

1 **Pulsatile Basal Insulin Secretion is Driven by Glycolytic
2 Oscillations**

3
4 P. A. Fletcher¹, I. Marinelli², R. Bertram³, L. S. Satin⁴, A. S. Sherman¹

5
6
7 ¹Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, US;

8 ²Centre for Systems Modelling & Quantitative Biomedicine (SMQB), University of Birmingham,
9 UK;

10 ³Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida
11 State University, Tallahassee, FL, US

12 ⁴Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan
13 Medical School, Ann Arbor, MI, US;

14
15 **Correspondence:**

16 Leslie S. Satin, lsatin@umich.edu

17 **Keywords:** pulsatile insulin secretion, metabolism, calcium, bursting electrical activity

18
19 **Summary**

20
21 Mathematical modeling suggests that glycolytic oscillations coupled to insulin secretion via
22 metabolic factors mediate oscillations in basal insulin levels.

23
24
25 **Abstract**

26
27 In fasted and fed states, blood insulin levels are oscillatory. While this phenomenon is well
28 studied at high glucose levels, comparatively little is known about its origin under basal
29 conditions. We propose a possible mechanism for basal insulin oscillations based on oscillations
30 in glycolysis, demonstrated using an established mathematical model. At high glucose, this is
31 superseded by a calcium-dependent mechanism.

35

36 **Introduction**

37

38 In response to a meal, blood glucose levels rise, and this is sensed by the β cells of the islets of
39 Langerhans distributed sparsely throughout the pancreas, which then secrete the hormone insulin
40 (1). Once entering the circulation, insulin acts to increase glucose uptake into muscle and adipose
41 tissues while it inhibits hepatic glucose production (2). Glucose-induced insulin secretion is thus
42 a key player in whole body glucose homeostasis, and its dysregulation is a major contributor to
43 type 2 diabetes (3).

44

45 The insulin secretory component of this homeostatic control system is regulated by an exquisite
46 set of mechanisms in β cells (1) (Fig. 1). In contrast to many other hormones, insulin secretion is
47 regulated directly by the rate of glucose metabolism, which serves as a surrogate for the
48 concentration of glucose in the blood (4). Glucose enters the β cells through glucose transporters
49 and is metabolized in glycolysis and then by mitochondrial respiration, increasing the ATP/ADP
50 ratio. Insulin secretion is then stimulated via two major pathways: the triggering pathway, which
51 mediates the rise in intracellular Ca^{2+} needed to trigger exocytosis, and the amplifying pathway,
52 which increases docking and priming of insulin-containing granules, and brings them into close
53 proximity to Cav channels, enhancing the efficacy of Ca^{2+} in driving secretion.

54

55 Central to the triggering pathway are K_{ATP} potassium channels, which close in response to
56 increases in the cytosolic ATP/ADP ratio. K_{ATP} channels are open in low glucose, maintaining the
57 cells at a negative membrane potential, but when they close, the cells depolarize, opening voltage-
58 dependent calcium (Cav) channels and initiating Ca^{2+} entry (c in the diagram shown in Fig.1). The
59 reciprocal activation of Cav and Kv channels generates action potentials (spiking), much like the
60 excitable membranes of neurons and muscle cells. Ca^{2+} then triggers the exocytosis of insulin
61 granules, primarily those located near the Cav channels.

62

63 In addition to generating ATP, glucose metabolism gives rise to one or more metabolic signals,
64 called amplification factors (AF in diagram), that mediate the amplifying pathway introduced
65 above. The identity of the AF remains unclear, but some of the suggested candidates include ATP,
66 glutamine, and NADPH (4, 5). A recent review highlights possible roles of reactive oxygen
67 species, lipids and phosphoenolpyruvate (6). The AF is physiologically important, as it is
68 responsible for about half the insulin secretion (7).

69

70 The picture described above contains the basic information needed to understand β -cell function
71 but is incomplete, as blood insulin levels *in vivo* are not steady but oscillatory, with a period of
72 about five minutes, as has been observed in humans, rodents, non-human primates, and canines
73 (8-11). Figure 2 shows an example of insulin levels recorded from the portal vein in a human
74 (panel A), with insulin secretion rate reconstructed by deconvolution, as shown below the raw

75 secretory data (panel B) (12). Similar data have been recorded from the portal vein in rats (13) and
76 in dogs (14). The latter study looked at oscillations before and after glucose ingestion, indicating
77 an average increase of 400% in pulse amplitude and 40% in frequency. The pulsatile nature of
78 insulin release, which resembles in a general manner that of other hormones (15) is believed to be
79 necessary for the efficacious action of the hormone (16); for a review see (17).

80

81 The insulin oscillations observed in the circulation are driven by insulin secreted in pulses from
82 the islets. Pulsatile insulin secretion from islets *in vitro* has been shown for both humans and mice
83 (18-24). Notably, the oscillations of isolated islets have the correct period and respond to
84 increasing glucose concentration with increases in insulin pulse amplitude. Despite the pulse-
85 generating capability of individual islets, important questions remain about how the hundreds of
86 thousands of islets within the intact pancreas synchronize their secretory output to generate the
87 insulin pulses of portal blood. Suggested synchronizing signals include acetylcholine, ATP and
88 nitric oxide (NO), which have been studied by pharmacologically inhibiting the neurons that
89 innervate the pancreas or by vagotomy, but these studies failed to reach a consensus (25-28).
90 While it is also possible that inter-islet synchronization is different under basal conditions, we
91 assume in the absence of evidence to the contrary that the core oscillation mechanism still resides
92 within individual islets. We proceed to focus here as a first step on the oscillation mechanisms of
93 individual islets.

94

95 At higher glucose levels (7 – 15 mM) corresponding to post-prandial or diabetic conditions,
96 oscillations in islet insulin secretion are driven in large part by oscillations in cytosolic free Ca^{2+}
97 (29). These Ca^{2+} oscillations arise in turn from a second role of Ca^{2+} in addition to stimulating the
98 exocytosis of insulin granules shown in Fig. 1, namely the negative feedback exerted by Ca^{2+} on
99 its own entry. This occurs by two complementary mechanisms. The first mechanism proposed
100 was activation of K_{Ca} channels, similar to the situation in many other endocrine cells and neurons.
101 This causes the spikes to cluster into bursts rather than occurring continuously (look ahead to
102 panels showing simulation of V and c in Fig. 4) and was the basis of the earliest mathematical
103 models of Ca^{2+} oscillations in beta cells (30). A number of other models were quickly proposed
104 based on this idea or variations on it, as reviewed in (31, 32).

105

106 A second, more subtle form of negative feedback was subsequently appreciated: Ca^{2+} entry and
107 accumulation activate Ca^{2+} pumps in the ER and plasma membranes (SERCA and PMCA, as
108 shown in Fig. 1). These pumps restore cytosolic Ca^{2+} levels in between bursts of spikes but also
109 consume ATP; see (33) for experimental evidence that raising Ca^{2+} lowers ATP/ADP. This would
110 reopen some of the K_{ATP} channels that were closed when glucose was elevated and could
111 contribute to the termination of each burst of spikes, as first proposed in (33). This is a much
112 slower process than activation of K_{Ca} channels and is a more appropriate explanation of the five-
113 minute oscillations of insulin observed in the circulation. Current models in which K_{ATP} channels
114 either drive Ca^{2+} oscillations (34) or are limited to setting the glucose threshold for oscillations

115 driven by other ion channels (35, 36) are reviewed and contrasted in (37, 38). A further point,
116 which will take on heightened significance below, is that if metabolism oscillates in phase with
117 Ca^{2+} , the AF will also oscillate and reinforce the pulses of secretion (39).

118

119 We now come to the heart of the matter: oscillations in secretion are also seen in basal glucose *in*
120 *vivo* (4 – 5 mM) (12, 14, 40, 41) and from isolated human (24) and mouse islets *in vitro* (42, 43).
121 In fact, it has been reported that as much as 70% of the total insulin secreted from the pancreas
122 under basal conditions, where both constant and pulsatile release are observed, occurs in pulses
123 (44). Yet, *in vitro* data from islets exposed to these low glucose concentrations indicate that the
124 beta cells are not electrically active and do not exhibit large amplitude oscillations in cytosolic free
125 Ca^{2+} concentration in this case. This raises the question: *What is the mechanism for oscillatory*
126 *insulin secretion at basal glucose levels?* This is not a purely academic question, because blood
127 glucose is within its basal range most of the time. The high concentrations commonly used in *in*
128 *vitro* experiments are typically only experienced by people or animals with diabetes.

129

130 Regulation of basal insulin secretion has clinical significance, as elevated basal insulin is a good
131 predictor of future diabetes (45). It occurs years before basal glucose increases and is a marker of
132 insulin resistance, as embodied in the widely used indices HOMA-IR and QUICKI (46, 47). It has
133 also been suggested that in addition to being a marker of insulin resistance, elevated basal insulin
134 may be a cause of insulin resistance (48, 49) as well as obesity (6, 50). A recent review, however,
135 concludes that the preponderance of evidence is against hyperinsulinemia as a primary cause of
136 diabetes in most cases; a good introduction to this debate is the review (51) and the commentary
137 responding to it (52, 53).

138

139 While the mechanism of elevated basal insulin secretion and its contribution to diabetes is not
140 established, various hypotheses have been proposed. Examples include dysregulated basal insulin
141 release due to the interaction between reactive oxygen species (ROS) and long chain fatty acids
142 (as reviewed in (6)), abnormal levels of cardiolipin in mitochondria due to its altered biosynthesis
143 with concomitant changes in mitochondrial respiration (54), changes in the regulation of sweet
144 taste receptors on the beta cell that normally act as a brake on basal secretion (55), elevation in
145 basal secretion due to fatty acids that does not involve ATP synthesis, mitochondrial lipid
146 oxidation or ROS but does involve Ca^{2+} (56), and increased proton leak across the mitochondrial
147 inner membrane mediated by fatty acids independently of ATP synthesis (57), and lastly a novel
148 Ca^{2+} influx pathway activated by ER stress under low glucose conditions, leading to more insulin
149 secretion (58).

150

151 Calcium oscillations have in fact been seen in low glucose (e.g., at 6 mM, just below threshold
152 levels of glucose needed to trigger full blown oscillatory activity) and in islets treated with high
153 glucose and mannoheptulose to inhibit glycolysis (Fig. 3) (59). However, these small-amplitude
154 Ca^{2+} oscillations are too small to plausibly engage the Ca^{2+} feedback mechanisms acting on K_{Ca}

155 or K_{ATP} channels oscillations described above, and it is unlikely that they alone could be the driver
156 of insulin oscillations in basal glucose.

157

158 We hypothesize instead that metabolism can oscillate at the level of glycolysis despite low levels
159 of Ca^{2+} , as described in detail below. The possibility that glycolytic oscillations can occur in low
160 glucose is supported by recordings of oscillations in K_{ATP} channel conductance at 3 mM glucose
161 (60) as well as by simulations carried out using mathematical models (61). We further hypothesize
162 that when subthreshold, small-amplitude Ca^{2+} oscillations (henceforth referred to here as
163 *subthreshold oscillations*) are coupled to coincident oscillations in metabolism, their effect is
164 amplified sufficiently by the AF to produce small amplitude secretory oscillations. Oscillations in
165 secretion driven by oscillations in metabolism with Ca^{2+} fixed, albeit at high glucose levels, have
166 been seen experimentally (62), making this plausible. Finally, we demonstrate here using a current
167 mathematical model of oscillatory activity in mouse islets that as glucose is increased, the
168 oscillations in the free cytosolic Ca^{2+} concentration, membrane potential and insulin secretion
169 transform naturally into the patterns that are observed at high glucose. Although our goal is to
170 explain basal insulin oscillations in humans, the model for mouse is the best developed for
171 addressing the interplay between oscillations driven by metabolism vs. Ca^{2+} , and we expect the
172 general principles to apply.

173

174 **The Integrated Oscillator Model**

175

176 Over the past two decades we have developed a mathematical model that can account for most of
177 the oscillatory activity patterns observed in beta cells. This model, the Integrated Oscillator
178 Model (IOM) (37, 63, 64), has been very helpful for generating hypotheses that were
179 subsequently tested in experiments, and in the design of those experiments. Here, we use the
180 IOM to illustrate our hypothesis for the origin of oscillatory insulin secretion at basal glucose
181 levels and demonstrate its feasibility. An earlier version of the model demonstrated that
182 subthreshold Ca^{2+} oscillations were indeed possible and would convert to full amplitude
183 oscillations at higher glucose (59, 61), but we did not examine their relationship to secretion
184 oscillations using that model. The model used in this article is closely related to the version
185 previously described in (64), with the addition only of a previously published set of equations to
186 translate oscillations in Ca^{2+} and metabolism into oscillations in insulin secretion (39). Computer
187 codes for the model are available at <https://www.math.fsu.edu/~bertram/software/islet/> as well as
188 the public repository Figshare (<https://doi.org/10.6084/m9.figshare.17063984.v2>).

189

190 **We hypothesize that glycolytic oscillations drive pulsatile insulin secretion at basal glucose 191 levels**

192

193 Using the IOM, we demonstrate the transitions in electrical activity and secretion that occur as
194 glucose is ramped from basal to supra-threshold levels (Fig. 4). At subthreshold glucose it is

195 possible to produce oscillations, albeit small, in insulin secretion (see the first 15 minutes of the
196 ISR panel in Fig. 4). In this case, the model β cell is nearly electrically silent, so the dramatic
197 opening and closing of ion channels that would occur when the cell is electrically active do not
198 take place. In fact, the Ca^{2+} channels that allow Ca^{2+} entry into the cell are mostly closed since the
199 membrane potential (V) is relatively hyperpolarized, so the small changes in the Ca^{2+} concentration
200 (c) observed in this scenario reflect small fluctuations in V and associated changes in the driving
201 force for Ca^{2+} current. These Ca^{2+} oscillations are not by themselves sufficient for basal insulin
202 secretion oscillations.

203
204 In the model, the oscillations in the insulin secretion rate (ISR) are driven instead by oscillations
205 in glycolysis, represented here by the intermediate metabolites fructose 6 phosphate (F6P) and
206 fructose 1,6 bisphosphate (FBP). These lead to oscillations in the ATP/ADP ratio and in turn to
207 small oscillations in V and c via changes in K(ATP) channel conductance. Additionally, the
208 oscillations in glucose metabolism lead to robust oscillations in the metabolic amplification factor
209 described above (AF in Figs. 1, 4), which enhances the efficacy of Ca^{2+} to trigger the exocytosis
210 of insulin granules. The model calculation in Fig. 4 suggests that even small excursions of the
211 Ca^{2+} concentration, when combined with large pulses in AF, can result in meaningful oscillations
212 in the secretion rate.

213
214 **Insulin pulse amplitude increases with glucose and activity patterns change**

215
216 As glucose increases above the threshold for electrical activity (about 5 mM), repetitive bursts of
217 action potentials appear (starting at around 17 minutes in Fig. 4), mediating large oscillations in
218 the intracellular Ca^{2+} concentration (c in Fig. 4). The oscillations in FBP and AF persist, but do
219 not increase dramatically in amplitude; the large increase in ISR seen here is due mainly to the
220 increased amplitude of the Ca^{2+} oscillations.

221
222 As glucose rises further towards the range usually studied *in vitro* (8 – 11 mM), oscillations in V ,
223 c, and ISR continue but intensify. The active, spiking phases of the bursts become longer, which
224 increases the average level of Ca^{2+} , which in turn combines with glucose-dependent increases in
225 AF to increase the amplitude of the ISR pulses. Note that oscillation frequency does not change
226 much, consistent with the experimental data in Fig. 2.

227
228 A subtle but important change in the character of the FBP oscillations in Fig. 4 also appears at
229 these higher glucose levels: instead of a discrete pulse that precedes each burst and falls nearly to
230 0, the FBP oscillations become sawtooth in shape, rising slowly throughout the silent phase and
231 falling during the active phase. This is a good sign of the fidelity of the model, as measurements
232 of FBP oscillations at higher glucose levels generally have a sawtooth shape (65, 66). Closer
233 examination elsewhere (37, 63) has revealed that the pulse-like metabolic oscillations do not
234 require oscillations in Ca^{2+} , whereas the sawtooth oscillations cease if Ca^{2+} is held constant. We

235 denote these as Active Metabolic Oscillations (AMOs) and Passive Metabolic Oscillations
236 (PMOs), respectively, to distinguish the two cases as previously described in (37, 63). The
237 existence of AMOs at basal glucose is critical to our hypothesis, as PMOs require large amplitude
238 Ca^{2+} oscillations to occur that would not be possible at basal glucose.
239

240 **How do β cells orchestrate such a wide range of activity patterns?**

241

242 Work dating back to the 1970s has demonstrated that metabolic oscillations could be produced in
243 glycolysis, the first stage of glucose metabolism that precedes aerobic respiration. First in yeast
244 (67), and later in muscle extracts (68, 69), it was shown that glycolysis can sustain long-term
245 oscillations. These oscillations are believed to be due to the actions of a key allosteric enzyme,
246 phosphofructokinase (PFK), that converts the substrate fructose-6-phosphate (F6P) into fructose-
247 1,6-bisphosphate (FBP). Importantly, the product FBP is a positive regulator of PFK, and that
248 positive feedback causes a buildup of FBP at the expense of the substrate F6P. At the same time,
249 AMP, which increases the affinity of PFK for F6P, also falls due to increased ATP production
250 downstream in glycolysis and the mitochondria. When F6P and AMP fall too low, PFK activity
251 largely shuts down, ending the positive feedback cycle and resetting the system. This is the basis
252 of the FBP oscillations in Fig. 4 that underlie oscillatory insulin secretion at low glucose levels.
253 This oscillation mechanism was first proposed in the context of stimulatory glucose levels (69),
254 but we believe that it is actually most important at subthreshold levels.
255

256

257 The PFK isoform that has highest affinity for FBP, PFKM, was long assumed to be the critical
258 player in this scenario, but we and others have found that slow Ca^{2+} oscillations persist in PFKM
259 KO mice (70, 71). Furthermore, model simulations suggested that other PFK isoforms can take
260 over in the absence of PFKM (70). Regardless of the details regarding this enzyme, as long as
261 glycolytic oscillations can occur independent of Ca^{2+} , our basic hypothesis that they are
262 responsible for subthreshold oscillations in insulin secretion would remain viable.
263

264

265 Although we have described how glycolytic oscillations can produce Ca^{2+} oscillations, the reverse
266 can also happen: Ca^{2+} can influence glycolytic oscillations. This is the key to the transformation
267 from AMOs to PMOs as glucose increases, as illustrated in Fig. 4 and discussed above. At high
268 glucose, glycolysis loses the ability to oscillate independently of Ca^{2+} . This is partly due to the
269 intrinsic glucose sensitivity of glycolysis: at high glucose the substrate F6P remains high, so PFK
270 activity remains high, and oscillations are lost. In addition, Ca^{2+} activation of pyruvate
271 dehydrogenase (PDH, in Fig. 1) contributes by increasing the consumption of pyruvate by PDH,
272 which in turn increases the consumption rates of glycolytic metabolites, including FBP. This shuts
273 down the positive feedback of FBP onto PFK and inhibits glycolytic oscillations. The signature
274 of this in Fig. 4 is the conversion of the FBP waveform from pulses into a sawtooth, as FBP slowly
275 responds to the rise and fall of Ca^{2+} .
276

275 Nonetheless, oscillations in metabolites, such as FBP and ATP/ADP, can still occur, by a
276 mechanism discussed in the Introduction. When Ca^{2+} is high, ATP is consumed by Ca^{2+} pumps,
277 including the sarco/endoplasmic reticulum Ca^{2+} ATPase and plasma membrane Ca^{2+} ATPase
278 (labeled as SERCA and PMCA in Fig. 1). This lowers ATP/ADP, allowing some K_{ATP} channels
279 to reopen, which turns off Ca^{2+} entry. The drop in Ca^{2+} allows ATP/ADP to recover, which again
280 closes K_{ATP} channels, and electrical activity resumes. Glycolytic metabolites, such as FBP, also
281 oscillate because of the Ca^{2+} dependence of PDH mentioned above – when Ca^{2+} is high, flux
282 through glycolysis and cellular respiration is increased – and also because of feedback of ATP and
283 AMP onto PFK. These repeated cycles of ATP consumption and production underlie the
284 oscillations in Ca^{2+} , metabolites, and insulin secretion at high glucose, shown in the simulation in
285 Fig. 4 starting at around 25 minutes. *In vitro* data support this mechanism for PMOs (65).

286

287 **Summary and future directions**

288

289 We have presented here the hypothesis that oscillations of basal insulin secretion are driven by
290 metabolic oscillations, specifically, oscillations in glycolysis that do not require, but can be
291 modified by, Ca^{2+} . We have used model simulations of oscillations in membrane potential, Ca^{2+}
292 and insulin secretion to illustrate and support the feasibility of the hypothesis. Models in which
293 oscillations of metabolism only occur secondary to oscillations in Ca^{2+} , which likely occur for the
294 secretory oscillations produced at elevated glucose, cannot account for oscillations observed under
295 basal glucose.

296

297 The hypothesis could be tested in islets *in vitro* by looking for small amplitude oscillations in Ca^{2+}
298 at low glucose, say in the range of 3 – 7 mM, while simultaneously recording oscillations in
299 metabolites, such as ATP/ADP, FBP, or NAD(P)H. It may take some trial and error to find the
300 right conditions, as the simulations show that the prevailing Ca^{2+} levels may determine whether
301 metabolic oscillations occur at a particular level of glucose.

302

303 There are ample data in the literature demonstrating oscillations at stimulatory glucose levels in
304 multiple metabolites, including oxygen consumption (72), mitochondrial membrane potential (73),
305 ATP/ADP (74), and NAD(P)H (75), which are synchronized with membrane potential and Ca^{2+}
306 (65). In addition, a FRET sensor has been developed called “PKAR”, for Pyruvate Kinase Activity
307 Reporter, based on the glycolytic enzyme pyruvate kinase (PK). PK is allosterically activated by
308 FBP and PKAR FRET is thus an assay to dynamically measure FBP concentration. Fluorescence
309 measurements from islets showed that at stimulatory glucose levels PKAR FRET responses were
310 oscillatory (76) and coincident with Ca^{2+} oscillations (65). Furthermore, metabolic oscillations
311 persisted under conditions where oscillations in membrane potential and Ca^{2+} were abolished with
312 diazoxide, demonstrating the existence of AMOs at high glucose (65). No study has yet been
313 performed using PKAR to look for AMOs at basal glucose levels, so it is not known if oscillations
314 exist in this case. *We predict that they would exist for cases in which basal insulin secretion*

315 *oscillations are present.* We also predict that the concentration of ATP would oscillate. As an
316 alternative to PKAR, the fluorescent reporter Perceval-HR, which provides a readout of the
317 cytosolic ATP/ADP ratio, could be used to demonstrate metabolic oscillations in basal glucose.

318
319 In addition to offering a plausible mechanism for oscillations in basal insulin secretion, the
320 simulations described here also help resolve a conundrum about how the IOM works. Slow
321 oscillations in Ca^{2+} in the model can result from either AMOs or PMOs. The simulations here
322 suggest that these two modes of operation are most appropriate at different glucose levels. AMOs
323 are the only candidate mechanism of which we are aware that can generate secretory oscillations
324 in basal glucose, and they transition in an orderly way to PMOs as glucose is increased. This was
325 not apparent from previous modeling studies in which glucose was held fixed while other
326 parameters were varied. It is still not apparent why AMOs give way to PMOs at higher glucose,
327 as either mechanism could operate effectively in this range in theory, raising the question of what
328 benefit islets might derive from having two seemingly redundant mechanisms. Nonetheless,
329 AMOs appear to persist in high glucose in at least some islets, as demonstrated by the PKAR
330 measurements mentioned above (65), as well as by the existence of compound oscillations (e.g.,
331 slow oscillations that have superimposed fast bursts), which so far have only been plausibly
332 explained by AMOs. However, the observed and detailed characteristics of the slow oscillations
333 indicate that PMOs predominate at higher glucose levels (63, 77).

334
335 An analogy for the division of labor between AMOs and PMOs that we find useful is the gas-
336 electric hybrid car, which has two motors. At low speeds, the car is powered by the battery, which
337 energizes the car's electric motor, while at higher speeds, typically 25 – 40 mph, depending on the
338 rate of acceleration and battery capacity, the internal combustion engine takes over. This
339 arrangement seems complicated at first glance but is an effective way to exploit the characteristics
340 of each type of engine to produce high fuel efficiency. If pulsatility is important for the efficiency
341 of insulin action (17), it would seem appropriate to maintain such pulsatility over a range of
342 glucose.

343

344 **Acknowledgments**

345 RB was partially supported by NSF grant number DMS 1853342. LSS was partially supported by
346 NIH grant numbers RO1 DK46409 and U01 DK127747. PF and AS were supported by the
347 Intramural Research Program of the National Institutes of Health (NIDDK). IM acknowledges
348 financial support from the University of Birmingham Dynamic Investment Fund. The graphical
349 abstract was created using BioRender.com.

350 **Author Contributions:**

351 PAF performed mathematical simulations and analysis. IM provided conceptual advice on the
352 model. ASS, LSS and RB provided resources and supervision. All authors contributed to writing
353 and editing the paper.

354

355 **Figure Legends**

356

357 Graphical Abstract: Insulin secretion is pulsatile, driving oscillations in circulating insulin with a
358 period of about 5 min. In the postprandial state (left), glucose is elevated, and the secretion
359 oscillations are triggered by large calcium oscillations in the β cells of the pancreas. However,
360 insulin in the basal state (right) is also oscillatory with the same period but reduced amplitude. In
361 this condition, β cell calcium oscillations are small. We propose that oscillations in glycolysis
362 produce a metabolic signal that is able to drive oscillatory insulin secretion despite small calcium
363 oscillations.

364

365 Fig. 1: Diagram illustrating the key cellular components and molecular mechanisms involved in
366 oscillations of Ca^{2+} and insulin secretion in the pancreatic β cell. Glucose enters the cell through
367 glucose transporters and is metabolized in glycolysis and the mitochondria. ATP, mostly produced
368 by the mitochondria, closes K_{ATP} channels in the plasma membrane, leading to depolarization.
369 Additional ion channels, including voltage gated Ca^{2+} (CaV) and K^+ channels (Kv), and Ca^{2+} -
370 activated K^+ channels (KCa), support excitability of the plasma membrane potential (V) and
371 underlie bursting activity at postprandial glucose levels. Depolarization of the membrane leads to
372 Ca^{2+} (c) influx through CaV channels, while cytosolic Ca^{2+} levels are reduced by activity of Ca^{2+}
373 ATPase pumps (SERCA and PMCA). Exocytosis of insulin-containing granules is triggered by
374 Ca^{2+} and amplified by one or more metabolic signaling factors (AF) that promote the movement
375 of insulin granules towards a releasable state.

376

377 Fig. 2: Basal and glucose-stimulated insulin secretion are oscillatory in humans. A) Insulin
378 oscillations measured from the hepatic portal vein at basal glucose (4.4 mM; left) and high glucose
379 imposed via hyperglycemic clamp (nominally 8 – 9 mM; right). The ~5 min period of the
380 oscillations does not change dramatically in response to glucose, but insulin rises about 2-fold in
381 the higher glucose condition (note the difference in scale). B) Deconvolution analysis resolves the
382 underlying pulsatile nature of the insulin secretion rate, demonstrating that glucose stimulates a
383 large increase in insulin pulse mass. Reproduced with permission from (12).

384

385 Fig. 3: Oscillations in intracellular Ca^{2+} concentration, the main trigger for insulin exocytosis, are
386 observed in islets *in vitro*. A) Upon partial block of glycolysis using D-mannoheptulose, large
387 amplitude glucose-stimulated Ca^{2+} oscillations in a mouse islet give way to small amplitude
388 oscillations unlikely to be sustained by ionic mechanisms alone. B) A similar result observed in
389 response to a reduction in glucose from a supra-threshold (11 mM) to a subthreshold (6 mM)
390 concentration. Reproduced with permission from (59).

391

392 Fig. 4: The Integrated Oscillator Model with modification can account for basal insulin
393 oscillations. A model simulation of a ramped increase in glucose from basal (3 mM) to post-
394 prandial to the high levels typically studied *in vitro* (11 mM). Key dynamic variables shown
395 include the glycolytic metabolites F6P and FBP, AMP, ATP/ADP ratio, membrane potential (V),
396 cytosolic Ca^{2+} concentration (c), an amplifying factor (AF) that enhances exocytosis, and the
397 insulin secretion rate (ISR).

398

399

400

401 **References**

1. **Ashcroft FM, and Rorsman P.** Electrophysiology of the pancreatic beta-cell. *Prog Biophys Mol Biol* 54: 87-143, 1989.
2. **DeFronzo RA.** Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. *Diabetes* 37: 667-687, 1988.
3. **Kahn SE.** The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. *Diabetologia* 46: 3-19, 2003.
4. **Rustenbeck I, Schulze T, Morsi M, Alshafei M, and Panten U.** What is the metabolic amplification of insulin secretion and is it (still) relevant? *Metabolites* 11: 2021.
5. **Ferdaoussi M, Dai X, Jensen MV, Wang R, Peterson BS, Huang C, Ilkayeva O, Smith N, Miller N, Hajmrle C, Spigelman AF, Wright RC, Plummer G, Suzuki K, Mackay JP, van de Bunt M, Gloyn AL, Ryan TE, Norquay LD, Brosnan MJ, Trimmer JK, Rolph TP, Kibbey RG, Manning Fox JE, Colmers WF, Shirihai OS, Neufer PD, Yeh ET, Newgard CB, and MacDonald PE.** Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional beta cells. *J Clin Invest* 125: 3847-3860, 2015.
6. **Corkey BE, Deeney JT, and Merrins MJ.** What regulates basal insulin secretion and causes hyperinsulinemia? *Diabetes* 70: 2174-2182, 2021.
7. **Henquin JC.** Triggering and amplifying pathways of regulation of insulin secretion by glucose. *Diabetes* 49: 1751-1760, 2000.
8. **Laurenti MC, Dalla Man C, Varghese RT, Andrews JC, Rizza RA, Matveyenko A, De Nicolao G, Cobelli C, and Vella A.** Diabetes-associated genetic variation in TCF7L2 alters pulsatile insulin secretion in humans. *JCI Insight* 5: 2020.
9. **Shukla N, Kadam S, Padinhateeri R, and Kolthur-Seetharam U.** Continuous variable responses and signal gating form kinetic bases for pulsatile insulin signaling and emergence of resistance. *Proc Natl Acad Sci U S A* 118: 2021.
10. **Laurenti MC, Matveyenko A, and Vella A.** Measurement of pulsatile insulin secretion: rationale and methodology. *Metabolites* 11: 2021.
11. **Porksen N, Nyholm B, Veldhuis JD, Butler PC, and Schmitz O.** In humans at least 75% of insulin secretion arises from punctuated insulin secretory bursts. *Am J Physiol* 273: E908-914, 1997.
12. **Song SH, McIntyre SS, Shah H, Veldhuis JD, Hayes PC, and Butler PC.** Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. *J Clin Endocrinol Metab* 85: 4491-4499, 2000.
13. **Matveyenko AV, Veldhuis JD, and Butler PC.** Measurement of pulsatile insulin secretion in the rat: direct sampling from the hepatic portal vein. *Am J Physiol Endocrinol Metab* 295: E569-574, 2008.
14. **Porksen N, Munn S, Steers J, Veldhuis JD, and Butler PC.** Effects of glucose ingestion versus infusion on pulsatile insulin secretion. The incretin effect is achieved by amplification of insulin secretory burst mass. *Diabetes* 45: 1317-1323, 1996.
15. **Nunemaker CS, and Satin LS.** Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. *Endocrine* 47: 49-63, 2014.
16. **Matveyenko AV, Liuwantara D, Gurlo T, Kirakossian D, Dalla Man C, Cobelli C, White MF, Copps KD, Volpi E, Fujita S, and Butler PC.** Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. *Diabetes* 61: 2269-2279, 2012.

446 17. **Satin LS, Butler PC, Ha J, and Sherman AS.** Pulsatile insulin secretion, impaired
447 glucose tolerance and type 2 diabetes. *Mol Aspects Med* 42: 61-77, 2015.

448 18. **Nunemaker CS, Zhang M, Wasserman DH, McGuinness OP, Powers AC, Bertram
449 R, Sherman A, and Satin LS.** Individual mice can be distinguished by the period of their islet
450 calcium oscillations: is there an intrinsic islet period that is imprinted in vivo? *Diabetes* 54:
451 3517-3522, 2005.

452 19. **Martin F, and Soria B.** Glucose-induced $[Ca^{2+}]_i$ oscillations in single human pancreatic
453 islets. *Cell Calcium* 20: 409-414, 1996.

454 20. **Riz M, Braun M, and Pedersen MG.** Mathematical modeling of heterogeneous
455 electrophysiological responses in human beta-cells. *PLoS Comput Biol* 10: e1003389, 2014.

456 21. **Misun PM, Yesildag B, Forschler F, Neelakandhan A, Rousset N, Biernath A,
457 Hierlemann A, and Frey O.** In vitro platform for studying human insulin release dynamics of
458 single pancreatic islet microtissues at high resolution. *Adv Biosyst* 4: e1900291, 2020.

459 22. **Marchetti P, Scharp DW, McLear M, Gingerich R, Finke E, Olack B, Swanson C,
460 Giannarelli R, Navalesi R, and Lacy PE.** Pulsatile insulin secretion from isolated human
461 pancreatic islets. *Diabetes* 43: 827-830, 1994.

462 23. **Lin JM, Fabregat ME, Gomis R, and Bergsten P.** Pulsatile insulin release from islets
463 isolated from three subjects with type 2 diabetes. *Diabetes* 51: 988-993, 2002.

464 24. **Ritzel RA, Veldhuis JD, and Butler PC.** Glucose stimulates pulsatile insulin secretion
465 from human pancreatic islets by increasing secretory burst mass: dose-response relationships. *J
466 Clin Endocrinol Metab* 88: 742-747, 2003.

467 25. **Pedersen MG, Bertram R, and Sherman A.** Intra- and inter-islet synchronization of
468 metabolically driven insulin secretion. *Biophys J* 89: 107-119, 2005.

469 26. **Gylfe E, and Tengholm A.** Neurotransmitter control of islet hormone pulsatility.
470 *Diabetes Obes Metab* 16 Suppl 1: 102-110, 2014.

471 27. **Stagner JI, and Samols E.** Role of intrapancreatic ganglia in regulation of periodic
472 insular secretions. *Am J Physiol* 248: E522-530, 1985.

473 28. **Matthews DR, Lang DA, Burnett MA, and Turner RC.** Control of pulsatile insulin
474 secretion in man. *Diabetologia* 24: 231-237, 1983.

475 29. **Beauvois MC, Merezak C, Jonas JC, Ravier MA, Henquin JC, and Gilon P.**
476 Glucose-induced mixed $[Ca^{2+}]_c$ oscillations in mouse beta-cells are controlled by the membrane
477 potential and the SERCA3 Ca^{2+} -ATPase of the endoplasmic reticulum. *Am J Physiol Cell
478 Physiol* 290: C1503-1511, 2006.

479 30. **Chay TR, and Keizer J.** Minimal model for membrane oscillations in the pancreatic
480 beta-cell. *Biophys J* 42: 181-190, 1983.

481 31. **Sherman A.** Contributions of modeling to understanding stimulus-secretion coupling in
482 pancreatic beta-cells. *Am J Physiol* 271: E362-372, 1996.

483 32. **Felix-Martinez GJ, and Godinez-Fernandez JR.** Mathematical models of electrical
484 activity of the pancreatic beta-cell: a physiological review. *Islets* 6: e949195, 2014.

485 33. **Detimary P, Gilon P, and Henquin JC.** Interplay between cytoplasmic Ca^{2+} and the
486 ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. *Biochem J* 333 (Pt 2):
487 269-274, 1998.

488 34. **Bertram R, and Sherman A.** A calcium-based phantom bursting model for pancreatic
489 islets. *Bull Math Biol* 66: 1313-1344, 2004.

490 35. **Cha CY, Nakamura Y, Himeno Y, Wang J, Fujimoto S, Inagaki N, Earm YE, and**
491 **Noma A.** Ionic mechanisms and Ca²⁺ dynamics underlying the glucose response of pancreatic
492 beta cells: a simulation study. *J Gen Physiol* 138: 21-37, 2011.

493 36. **Fridlyand LE, Ma L, and Philipson LH.** Adenine nucleotide regulation in pancreatic
494 beta-cells: modeling of ATP/ADP-Ca²⁺ interactions. *Am J Physiol Endocrinol Metab* 289:
495 E839-848, 2005.

496 37. **Marinelli I, Fletcher PA, Sherman AS, Satin LS, and Bertram R.** Symbiosis of
497 electrical and metabolic oscillations in pancreatic beta-cells. *Front Physiol* 12: 781581, 2021.

498 38. **Marinelli I, Thompson BM, Parekh VS, Fletcher PA, Gerardo-Giorda L, Sherman**
499 **AS, Satin LS, and Bertram R.** Oscillations in K(ATP) conductance drive slow calcium
500 oscillations in pancreatic beta-Cells. *Biophys J* in press: 2022.

501 39. **Chen YD, Wang S, and Sherman A.** Identifying the targets of the amplifying pathway
502 for insulin secretion in pancreatic beta-cells by kinetic modeling of granule exocytosis. *Biophys J*
503 95: 2226-2241, 2008.

504 40. **Goodner CJ, Walike BC, Koerker DJ, Ensinck JW, Brown AC, Chidekel EW,**
505 **Palmer J, and Kalnasy L.** Insulin, glucagon, and glucose exhibit synchronous, sustained
506 oscillations in fasting monkeys. *Science* 195: 177-179, 1977.

507 41. **Lang DA, Matthews DR, Peto J, and Turner RC.** Cyclic oscillations of basal plasma
508 glucose and insulin concentrations in human beings. *N Engl J Med* 301: 1023-1027, 1979.

509 42. **Westerlund J, and Bergsten P.** Glucose metabolism and pulsatile insulin release from
510 isolated islets. *Diabetes* 50: 1785-1790, 2001.

511 43. **Hellman B, Salehi A, Grapengiesser E, and Gylfe E.** Isolated mouse islets respond to
512 glucose with an initial peak of glucagon release followed by pulses of insulin and somatostatin in
513 antisynchrony with glucagon. *Biochem Biophys Res Commun* 417: 1219-1223, 2012.

514 44. **Porksen N, Munn S, Steers J, Vore S, Veldhuis J, and Butler P.** Pulsatile insulin
515 secretion accounts for 70% of total insulin secretion during fasting. *Am J Physiol* 269: E478-488,
516 1995.

517 45. **Dankner R, Chetrit A, Shanik MH, Raz I, and Roth J.** Basal-state hyperinsulinemia in
518 healthy normoglycemic adults is predictive of type 2 diabetes over a 24-year follow-up: a
519 preliminary report. *Diabetes Care* 32: 1464-1466, 2009.

520 46. **Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, and Turner RC.**
521 Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma
522 glucose and insulin concentrations in man. *Diabetologia* 28: 412-419, 1985.

523 47. **Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, and Quon MJ.**
524 Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin
525 sensitivity in humans. *J Clin Endocrinol Metab* 85: 2402-2410, 2000.

526 48. **Erion K, and Corkey BE.** Beta-cell failure or beta-cell abuse? *Front Endocrinol* 9: 532,
527 2018.

528 49. **Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, and Roth J.** Insulin resistance and
529 hyperinsulinemia: is hyperinsulinemia the cart or the horse? *Diabetes Care* 31 Suppl 2: S262-
530 268, 2008.

531 50. **Page MM, and Johnson JD.** Mild suppression of hyperinsulinemia to treat obesity and
532 insulin resistance. *Trends Endocrinol Metab* 29: 389-399, 2018.

533 51. **Esser N, Utzschneider KM, and Kahn SE.** Early beta cell dysfunction vs insulin
534 hypersecretion as the primary event in the pathogenesis of dysglycaemia. *Diabetologia* 63: 2007-
535 2021, 2020.

536 52. **Esser N, Utzschneider KM, and Kahn SE.** On the causal relationships between
537 hyperinsulinaemia, insulin resistance, obesity and dysglycaemia in type 2 diabetes: Reply to
538 Johnson JD [letter]. *Diabetologia* 64: 2345-2347, 2021.

539 53. **Johnson JD.** On the causal relationships between hyperinsulinaemia, insulin resistance,
540 obesity and dysglycaemia in type 2 diabetes. *Diabetologia* 64: 2138-2146, 2021.

541 54. **Cole LK, Agarwal P, Doucette CA, Fonseca M, Xiang B, Sparagna GC, Seshadri N,
542 Vandel M, Dolinsky VW, and Hatch GM.** Tafazzin deficiency reduces basal insulin secretion
543 and mitochondrial function in pancreatic islets from male mice. *Endocrinology* 162: 2021.

544 55. **Kyriazis GA, Smith KR, Tyrberg B, Hussain T, and Pratley RE.** Sweet taste
545 receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion
546 during the development of diabetes in male mice. *Endocrinology* 155: 2112-2121, 2014.

547 56. **Barlow J, Jensen VH, Jastroch M, and Affourtit C.** Palmitate-induced impairment of
548 glucose-stimulated insulin secretion precedes mitochondrial dysfunction in mouse pancreatic
549 islets. *Biochem J* 473: 487-496, 2016.

550 57. **Taddeo EP, Alsabeeh N, Baghdasarian S, Wikstrom JD, Ritou E, Sereda S, Erion K,
551 Li J, Stiles L, Abdulla M, Swanson Z, Wilhelm JJ, Bellin MD, Kibbey RG, Liesa M, and
552 Shirihai OS.** Mitochondrial proton leak regulated by cyclophilin D elevates insulin secretion in
553 islets at nonstimulatory glucose levels. *Diabetes* 69: 131-145, 2020.

554 58. **Zhang IX, Ren J, Vadrevu S, Raghavan M, and Satin LS.** ER stress increases store-
555 operated Ca(2+) entry (SOCE) and augments basal insulin secretion in pancreatic beta cells. *J
556 Biol Chem* 295: 5685-5700, 2020.

557 59. **Nunemaker CS, Bertram R, Sherman A, Tsaneva-Atanasova K, Daniel CR, and
558 Satin LS.** Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic
559 mechanisms. *Biophys J* 91: 2082-2096, 2006.

560 60. **Dryselius S, Lund PE, Gylfe E, and Hellman B.** Variations in ATP-sensitive K+
561 channel activity provide evidence for inherent metabolic oscillations in pancreatic beta-cells.
562 *Biochem Biophys Res Commun* 205: 880-885, 1994.

563 61. **Bertram R, Satin L, Zhang M, Smolen P, and Sherman A.** Calcium and glycolysis
564 mediate multiple bursting modes in pancreatic islets. *Biophys J* 87: 3074-3087, 2004.

565 62. **Ravier MA, Gilon P, and Henquin JC.** Oscillations of insulin secretion can be triggered
566 by imposed oscillations of cytoplasmic Ca2+ or metabolism in normal mouse islets. *Diabetes* 48:
567 2374-2382, 1999.

568 63. **Bertram R, Satin LS, and Sherman AS.** Closing in on the mechanisms of pulsatile
569 insulin secretion. *Diabetes* 67: 351-359, 2018.

570 64. **Marinelli I, Vo T, Gerardo-Giorda L, and Bertram R.** Transitions between bursting
571 modes in the integrated oscillator model for pancreatic beta-cells. *J Theor Biol* 454: 310-319,
572 2018.

573 65. **Merrins MJ, Poudel C, McKenna JP, Ha J, Sherman A, Bertram R, and Satin LS.**
574 Phase analysis of metabolic oscillations and membrane potential in pancreatic islet beta-cells.
575 *Biophys J* 110: 691-699, 2016.

576 66. **Lewandowski SL, Cardone RL, Foster HR, Ho T, Potapenko E, Poudel C,
577 VanDeusen HR, Sdao SM, Alves TC, Zhao X, Capozzi ME, de Souza AH, Jahan I, Thomas
578 CJ, Nunemaker CS, Davis DB, Campbell JE, Kibbey RG, and Merrins MJ.** Pyruvate kinase
579 controls signal strength in the insulin secretory pathway. *Cell Metab* 32: 736-750 e735, 2020.

580 67. **Higgins J.** A chemical mechanism for oscillation of glycolytic intermediates in yeast
581 cells. *Proc Natl Acad Sci USA* 51: 989-994, 1964.

582 68. **Tornheim K, and Lowenstein JM.** The purine nucleotide cycle. 3. Oscillations in
583 metabolite concentrations during the operation of the cycle in muscle extracts. *J Biol Chem* 248:
584 2670-2677, 1973.

585 69. **Tornheim K.** Are metabolic oscillations responsible for normal oscillatory insulin
586 secretion? *Diabetes* 46: 1375-1380, 1997.

587 70. **Marinelli I, Parekh V, Fletcher P, Thompson B, Ren J, Tang X, Saunders TL, Ha J, Sherman A, Bertram R, and Satin LS.** Slow oscillations persist in pancreatic beta cells lacking
588 phosphofructokinase M. *Biophys J* 121: 692-704, 2022.

589 71. **Richard AM, Webb DL, Goodman JM, Schultz V, Flanagan JN, Getty-Kaushik L, Deeney JT, Yaney GC, Dunaway GA, Berggren PO, and Tornheim K.** Tissue-dependent loss
590 of phosphofructokinase-M in mice with interrupted activity of the distal promoter: impairment in
591 insulin secretion. *Am J Physiol Endocrinol Metab* 293: E794-801, 2007.

592 72. **Jung SK, Aspinwall CA, and Kennedy RT.** Detection of multiple patterns of
593 oscillatory oxygen consumption in single mouse islets of Langerhans. *Biochem Biophys Res
594 Commun* 259: 331-335, 1999.

595 73. **Krippeit-Drews P, Dufer M, and Drews G.** Parallel oscillations of intracellular calcium
596 activity and mitochondrial membrane potential in mouse pancreatic B-cells. *Biochem Biophys
597 Res Commun* 267: 179-183, 2000.

598 74. **Li J, Shuai HY, Gylfe E, and Tengholm A.** Oscillations of sub-membrane ATP in
599 glucose-stimulated beta cells depend on negative feedback from Ca(2+). *Diabetologia* 56: 1577-
600 1586, 2013.

601 75. **Luciani DS, Misler S, and Polonsky KS.** Ca2+ controls slow NAD(P)H oscillations in
602 glucose-stimulated mouse pancreatic islets. *J Physiol* 572: 379-392, 2006.

603 76. **Merrins MJ, Van Dyke AR, Mapp AK, Rizzo MA, and Satin LS.** Direct
604 measurements of oscillatory glycolysis in pancreatic islet beta-cells using novel fluorescence
605 resonance energy transfer (FRET) biosensors for pyruvate kinase M2 activity. *J Biol Chem* 288:
606 33312-33322, 2013.

607 77. **McKenna JP, Ha J, Merrins MJ, Satin LS, Sherman A, and Bertram R.** Ca2+ effects
608 on ATP production and consumption have regulatory roles on oscillatory islet activity. *Biophys J*
609 110: 733-742, 2016.

610

611

612