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Summary 20 
 21 
Mathematical modeling suggests that glycolytic oscillations coupled to insulin secretion via 22 
metabolic factors mediate oscillations in basal insulin levels. 23 
 24 
 25 
Abstract 26 
 27 
In fasted and fed states, blood insulin levels are oscillatory. While this phenomenon is well 28 
studied at high glucose levels, comparatively little is known about its origin under basal 29 
conditions. We propose a possible mechanism for basal insulin oscillations based on oscillations 30 
in glycolysis, demonstrated using an established mathematical model. At high glucose, this is 31 
superseded by a calcium-dependent mechanism. 32 
 33 
  34 
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 35 
Introduction 36 
 37 
In response to a meal, blood glucose levels rise, and this is sensed by the 𝛽 cells of the islets of 38 
Langerhans distributed sparsely throughout the pancreas, which then secrete the hormone insulin 39 
(1). Once entering the circulation, insulin acts to increase glucose uptake into muscle and adipose 40 
tissues while it inhibits hepatic glucose production (2). Glucose-induced insulin secretion is thus 41 
a key player in whole body glucose homeostasis, and its dysregulation is a major contributor to 42 
type 2 diabetes (3).  43 
 44 
The insulin secretory component of this homeostatic control system is regulated by an exquisite 45 
set of mechanisms in 𝛽 cells (1) (Fig. 1).  In contrast to many other hormones, insulin secretion is 46 
regulated directly by the rate of glucose metabolism, which serves as a surrogate for the 47 
concentration of glucose in the blood (4). Glucose enters the 𝛽 cells through glucose transporters 48 
and is metabolized in glycolysis and then by mitochondrial respiration, increasing the ATP/ADP 49 
ratio. Insulin secretion is then stimulated via two major pathways: the triggering pathway, which 50 
mediates the rise in intracellular Ca2+ needed to trigger exocytosis, and the amplifying pathway, 51 
which increases docking and priming of insulin-containing granules, and brings them into close 52 
proximity to CaV channels, enhancing the efficacy of Ca2+ in driving secretion. 53 
 54 
Central to the triggering pathway are KATP potassium channels, which close in response to 55 
increases in the cytosolic ATP/ADP ratio.  KATP channels are open in low glucose, maintaining the 56 
cells at a negative membrane potential, but when they close, the cells depolarize, opening voltage-57 
dependent calcium (CaV) channels and initiating Ca2+ entry (c in the diagram shown in Fig.1). The 58 
reciprocal activation of CaV and KV channels generates action potentials (spiking), much like the 59 
excitable membranes of neurons and muscle cells. Ca2+ then triggers the exocytosis of insulin 60 
granules, primarily those located near the CaV channels.   61 
 62 
In addition to generating ATP, glucose metabolism gives rise to one or more metabolic signals, 63 
called amplification factors (AF in diagram), that mediate the amplifying pathway introduced 64 
above. The identity of the AF remains unclear, but some of the suggested candidates include ATP, 65 
glutamine, and NADPH (4, 5). A recent review highlights possible roles of reactive oxygen 66 
species, lipids and phosphoenolpyruvate (6).  The AF is physiologically important, as it is 67 
responsible for about half the insulin secretion (7).   68 
 69 
The picture described above contains the basic information needed to understand 𝛽-cell function 70 
but is incomplete, as blood insulin levels in vivo are not steady but oscillatory, with a period of 71 
about five minutes, as has been observed in humans, rodents, non-human primates, and canines 72 
(8-11). Figure 2 shows an example of insulin levels recorded from the portal vein in a human 73 
(panel A), with insulin secretion rate reconstructed by deconvolution, as shown below the raw 74 
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secretory data (panel B) (12). Similar data have been recorded from the portal vein in rats (13) and 75 
in dogs (14).  The latter study looked at oscillations before and after glucose ingestion, indicating 76 
an average increase of 400% in pulse amplitude and 40% in frequency.  The pulsatile nature of 77 
insulin release, which resembles in a general manner that of other hormones (15) is believed to be 78 
necessary for the efficacious action of the hormone (16); for a review see (17). 79 
 80 
The insulin oscillations observed in the circulation are driven by insulin secreted in pulses from 81 
the islets. Pulsatile insulin secretion from islets in vitro has been shown for both humans and mice 82 
(18-24). Notably, the oscillations of isolated islets have the correct period and respond to 83 
increasing glucose concentration with increases in insulin pulse amplitude. Despite the pulse-84 
generating capability of individual islets, important questions remain about how the hundreds of 85 
thousands of islets within the intact pancreas synchronize their secretory output to generate the 86 
insulin pulses of portal blood. Suggested synchronizing signals include acetylcholine, ATP and 87 
nitric oxide (NO), which have been studied by pharmacologically inhibiting the neurons that 88 
innervate the pancreas or by vagotomy, but these studies failed to reach a consensus  (25-28). 89 
While it is also possible that inter-islet synchronization is different under basal conditions, we 90 
assume in the absence of evidence to the contrary that the core oscillation mechanism still resides 91 
within individual islets. We proceed to focus here as a first step on the oscillation mechanisms of 92 
individual islets. 93 
 94 
At higher glucose levels (7 – 15 mM) corresponding to post-prandial or diabetic conditions, 95 
oscillations in islet insulin secretion are driven in large part by oscillations in cytosolic free Ca2+ 96 
(29). These Ca2+ oscillations arise in turn from a second role of Ca2+ in addition to stimulating the 97 
exocytosis of insulin granules shown in Fig. 1, namely the negative feedback exerted by Ca2+ on 98 
its own entry.  This occurs by two complementary mechanisms.  The first mechanism proposed 99 
was activation of KCa channels, similar to the situation in many other endocrine cells and neurons. 100 
This causes the spikes to cluster into bursts rather than occurring continuously (look ahead to 101 
panels showing simulation of V and c in Fig. 4) and was the basis of the earliest mathematical 102 
models of Ca2+ oscillations in beta cells (30). A number of other models were quickly proposed 103 
based on this idea or variations on it, as reviewed in (31, 32). 104 
 105 
A second, more subtle form of negative feedback was subsequently appreciated: Ca2+ entry and 106 
accumulation activate Ca2+ pumps in the ER and plasma membranes (SERCA and PMCA, as 107 
shown in Fig. 1).  These pumps restore cytosolic Ca2+ levels in between bursts of spikes but also 108 
consume ATP; see (33) for experimental evidence that raising Ca2+ lowers ATP/ADP.  This would 109 
reopen some of the KATP channels that were closed when glucose was elevated and could 110 
contribute to the termination of each burst of spikes, as first proposed in (33).  This is a much 111 
slower process than activation of KCa channels and is a more appropriate explanation of the five-112 
minute oscillations of insulin observed in the circulation.  Current models in which KATP channels 113 
either drive Ca2+ oscillations (34) or are limited to setting the glucose threshold for oscillations 114 
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driven by other ion channels (35, 36) are reviewed and contrasted in (37, 38).  A further point, 115 
which will take on heightened significance below, is that if metabolism oscillates in phase with 116 
Ca2+, the AF will also oscillate and reinforce the pulses of secretion (39). 117 
 118 
We now come to the heart of the matter:  oscillations in secretion are also seen in basal glucose in 119 
vivo (4 – 5 mM) (12, 14, 40, 41) and from isolated human (24) and mouse islets in vitro (42, 43). 120 
In fact, it has been reported that as much as 70% of the total insulin secreted from the pancreas 121 
under basal conditions, where both constant and pulsatile release are observed, occurs in pulses 122 
(44).  Yet, in vitro data from islets exposed to these low glucose concentrations indicate that the 123 
beta cells are not electrically active and do not exhibit large amplitude oscillations in cytosolic free 124 
Ca2+ concentration in this case. This raises the question: What is the mechanism for oscillatory 125 
insulin secretion at basal glucose levels?  This is not a purely academic question, because blood 126 
glucose is within its basal range most of the time. The high concentrations commonly used in in 127 
vitro experiments are typically only experienced by people or animals with diabetes.   128 
 129 
Regulation of basal insulin secretion has clinical significance, as elevated basal insulin is a good 130 
predictor of future diabetes (45).  It occurs years before basal glucose increases and is a marker of 131 
insulin resistance, as embodied in the widely used indices HOMA-IR and QUICKI (46, 47).  It has 132 
also been suggested that in addition to being a marker of insulin resistance, elevated basal insulin 133 
may be a cause of insulin resistance (48, 49) as well as obesity (6, 50).  A recent review, however, 134 
concludes that the preponderance of evidence is against hyperinsulinemia as a primary cause of 135 
diabetes in most cases; a good introduction to this debate is the review (51) and the commentary 136 
responding to it (52, 53). 137 
 138 
While the mechanism of elevated basal insulin secretion and its contribution to diabetes is not 139 
established, various hypotheses have been proposed. Examples include dysregulated basal insulin 140 
release due to the interaction between reactive oxygen species (ROS) and long chain fatty acids 141 
(as reviewed in (6)), abnormal levels of cardiolipin in mitochondria due to its altered biosynthesis 142 
with concomitant changes in mitochondrial respiration (54), changes in the regulation of sweet 143 
taste receptors on the beta cell that normally act as a brake on basal secretion (55), elevation in 144 
basal secretion due to fatty acids that does not involve ATP synthesis, mitochondrial lipid 145 
oxidation or ROS but does involve Ca2+ (56), and increased proton leak across the mitochondrial 146 
inner membrane mediated by fatty acids independently of ATP synthesis (57), and lastly a novel 147 
Ca2+ influx pathway activated by ER stress under low glucose conditions, leading to more insulin 148 
secretion (58). 149 
 150 
Calcium oscillations have in fact been seen in low glucose (e.g., at 6 mM, just below threshold 151 
levels of glucose needed to trigger full blown oscillatory activity) and in islets treated with high 152 
glucose and mannoheptulose to inhibit glycolysis (Fig. 3) (59). However, these small-amplitude 153 
Ca2+ oscillations are too small to plausibly engage the Ca2+ feedback mechanisms acting on KCa 154 
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or KATP channels oscillations described above, and it is unlikely that they alone could be the driver 155 
of insulin oscillations in basal glucose.  156 
 157 
We hypothesize instead that metabolism can oscillate at the level of glycolysis despite low levels 158 
of Ca2+, as described in detail below. The possibility that glycolytic oscillations can occur in low 159 
glucose is supported by recordings of oscillations in KATP channel conductance at 3 mM glucose 160 
(60) as well as by simulations carried out using mathematical models (61). We further hypothesize 161 
that when subthreshold, small-amplitude Ca2+ oscillations (henceforth referred to here as 162 
subthreshold oscillations) are coupled to coincident oscillations in metabolism, their effect is 163 
amplified sufficiently by the AF to produce small amplitude secretory oscillations.  Oscillations in 164 
secretion driven by oscillations in metabolism with Ca2+ fixed, albeit at high glucose levels, have 165 
been seen experimentally (62), making this plausible.  Finally, we demonstrate here using a current 166 
mathematical model of oscillatory activity in mouse islets that as glucose is increased, the 167 
oscillations in the free cytosolic Ca2+ concentration, membrane potential and insulin secretion 168 
transform naturally into the patterns that are observed at high glucose.  Although our goal is to 169 
explain basal insulin oscillations in humans, the model for mouse is the best developed for 170 
addressing the interplay between oscillations driven by metabolism vs. Ca2+, and we expect the 171 
general principles to apply. 172 
 173 
The Integrated Oscillator Model 174 
 175 
Over the past two decades we have developed a mathematical model that can account for most of 176 
the oscillatory activity patterns observed in beta cells. This model, the Integrated Oscillator 177 
Model (IOM) (37, 63, 64), has been very helpful for generating hypotheses that were 178 
subsequently tested in experiments, and in the design of those experiments. Here, we use the 179 
IOM to illustrate our hypothesis for the origin of oscillatory insulin secretion at basal glucose 180 
levels and demonstrate its feasibility. An earlier version of the model demonstrated that 181 
subthreshold Ca2+ oscillations were indeed possible and would convert to full amplitude 182 
oscillations at higher glucose (59, 61), but we did not examine their relationship to secretion 183 
oscillations using that model. The model used in this article is closely related to the version 184 
previously described in (64), with the addition only of a previously published set of equations to 185 
translate oscillations in Ca2+ and metabolism into oscillations in insulin secretion (39). Computer 186 
codes for the model are available at https://www.math.fsu.edu/~bertram/software/islet/ as well as 187 
the public repository Figshare (https://doi.org/10.6084/m9.figshare.17063984.v2).  188 
 189 
We hypothesize that glycolytic oscillations drive pulsatile insulin secretion at basal glucose 190 
levels 191 
 192 
Using the IOM, we demonstrate the transitions in electrical activity and secretion that occur as 193 
glucose is ramped from basal to supra-threshold levels (Fig. 4).  At subthreshold glucose it is 194 
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possible to produce oscillations, albeit small, in insulin secretion (see the first 15 minutes of the 195 
ISR panel in Fig. 4). In this case, the model 𝛽 cell is nearly electrically silent, so the dramatic 196 
opening and closing of ion channels that would occur when the cell is electrically active do not 197 
take place. In fact, the Ca2+ channels that allow Ca2+ entry into the cell are mostly closed since the 198 
membrane potential (V) is relatively hyperpolarized, so the small changes in the Ca2+ concentration 199 
(c) observed in this scenario reflect small fluctuations in V and associated changes in the driving 200 
force for Ca2+ current.  These Ca2+ oscillations are not by themselves sufficient for basal insulin 201 
secretion oscillations.  202 
 203 
In the model, the oscillations in the insulin secretion rate (ISR) are driven instead by oscillations 204 
in glycolysis, represented here by the intermediate metabolites fructose 6 phosphate (F6P) and 205 
fructose 1,6 bisphosphate (FBP).  These lead to oscillations in the ATP/ADP ratio and in turn to 206 
small oscillations in V and c via changes in K(ATP) channel conductance.  Additionally, the 207 
oscillations in glucose metabolism lead to robust oscillations in the metabolic amplification factor 208 
described above (AF in Figs. 1, 4), which enhances the efficacy of Ca2+ to trigger the exocytosis 209 
of insulin granules.  The model calculation in Fig. 4 suggests that even small excursions of the 210 
Ca2+ concentration, when combined with large pulses in AF, can result in meaningful oscillations 211 
in the secretion rate. 212 
 213 
Insulin pulse amplitude increases with glucose and activity patterns change 214 
 215 
As glucose increases above the threshold for electrical activity (about 5 mM), repetitive bursts of 216 
action potentials appear (starting at around 17 minutes in Fig. 4), mediating large oscillations in 217 
the intracellular Ca2+ concentration (c in Fig. 4).  The oscillations in FBP and AF persist, but do 218 
not increase dramatically in amplitude; the large increase in ISR seen here is due mainly to the 219 
increased amplitude of the Ca2+ oscillations. 220 
 221 
As glucose rises further towards the range usually studied in vitro (8 – 11 mM), oscillations in V, 222 
c, and ISR continue but intensify.  The active, spiking phases of the bursts become longer, which 223 
increases the average level of Ca2+, which in turn combines with glucose-dependent increases in 224 
AF to increase the amplitude of the ISR pulses.  Note that oscillation frequency does not change 225 
much, consistent with the experimental data in Fig. 2. 226 
 227 
A subtle but important change in the character of the FBP oscillations in Fig. 4 also appears at 228 
these higher glucose levels: instead of a discrete pulse that precedes each burst and falls nearly to 229 
0, the FBP oscillations become sawtooth in shape, rising slowly throughout the silent phase and 230 
falling during the active phase.  This is a good sign of the fidelity of the model, as measurements 231 
of FBP oscillations at higher glucose levels generally have a sawtooth shape (65, 66).  Closer 232 
examination elsewhere (37, 63) has revealed that the pulse-like metabolic oscillations do not 233 
require oscillations in Ca2+, whereas the sawtooth oscillations cease if Ca2+ is held constant.  We 234 
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denote these as Active Metabolic Oscillations (AMOs) and Passive Metabolic Oscillations 235 
(PMOs), respectively, to distinguish the two cases as previously described in (37, 63).  The 236 
existence of AMOs at basal glucose is critical to our hypothesis, as PMOs require large amplitude 237 
Ca2+ oscillations to occur that would not be possible at basal glucose.   238 
 239 
How do 𝛽	cells orchestrate such a wide range of activity patterns? 240 
 241 
Work dating back to the 1970s has demonstrated that metabolic oscillations could be produced in 242 
glycolysis, the first stage of glucose metabolism that precedes aerobic respiration. First in yeast 243 
(67), and later in muscle extracts (68, 69), it was shown that glycolysis can sustain long-term 244 
oscillations. These oscillations are believed to be due to the actions of a key allosteric enzyme, 245 
phosphofructokinase (PFK), that converts the substrate fructose-6-phosphate (F6P) into fructose-246 
1,6-bisphosphate (FBP). Importantly, the product FBP is a positive regulator of PFK, and that 247 
positive feedback causes a buildup of FBP at the expense of the substrate F6P.  At the same time, 248 
AMP, which increases the affinity of PFK for F6P, also falls due to increased ATP production 249 
downstream in glycolysis and the mitochondria.  When F6P and AMP fall too low, PFK activity 250 
largely shuts down, ending the positive feedback cycle and resetting the system.  This is the basis 251 
of the FBP oscillations in Fig. 4 that underlie oscillatory insulin secretion at low glucose levels. 252 
This oscillation mechanism was first proposed in the context of stimulatory glucose levels (69), 253 
but we believe that it is actually most important at subthreshold levels.  254 
 255 
The PFK isoform that has highest affinity for FBP, PFKM, was long assumed to be the critical 256 
player in this scenario, but we and others have found that slow Ca2+ oscillations persist in PFKM 257 
KO mice (70, 71).  Furthermore, model simulations suggested that other PFK isoforms can take 258 
over in the absence of PFKM (70). Regardless of the details regarding this enzyme, as long as 259 
glycolytic oscillations can occur independent of Ca2+, our basic hypothesis that they are 260 
responsible for subthreshold oscillations in insulin secretion would remain viable. 261 
 262 
Although we have described how glycolytic oscillations can produce Ca2+ oscillations, the reverse 263 
can also happen: Ca2+ can influence glycolytic oscillations.  This is the key to the transformation 264 
from AMOs to PMOs as glucose increases, as illustrated in Fig. 4 and discussed above.  At high 265 
glucose, glycolysis loses the ability to oscillate independently of Ca2+.  This is partly due to the 266 
intrinsic glucose sensitivity of glycolysis: at high glucose the substrate F6P remains high, so PFK 267 
activity remains high, and oscillations are lost.  In addition, Ca2+ activation of pyruvate 268 
dehydrogenase (PDH, in Fig. 1) contributes by increasing the consumption of pyruvate by PDH, 269 
which in turn increases the consumption rates of glycolytic metabolites, including FBP.  This shuts 270 
down the positive feedback of FBP onto PFK and inhibits glycolytic oscillations.  The signature 271 
of this in Fig. 4 is the conversion of the FBP waveform from pulses into a sawtooth, as FBP slowly 272 
responds to the rise and fall of Ca2+. 273 
 274 
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Nonetheless, oscillations in metabolites, such as FBP and ATP/ADP, can still occur, by a 275 
mechanism discussed in the Introduction.  When Ca2+ is high, ATP is consumed by Ca2+ pumps, 276 
including the sarco/endoplasmic reticulum Ca2+ ATPase and plasma membrane Ca2+ ATPase 277 
(labeled as SERCA and PMCA in Fig. 1).  This lowers ATP/ADP, allowing some KATP channels 278 
to reopen, which turns off Ca2+ entry.  The drop in Ca2+ allows ATP/ADP to recover, which again 279 
closes KATP channels, and electrical activity resumes. Glycolytic metabolites, such as FBP, also 280 
oscillate because of the Ca2+ dependence of PDH mentioned above – when Ca2+ is high, flux 281 
through glycolysis and cellular respiration is increased – and also because of feedback of ATP and 282 
AMP onto PFK. These repeated cycles of ATP consumption and production underlie the 283 
oscillations in Ca2+, metabolites, and insulin secretion at high glucose, shown in the simulation in 284 
Fig. 4 starting at around 25 minutes.  In vitro data support this mechanism for PMOs (65). 285 
 286 
Summary and future directions 287 
 288 
We have presented here the hypothesis that oscillations of basal insulin secretion are driven by 289 
metabolic oscillations, specifically, oscillations in glycolysis that do not require, but can be 290 
modified by, Ca2+.  We have used model simulations of oscillations in membrane potential, Ca2+ 291 
and insulin secretion to illustrate and support the feasibility of the hypothesis.  Models in which 292 
oscillations of metabolism only occur secondary to oscillations in Ca2+, which likely occur for the 293 
secretory oscillations produced at elevated glucose, cannot account for oscillations observed under 294 
basal glucose. 295 
 296 
The hypothesis could be tested in islets in vitro by looking for small amplitude oscillations in Ca2+ 297 
at low glucose, say in the range of 3 – 7 mM, while simultaneously recording oscillations in 298 
metabolites, such as ATP/ADP, FBP, or NAD(P)H.  It may take some trial and error to find the 299 
right conditions, as the simulations show that the prevailing Ca2+ levels may determine whether 300 
metabolic oscillations occur at a particular level of glucose. 301 
 302 
There are ample data in the literature demonstrating oscillations at stimulatory glucose levels in 303 
multiple metabolites, including oxygen consumption (72), mitochondrial membrane potential (73), 304 
ATP/ADP (74), and NAD(P)H (75), which are synchronized with membrane potential and Ca2+ 305 
(65).  In addition, a FRET sensor has been developed called “PKAR”, for Pyruvate Kinase Activity 306 
Reporter, based on the glycolytic enzyme pyruvate kinase (PK).  PK is allosterically activated by 307 
FBP and PKAR FRET is thus an assay to dynamically measure FBP concentration. Fluorescence 308 
measurements from islets showed that at stimulatory glucose levels PKAR FRET responses were 309 
oscillatory (76) and coincident with Ca2+ oscillations (65). Furthermore, metabolic oscillations 310 
persisted under conditions where oscillations in membrane potential and Ca2+ were abolished with 311 
diazoxide, demonstrating the existence of AMOs at high glucose (65). No study has yet been 312 
performed using PKAR to look for AMOs at basal glucose levels, so it is not known if oscillations 313 
exist in this case. We predict that they would exist for cases in which basal insulin secretion 314 
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oscillations are present. We also predict that the concentration of ATP would oscillate. As an 315 
alternative to PKAR, the fluorescent reporter Perceval-HR, which provides a readout of the 316 
cytosolic ATP/ADP ratio, could be used to demonstrate metabolic oscillations in basal glucose. 317 
 318 
In addition to offering a plausible mechanism for oscillations in basal insulin secretion, the 319 
simulations described here also help resolve a conundrum about how the IOM works.  Slow 320 
oscillations in Ca2+ in the model can result from either AMOs or PMOs. The simulations here 321 
suggest that these two modes of operation are most appropriate at different glucose levels.  AMOs 322 
are the only candidate mechanism of which we are aware that can generate secretory oscillations 323 
in basal glucose, and they transition in an orderly way to PMOs as glucose is increased.  This was 324 
not apparent from previous modeling studies in which glucose was held fixed while other 325 
parameters were varied.  It is still not apparent why AMOs give way to PMOs at higher glucose, 326 
as either mechanism could operate effectively in this range in theory, raising the question of what 327 
benefit islets might derive from having two seemingly redundant mechanisms.  Nonetheless, 328 
AMOs appear to persist in high glucose in at least some islets, as demonstrated by the PKAR 329 
measurements mentioned above (65), as well as by the existence of compound oscillations (e.g., 330 
slow oscillations that have superimposed fast bursts), which so far have only been plausibly 331 
explained by AMOs. However, the observed and detailed characteristics of the slow oscillations 332 
indicate that PMOs predominate at higher glucose levels (63, 77). 333 
 334 
An analogy for the division of labor between AMOs and PMOs that we find useful is the gas-335 
electric hybrid car, which has two motors.  At low speeds, the car is powered by the battery, which 336 
energizes the car’s electric motor, while at higher speeds, typically 25 – 40 mph, depending on the 337 
rate of acceleration and battery capacity, the internal combustion engine takes over. This 338 
arrangement seems complicated at first glance but is an effective way to exploit the characteristics 339 
of each type of engine to produce high fuel efficiency. If pulsatility is important for the efficiency 340 
of insulin action (17), it would seem appropriate to maintain such pulsatility over a range of 341 
glucose.  342 
 343 
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 354 
Figure Legends 355 
 356 
Graphical Abstract: Insulin secretion is pulsatile, driving oscillations in circulating insulin with a 357 
period of about 5 min.  In the postprandial state (left), glucose is elevated, and the secretion 358 
oscillations are triggered by large calcium oscillations in the 𝛽 cells of the pancreas.  However, 359 
insulin in the basal state (right) is also oscillatory with the same period but reduced amplitude.  In 360 
this condition, 𝛽 cell calcium oscillations are small.  We propose that oscillations in glycolysis 361 
produce a metabolic signal that is able to drive oscillatory insulin secretion despite small calcium 362 
oscillations.  363 
 364 
Fig. 1: Diagram illustrating the key cellular components and molecular mechanisms involved in 365 
oscillations of Ca2+ and insulin secretion in the pancreatic 𝛽 cell.  Glucose enters the cell through 366 
glucose transporters and is metabolized in glycolysis and the mitochondria.  ATP, mostly produced 367 
by the mitochondria, closes KATP channels in the plasma membrane, leading to depolarization. 368 
Additional ion channels, including voltage gated Ca2+ (CaV) and K+ channels (KV), and Ca2+-369 
activated K+ channels (KCa), support excitability of the plasma membrane potential (V) and 370 
underlie bursting activity at postprandial glucose levels. Depolarization of the membrane leads to 371 
Ca2+ (c) influx through CaV channels, while cytosolic Ca2+ levels are reduced by activity of Ca2+ 372 
ATPase pumps (SERCA and PMCA). Exocytosis of insulin-containing granules is triggered by 373 
Ca2+ and amplified by one or more metabolic signaling factors (AF) that promote the movement 374 
of insulin granules towards a releasable state.  375 
 376 
Fig. 2: Basal and glucose-stimulated insulin secretion are oscillatory in humans. A) Insulin 377 
oscillations measured from the hepatic portal vein at basal glucose (4.4 mM; left) and high glucose 378 
imposed via hyperglycemic clamp (nominally 8 – 9 mM; right). The ~5 min period of the 379 
oscillations does not change dramatically in response to glucose, but insulin rises about 2-fold in 380 
the higher glucose condition (note the difference in scale). B) Deconvolution analysis resolves the 381 
underlying pulsatile nature of the insulin secretion rate, demonstrating that glucose stimulates a 382 
large increase in insulin pulse mass.  Reproduced with permission from (12).  383 
 384 
Fig. 3: Oscillations in intracellular Ca2+ concentration, the main trigger for insulin exocytosis, are 385 
observed in islets in vitro. A) Upon partial block of glycolysis using D-mannoheptulose, large 386 
amplitude glucose-stimulated Ca2+ oscillations in a mouse islet give way to small amplitude 387 
oscillations unlikely to be sustained by ionic mechanisms alone. B) A similar result observed in 388 
response to a reduction in glucose from a supra-threshold (11 mM) to a subthreshold (6 mM) 389 
concentration. Reproduced with permission from (59). 390 
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 391 
Fig. 4: The Integrated Oscillator Model with modification can account for basal insulin 392 
oscillations. A model simulation of a ramped increase in glucose from basal (3 mM) to post-393 
prandial to the high levels typically studied in vitro (11 mM). Key dynamic variables shown 394 
include the glycolytic metabolites F6P and FBP, AMP, ATP/ADP ratio, membrane potential (V), 395 
cytosolic Ca2+ concentration (c), an amplifying factor (AF) that enhances exocytosis, and the 396 
insulin secretion rate (ISR).  397 
 398 
 399 
  400 
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