity for reflection for experienced complex systems scientists,
as well as an introductory resource for new researchers.
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1. Introduction. The term “complex system” is used to describe a multitude of
systems of markedly different scales, from the atomic scale of interacting atoms to the
vast scale of the entire universe, as well as markedly different behaviors, from starling
murmurations to the viral spread of information on social media. Though distinct
definitions exist, and not one is globally agreed upon, in general a complex system
is (a) a collection of objects or agents with high cardinality, which (b) interact with
one another in a nontrivial way such that (c) the collective behavior of the system
is unexpected or different from, or not immediately predictable from, the aggrega-
tion of the behavior of the individual parts. This unique collective behavior is often
said to emerge from the dynamics of the parts [104, 110]. For example, a population
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of neurons (units) connect via synapses (interactions) and consequently can perform
computations (collective behavior). Additional real-world examples include cellular
reactions in photosynthesis, food webs in ecology, transactions in local markets, in-
terconnected worldwide trading in economics, and various technologies such as the
Internet and the power grid.

In order to study complex systems across disciplines and domains, it is important
to represent the system concretely using a unifying mathematical language. In recent
decades, the discipline of network science has arisen as the main focus of development
of such a language [144]. Network scientists typically study complex systems by first
modeling them using the tools and theoretical constructions afforded by disciplines
such as discrete mathematics and computational data structures. These formal theo-
ries, which we refer to as frameworks (see section 1.1), enable the application of tried
and true methodologies from different subfields within the mathematical, physical,
and computational sciences. Furthermore, these frameworks allow for the execution
of efficient algorithms and can be used to infer the structure, function, and dynamics
of a system. This process is undeniably enriched by the multitude of perspectives.
However, what makes the process somewhat challenging is that each encounter with
a new complex system requires the construction of a new abstract object tailored to
it. Network science is far from developing a single, unified representation that allows
the study of all possible system structures and behaviors [116]. Indeed, there is cur-
rently not one, but a wealth of related frameworks, each of which captures particular
perspectives and properties of the system under study. As complexity scientists, we
benefit from the creativity of those from a variety of disciplines, and the resulting
myriad approaches make complexity science an adaptable and cutting-edge field.

However, this wealth of frameworks, and the resulting wealth of accompanying
analysis pipelines, can also create challenges for the study of complex systems. It
can hinder interdisciplinary communication, as researchers in one discipline may be
unfamiliar with the representations and analyses used in another. Even within a
single subfield, various approaches to representing and analyzing the same complex
system can hinder collective insight across research groups or projects [34]. As a con-
sequence, it is difficult and sometimes impossible to gather insight across systems,
which directly hampers the progress of complexity science [135]. As researchers striv-
ing for precision and efficiency, we must address this challenge by understanding the
assumptions underlying each framework, as well as the relationships between frame-
works, and the impact of both framework assumptions and relations on our analyses
and interpretations of results.

In this work we aim to collect and synthesize this wealth of analysis pipelines—
from raw data procurement and clean-up to analysis results and final conclusions—
while providing a common vocabulary for a continuing discussion. While achieving a
single, unified language is unlikely, we can at the very least begin to simplify and con-
dense the pipelines currently in use. For clarity, we begin by defining the fundamental
terms used throughout the paper. The main text follows the flow of Figure 1.1, which
illustrates a simplified representation of the analysis pipeline used when studying a
complex system, insofar as it pertains to the formal representation of the system.
We begin with an investigation of common system properties that can lead to bi-
ased analysis results if ignored, which we call dependencies, followed by definitions of
three mathematical frameworks commonly used for representation. Next, we high-
light mathematical relationships between frameworks that one might utilize in order
to answer particular research questions, and finally we provide examples of computa-
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Fig. 1.1 Prototypical analysis pipeline for complex systems. We begin with the system under
study and ask what sorts of elementary units exist, what relations exist that group elements
together, and what dependencies might influence the existence of relations among units. We
then turn to the question of how to represent the units, relations, and their dependencies;
to answer this question, we must choose a framework. Finally, we seek to interpret the
outcomes of computations performed on the representation, and from those interpretations
we reach a conclusion about the structure and function of the system.

tions suited for each of the three frameworks. Throughout the text we repeatedly ask
how these dependencies and other modeling choices may influence the pipeline steps
discussed. We provide two examples using a coauthorship dataset and the Enron
emails dataset [23] to demonstrate the effects of various analysis pipelines on the re-
sults obtained from the same underlying system. Finally, we close by suggesting that
each modeling decision in a research analysis pipeline be taken on a case-by-case basis
and with consideration of the dependencies, frameworks, relationships, and research
questions.

1.1. Definitions. In this work we use a consistent language to allow for effective
and precise communication among scientists across disciplines. Here we provide a list
of terms that we will use throughout this paper and their definitions. By condensing
the vocabulary and providing precise definitions of often abstract concepts, we hope
to operationalize the study of the structure and behavior of complex systems.

• Unit, element, or node: an individual object, agent, or part of a sys-
tem. Unless otherwise specified, we denote the set of n nodes by V =
{v1, v2, . . . , vn}.
• Relation: a set r of one or more nodes, such that r ⊆ V . In practice, node

relations can arise from correlations in data, observed interactions between
units, or groups of elements known to function collectively. A relation r can
be dyadic if it contains exactly two units (|r| = 2), or polyadic if the relation
contains three or more units (|r| > 2). If r contains k nodes, then we say the
k nodes in r are related. In some parts of the literature, polyadic relations
have also been called “higher order” relations and have been used to refer
to motifs in graphs [24]. To avoid confusion, however, in this paper we will
use “higher order” to refer exclusively to a particular framework introduced
in section 3.5. We denote the set of relations by R unless a domain-specific
convention already exists.
• Property: information attached to a node or relation. We call the set of

properties P and let p be the assignment map sending V × R → P. For
example, a relation formed by the co-firing of neurons can be assigned a fre-
quency, and a relation formed among individuals can have a categorical prop-
erty such as “teammates.” In this work we focus on the units and relations in
a complex system, as these are common to all complex systems. Additional
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properties, including dynamics, are also crucial for system function, but our
scope is limited to the structural representation of complex systems.
• System: a collection of units V , relations R, and (optionally) any properties

P, such that the collection needs no other pieces in order to function com-
pletely or to interact autonomously with its environment. The set of units
forms the components of the system, while the patterns found in the set of re-
lations are called the system’s structure. An example of a such pattern would
be finding a particular node involved in far more relations than expected. The
system’s activity, including changes in nodes, relations, and properties over
time, is sometimes called its function or behavior. An example of behavior
would be finding that the number of relations a particular node is involved
in fluctuates over time.
• Complex system: a system whose units and relations together exhibit a

qualitatively different functionality than the sum of its units acting individ-
ually; this is the main object of study. In this work, “system” always refers
to a complex system.
• System fragment: a subset of the nodes and relations of a system. For-

mally, if we write a system as a tuple of nodes and relations (V,R), a system
fragment would be written (V ′,R′) with V ′ ⊆ V and R′ ⊆ R a set of re-
lations on node set V ′. Researchers usually do not have access to all units
or all relevant relations. Instead, they usually have access to—and must per-
form their studies on—fragments of a system. Sometimes this limited access
is due to the vast number of units (a human brain contains on the order of
1011 neurons); at other times it is due to the inability of our current tools
to record all the relations among them (genes that express at low levels are
difficult to detect); at still other times it is due to other constraints (social
media companies may not release their data due to privacy concerns). We do
not require a system fragment to itself operate as a system; that is, a system
fragment may not necessarily have the ability to fully function or interact
with its environment. Consider the complex system of cell metabolism in
humans. Even with contemporary tools, we do not have access to all data
pertaining to this system. In order to study it, we usually focus on a sin-
gle aspect most relevant to the question at hand—for example, the set of
all experimentally quantifiable proteins (units) and the set of known protein
complexes that they form (relations). We refer to the combination of these
two sets as the “protein complex fragment” of the cell metabolism system.
• Dependency: a property of a system in which the existence of one relation

provides information about the existence of another relation. In this case we
could say that one relation is dependent on another relation. Conversely, a
relation is independent from another relation if the existence of one relation
in no way affects the (probability of the) existence of the other. See section
2 for formal definitions of the three types of dependencies we discuss in this
work.
• Framework: a mathematical construction or theory (a collection of defini-

tions, results, and theorems) that can be used to represent, model, encode,
and study a complex system. In this paper, we will explicitly discuss the
graph, simplicial complex, and hypergraph frameworks.
• Representation: a mathematical or computational encoding of a specific

complex system (or a fragment of one). A representation is the materialization
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of a specific framework, e.g., it is one concrete, specific graph, as opposed to
the mathematical theory, or framework, of graphs.1 For example, one might
study the brain by representing it as a graph with a node for each lobe and
edges joining two nodes if they are physically adjacent. In this case, the brain
is the system, graph theory is the framework, and the graph of n nodes that
mirrors the brain connections is the representation.
• Encode: the process of taking a system or data collected from a system and

formulating it as a representation using a specific framework.
In the rest of the paper we will assume the reader has already defined what should

constitute a node and a relation within their system. We refer the reader to [37] for a
thorough discussion of how to choose nodes and relations when these choices are not
straightforward.

2. Dependencies by the System, for the System. When studying or modeling
a complex system composed of many parts, several design decisions must be made. We
begin by considering one specific and rather fundamental choice, which is sometimes
only implied and at other times outright neglected. This choice regards the decision of
which system dependencies one should seek to appropriately and accurately encode.
Reiterating our definition above, a dependency is a property of the system in which the
existence of one relation provides information about the existence of another relation.
Said another way, does the system have underlying rules or restrictions that cause
interactions to occur or units to behave in particular ways? For example, in a social
system of individuals and friendships, if two individuals live physically close to one
another, then their likelihood of becoming friends is larger than if they lived far apart.
Furthermore, if they live near each other, then they are also more likely to meet and
consequently befriend each other’s neighbors. In this way, knowledge of the existence
of one friendship informs us of the possible existence of other friendships, because the
friendships (relations) between people (units) are affected by geographical distance
(dependency).

Such system-level dependencies can manifest in different ways; here we will con-
strain ourselves to a discussion of three of the most commonly observed dependency
types. Specifically, we discuss subset dependencies (does a large relation influence the
existence of smaller subrelations?), temporal dependencies (does temporal nearness of
elements influence their relations?), and spatial dependencies (does the physical prox-
imity of elements influence their relations?). We acknowledge that dependencies other
than those described in this work exist within real-world systems; in many domains
of inquiry, ongoing research efforts seek to define the proper avenues for illuminating
dependencies and approaches for their incorporation.

2.1. Subset Dependencies. When investigating a complex system, we often
record its elements and the observed relations containing two or more of those el-
ements. For example, we might record objects and shared observable features [129],
people and shared conversations [232], or neurons and their co-firing [54]. Here, we
can think of the system as a set of nodes V and a set of observed relations R in
which each relation r ∈ R is a subset of V and is meant to represent one observed
interaction between k elements. In this setup, some nodes may participate in many
relations, while others participate in very few or none at all. It is then important
to ask: If we observe the relation r = {v0, . . . , vk−1} ∈ R, does it imply that some

1For readers familiar with object-oriented programming, we liken the difference between “frame-
work” and “representation” to that between “class” and “object.”
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subset r′ of r is also a relation? If so, the system exhibits the type of dependency
that we call a subset dependency. For example, in the words-and-features system frag-
ment, if three words (ball, egg, globe, written as v1, v2, v3) correspond to objects that
share a particular feature (each of them is round, so that “is round” defines a relation
r = {v0, v1, v2}), then any two of the objects must also share that same feature (then
r′ = {v0, v1}, r′′ = {v1, v2}, and r′′′ = {v0, v2} are all relations). One can make a
similar argument for people conversing with one another and for neurons co-firing.
In these cases, every subset of any set of related nodes is also related. However, we
will see examples later when only some, or none, of the relation subsets are also rela-
tions, and we will describe this scenario as indicating the presence of a different type
of dependency. Concretely, we will say that a system with nodes V and relations R
exhibits a subset dependency if, for r ∈ R and r′ ⊂ r, we must have that r′ ∈ R
whenever P (r′) is true, where P is some logical predicate. For instance, in the words-
and-features system, the logical predicate determines whether words corresponding
to objects share a feature. In that system, since a subset of words for objects in a
relation always share a feature, the logical predicate is always true, and we see clearly
that a subset dependency exists in the system.

To illustrate this specific type of dependency, in Figure 2.1 we show a system
fragment of chemical reactions (left) and a system fragment of objects with shared
physical descriptors (right). On the left side of Figure 2.1, molecules or compounds
correspond to nodes and reactions define relations between nodes, so that if k com-
pounds together exclusively form the reactants and products of one reaction, then
those k nodes are related. We see that O2 and H2O participate in multiple reac-
tions together, for example, 2H2 +O2 → 2H2O, but we do not observe a reaction
that exclusively uses O2 and H2O. Therefore, this system fragment does not dis-
play the property that all subsets of relations are also relations, since we have that
{O2, H2O} ⊂ {H2, O2, H2O} and {H2, O2, H2O} ∈ R, but that {O2, H2O} 6∈ R. In
contrast, the right side of Figure 2.1 shows a collection of objects and features (shape
and color) in which each object may share physical features with other objects. In this
case, a relation r� = { , , } contains all objects that are square. Notice that by our
definition of relation for this system fragment, we immediately find that r′ = { , } is
also a relation. Specifically, the pink and red squares are related because they share
the feature “square,” but also any subset of the squares will also be related because
they, too, share the feature “square.” This example of objects and shared features
does display the subset dependency, since subsets of related nodes are also related.

When a system displays a subset dependency, we must ask ourselves whether we
should explicitly represent that property in our model. The answer to that ques-
tion will depend on, among other things, the available data, the research question,
and how we define relations among nodes. Incorporating the subset dependency in a
representation usually requires the data to include polyadic relations, which are not
always directly observable. Additionally, if the research question involves trajectories
through related nodes, it may or may not be necessary to incorporate polyadic rela-
tions and thus the system’s subset dependencies explicitly, since often we can answer
questions about trajectories between nodes using exclusively dyadic relations between
nodes.

Most commonly, the choice of whether to include the subset dependency affects
the formal representation used to encode the system and consequently the results of
downstream analyses. For example, if Marta is involved in a group of people having
conversations and we define relations as shared conversations (so that a subset depen-
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Fig. 2.1 Are subsets of related nodes necessarily related? Systems may exhibit a subset de-
pendence, which occurs when a relation between nodes implies the existence of a relation
between any subset that satisfies a certain logical predicate. (Left) System fragment com-
posed of molecules and chemical reactions. Here, O2, H2O, and H2 participate in the
reaction O2 + 2H2 → 2H2O, but a subset of these compounds does not independently en-
gage in a reaction, such as O2 and H2O. (Right) System fragment composed of objects
with observable features such as color and shape. All objects that are squares are related
by the presence of the shared feature “square.” Any subset of these square objects will also
still possess the shared feature “square,” and thus will also be related. In this case, the
logical predicate is always true.

dency exists), then if we count the number p of people with whom Marta converses,
we do not know if Marta had p separate conversations with each of the p individuals,
or if she participated in one large conversation with all p people. Without a distinc-
tion, Marta’s popularity with others could be vastly over- or underestimated. This
example illustrates how the occurrence of subset dependence can be determined by
the definition of relation. In section 3 we explore the benefits and drawbacks of a few
abstract frameworks that capture different types of dependencies. For now, we stress
that the presence or absence of subset dependencies influences the computations we
can perform and the frameworks we can use.

2.2. Temporal Dependencies. Next we consider systems in which we observe
information, individuals, or goods moving along trajectories through time. A simple
example would be a city subway system where passengers ride the train from one
stop to the next until they reach their destination. In such systems we must ask the
question: Does the current location of an individual affect where they might move
next? We say a system exhibits a temporal dependency if the existence of relations at
time t affects the behavior of units or relations at time t′ > t. Said another way, it
might be that trajectories or walks within systems that display temporal dependency
are not Markovian, since the future trajectory of a walker depends not only on its
current location but also on some previous trajectories of itself or other units.

Consider a subway system in which passengers can travel via trains to stations A
through H (see Figure 2.2). If our complex system consists of passengers commuting
via the subway, then our observed data might include explicit passenger routes. For
example, in Figure 2.2 we record the routes of six passengers, each of whom commutes
from the suburbs (stations A, B, and C) to downtown (stations D, E, F , G, and H).
For the purpose of the example, we assume that passengers do not transfer between
distinct train lines during their commute. If we now represent our data as a set of
stations (units) and we connect two stations i and j if j immediately follows station
i in at least one passenger route (relations), we obtain the subway map shown in
the bottom left of Figure 2.2. Because this diagram records all known movements
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Fig. 2.2 By incorporating temporal dependencies into the representation, we obtain a more
accurate subway map. Given data from six commuting passengers (P1, P2, . . . , P6) who
do not switch trains (top left), how can we obtain the underlying subway map? We could
create a graph in which two stations are connected if a passenger transferred from one
station to another. However, such a graph would suggest that a passenger could commute
from station B to F without switching trains (bottom left), which is not possible in this
system. If instead we untangle the subway lines by respecting the temporal dependency and
treating trains that arrive at station D from station C as different from those arriving from
station B, then we can clearly see the necessary transfer between subway lines required for
the B to F commute (bottom right).

of passengers between pairs of stations, we might confidently proceed to the next
analysis step. However, it is worth noting that this particular representation suggests
that the red path from station B to station F is a possible commute for a passenger.
Yet when we look back at the data itself, such a commute seems extremely unlikely
since the sequence B − D − E − F never occurs. The fact that this route appears
natural from the representation, but not from the data, points to the fact that our
system contains a temporal dependency and, importantly, that this dependency is not
well reflected in the particular representation we chose.

As discussed in great detail in [24, 176, 70, 60, 119, 160], the fundamental limi-
tation of keeping only pairwise sequential relations, as is done in the bottom left of
Figure 2.2, is that in the representation we assume that traversal across each link is
Markovian and therefore its probability is independent of the probability of traversing
any other link in the system. More explicitly, paraphrased from [118], by representing
the system as a graph (see section 3 for a definition) we assume that the edges (i, j)
and (j, k) are independent and that the two-step transition from i to k proceeds in
two independent steps. This assumption can easily be violated by a real system, as
seen in our toy example, since sometimes one step in this traversal is dependent on
which particular steps came before (i.e., transitions are not Markovian). Misman-
aging temporal dependencies in systems can lead to misleading results that can, for
example, over-represent the importance of edges that are rarely used or create nonex-
istent connections. We will discuss a framework that is particularly appropriate for
representing temporal dependencies in section 3.
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Fig. 2.3 Spatial dependencies within a system can complicate our representations of the data.
In our example system, we have (left) connection information that is independent of any
system embedding and (middle) spatial information indicating where the nodes physically
reside. A possible combination of the two information types (right) can be used to better
understand the physical constraints on the topology. If long distance connections are costly
for that system, the combined representation allows the investigator to assess the prevalence
and location of those costly (and thus potentially surprising) connections.

2.3. Spatial Dependencies. The third and final type of dependency that we dis-
cuss here arises from the physical nearness of units within a system. For example, in
the human connectome a brain region is likely to extend white matter tracts to neigh-
boring regions, providing physical conduits for electrical activity [202]. In granular
materials, resistance to external forces relies on interactions only between particles
that physically touch [158]. More generally, many spatial systems are so named be-
cause the spatial location of nodes affects their likelihood of interacting with one an-
other [13, 14]. Here we say that a system exhibits a spatial dependency if the distance
between two or more nodes influences the existence of a relation that contains them.
More formally, consider a system whose nodes are labeled by V = {v1, v2, . . . , vn}
and each node vi has associated to it a point xi in some metric space. Then this
system exhibits a spatial dependency if the probability of a relation between nodes
v1, v2, . . . , vk is a function of the pairwise distances between the corresponding loca-
tions x1, x2, . . . , xk.

Many such systems exist in the natural and manufactured worlds. Indeed, spatial
restrictions influence communication in cell populations [117, 167], trade in economic
networks [99], and passengers in transportation networks [224, 123]. As an example
of spatial dependency within an abstract system, we might begin with knowledge
of only the pattern of related nodes. We display this structural information in the
left panel of Figure 2.3 with circles corresponding to nodes and lines joining circle
pairs whose corresponding nodes are related. From the structural information alone
we might expect that relating the pink and red nodes is just as difficult or costly as
relating the red and dark red nodes; we might therefore infer that the two relations
are equally crucial to the system’s function. However, if the system exists within an
environment containing coordinates and a distance function, with each node having
spatial coordinates and a measure of distance between each pair, then this spatial
information could offer a different perspective on the system. In the middle panel of
Figure 2.3, we see that the nodes, now depicted with colored pins, are spread out so
that some are more spatially clustered whereas others are less so. Considered on its
own, the spatial information gives us no insight into the actual relations present in
the system, but it does provide information which might help us predict the likelihood
that nodes are related.
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In many spatial systems such as the brain or city transportation, relations between
distant nodes are unfavorable due to the higher cost of creation and maintenance,
while short-range relations are far easier to construct. In the face of this association
between the physical distance across a relation and its cost, we might consider the
distances between nodes and infer that the red and dark red nodes are likely to be
related, while the pink and red nodes are not. When we finally combine the topological
and spatial information (Figure 2.3, right), we can then leverage the two information
types to understand which relations are the most surprising or make hypotheses about
which relations are most important to the system. For example, the dyadic relation
between the pink and red nodes might be very costly given the long distance between
them, so we might infer that the pink to red relation is more essential to the system
than the red to dark red relation, since the system would only spend valuable resources
to maintain such a relation if it was integral to system function. Without the spatial
information, we might have incorrectly placed the same importance on the pink-to-red
and the red-to-dark red relations. This example highlights one of many ways in which
we can integrate spatial and structural information.

As with the previous dependency types, failure to account for a spatial dependency
can greatly bias our models and results. Consider an outbreak of a contagious disease.
If we record the habits of infected individuals such as their diet, but fail to record their
locations and physical mobility through space [210, 7], then we might, for example,
wrongly attribute disease spread to the broad consumption of a particular food that
is prevalent in the infected region instead of through person-to-person contact. As
another example, social contacts are also influenced by proximity. If we return to
evaluating Marta’s popularity, the observation that she has many friends may come
from the fact that she lives in a densely populated area, rather than from her charisma
or personality. In these examples, failing to account for spatial dependencies can result
in attributing certain structural properties of the system to the wrong cause.

2.4. External Sources of Dependencies. Before we shift our focus to concrete
ways of encoding system dependencies using mathematical frameworks (section 3), it
is useful and interesting to consider how external forces can influence the observed
system dependencies. Ideally, we as investigators would have the ability to measure all
dependencies within the system under study, and then we could use this knowledge to
make an informed decision as to the appropriate framework with which to model our
system. However, often the processes of scientific inquiry do not proceed so effortlessly:
no analysis is ever devoid of the influence of external factors, or biases. Our goal in
this section is to highlight possible sources of such bias. Although we have already
discussed biases arising from dependencies native to the system under study, here we
emphasize that acknowledging and understanding dependencies imposed by outside
sources should also play a crucial role in determining an appropriate representation
and subsequent analyses.

• Data availability. One notable and common constraint in science is the
limited data that can be acquired empirically from a given system. In other
words, researchers usually have access only to a fragment of the system. As
a consequence, any dependency that is observed and ultimately encoded may
be determined more by the sparsity of available data than by the system’s
true structure and function. For example, one may have access to only sparse
snapshots of or short sequences from an evolving system [190], making the
subset dependency difficult to identify and effectively encode. In particular,
there might not be enough data available to correctly deduce the predicates
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P that a subset must satisfy in order to also form a relation (see the definition
of subset dependency in section 2.1).
• Data acquisition or processing. Certain experimental techniques or com-

putational procedures may produce spurious dependencies. A common ex-
ample involves correlation matrices. By computing the correlations of node
activity (a common approach in fMRI-based functional connectivity matrices
[214, 89]) one induces a transitivity dependency, which is a type of subset
dependency. Concretely, if A,B,C are nodes in a system where two nodes
are related if the time series of their activities are highly correlated to each
other, as determined by some data acquisition method, then whenever A and
B are related, and B and C are related, it is highly likely that A and C
are also related. In this case, it is possible that relations between nodes im-
plied by the calculated correlations are found in the processed data but not
in the system itself. For example, one might find that changing the type of
correlation results in a change in the inferred relations.
• Research question. The research question at hand will influence which

relations within a system are particularly interesting. Moreover, it may also
influence the very definition of a relation. For example, consider a system
of proteins that interact to form protein complexes. If we wish to study
which proteins appear together in many complexes, then we may define a
relation as k proteins that participate in the same complex. If instead we
wish to study protein complexes themselves, we could define a relation as a
set of k proteins that together form a single complex. In the first case, the
relations are tied to a subset dependency (if three proteins appear together
in a complex, then so do any two of them), but in the second case they
are not. On the flip side, a given research question might neglect a relevant
dependency in the system. For example, we could ask whether a common
food could have caused a disease outbreak. Answering that explicit question
neglects the fact that individuals near each other will likely eat similar foods.
The research question is not broad enough to incorporate spatial information
as part of the answer, and therefore spatial dependencies that might seem
irrelevant at first sight can in fact be essential to finding the real answer. We
expand upon this topic in section 3.5.

To summarize, we have defined and discussed three types of dependencies that
could exist in a complex system: subset, temporal, and spatial. We emphasize that
dependencies can arise from within the system itself or from external factors, but
regardless of their origin, we as researchers must be aware of their existence and
how they influence our models and results, especially given their early position in
our analysis pipeline (see Figure 2.4). As we will continue to see in what follows, the
recognition and encoding of dependencies can greatly affect the results of our analyses
and the conclusions that can be drawn.

3. Formal Representations of Complex Systems. Over the years many repre-
sentations of complex systems drawn from different mathematical and computational
frameworks have taken hold across scientific disciplines. Different frameworks allow
for the modeling of the unique aspects and dependencies of each system, but the
multiplicity of available frameworks presents challenges for the communication, col-
laboration, and ultimately the progress of complexity science. Furthermore, the choice
of framework also complicates the analysis pipeline that researchers must decide upon
when studying a particular system.
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Fig. 2.4 Understanding system dependencies is a first step in the complex system analy-
sis pipeline. Types of dependencies include spatial, temporal, and subset dependencies.
Acknowledging dependencies at this step allows for proper preservation of dependencies
throughout the rest of the analysis pipeline. When preserving all dependencies is not possi-
ble due to factors outside the control of the researcher, acknowledging this inability frames
the results in the proper context.

Here we discuss three of the many possible mathematical frameworks that re-
searchers commonly use to represent their system: graphs, simplicial complexes, and
hypergraphs, chosen for their prevalence in the complex systems literature. A complex
system is, at its core, a collection of units and their relations, and therefore we require
our representations to mirror this composition of units and relations. The units of all
three frameworks discussed here are called nodes. Graphs represent pairwise relations
between nodes as edges. Despite their simplicity (or perhaps because of it), graph
representations have supported several important discoveries such as the prevalence
of small-worldness in real-world networks [223, 5]. Still, graphs can only, by nature,
represent dyadic relations between nodes.2 If instead relations within the system ex-
ist among more than two nodes, one might turn to either a simplicial complex or
a hypergraph. Both of these frameworks naturally allow us to encode such polyadic
relations [21]. The relations represented by a simplicial complex are called simplices
and those represented by a hypergraph are called hyperedges. We will first define
each framework, so that later in this paper we can explicitly discuss their respective
advantages and assumptions.

3.1. Graphs. The first and perhaps most common framework used to model
complex systems stems from graph theory. A graph G is a collection of nodes and
edges between nodes such that an edge connects at most two nodes (see Figure 3.1,
left). We denote the set of nodes as V and the set of edges as E ⊆ V × V , so that
a graph is defined uniquely by G = (V,E); note that each edge is an unordered set
of two nodes. The nodes of a graph are the units, and edges describe how these
units are related. If vA and vB are nodes of the graph, then we write {vA, vB}, or
vA − vB to represent the fact that the two nodes are connected by an (undirected)
edge. Studies that form a graph representation from the underlying data frequently
involve finding densely connected sets of nodes or determining how an object might
traverse the structure. In using the graph representation, such questions could lead

2More precisely, edges in a graph can only involve (at most) two different nodes. Whether the
interpretation of each of those nodes is that of a single unit or many units (as is the case, for example,
in some representations that involve the idea of a “supernode”) is not a relevant matter for graph
theory, but it is relevant for the process of encoding data into a graph.
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Fig. 3.1 Three types of frameworks composed from nodes and relations. (Left) Graphs involve
units called nodes and relations between two nodes called edges. Possible features of interest
for graphs include all-to-all connected sets of nodes called cliques, as well as routes between
nodes called paths. (Middle) Simplicial complexes can be used to represent systems with
polyadic relations among units. Sets of related nodes are connected by simplices. A k-
simplex describes k+1 nodes that collectively interact, such that any subset of nodes forming
a simplex must also form a simplex; this is called “downward closure.” Motifs of interest
include topological cavities and maximal simplices. (Right) Hypergraphs can also be used to
represent systems with polyadic relations among units. Sets of related nodes are connected
by hyperedges. Hypergraphs are not restricted by downward closure. Of particular interest
within a hypergraph is the absence of a substructure (or smaller relation), for example,
in which two nodes do not connect dyadically but participate together in a hyperedge that
connects a superset of the node pair.

to detecting cliques or communities in the graph, or identifying chains of connected
nodes called paths (see Figure 3.1, left, and section 5.1 for more examples).

Many attribute the origin of graph theory to Leonhard Euler in the 18th century
[75]. One can also trace its presence outside mathematics back to the use of sociograms
and social network analysis in the 1930s [79], and to graph-like data structures in
computer science in the 1950s [225]. Notably, the use of graphs to model more general
complex systems has rapidly increased over the past few decades, driven largely by the
discovery of the small-world effect [223] and heavy-tail degree distributions [10] in real-
world datasets. Encoding a system as a graph has the great advantage of hundreds
of years of mathematical theory behind the concepts, generally simple computations,
and insightful visualization. However, the graph by definition assumes that relations
between nodes occur exclusively at the pairwise level. Systems such as transportation
networks might solely contain pairwise relations among their units, but many others,
especially from biology, often have polyadic relations. Still, the graph’s ability to
model systems has proven quite useful in distinct fields such as neuroscience [18, 36],
computer science [76, 134], and ecology [163, 137].

3.2. Simplicial Complexes. The next framework that we consider addresses the
need to acknowledge polyadic relations in the system. Illustrated in the middle column
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of Figure 3.1, a simplicial complex is a set of nodes V (also called vertices in the field)
along with a collection of subsets of nodes R (often denoted by K in the field) such
that for any r ∈ R and r′ ⊂ r, we have r′ ∈ R; we will refer to this condition
as “downward closure.” A set of k + 1 nodes r ∈ R is called a k-simplex, and
downward closure requires that any subset of nodes within a simplex also forms a
simplex. In practice, we often imagine a k-simplex to indicate an application-relevant
interaction between the k+1 nodes, such that these nodes can function in unison. The
simplicial complex (precisely, the abstract simplicial complex ) would then record the
individual units (nodes), the functional building blocks (simplices), and how all these
building blocks are assembled into one system (the simplicial complex). Since subsets
of simplices are simplices by definition, then if k nodes are related, we have that any
subset of those k nodes is also related. The simplicial complex can be fully described
by a binary incidence matrix of dimensions #maximal simplices×#vertices, where
an element containing a 1 indicates node participation in the corresponding maximal
simplex; a maximal simplex is a simplex that is not contained in any larger simplex.

Although algebraic topology has been studied for well over a century, it was not
until the late 1990s that applied algebraic topology as a discipline began to emerge
[233, 69] (though we note that earlier uses exist [9]). Many of the earliest studies
used applied topology and simplicial complexes to study data in the form of point
clouds [40, 191]. Later, it became clear that the simplicial complex language was
a natural framework for explicitly representing biological and physical systems. For
example, simplicial complexes have been used to represent neural recordings [87, 54],
classify images [205, 56, 67], and describe the mesoscale architecture of brain networks
[203, 204, 169, 193, 161]. Even more recent work has focused on defining generative
models to construct simplicial complexes with given topological features [52, 51] and
investigating dynamics that could take place upon nodes or higher-dimensional sim-
plices [211, 132].

3.3. Hypergraphs. The final framework that we consider again draws from sets
of nodes and their relations, yet is even more general than the simplicial complex
discussed above. The hypergraph is an extension of the mathematical definition of a
graph, in which we have a node set V and a hyperedge set R (sometimes denoted in
the field as E ). A hyperedge e ∈ R can connect an arbitrary number of nodes; that
is, while an edge in a graph can only connect two nodes, a hyperedge can connect
three, four, five, or more nodes (Figure 3.1, right). More rigorously, a hypergraph is
a pair (V,R) with V a node set and R a set of subsets of V [217, 26]. In contrast
to the simplicial complex, we can use the hypergraph to encode polyadic relations
without the restriction of downward closure. Formally, a subset e′ of a hyperedge e,
e′ ⊂ e ∈ R, does not necessarily exist as a hyperedge. Additionally, we can rewrite a
hypergraph as a binary incidence matrix of dimensions #hyperedges×#vertices in
which an entry of 1 indicates the node’s participation in the hyperedge.

As noted above, the crucial restriction that is relaxed when moving from a simpli-
cial complex to a hypergraph is that of downward closure. Recall that in a simplicial
complex any subset r′ ⊆ r of a simplex r must also be a simplex. Hypergraphs do not
obey this rule. For example, we may see a hyperedge connecting vertices v1, v2, and v3
but no hyperedge that connects v1 to v2 exclusively. Similarly, given two hyperedges
{v1, v2, v3} and {v2, v3, v4}, does the existence of a hyperedge {v2, v3} imply the ex-
istence of a subrelation for either, both, or neither of the hyperedges {v1, v2, v3} and
{v2, v3, v4}? With a hypergraph, we cannot determine how or if a subrelation emerges
due to superset relations (see [197] for a deeper discussion). This subtle difference
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allows hypergraphs to represent a wide diversity of systems, including many that the
simplicial complex framework would not appropriately represent. The hypergraph’s
increase in modeling flexibility is counterbalanced by a decrease in formal analysis
methods, which we will discuss more in section 5.

The flexibility and ability to model polyadic relations made hypergraphs an ap-
pealing framework in many systems that were originally studied with graph theory.
Indeed, one of the earliest practical uses of hypergraphs was to understand social net-
works [186]. Since then, researchers have successfully employed hypergraphs to study
polyadic relations in the Enron email dataset [164], find the core of yeast protein-
protein interactions [165], uncover motifs in neurodevelopment [90], track changes in
evolving systems [19, 57, 58], and detect failure in biochemical networks [111]. As
many uses of hypergraphs arose out of systems first modeled with graphs, many anal-
ysis methods for hypergraphs mimic those originally used for graphs (we discuss this
point further in section 5.3).

3.4. Variations and Other Frameworks. We note that the above descriptions
only scratch the surface of complex systems encoding possibilities. An ever broad-
ening set of scientific questions drives the need for novel variations, extensions, and
adaptations of each framework, resulting in a myriad of definitions and manipulable
parameters. One could extend our mathematical definition of complex systems to
include the following properties, as a map p : V × R → P, where P is a set of
properties we care about, as mentioned in section 1.1. Alternatively, one could use
the frameworks discussed above as building blocks from which to create a new frame-
work. Here we note a few of the most common modifications to each of the above
frameworks, driven by the need to incorporate more information about the system at
hand.

Directed. Many complex systems including the brain, transportation networks,
and metabolic pathways exhibit directionality in their relations. That is, in these
systems, if vA and vB are units that share a dyadic relation, there is a meaningful
distinction between a relation where vA comes first, one where vB comes first, and
one where either vA or vB comes first (but there must always be an order in how
they are related). To distinguish these cases we write vA → vB , vB → vA, or vA ↔
vB , respectively. If we apply this idea to the graph framework, a directed graph
is one where each edge is now an ordered set of two nodes. Directed graphs have
proven extremely useful in many contexts from scheduling and monitoring workflows
[113, 6] to cardiac excitation modeling [215] to understanding percolation processes
relevant to wildfires and other explosive phenomena [199, 66]. Moving to simplicial
complexes, directionality is still quite natural. Indeed, simplices themselves inherit
a directionality, formally known as an orientation, encoded by the numbering of the
participating vertices. In practice, in an oriented k-simplex, each node is made to
point only to nodes with a higher assigned number. Oriented simplicial complexes
arise in practice from directed synapses between neurons [169] as well as directed
migration flow [101]. Finally, in hypergraphs, one may represent directionality with
hyperarcs, the term for a directed hyperedge. More formally, a hyperarc is a pair of
disjoint subsets of vertices with one subset comprising the sources and the other subset
comprising the sinks [83]. Directed hypergraphs have proven useful in constructing
a biological pathway database [114], tackling problems in computer science such as
propositional logic [83] and combinatorial optimization [120, 88], and finding specific
patterns of connectivity in chemical reaction systems [151], among others.
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Weighted. In real-world systems, not all relations are created equal; even within
the same system, relations between individual units may vary in strength or mag-
nitude. To represent these differences, the strength of a relation can be encoded
using the weighted versions of the above frameworks. To assign weights to any of
the above encodings, we can define a general weight function W : R → R from the
set of relations R (edges, simplices, or hyperedges) to the real numbers R. For a
graph, this function would assign a value to each edge, which we generally interpret
as the strength or frequency of the pairwise interactions between the corresponding
nodes. In the context of weighted representations, the original versions containing no
weights are called binary or unweighted, as they can be cast as weighted objects where
the weights of all relations are either one, if they exist, or zero, if they do not exist.
The brain connectome, traffic between municipalities [63], and functional similarity
of genes [155] have all been modeled as weighted graphs. Additionally, many com-
mon graph metrics such as the clustering coefficient and path length (covered in more
detail in the next section) extend easily to the case of weighted graphs [177], making
this variant of representation particularly pervasive. Similarly, we can construct a
weighted simplicial complex by assigning a weight to each simplex. However, recall
that in a simplicial complex any face of a simplex must also be a simplex, and thus if
we have a relation between k nodes, then any subset of these nodes must be related to
at least the same extent as the superset. In other words, we require that the weight-
ing function W on simplices adheres to the rule that for any simplex r, if r′ ⊆ r,
then W (r) ≤W (r′). Weighted simplicial complexes can arise from point clouds with
inverse distances between points as weights or from growing processes with the time
of addition used to assign simplex weight. Perhaps most often, we study weighted
simplicial complexes through the lens of persistent homology, which computes the
organization of topological cavities housed within the weighted simplicial complex
[233, 39, 84, 150] (see a few recent uses in [193, 87, 161, 203]). Last, in hypergraphs
we can naturally weight hyperedges with distinct values [83]. Importantly, weight-
ing hyperedges allows more flexibility in choosing weights, as weighted hypergraphs
do not enforce rules restricting weights on subedges, in contrast to weighted sim-
plicial complexes. Weighted hypergraphs have proven useful in image segmentation
[171] and in the process of incorporating prior knowledge into learning algorithms
[209].

Dynamic. Complex systems such as cell signaling, traffic patterns, and transac-
tional relations also grow, separate, or fluctuate in time [125, 178, 44, 122]. Conse-
quently, frameworks have been adapted to represent such an evolving architecture. A
dynamic graph or a temporal graph is a sequence of graphs G1, . . . , GT in which each
Gi is a graph on the same set of nodes, and each node is mapped to its identity when
moving from Gi to Gi+1 [96]. As with other variations on graphs, multiple computa-
tional tools such as community detection have been extended to include these types of
dynamics [145, 192, 140]. Moving to simplicial complexes, a dynamic simplicial com-
plex is similarly a sequence of simplicial complexes on the same node set. Questions
about the topological cavities of simplicial complexes can be answered by using vine-
yards [227] and zig-zag persistent homology [133] depending on the types of evolving
simplicial complexes. Finally, a dynamic hypergraph is a sequence of hypergraphs
H1, . . . ,HT on the same node set where hyperedges may change from Hi to Hi+1.
At the time of writing, we have found few examples of applied dynamic hypergraphs,
although we note that their visualizations have been studied [213]. Nevertheless, we
suggest that this particular variation of hypergraph could be useful, for example, in
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modeling evolving gene interactions, functional relations between brain regions, and
the time-varying structure of social groups.

Multilayer. Often the units or relations of a system have types, categories, or
classifications that distinguish them. It is sometimes useful to distinguish between
these types of relations in our representations, and one way to do so is to use the
so-called multilayer variations. Generally, multilayer graphs consist of a set of graphs
that may (or may not) involve the same nodes; each graph in the set comprises a
layer. The graph in a given layer contains relations of exactly one type. Consider a
human brain in which two regions might show an increase in blood flow either due
to coupled neuronal activity or due to interactions involving nearby blood vessels
themselves. To encode these two types of relations in a single representation, we
could use a multilayer graph with two layers: one encoding the relations between
neurons and the other encoding relations between blood vessels. We note that when
all layers contain the same set of nodes and the only interlayer edges that exist connect
nodes to themselves in other layers, the representation is called a multiplex graph
[31, 195]. We invite the interested reader to visit [109, 29] for more rigorous definitions
and [130, 35, 229] for implications for diffusion and control. Time-evolving systems
can be seen as a subtype of multilayer systems, in which the layers are a set of
graphs ordered in time. Previous studies have used multilayer networks to model
complex spreading processes [59, 180, 181, 212], understand explosive word learning
[200], and uncover the community structure of trade relations [11]. Importantly, the
multilayer framework can be extended to more than simply systems with multiple
types of edges. Indeed, this framework can incorporate sets of graphs or systems
with many types of interactions. Multilayer simplicial complexes or hypergraphs
would similarly include a set of simplicial complexes (respectively, hypergraphs) not
necessarily defined on the same nodes in each layer. As of the time of this writing, we
have not yet found applications of this extension. We suggest that these variations
could prove useful in understanding multiple types of biological data collected on
a set of nodes. As an example, one could encode common properties (mutation
status, chromatin rearrangements, etc.) as layers in a multiplex network of cancer cell
lines in order to better understand drug response [168]. The multilayer variation is
readily applicable whenever researchers have access to and want to model two different
fragments of the same system.

Higher-Order Networks for Temporal Systems. The term “higher order” is
most commonly applied to incorporate multiple units into one relation or megaunit,
but could also be used to encode temporal dependencies. Specifically, higher-order
networks (often referred to as HONs in the literature) are a variation of the graph
framework that aims to represent a certain kind of temporal polyadic relation. Instead
of encoding system units as nodes, the higher-order network encodes frequent paths
or transitions in the data as nodes, which then allows us to interpret the final rep-
resentation with the standard Markovian assumptions on edge sequences. Recall our
example of commuting passengers in Figure 2.2. We can build a higher-order network
from the observed path data to encode the observed dynamics and temporal depen-
dencies of this system in a particular kind of graph. In Figure 2.2, the more accurate
subway map on the bottom right, reconstructed from the observed data, contains two
nodes that correspond to the physical station D. The node labeled DB represents
the passengers that arrive at D from station B, while DC corresponds to those that
arrive from station C. Similarly, the physical station E splits into two nodes: EDC

and EDB . The nodes on this map do not correspond to the stations observed in the
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town’s transportation system, but to the possible passenger pathways through them.
Indeed, as observed before, we never observe a passenger commute that traces the
path C −D − E −H: all passengers that pass through stations C −D − E, in that
order, go on to station F , while all passengers that pass through stations B−D−E,
in that order, go on to station H. Therefore, the representation on the bottom right
of Figure 2.2, an example of a higher-order network, is a more faithful representa-
tion of the observed data and its temporal dependency. Note that if the observed
passenger data changed to include a route visiting stations C−D−E−H, the struc-
ture of the higher-order network would change, even if the physical brick-and-mortar
subway system, and its graph representation, did not. We discuss higher-order net-
works for temporal data in the next subsection and refer the interested reader to
[24, 176, 70, 60, 119, 160] for further details.

Further Variations. We note that the variations on the three main frameworks
discussed above are only the start of possible ways to extend these representations.
Depending on the complex system and questions at hand, certainly one may com-
bine the variations described above to make, for example, an edge-weighted dynamic
network [107], a weighted multilayer network [131], a multiorder network that com-
bines multiple higher-order networks [184], or another combination that provides an
effective representation. One may also study systems of weighted nodes instead of
weighted edges [194, 142], as well as representations where each node has some kind
of internal structure [48, 72] or possible action [8]. Any one of the frameworks above
could also lend itself to studying the intricacies of coupled dynamical systems such
as coupled oscillators [157, 149] or interacting threshold-linear models [138]. Indeed,
when including variations on the three frameworks covered in this review, we find we
can encode an impressive range of complex system types and properties.

Other Frameworks. We recognize that many other frameworks intended for
complex systems exist and that those we specifically mention in this review constitute
only a small subset of the possibilities. Other possible frameworks include graphons,
which describe limits of sequences of graphs and can be used to estimate large, noisy
systems [33], metapopulation models, which classically describe the global behavior of
many local species populations [121, 206, 94] and can be adapted to networks [48],
random sequences of sets [25], and sheaves, which can handle added information on
each node in a network and have previously been used to frame the network coding
problem [85] and find consensus in sensor networks [53].

3.5. Encoding System Dependencies. As we discuss above, the framework used
to encode our data should be carefully chosen to respect the prominent properties of
the system, and specifically the dependencies found therein. In this subsection we dis-
cuss the subtleties of choosing an appropriate framework and then review the common
practices that researchers use to encode subset, spatial, and temporal dependencies
using the frameworks we have introduced.

Once we have chosen which dependencies to model, it is important to carefully
determine when two or more units in our system are related to each other—i.e., to
define the relations in our model (see Figure 3.2). Depending on the exact definition
of the relations, the resulting representation may or may not exhibit the desired
properties, or it may even exhibit properties not found in the actual system, but
which come from externalities from the data, as discussed in section 2.4.

For example, consider recording brain activity from an individual as they progress
through different tasks (reading, watching a video, resting, etc.). Different tasks
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Fig. 3.2 Native dependencies captured by the definition of relation. (Top) We might record the
on/off activity of four brain regions in each of four tasks (left). Depending on the definition
of the relation chosen (middle), we may or may not record a dependency in a representation
(right). (Bottom) Given five bus stations placed along a set of roads (dashed lines), we
observe three bus lines that connect the stations (left). Depending on the definition of
the relation chosen (middle), we might include a subset or temporal dependency which we
would want to capture in our representation of the system (right).

require the activation of distinct sets of brain regions. How do we define relations
between brain regions? As depicted in Figure 3.2, we could define k nodes to be
related if a task requires all k nodes to be active. Alternatively, we could define
a relation between k nodes if the k nodes were found to coactivate during a task.
Finally, we could call two nodes related if they have a high enough measure of pairwise
similarity, perhaps assessed by correlation or mutual information. Depending on our
chosen definition of node relations, our resulting representation either will or will
not encode a subset dependency. In this example, only the definition of node co-
firing exhibits a subset dependency, which we could capture in a simplicial complex
representation. Now consider a city bus system fragment including stations, roads,
and bus lines (Figure 3.2, bottom). First, we could define a relation between k nodes
(stations) as the sets of stations along an entire bus route. That is, k stations are
related if they together form a whole bus route. This definition would propagate no
subset or temporal dependencies to the representation. Second, we could instead call
k nodes related if they share at least one bus line. Consequently, we now have a subset
dependency that must be captured by our choice of representation. Third, we might
define two bus stations as related if they are subsequent stops along a route. This
third, inherently pairwise, definition of relation could be represented with a graph.
Note that none of these three definitions encodes the temporal dependency, which
may or may not be present in the available data. For example, if we had access to not
only stations’ locations but also passenger trajectories within the system, we could
encode the temporal dependencies using higher-order networks.
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The above examples, and those in reference [197], illustrate the fact that one must
carefully choose relations to effectively encode dependencies, or, equivalently, that
whether or not a given representation exhibits a dependency is a (sometimes subtle)
question of semantics. This is to say, the modeling choices concerning relations,
representations, and dependencies are highly, and unavoidably, interdependent on
one another. We must be aware of what dependencies exist in the system, which of
them are encoded or neglected in the representation, and which come from external
sources. In the scientific community, these difficult choices are usually made following
the common practices that we delineate next.

Encoding Subset Dependencies. If a system exhibits subset dependency, it is
common practice to use either simplicial complexes or hypergraphs to represent it. In
the case when any subset of a set of related units is also related, then an appropriate
framework is the simplicial complex, since this framework has the downward closure
property (see section 2.1). In the terms used in section 2.1, the predicate P is true
for any subset of an existing relation. If instead only some subsets of related units
are related, then one could argue that a hypergraph is the appropriate framework
to use, since it allows for great freedom in encoding relations among subsets of re-
lated units. Equivalently, a particular subset dependency gives a particular choice
of the predicate P , which in turn induces a particular hypergraph. Recall that the
important difference between hypergraphs and simplicial complexes is the notion of a
subedge. Drawing from Remark 3.5 of [197], if a 1-simplex {a, b} and two 2-simplices
{a, b, c} and {a, b, d} exist, then by definition {a, b} is a subrelation (formally called
a face) of both {a, b, c} and {a, b, d}. However, if instead we had hyperedges {a, b},
{a, b, c}, and {a, b, d} in a hypergraph, we cannot say whether {a, b} is a subrela-
tion (subedge) of {a, b, c}, {a, b, d}, both, or neither. This connection or lack thereof
between relations and subrelations crucially affects the interpretation of the system
representation. Choosing to encode data as a simplicial complex or a hypergraph will
then allow specific mathematical tools, such as those from applied topology, to be
used for analyses. We will discuss this idea in more detail in section 5.

Encoding Temporal Dependencies. As discussed in section 3.4, one way to
encode temporal dependencies uses the idea of higher-order networks. Recalling our
previous description, the higher-order network begins with a set of walks, and from the
patterns found therein it creates a graph in which nodes correspond to ordered sets of
units in the original system, and edges connect nodes based on temporal dependence.
In this way, the higher-order network takes the temporal dependency (for example,
paths from A to B always lead to C) and encodes it in a special kind of node, derived
from the original units of the system. At the time of writing, higher-order networks
have been defined for paths on graphs. It is still an open question how to extend the
higher-order network framework to simplicial complexes or hypergraphs so that the
resulting representation exhibits both temporal dependencies and arbitrary subset (or
spatial) dependencies.

Encoding Spatial Dependencies. Possibly the most straightforward method to
encode spatial dependencies constructs a weighted graph in which the edge weights in
some way represent how close or far nodes are from each other. However, we highlight
the fact that edge weights are a popular mechanism to encode other kinds of infor-
mation as well, and once we encode one piece of information within the edge weight
we cannot then use edge weights to also encode spatial dependencies. For example,
if we build a graph for the transportation system of a city, we may want to encode
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Fig. 3.3 Choosing a framework marks the second step of our analysis pipeline. Frameworks
include graphs, simplicial complexes, and hypergraphs. We argue that the choice of frame-
work should be made in order to most faithfully capture system dependencies.

both traffic flow and road length as properties of the relations. Usually, both types
of information are encoded using edge weights, so we are left with three alternatives.
The first is to choose an edge weight that aggregates both types of information. The
second is to use a multilayer network (see section 3.4) in which each layer has weighted
edges reflecting a single type of relation [44]. The third is to create a more holistic
representation that efficiently combines the spatial information, traffic flow, and road
length while also including any interactions between edge types. This challenge is yet
another example highlighting that data availability, system dependencies, and choice
of representation are not independent of one another.

If the only challenge to the study of complex systems were the choice of repre-
sentation, then our discussion would be near complete. However, real-world systems
usually have at least two or more dependencies, including those we do not discuss in
this paper. For example, the subway network (Figure 2.2) contains both temporal
dependencies (evidenced in passengers’ routes) and spatial dependencies (the routes
taken are usually constrained by geographical proximity), while the coauthor system
(discussed further in section 6) could be further constrained by both temporal and
subset dependencies. Moving forward (see Figure 3.3), we will need to develop novel
methods for systematically representing and encoding complex systems with multiple
dependencies.

4. Mathematical Relationships between Frameworks. At this point it might
seem that the choice of representation wholly restricts the perspective and possible
analyses on the data. For example, if we encode the data as a directed hypergraph,
we can only perform analyses using hypergraph methods. However, as each of these
base frameworks records relations between nodes, perhaps we could utilize the under-
lying mathematical relationships between each of these frameworks to gain additional
insights. In this section we will explore the formal mathematical relationships among
graphs, simplicial complexes, and hypergraphs, and then we will discuss the assump-
tions needed or information lost as we move from one to another.

From Hypergraph to Simplicial Complex: Forgetting Independent Relations.
First let us imagine that from our data we have constructed a hypergraph H. If
we would like to create a simplicial complex KH from H, we might first map the
nodes of H to nodes of KH , before dealing with the hyperedges. Recall that in a
simplicial complex we have simplices that connect multiple nodes, but we also have
the downward closure restriction that if we have a simplex r, then any r′ ⊆ r must
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also be a simplex. So then to form KH we could take any hyperedge connecting
k + 1 nodes and form from it a k-simplex (see Figure 4.1, top left), thereby forcing
the downward closure of the hyperedge relation so that the system representation can
abide by simplicial complex rules. Additionally, note that if we have a hyperedge
a on nodes {v0, . . . , vk} as well as a hyperedge b on a subset of these nodes, the
simplicial complex will view b as redundant information, since by definition every
subset of nodes in a will be connected by simplices. In this way, we say that the
simplicial complex “forgets” the existence of b as a relation observed independently
of all other relations (specifically, observed independently from the relation a). We
can also see this forgetting notion in the matrix representation of the structure itself:
from a hyperedge incidence matrix we only need to keep the maximal hyperedge rows
in order to build the corresponding simplicial complex incidence matrix. Additionally,
KH will also lose information regarding the total number of relations in which a node is
involved, since many of those original hyperedge relations might be a subset of another
hyperedge relation. On the other hand, this procedure allows us to access methods
that are available for simplicial complexes but not for hypergraphs (discussed further
in section 5). Overall, in the hypergraph each hyperedge between a set of nodes arises
independently, so that having additional hyperedges (or the lack thereof) between
subsets of nodes within a larger hyperedge indeed supplies more information than the
one largest hyperedge. In contrast, we can define a simplicial complex by its largest
simplices (formally called maximal simplices) alone.

From Simplicial Complex to Graph: Forgetting Polyadic Relations. Next let
us assume that we are given a simplicial complex K and that from K we wish to
construct a graph GK that still represents our data. This transition is more straight-
forward, as we can take all of the 1-simplices of K to be edges of the graph GK .
Put another way, if two nodes participate in the same k-simplex in K, then we draw
an edge between these two nodes in GK (Figure 4.1, top right). By performing this
transition from simplicial complex to graph, we are now forgetting polyadic relations
between nodes. For example, in a simplicial complex we may have three nodes con-
nected by three 1-simplices, or connected by three 1-simplices and a 2-simplex; in a
graph, by contrast, we can only show these three nodes as being all-to-all connected
by edges, thus eliminating our ability to distinguish between the two cases. One can
also move from a hypergraph to a graph by drawing an edge between two nodes only
if the two nodes are connected by a hyperedge. The resulting graph recovered from
this process will be the same as the graph obtained by moving from a hypergraph to
a simplicial complex to a graph following the described protocol.

From Graph to Simplicial Complex: Assuming Polyadic Relations. What
happens if we instead move in the other direction? What are the assumptions neces-
sary to take a graph such as the one shown in Figure 4.1, right, and construct from
it a simplicial complex or a hypergraph? First, let us begin with a graph G and
construct a simplicial complex. If we make the assumption that all nodes involved in
a (k + 1)-clique of G are related, then we can construct a simplicial complex KG by
filling in each (k + 1)-clique with a k-simplex. This particular construction is called
the clique complex [105] or the flag complex [106], and it is often denoted by X(G)
(Figure 4.1, bottom middle). We reemphasize that for this construction, it is nec-
essary to assume that all nodes within a clique are all related as a single functional
unit. Importantly, this clique-to-simplex assumption may not be appropriate for all
systems. One example arises from social conversations in which three people may
converse only in pairs and never together as a three-person group.
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Fig. 4.1 Transitioning between frameworks requires added assumptions or engenders forget-
ting information. (Top left) The original example system as a hypergraph. (Top middle)
When we send hyperedges to simplices, we create a simplicial complex, and (top right) by
keeping all edges, we form a graph. Going in the other direction, we begin with the same
graph (bottom right), fill in all cliques as simplices to obtain a simplicial complex (bottom
middle), and send maximal simplices to hyperedges to form a hypergraph (bottom left).
Note that the hypergraphs on the top left and bottom left differ from one another.

From Simplicial Complex to Hypergraph: Assuming That Only Maximal
Simplices Are Independent. As we consider moving from simplicial complex K to
hypergraph HK , we are faced with a few options. First, since a simplex by definition
implies that all subsets of nodes within a simplex are also related, then we could take
every simplex and form from it hyperedges between all subsets of nodes within the
simplex. In constructing the hypergraph in this way, we carry through the downward
closure restriction. Alternatively, we could perform a conversion more akin to the in-
verse of the hypergraph-to-simplicial-complex conversion discussed above by creating
a hyperedge only for each maximal simplex of K (Figure 4.1, bottom left). Assigning
hyperedges only for maximal simplices can be seen as a conservative approach; that
is, we can uniquely define a simplicial complex using its maximal simplices so that
in forming the new hypergraph, we are assuming the fewest number of hyperedges
necessary to preserve only the polyadic relations already known to be independent.

From Hypergraph to Graph, and from Graph to Hypergraph. Perhaps most
importantly, note that from a graph we can move to a simplicial complex, then to a hy-
pergraph, then back to a simplicial complex, and finally back to a graph following the
translations discussed above. In this process, we will recover the original graph with
which we began. However, the opposite is not the case. As depicted in Figure 4.1, we
can begin with the hypergraph on the top left, move through the simplicial complex
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Fig. 4.2 Mathematical relations between frameworks add an optional step to the pipeline,
only to be used with caution. After an appropriate framework has been chosen for sys-
tem representation, one can make use of mathematical similarities between frameworks to
view their representation from the lens of a different framework. Importantly, we note
that moving from hypergraphs to simplicial complexes to graphs can result in a loss of
information, while the reverse direction can require one to make assumptions about the
system.

to the graph, and then move back along the bottom row from right to left, and we
will in fact recover a very different hypergraph than the one from which we began.
This exercise emphasizes the information lost or forgotten in moving down the frame-
work ladder. Specifically, since each hyperedge may arise independently of all others
(most notably independently of any hyperedge that is a superset), we not only lose
information when moving toward a graph, but also cannot recover this information
when moving back up from a graph to a hypergraph.

We note that the above protocols of moving from one framework to another
do not encompass all possibilities. One could define a simplicial complex from a
graph by simply keeping all edges as the 1-skeleton and having no larger simplices, or
perhaps one might form a weighted graph from a hypergraph by assigning edge weights
as some function of the hypergraph structure [143, 43, 92]. Though we have here
discussed moving between frameworks as the third step in the pipeline (see Figure 4.2),
moving from one framework to another after the initial encoding of data into a formal
representation should be performed only with extreme care, as any translation requires
adding assumptions or the forgetting of relations or independencies.

5. Methods Suitable for Each Representation. Now that we have exerted the
effort necessary to properly represent our data as a graph, simplicial complex, or
hypergraph, how do we analyze the resulting structure? In this section, we will
describe methods and statistics that can be used to evaluate precisely how each of
the three base frameworks offers unique perspectives on the system under study. We
recognize that many such methods and statistics exist, but for clarity we will focus on a
few techniques that help us identify similarities and differences among representations.

Before we begin, we provide a brief note of caution. The fact that a method of
interest might currently take in only one particular framework does not justify the
use of that framework in representing our data. To further illustrate the point, if we
intended to understand the spread of a disease by calculating the epidemic threshold
[41], we would find that most existing methods that calculate the epidemic threshold
do so from a graph representation. The theory of disease spread on hypergraphs
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Fig. 5.1 Frameworks provide different perspectives on the neighborhood of a node. (Left)
The colored node has four direct neighbors and participates in two triangles. (Middle)
The colored node has four direct neighbors and participates in one 2-simplex. (Right) The
colored node has two neighbors connected to itself exclusively, and two neighbors accessible
through a larger hyperedge.

and simplicial complexes is currently a nascent area of research [100, 102], so one
might not find a definition of the epidemic threshold that uses either of these polyadic
frameworks in the literature and is appropriate for the system at hand. Nevertheless,
the absence of this particular notion for polyadic frameworks does not imply that we
are justified in using a graph framework to represent the system. Generally, a result
is unlikely to offer fruitful insight into a system if the calculation was performed on a
representation that itself is ill suited for the system.

5.1. Methods for Graphs. As the most well known of the three frameworks in
data analysis, graphs have offered scientists interpretable and easily computable tools
for decades. Thanks to this rich history of graph analysis, we can computationally
study graphs at many different levels: the local node or node-neighborhood level, a
mesoscale level to see larger patterns, and the global level to summarize the entire
object. Though myriad statistics exist, for the sake of brevity we limit our discussion
below and point the interested reader to [144] to learn more.

At the most basic level, the number of edges incident to a node vi is called the
node degree and is denoted ki (see Figure 5.1, left). The distribution of degrees can
constrain the graph’s large-scale organization, for example, tracking the emergence
of a giant connected component [136]. At the neighborhood level, we can investigate
statistics describing the connectivity between a node’s neighbors. A common example
is the clustering coefficient ci of a node vi. Formally, the clustering coefficient is

(5.1) ci =
2µi

ki(ki − 1)
,

where µi is the number of edges between neighbors of vi. The numerator counts the
number of triangles in which vi participates and the denominator normalizes by the
number of triangles that could possibly form around vi. Generally, the degree and
clustering coefficient are examples of a much broader class of statistics proposed for
the description of local and neighborhood structure in graphs.

Complementing such descriptions, other statistics have been defined to measure
the nature of paths in the graph and markers of mesoscale structure. For example,
the average path length, various types of centrality [80, 22], notions of modularity
[91, 115, 153], and the property of small-worldness have proven useful in the study
of a wide variety of systems from the human brain [36, 18] to granular materials
[158]. One particular method that, at the time of writing, we found to be unique to
the graph framework is that of core-periphery structure. A graph with core-periphery
structure contains a dense group of nodes connected to each other called the core, and
a second group of nodes called the periphery that mostly connect to the core rather
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Fig. 5.2 The three frameworks and their corresponding downstream analyses can offer dif-
ferent perspectives on a complex system. (Left) For this example system, a graph rep-
resentation suggests a global core-periphery organization. (Middle) A simplicial complex
representation of the same system appears to show a globally circular structure. (Right)
The hypergraph representation of the same system hints at the presence of two communi-
ties.

than to other nodes in the periphery [32, 174] (see Figure 5.2, left). For a description
of other network statistics, we refer the interested reader to prior literature [144, 177].
Additionally, we note that in real-world systems, the values of many of these network
statistics are correlated with one another over instances in a graph ensemble, and
these patterns of shared variance can be used to distinguish between types of systems
[50, 148].

5.2. Methods for Simplicial Complexes. Simplicial complexes have entered the
data analysis scene more recently than graphs, yet we can still use a simplicial complex
to investigate multiple levels of system architecture with intuitive methods and statis-
tics. As before, we keep this section brief by focusing on only a few basic statistics
and then one method that is unique to simplicial complexes.

We might first seek to extrapolate basic graph definitions to simplicial complexes.
If we view a graph as the 1-skeleton of a simplicial complex, then the graph degree
of node vi corresponds to the number of 1-simplices in which vi participates. By
extending this idea, we can understand the neighborhood of a node (Figure 5.1, mid-
dle) by defining the simplex participation of node vi as the vector P (vi) in which the
kth element is the number of (k − 1)-simplices in which vi participates. One could
also record the vector of simplices in which the node participates (called the upper
degree in [187]), or the number of simplices not contained in any larger simplices, i.e.,
the maximal simplices, in which the node participates [193]. Notably, one can also
define the degree of a simplex of any size, instead of only defining the degree of a
node (which is, after all, a zero-dimensional simplex) [187]. Similarly, we might ask
whether and how the clustering coefficient could be extended to the simplicial com-
plex framework. Depending on the precise properties that one intends to capture, one
could use a ratio of simplices from dimensions k and (k−1) to formalize the notion of
a clustering coefficient. However, in the simplicial complex framework each simplex
can be considered as a fundamental building block, so it makes sense to also define a
clustering coefficient for an arbitrary k-simplex as in [126]. In a complementary effort,
the notion of centrality has recently been extended from the graph framework to the
simplicial complex framework [74].

In addition to extending graph measures to simplicial complexes, we can also har-
ness the theory of algebraic topology to uncover more complicated motifs within the
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Fig. 5.3 Constructing the Dowker dual of a simplicial complex. Given a concurrence matrix
denoting which nodes connect via relations (top left), we can create a simplicial complex
with each simplex defined by a relation (a, b, c, d). Alternatively, we could transpose the
matrix so that now we have four nodes (a, b, c, d) and five relations (bottom left). From this
transposed concurrence matrix we can then create a simplicial complex whose simplices are
defined by relations in the new concurrence matrix (bottom right). This simplicial complex
is called the Dowker dual of the original simplicial complex and will have the same number
of topological cavities.

system. The downward closure requirement within the simplicial complex definition
gives us the ability to accurately identify which simplices are involved in higher-
dimensional simplices. Consequently we can then detect where a dearth of simplices
leaves topological voids in the complex (Figure 5.2, middle). Detecting topological
voids is the work of homology, and as homology relies on well-defined mappings from
larger to smaller simplices, this method is best suited for the framework of simplicial
complexes.3

Simplicial complexes can also be “reversed” in a way that can be useful in un-
derstanding the structure of grouped nodes, while preserving the topological orga-
nization of the system. Consider constructing, for example, a simplicial complex in
which nodes represent regions of the zebrafish brain and simplices represent coactivity
during a task. We could encode the complex as a #simplices×#nodes binary matrix
sometimes also called a concurrence matrix or incidence matrix [86, 65]. In the top
left of Figure 5.3 we show a small example concurrence matrix of five nodes (1, 2, 3, 4,
and 5) connected through four relations (a, b, c, or d). We create a simplicial complex
(Figure 5.3, top right) by drawing maximal simplices between nodes that share a re-
lation in the concurrence matrix. For the zebrafish example, the simplicial complex
could contain relatively few simplices but orders of magnitude more nodes (depending
on data availability of course), making calculations cumbersome. As an alternative,
we could “reverse” the structure by constructing the Dowker dual [65]. Here, the role
of nodes is swapped with the role of relations [65]. In the zebrafish example, we would
form a node for each coactivity relation and then connect two nodes by simplices if
they share a participating region in the zebrafish brain. In Figure 5.3 we transpose
the concurrence matrix to swap the role of nodes and relations, and then show how
we again create a simplicial complex now called the Dowker dual. This new complex
will have the same number of nodes as the original complex had maximal simplices, so
that if the number of relations was small with respect to the number of nodes in the

3Sometimes the words “structural” and “topological” are used interchangeably. In this work, we
use the adjective “topological” to modify nouns relating to the theory of algebraic topology. We use
“structural” to refer generally to the patterns formed by the units and relations of a system.
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original complex, studying the Dowker dual will be more computationally tractable.4

Importantly, studying the Dowker dual preserves specific topological structure within
the system [65]: the homology groups of a simplicial complex and its Dowker dual
are isomorphic. Thus, the Dowker dual can be an incredibly efficient representation,
assuming that we still respect the scientific question at hand.

5.3. Methods for Hypergraphs. Like simplicial complexes, hypergraphs have
gained popularity only recently, as many fields have begun to realize the importance
of encoding polyadic relations in systems. The hypergraph framework is a natural
extension of the graph framework, so unsurprisingly many (though certainly not all)
computational methods for hypergraphs are extensions of computational methods for
graphs. As before, we will highlight basic statistics here as well as a method unique
to hypergraphs.

The framework of hypergraphs is also complemented by a set of descriptive statis-
tics. Importantly, recall that each hyperedge arises independently since we have no
rules relating hyperedges to each other, and consequently computations on hyper-
graphs must be interpreted differently from related computations on simplicial com-
plexes. Starting simply, we can first extend the concept of degree to hypergraphs. In
a hypergraph, the degree of a node dH(vi) is the number of hyperedges containing vi,
sometimes called the hyperdegree. Since hyperedges can connect any number of nodes,
we also define the hyperedge cardinality, also called the hyperedge degree, as the num-
ber of nodes contained by the hyperedge. Importantly, note that in the definition of
node degree, we do not stratify by hyperedge cardinality as the appearance of a large
hyperedge gives no information about the existence of smaller hyperedges. Instead, a
large hyperedge is simply another relation that contains our node of interest.

In order to understand a node’s neighborhood in a hypergraph (Figure 5.1, right),
next we move to a definition of the hypergraph clustering coefficient (see [112, 73,
159, 81] for others). Recall the graph clustering coefficient measures connectivity of
a node’s neighbors via connections that do not include the node of interest. If we
examine, for example, node vi and its neighbors, some neighbors will be connected
via hyperedges that do or do not include vi. Intuitively, node vi should have high
clustering if its neighbors connect via hyperedges that do not contain vi. The extra
overlap EO(vi) of a node vi helps us to quantify this idea; formally, the extra overlap
of two hyperedges ej , ek is defined as

(5.2) EO(ej , ek) =
|N(Dj,k) ∩Dk,j |+ |Dj,k ∩N(Dk,j)|

|Dj,k|+ |Dk,j |
,

where Dj,k = ej \ ek and N(U) is the set of all nodes that are neighbors of any node
within the set U . Then, intuitively, the extra overlap between two hyperedges counts
the number of nodes connected by outside hyperedges, and we normalize by the size
of the two hyperedges under consideration. Note that if we have only hyperedges of
cardinality 2, then the extra overlap over two edges involved in a triangle is 1. Finally,
the hypergraph clustering coefficient CH(vi) of a node vi is

CH(vi) =


(
|M(vi)|

2

)−1 ∑
ej ,ek∈M(vi)

EO(ej , ek) if dH(vi) > 1,

0 if dH(vi) = 1,

4This construction is akin to the line graph construction in graph theory [95].
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where M(vi) is the collection of hyperedges that include vi [231]. This definition for
the hypergraph framework is thus similar in spirit to the definition of a clustering co-
efficient for a graph. Indeed, the former is equivalent to the latter when all hyperedges
have cardinality 2.

We note that the hypergraph also has the ability to uniquely represent the absent
substructures of a system. Much like identifying repeated structural patterns (or
motifs) in a graph, a hypergraph allows us in principle to identify repeated patterns
of absent hyperedges. We may have a case where, for example, pairwise hyperedges
exist between four nodes that also connect via a 4-hyperedge, but no 3-hyperedges
exist. An interesting research question for such a representation is to ask why we
observe a lack of 3-node relations but an abundance of 2-node relations within every
4-node relation. Note that neither graphs nor simplicial complexes allow for this line
of questioning due to the lack of polyadic relations or the requirement for downward
closure, respectively. A detailed investigation of these absent substructures is outside
the scope of this paper, but we can take a step in that direction by defining the
following statistic, which we call the fill coefficient of a hyperedge h, as

(5.3) f(h) =
|g ∈ E : g ( h and |g| > 1|

2|h| − 2− |h|
,

where E is the set of hyperedges and | · | is the cardinality of a hyperedge. The fill
coefficient intuitively describes the fraction of smaller hyperedges that exist within
hyperedge h, taking into account the hyperedge cardinalities.

5.4. Methods and Dependencies. Before closing this section, we note that both
in choosing analyses and in interpreting results, we need to keep in mind the depen-
dencies within the system. For example, after creating a simplicial complex from our
data, how do we interpret its clustering coefficient? What does the diameter of a
system mean when we have hyperedges of different cardinalities linking nodes instead
of (dyadic) edges? How do communities found from a simplicial complex [30] with
subset dependencies differ from communities found within a hypergraph [108] with-
out such dependencies? Can we intertwine different sorts of system dependencies to
understand their impact on function? Examples of such intertwining methods include
(i) Rentian scaling, which formalizes the interaction between structure and geogra-
phy [45, 17, 156], and (ii) modularity maximization with spatial null models [77, 28].
Careful consideration of the above questions can only lead to better motivated and
more interpretable and insightful results.

To summarize, we see that each base framework offers a particular perspective
on the data it encodes. As we show in Figure 5.2, the choice of framework can
influence how we interpret the complex system structure of the same dataset. The
graph representation could suggest a core-periphery structure; the simplicial complex
representation lets us see that globally the system organizes around one circle; and the
hypergraph representation highlights the existence of two communities. We close this
section by emphasizing the importance of framework choice for proper representation
of the data and the appreciation that each analysis performed or pipeline chosen offers
a different perspective on the underlying complex system (see Figure 5.4).

6. Examples. Putting it all together, in this section we will discuss examples
of a system, its dependencies, and how we might represent the system using the
frameworks described above. We will then explore possible analyses on each repre-
sentation and compare results. Importantly, we will see that the subtle differences in
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Fig. 5.4 Updated analysis pipeline includes consideration of which computational methods
to perform on the chosen representation, and what distinct or complementary per-
spectives these methods offer. The last step in our pipeline involves computationally
analyzing the system representation. We note that each analysis provides its own per-
spective on the system representation. We recommend performing steps 1–4 with careful
consideration in order to gain real insight into the system.

representations and their definitions can lead to inconsistent results and conflicting
interpretations.

6.1. Coauthorship. Consider the system made up of scientific researchers who
interact to write scientific papers (for example, [46]). What kind of dependencies
govern the relations in this system? How should we encode this system formally? In
the following paragraphs we analyze a fragment of this system following the workflow
of Figure 5.4. We begin with a toy example (Figure 6.1) and later perform similar
analyses on a real dataset (Figure 6.2).

Dependencies. First, we may expect to find spatial dependencies in this system,
as the country of origin or university affiliation of a researcher may dictate which
of their colleagues are willing or able to collaborate. Second, we may also expect
temporal dependencies, as a researcher’s past collaborators may also influence any
future collaborations. Third, whether or not this system exhibits subset dependencies
depends upon which precise fragment we are interested in studying. If we focus solely
on authors and consider two or more authors as related whenever they have worked
together at some point, then it is necessarily the case that whenever a group of three
authors have coauthored a paper, then any two of them have coauthored a paper,
and therefore a polyadic relation always implies all smaller polyadic subrelations,
including all dyadic subrelations. On the other hand, we may choose to focus on
both researchers and scientific papers, in which case, we may want to think about one
scientific paper as determining a single relation. In this scenario, the fact that three
researchers are involved in a relation (because they have authored a paper together)
does not imply that two of them have authored (another, separate) paper together.
We will keep these dependencies in mind as we move through the later analysis steps.

Externalities: Data Availability. In a vacuum, we may expect to see all of the afore-
mentioned dependencies in this system. However, the data available may be biased
in such a way that, for example, researchers working (and papers produced) in one
particular country are overrepresented. In this case, the data available may not ade-
quately record the spatial dependencies involving, for example, researchers who travel
frequently between two different countries. Moreover, if the dataset is further biased
to include only researchers that work in one particular institution, then it is possible
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that no spatial dependencies are recorded at all, since researchers in one institution
may all work with one another with the same likelihood; that is, the location of
one existing collaboration offers no new information about the likelihood of another
collaboration.

Externalities: Research Question. Let us introduce a toy example to accompany our
discussion. Consider a coauthorship dataset including four authors a1, a2, a3, and a4
who have written four papers p1, p2, p3, and p4 (Figure 6.1, top). The three papers
were authored as follows: paper p1 was authored by {a1, a2}, paper p2 by {a2, a4},
paper p3 by {a1, a2, a3}, and paper p4 by {a3, a4}. This toy example illustrates that
whether the chosen representation reflects the dependencies inherent in the system
is sometimes a subtle question of semantics. For example, if the relations in our
representation are defined using the first question (“has this pair of authors worked
together on at least one paper?”), then the set of relations will necessarily exhibit a
subset dependency, regardless of whether or not the data available records a subset
dependency found in the real system. In other words, one must be aware of which
dependencies reflected in our representations come from the system, from how the
data was collected or from the representation constructed. In this example it is the
question at hand, the intricacies of the system under study, and the data available
that together guide the choice of representation of these data.

Representations. If we take the information from Figure 6.1, top left, and construct
the classic coauthor network in which an edge exists between two authors if they have
appeared as coauthors on a paper, then we recover the graph shown in Figure 6.1,
top right. In particular, note that as we construct the coauthorship graph, we ask the
following question exactly once for each potential relation: “Has this pair of authors
worked together on at least one paper?” Alternatively, we can consider polyadic
relations between authors and ask, “Has this set of authors worked together on a
paper?” This question naturally yields a simplicial complex (Figure 6.1, middle right),
in which nodes form a simplex if the corresponding authors are a subset of the authors
of at least one paper. Finally, we imagine the author list of the paper is nonredundant
so that one paper corresponds to exactly one relation. Said another way, we respect
that without each and every author, the paper could not have been completed. If
we take this point of view, we will instead construct a hypergraph by repeatedly
asking, “Has this set of authors exclusively (needing no other authors) written a
paper together?” This approach retains the large group of three authors, but now
clearly shows that, for example, authors a1 and a3 have not worked on a project as
an exclusive group. Note that this information is not recoverable from either of the
other representations.

Importantly, access to the full data about researchers and scientific papers would
allow us to build any of the three frameworks discussed. However, if we only have
information about coauthorship (which sets of authors have worked with each other)
rather than full knowledge of the data, we would only be able to construct the graph
version or the simplicial complex version, but not the hypergraph version.5

Methods and Analyses. Next we analyze the three different system representations.
Of our coauthor representation (graph, simplicial complex, or hypergraph), we might
first ask a simple question about the involvement of a node (author) in paper writing in
order to gauge the author’s productivity. In the graph, we might use the node degree

5One could build a hypergraph version, but it would not be an appropriate representation for
this scenario because it does not respect the blatant subset dependency.
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Fig. 6.1 Example of different perspectives offered by each framework on a coauthor dataset.
The data (far left) consists of a list of papers and their author list. Based on a question
about what defines relations between authors, we build either a graph, a simplicial complex,
or a hypergraph (right). If we start with the graph, we could also use the relations between
frameworks to create a simplicial complex or a hypergraph (far right), though this process
can result in inaccurate representations of the original data.

to recover this information, which would tell us that authors a2 and a3 participated
in the same number of collaborations. Moving to the simplicial complex, we see by
looking at node participation in maximal simplices that again authors a2 and a3 could
be described as equivalently collaborative. However, in the hypergraph representation,
if we look at node degree, we see clearly that a2 has participated in more collaborative
projects than any other author, a conclusion that we are only able to draw from the
hypergraph representation. A similar experiment comparing authors a1 and a4 shows
that in this scenario, both the simplicial complex and hypergraph encodings view these
authors as having different sizes of collaborative projects, while the graph structure
does not. Specifically, the graph tells us that both a1 and a4 have worked with a2 and
a3; the simplicial complex tells us that a1 worked collectively with a2 and a3, whereas
a4 only worked individually with a2 and a3; and finally the hypergraph tells us that
a1 had an individual project with a2 as well as a team project that also included a3,
while a4 only worked on two-person papers. These analyses illustrate how the subtle
differences in the three representations and associated downstream analyses can yield
insights that may be at odds with one another.

Relationships between Frameworks. In this toy example we have constructed each of
the three representations directly from the data itself, with full knowledge of the raw
data. However, we could also imagine that we are given the data already represented
as one framework and then try transforming our representation to another framework.
If we begin with one representation and translate to another framework, will we
recover the same information as if we had constructed the structure directly from the
data? Here, if we begin from a graph and move to a simplicial complex by attaching
simplices to cliques (i.e., construct a clique complex ), we recover a simplicial complex
with two maximal simplices formed by a1, a2, a3 and a2, a3, a4 (Figure 6.1, far right).
Moving then from simplicial complex to hypergraph we would form a hypergraph with
two hyperedges between a1, a2, a3 and a2, a3, a4; see Figure 6.1, far bottom right. If
we asked the same questions about author participation as we did above, then we
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would find that both pairs (a2, a3 and a1, a4) now seem to contribute in exactly
the same way across representations. In studying complex systems we may receive
only one representation of the system rather than the raw data, which can make
switching to a different representation that perhaps better suits the planned analyses
enticing. However, the present exercise underscores the importance of understanding
the assumptions made by each framework; care must be taken when moving between
frameworks, not simply in recasting the mathematical language used, but also in
remaining true to the original data.

Real Dataset Example. We close this example by illustrating the above points in a
real coauthorship dataset extracted from the DBLP computer science bibliography
database [23]. This dataset consists of 3,700,681 scientific articles published between
the years 2000 and 2016, as well as the list of authors of each article, for a total of
1,930,378 authors. Using this dataset, we build separately a graph, a simplicial com-
plex, and a hypergraph directly from the data for each year contained in the dataset.
In each representation, we measure the degree of each node, using the definitions in
section 5. Figure 6.2(a) contains a scatterplot showing the degree of each node as
measured in the different representations corresponding to year 2016. In this dataset,
the degree in any representation is positively correlated to the degree in any other
representation, though progressively less so as the degree of the node decreases. This
result means that the different representations often agree more on which nodes have
the largest degrees than on which nodes have small degree. This is important to keep
in mind, especially in studies that make claims about the nodes of small degree, which
often outnumber those with large degree.

To see how this correlation changes over time, for each year we calculate the
Spearman rank correlation coefficient, which quantifies the similarity in node degree
rankings between two representations. The Spearman rank correlation coefficient is
equal to 1.0 when the rankings are equal, and −1.0 when the rankings are exactly
reversed. Shown in Figure 6.2(b), we measure this coefficient for each year and each
pair of representations. We observe the highest correlation between degrees calculated
from the simplicial complex representation (number of maximal simplices) and degrees
calculated from the hypergraph representation (number of hyperedges), which is likely
due to the fact that these two representations both encode the polyadic relations in
the dataset. This result suggests that relatively few papers authored by a subset of
the authors of another paper were written. We also observe that the node degrees
calculated from the graph representations show a comparatively low correlation to the
node degrees calculated from the other representations. In particular, the correlation
between the graph and the hypergraph drops below 0.5 in some years, signaling a very
different result when ranking nodes by graph degree or by hypergraph degree. Our
observations imply that, in this dataset, we should be careful when making broad
claims regarding the degree of nodes, especially those with few observed relations
(i.e., small degrees), as each representation may yield different results that must be
interpreted accordingly.

In summary, we have used this example to illustrate each step of the workflow
from Figure 5.4, as well as to show that using different representations of the same
dataset may yield measurements that are at odds with one another, even in the simple
case of measuring node degree and when the representations are created directly from
the data.

6.2. Email Communications. In our next example we again follow the workflow
of Figure 5.4, but more succinctly. While in the previous example we discussed
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Fig. 6.2 Correlation among degree measurements in different representations of the same
dataset. (a) Comparing the degree calculated from the graph or hypergraph representation
(left), from the simplicial complex or hypergraph representation (middle), and from the
graph or simplicial complex representation (right) from the coauthorship dataset extracted
from the DBLP computer science bibliography database in the year 2016. Correlation
is relatively high for nodes of large degree, but relatively low for nodes of small degree.
(b) Spearman correlation coefficient calculated between node degrees from pairs of data
representations in each year.

multiple types of dependencies, variations in data availability, and differing research
questions, here we provide an example of a seemingly straightforward analysis on a
dataset of emails.

We start by considering the following scenario. Suppose Ana works at a company
and is tasked with improving communication and cohesiveness between teams in the
workplace. Ana works at a big company that contains many teams in diverse areas, so
she decides to prioritize her involvement by focusing on average team communication
via an easily accessible medium such as email. Concretely, Ana wants to evaluate how
well each team integrates with all members of the company, which translates to eval-
uating the average clustering coefficient of each team. For this purpose, Ana has col-
lected all the internal email communications. She decides to operationalize her task as
follows. First, if a set of at least 5 people have all received the same email at the same
time, she will assume they must be working together as a team. Second, she decides to
focus on emails with at most 25 participants, as emails with more than 25 participants
are likely company-wide communications that do not involve a single team working
together. Third, having identified a team, she will quantify the team’s cohesiveness
by averaging the clustering coefficient of each member in the team. Note that in this
system we represent no spatial dependencies as email allows instant communication
regardless of geographical location. Finally, Ana only cares about the teams and com-
munication that have already occurred, and is not hoping to predict communication
in the future, so for the presented analysis on aggregate communication she does not
need to incorporate any temporal dependency that might exist within the system.
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Fig. 6.3 Graph clustering and hypergraph clustering coefficients are loosely related. For dif-
ferent ranges of hyperedge cardinality, the average clustering coefficient of nodes within a
hyperedge calculated with the projected graph definition is compared to the average cluster-
ing coefficient calculated from the hypergraph representation. Scatterplot points are colored
by the log(fill coefficient).

To follow up on her plan, Ana needs to choose a framework with which to encode
the data, as well as decide how to measure the clustering coefficient. If she chooses to
encode the system as a graph where each employee is a node and each edge joins two
nodes if they simultaneously received the same email, then she may use the clustering
coefficient defined in section 5.1. Alternatively, she may choose to build a hypergraph
where each node is an employee and each hyperedge denotes a single email, and use the
clustering coefficient defined in section 5.3. A priori, one might expect that measuring
the average clustering of a set of nodes in the graph is highly correlated to measuring
the same quantity in the hypergraph. However, we will see that the subtle differences
in definitions lead to varying results.

For this example, we use a dataset of email communications [23] containing 10,883
emails among 148 employees of a company, from March 1999 to October 2002. Each
email has a corresponding set of participants which includes the sender and all recip-
ients. In Figure 6.3 we see the results of Ana’s analysis on this dataset, using both
a graph and a hypergraph representation of these data. Each marker represents an
email with between n and 25 participants, for n = 5, 6, 7, 8, i.e., what Ana considers
to be a team. Each email is located according to the average clustering coefficient
of the email’s participants, as measured in the graph (horizontal axis) and in the
hypergraph (vertical axis). In the top left panel we can see that there is very little
correlation between these two quantities for teams of at least 5 people (Spearman
rank correlation coefficient r = 0.1 and associated p-value p = 0.16). These results
show that ranking teams of employees using these two different clustering coefficients
yields very different results. Consequently, if Ana wants to prioritize teams in order
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of how much she needs to intervene, in other words by ranking the teams according
to average clustering coefficient, then the graph and hypergraph representations will
recommend very different courses of action. Indeed, Ana would need to allocate her
resources in entirely different ways depending on which representation she chose. This
result does not change if Ana chooses to focus on teams of at least 6, 7, or 8 people,
as shown in Figure 6.3.

Next, Ana decides to distinguish between team cohesiveness with the company
and intrateam cohesiveness. That is, do those teams that communicate well with
everyone in the company also have robust within-team communication? A team that
has excellent internal communication would have a high fill coefficient, which measures
the fraction of possible smaller hyperedges that exist between the nodes of a hyperedge
(see section 5.3). In order to answer this question Ana calculates the fill coefficient
of each team and adds this information as color on her scatterplots (Figure 6.3). By
eye her results show no relationship between a team’s cohesiveness with the company
(clustering coefficient calculated from the graph or hypergraph representation) and a
team’s internal cohesiveness (fill coefficient).

Together, these experiments illustrate that even in the case when (a) the research
question is fixed, (b) the researcher has access to the full dataset, and (c) there are
little to no interactions among different types of dependencies, the choice of represen-
tation alone may still yield different insights by virtue of the different assumptions
made by each one (here dyadic versus polyadic interactions).

7. Applications. We can naturally encode myriad systems in the real world with
at least one of the frameworks discussed in this work. Still, often we focus on an-
alyzing a system from a particular perspective and spend less time imagining how
alternative analysis pipelines may be more revealing—or indeed more faithful to the
system—than the currently used pipeline. Here we consider the alternative perspec-
tives offered by the dependencies, frameworks, and challenges we have discussed in
this paper.

First we consider the brain. The brain can be naturally conceived of as a system
of individual parts that together form large functional units at different scales: neu-
rons work together to communicate with each other forming co-firing patterns called
code words [55], multiple neuronal populations become active to replay past trajec-
tories and in doing so may help the organism plan and learn [147], and entire brain
regions work in unison to form functional networks [82]. Scientists have successfully
studied the brain by encoding it at any one of these scales using the representations
discussed in this work [27]. For example, with graph representations researchers found
the brain to exhibit small-worldness [15, 16, 141], modular architecture [198, 82], and
hubs [1, 2]. Using the simplicial complex representation, at the larger scale cavities in
the structural adult brain were observed [161, 193], and at a smaller scale researchers
detected the geometric structure of pyramidal neuron firing patterns [87]. Finally,
research employing a hypergraph representation has identified functional hub hyper-
edges [222], characterized types of hyperedges in developing children [90], and tracked
changes in brain organization over both short [19, 57] and long time scales [58].

Looking to the future, one particularly little understood aspect of the brain is
the impact of temporal dependency. How do specific relations affect the existence
of any other relations in the future? For example, can a brain transition from any
arbitrary state to any other state [49], or is its future activity bound by its past
activity [12, 220]? Though the field has used temporal networks to investigate time-
varying activity, at the time of writing we have not found the inclusion of temporal
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dependencies within the representation. We suggest the application of higher-order
network representations to deepen our understanding of temporal dependencies in this
complex system. Additionally, at all scales the brain is spatially embedded [201], and
previous work has shown that the strength of connections between brain regions often
depends on the Euclidean distance between them [97, 172]. Often the analysis pipeline
involves comparing any computed results on the empirical data against a spatially
embedded null model [28], or comodeling the spatial relations and other relations
such as by examining Rentian scaling [17, 98, 179]. While these approaches do help
to determine the dependence of spatial features on other features, we suggest taking an
additional step to directly encoding spatial dependencies in the formal representation
of the data. For example, multilayer representations or sheaves encoding position
information may be of help here.

Next we consider transportation, which is another well-studied system in net-
work science. Transportation networks come in two different types: systems where
the movement is done along fixed routes (such as roads, train tracks, power lines,
or airline paths [173, 20, 185, 152, 47]), and systems where the movement is done
freely through (outer) space [175]. Among these, analyses specifically of public trans-
portation networks have incorporated multilayer networks [219] or variations thereof
including internal node structure [188], and have also evaluated system-specific mea-
sures that include spatial organization [218]. Analyses involving temporal representa-
tions have included investigating congestion clusters in road networks [170] and how
to alleviate them [103]. These analyses usually consider spatial and temporal depen-
dencies by assigning weights to the representation’s relations associated to distances
or travel times [162, 183]. Importantly, studies are beginning to encode the temporal
dependency in the representation itself, as higher-order networks have revealed these
temporal dependencies in data from global shipping and web browsing [226].

The subset dependency is studied far less often than other types of dependencies
in transportation systems. For example, in a public transport system, if relations are
defined among k stations if there exists a route X that stops at all k stations, then cer-
tainly any subset of those k stations must also be related by route X. Alternatively,
a subset dependency may or may not exist within traversed paths. For example,
perhaps we observe paths of length k but we do not observe smaller subpaths. How
might the identification or inclusion of subset dependencies within the transportation
system improve our ability to prevent system failures or predict future activity? Ad-
ditionally, we suggest further investigation of polyadic relations in these systems with
simplicial complexes or hypergraphs where appropriate, as these representations may
elucidate previously hidden system properties.

Finally, we consider applications in cellular systems composed of any subset of pro-
teins, genes, regulatory units such as enhancers, epigenetic factors, and more [78, 4].
Most commonly the field studies system fragments such as genetic regulatory networks
(GRNs) [61, 221, 71] and protein-protein interaction networks (PPINs) [62, 166]. Un-
like the above two examples, this application differs in that only in rare situations
can real-world interactions be observed. Consequently, tremendous effort focuses on
network reconstruction from data, i.e., inferring the interactions from indirect mea-
surements [146, 216, 3]. Temporal information such as fluctuations in RNA counts
[196] and spatial information such as colocalization [128] can be used to reconstruct
the network of interactions. Often, for example, in the system fragment of proteins
and protein complexes, polyadic relations exist and have been encoded using simpli-
cial complexes or hypergraphs [165]. Multilayer representations have also been used
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for representing multiple biological layers important in disease [93] and for inferring
protein function [228].

The difficulties associated with macromolecule-interaction systems create an en-
ticing problem for developing system representations. Since the existence of interac-
tions can rarely be observed directly, perhaps a representation with weights indicating
the probability of the existence of each relation might be a useful alternative. In such
a case, one might consider studying an ensemble of graphs, simplicial complexes, or
hypergraphs instead of only one, and differentiating among them based on the like-
lihood of each one being a faithful representation of the real system. Additionally,
though polyadic relations are known to play an important role in these systems [207],
simplicial complex and hypergraph representations are more rarely employed (exam-
ples include [74, 189, 112]). Finally, temporal fluctuations are becoming easier to
record in these systems [182], which offers the opportunity to directly study temporal
dependencies.

8. Discussion and Conclusion. In this work we have examined each step of a
data analysis pipeline suitable for studying complex systems (see Figure 8.1). We
first discussed system dependencies which can manifest in different flavors including
but not limited to temporal, subset, and spatial. We then defined common complex
system frameworks and their underlying assumptions, as well as which dependencies
they encode. We discussed the mathematical relationships between frameworks, and
how information can be lost (or imputed) as we convert data from one framework to
another. Finally, we offered analysis examples in order to underscore the importance
of dependencies, careful choice of representation, and analysis techniques in studying
complex systems.

The main message of our work is that there is no perfect way to analyze a system,
and that studying two different systems may require two entirely different pipelines.
That is, the modeling decisions made while studying one dataset compiled from a
system will not necessarily carry over to another system or, indeed, not even to an-
other dataset extracted from the same system. In contrast, we see that many studies
apply certain pipelines for seemingly no other reason than because they are common
within a certain field. Instead, we recommend that each new system and dataset be
individually evaluated and investigated, and each assumption and pipeline decision
be made in accordance with the concepts discussed here. More specifically, and fol-
lowing Figure 8.1, we suggest designing pipelines based on the system and system
dependencies, any external dependencies that may be induced by the data type or
data collection method, and the limits of the system fragment under study. From
there, we suggest choosing a framework that best fits the data, the research question,
and the system itself, even if it requires using a new framework or extension that is
outside of what is customary. Finally, we recommend choosing carefully the specific
methods, measurements, and analyses performed on the chosen representation, and
keeping in mind that their results may be biased by the choices made in the previous
stages. Different choices at each of these steps may ultimately yield results that are at
odds with the results yielded by other choices. Only after respecting the system’s de-
pendencies and unique qualities through proper representation and analysis methods
will we uncover novel insights into the system under study.

Though here we present only a first attempt to unify the application of com-
plex systems analyses, we hope that the drive for more accurate representations will
continue to push the field both forward and closer together through multiplying col-
laborations. We imagine that complex systems researchers in the future may each
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Fig. 8.1 Complex system analysis pipeline discussed in this paper. To begin, we suggest consider-
ing how the research question, data availability, and system dependencies may influence
downstream analyses. We have discussed subset, spatial, and temporal dependencies (red).
We suggest choosing a framework (navy) that preserves and respects dependencies within
the system and data. Frameworks themselves are mathematically related (light blue), but
switching frameworks after the initial data encoding can result in making inaccurate as-
sumptions or forgetting independent relations. Finally, choosing the appropriate analysis
method for the system and representation (green) after all other steps have been performed
carefully can offer insights into the system’s behavior, structure, or function.

have a slew of representations along with carefully chosen computations that respect
the dependencies one finds within the system. By continuing this discussion, the sep-
arate areas of science that use complex systems analyses will together identify what is
missing from current frameworks, create more insightful analyses, and generate novel
techniques.

9. Citation Diversity Statement. Recent work in several fields of science has
identified a bias in citation practices such that papers from women and other minori-
ties are undercited relative to the number of such papers in the field [68, 127, 38, 42,
208, 64]. Here we sought to proactively consider choosing references that reflect the di-
versity of the field in thought, form of contribution, gender, and other factors. Gender
bias can arise due to explicit and implicit bias against a person’s known gender as a
woman, or due to explicit or implicit bias against a person carrying a name commonly
used by women [124, 154, 139]. To evaluate the former (bias according to known gen-
der), we obtained predicted gender of the first and last authors of each reference using
pronouns affiliated with them online or pronouns known by personal friendships; by
this measure (and excluding self-citations to the first and last authors of our cur-
rent paper), our references contain 41% man(first)/man(last), 14% man/woman, 9%
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woman/man, 14% woman/woman, 0% nonbinary, and 21% unknown categorization.
This method is limited in that pronouns may not be indicative of gender identity,
and may not be consistent across time or environment. To evaluate the latter (bias
according to a gendered name), we used databases that store the probability of a
name being carried by a woman; by this measure (again excluding self-citations), our
references contains 60% man/man names, 12% man/woman names, 11% woman/man
names, 10% woman/woman names, and 7% unknown categorization [230, 68]. This
method is limited in that it cannot account for intersex, nonbinary, or transgender
people. We look forward to future work that could help us to better understand how
to support equitable practices in science.
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in multiplex transportation networks, PLoS One, 11 (2016), art. e0161738. (Cited on
pp. 451, 456)

[45] P. Christie and D. Stroobandt, The interpretation and application of rent’s rule, IEEE
Trans. Very Large Scale Integration (VLSI) Systems, 8 (2000), pp. 639–648. (Cited on
p. 464)

[46] A. Clauset, D. B. Larremore, and R. Sinatra, Data-driven predictions in the science of
science, Science, 355 (2017), pp. 477–480. (Cited on p. 465)
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