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Abstract
Purpose of Review Wearable soft robotics has demonstrated many unique capabilities in human assistance and augmen-
tation. This paper discusses the recent trends and remaining challenges in designing soft actuators, soft sensors, and
controllers for wearable soft robots.

Recent Findings Different actuation mechanisms for wearable systems were investigated in this review. We include a
synopsis on the design of soft sensors and algorithms for sensor fusion and discuss the recent trends for sensing simultaneous
deformations and implementing machine learning techniques for soft sensor fusion. We also present a discussion on layered
controller design and the evaluation metrics for experiments with healthy and impaired subjects.

Summary We review three commonly used soft actuation mechanisms and provide their characteristics, in which the balance
between material stiffness and functionality is still a challenge. We present the advances in soft sensor design and discuss the
challenges in fusion algorithms for wearable soft sensors, such as inter-subject adaptability and sensor location movement.
We also discuss the model-based and model-free controller design together with the evaluation criteria for healthy and
impaired users, in which autonomous operation for personalized assistance is still an open challenge for controller design.

Keywords Wearable robotics · Soft robotics · Human-robot interaction · Rehabilitation

Introduction

Wearable robots are advanced human symbiotic robotic
systems characterized by suitable shape, kinematic, and
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weight factors to be worn on the human body with the
function of either augmenting and assisting or restoring
human limb function [5, 6]. Over the past decades,
wearable robots have been applied to facilitate neuro-
rehabilitation [7], prevent work-related injuries [8], enhance
the performance of sports training [9], and augment human
capabilities in labor-intensive tasks [10]. For example, there
are approximately 6.6 million stroke patients in the USA,
and at least 65% of them suffering from gait impairment
[11]. Wearable robotics provides a promising solution to
meet this increase demand for physical therapy and enable
in-home rehabilitation [12].

Currently the actuators, sensors, transmission, and braces
of wearable robots are mostly made of rigid materials.
Rigid exoskeletons are often composed of heavy motors and
bulky structures that could cause fatigue to the users and
restrict their natural motions. Furthermore, rigid wearable
robots require precise mounting and adjustment for users,
and any misalignment with the human joint can jeopardize
the robot performance and even pose safety risks to the
users [13].
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To address these challenges, there has been a growing
interest in introducing soft materials (e.g., silicone and
textiles) into wearable sensors and actuators [14]. Fluids,
cables, and shape-memory-alloy actuators are among the
most popular actuation mechanisms [15, 16]. In the
meantime, soft sensors have been designed to measure
strains and curvatures of the soft robots using flexible
electronics, liquid metals, optical fibers [17–19]. Wearable
soft robots have demonstrated many advantages over their
rigid counterparts, as they are generally inexpensive to
make, safe to use, lightweight, highly customizable, and
able to generate versatile motion profiles [20]. As a result,
research in the field of wearable soft robotics has been
fast expanding in the past decade and has become a
highly prominent subtopic in the wearable robotics field.
Examining the quantity of published research articles in the
overall wearable robotics field reveals that 27% of them are
about soft robots in 2010 and it increased to 41% in 2020.

Wearable soft robotics is a highly interdisciplinary
research topic which requires integration of knowledge from
material science, solid and fluid mechanics, mechanical
design and manufacturing, modeling and control, human
systems engineering, to name a few. Wearable soft robots
have been integrated with human users as exosuits to assist
various human joints [21], robot manipulators to augment
human capabilities [2], and haptic devices to provide cues
and feedback to the users [22]. While earlier work in
wearable soft robots focused on identifying the appropriate
materials and actuation mechanisms [23], a large number of
recent research in wearable soft robots focus on integrating
these robots with human users by developing novel soft
sensors [24], designing autonomous control algorithms for
the soft robots [25], and conducting tests with healthy and
impaired users [26, 27]. A few wearable soft robots have
been productized to make these new technologies available
to the public [28–30].

This article will review the recent trends in design,
sensing and control of wearable soft robots, which
supplements and extends several recent review papers on
textile-based wearable robots [31], rehabilitation robots
powered by pneumatic muscles [32], machine learning
methods in soft robotics [33], and control strategies for soft
continuum robotic manipulators [34]. This paper attempts
to present a holistic view of different aspects required to
integrate wearable soft robots with human users, which
include actuation mechanisms to drive wearable soft robots,
designs and algorithms of soft sensors, controller syntheses
for wearable soft robots to autonomously collaborate with
human users, and human evaluation results. Finally, we
will also present some remaining challenges and future
directions in different aspects of wearable soft robots to
successfully deploy them into daily lives of the human users.

Design of Wearable Soft Robots

Wearable robotics can be used for rehabilitation, assistance,
and augmentation. In this paper, we divide wearable soft
robots into four categories according to their primary
functions: exosuits, manipulators, haptic devices and
sensing suits. A soft robotic exosuit is often a robotic
garment that can apply forces and/or torques to human
joints. A soft manipulator can act as an extra arm [2]
or finger [38], which can extend capabilities for healthy
users or become a prosthesis for impaired users. Soft haptic
devices are designed to provide humans with direction
cues, motion guidance and realistic feedback with virtual
objects or teleportation with less harm and larger range of
adjust ability compared to rigid ones [22]. Sensing suits
are designed for measuring human motion. Most wearable
soft devices are mounted on the users through fabrics and
velcros. The mounting mechanism ensures that the device
can deform with the joint motion while staying relatively
fixed to the body. Some examples of wearable soft robot
designs are presented in Figs. 1, 2 and 3. Primary functional
requirements for designing wearable soft robots include
output force/torque capacity, range of motion, user comfort,
and safety. All these characteristics are highly dependent on
the actuation mechanisms. In the section, we will review
three most popular approaches in the literature: fluid-driven,
cable-driven, and shape-memory alloy actuators.

Fluid-Driven Actuators

Fluidic actuators are widely used in wearable soft devices
because of their compliance, simple structure, and wide
range of force capability (Fig. 1a). The outputs of fluidic
actuators are generated through deforming a sealed chamber
(made of elastomers or fabrics) by pneumatic or hydraulic
pressures. The peripherals of the devices (e.g., pumps,
regulators, and tubes) are usually offboard. Recently,
portable pneumatic sources are developed and users are able
to carry it on waist or back (Fig. 1c) [3]. Elastomer actuators
have been applied in exosuits for shoulder (Fig. 1d) [4,
39] and elbow assist [40] as well as ankle rehabilitation
[41]. They also widely used in other wearable devices
such as assistive gloves [42, 43], wearable manipulators
(Fig. 1b) [44, 45], and haptic devices [22, 46]. Most of
the elastomer actuators are made of silicone or rubber with
an inflatable chamber inside. Mechanical constraints such
as inextensible layers have been introduced in the actuator
design to generate different motion patterns upon inflation,
such as bending, twisting, or elongation [1]. The inherent
stiffness of elastomers is enough to support the device’s
structure, but it also makes these actuators relatively bulky
and heavy for wearable applications.
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(a) (b) (c) (d)

Fig. 1 Examples of fluid-driven actuators: a Elastomer, knitted fab-
ric, and woven fabric fluid-actuators [1]. b Wearable soft manipulator
made of the woven fabric actuator (©[2019] IEEE. Reprinted, with
permission, from [2]). c Pneumatic actuators for a knee exosuit

(©[2020] IEEE. Reprinted, with permission, from [3]). d Pneumatic
actuators for shoulder assistance (©[2021] IEEE. Reprinted, with
permission, from [4])

To mitigate this issue, researchers have introduced textile
actuators that can fully collapse when deflated for assistive
gloves [47], knee exosuits [48], and wearable manipulators
[2, 49]. Fabrics are the most popular material for this type
of actuators, including non-stretchable woven fabrics and
stretchable knitted fabrics. Non-leaking materials such as
thermoplastic polyurethane are often used to form fabric
actuator’s air chamber by heat sealing. Those materials
are either coated on fabrics or separated as a chamber
inside a fabric pouch. Since fabric pneumatic actuators can
support higher pressure with thin walls compared to their
elastomer counterparts, the device is much lighter with
similar force/torque outputs, but it loses the capability to
support structure with minimal inherent material stiffness.
For instance, by evolving from elastomer actuators [45]
to fabric actuators [2] for a three-segment soft robotic
manipulator, the weight of the robot decreased from 1.6
to 1 kg and its payload capacity increased from 0.96 to
1.5 kg. Fluidic actuators have a systematic manufacturing
process, can conform to different objects and can generate a
wide range of forces and motion patterns. However, typical
pneumatic actuators generally take seconds to inflate and

deflate, making it challenging to assist human users in fast
and highly dynamic tasks.

Cable-Driven Actuators

To achieve fast reaction, low inertia, and avoid bulky struc-
ture near moving joints, cable-driven actuators are utilized
in wearable soft robots (Fig. 2a). Originally employed in
many exoskeletons, cable-driven actuators move a joint by
pulling cables across it with electric motors located away
from the joint. In wearable soft robots, soft materials such
as fabrics or elastomers are used as anchor points for cables
across a joint. These actuators have been applied to assis-
tive gloves (Fig. 2d) [37, 53], wearable extra finger [38] and
haptic glove [54]. They have also been used in exosuits for
the shoulder [55], elbow (Fig. 2b) [35], ankle (Fig. 2c) [36]
and hip [56]. These devices utilize Bowden cables, which
can transmit force or energy by the movement of an inner
cable relative to a hollow outer flexible cable, to guide ten-
dons around the body. In [36], a cable-driven soft exosuit
was designed to assist walking. Components of the wear-
able brace on both legs weigh only about 1.0 kg, but the total

(d)(c)(b)(a)

Fig. 2 Examples of cable-driven actuators: (a) and (b) Cable-driven
soft actuators and a soft wearable device to assist elbow motion [35].
(c) A cable-driven soft exosuit for ankle walking assistance (©[2018]

IEEE. Reprinted, with permission, from [36]). (d) A cable-driven
assistive glove (©[2015] IEEE. Reprinted, with permission, from [37])
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(d)(c)(b)(a)

Fig. 3 Examples of shape-memory alloy actuators: a, b Shape-memory alloy actuators and a wearable robot that can assist wrist motion [50]. c
Shape-memory alloy actuators for forearm force enhancement [51]. d An elbow exoskeleton driven by a shape-memory alloy actuator [52]

system including motors and power source weighs 3.8 kg.
The system can generate forces up to 300 N at the ankle,
at walking speeds up to 1.4 m/s. Cable-driven soft actuators
can assist fast movement and achieve highly repeatable and
bidirectional motion across a joint, but their mechanisms
can be complicated to manufacture and the high friction of
Bowden cable lowers the system efficiency [57].

Shape-Memory Alloy Actuators

Because of the need for silent and lightweight compliant
actuators with large force capability, shape-memory alloy
actuators have been developed for wearable soft robots
(Fig. 3a). Shape-memory alloy actuators generate force
through crystal phase change caused by changes of
temperature or a magnetic field applied to them. They can be
trained to memorize its shape at high temperature and could
be deformed and return to that shape when heated. A two-
way shape-memory alloy can also memorize its shape at
low temperature as well. Such actuators are used in assistive
gloves [58] and haptic devices [59], as well as exosuits for
assisting the muscular strength on the forearm (Fig. 3c) [51]
and wrist motion (Fig. 3b) [50]. A wearable robot that can
assist the muscular strength of the forearm in [51] used
shape-memory-alloy-based fabric muscles as actuators. It
has shape-memory-alloy spring connected in parallel and
wrapped with fabric with thread stitch to insulate the springs
(Fig. 3c). One shape-memory-alloy-based fabric muscle
unit weights only 24 g and can exert a force of 100 N
with an input power of 150 W and helps to lift up to
4 kg barbell to the target position. Shape memory alloy
actuators are lightweight, compact, and could be driven
directly through electric power. However, the heating and
cooling time before deformation is long, as it takes seconds
to heat up and cool down. Without an active cooling system,
the cooling time can be even longer [60].

Sensing inWearable Soft Robots

Sensing in wearable robotics is vital to obtain crucial
information about the users, actuator states, and the
environments. Existing wearable sensors, such as inertial
measurements units (IMU), goniometers, load cells, and
strain gauges, have been integrated with rigid exoskeletons.
However, these rigid sensors are often incompatible with
soft robots as they compromise the inherent compliance and
safety, and also lead to misalignment. This motivates the
design of soft and flexible sensors that can be seamlessly
integrated with wearable soft robots. This section will
discuss the recent development in wearable soft sensor
design and fusion algorithms.

Design of Soft Sensors

The design of soft sensors aims to achieve the sensing
capabilities found in biological systems [67]. Wearable soft
sensors are capable of measuring strain, force, curvature,
joint angle and a combination of these properties through
multimodal sensing. An overview of soft sensor designs can
be observed in Fig. 4.

Strain Sensing Common principles employed to measure
strain include liquid eutectic gallium-indium (eGaIn) [65],
biphasic gallium-indium alloy (bGaIn) [68], aqueous ionic
solution [18], ionic conductive liquid [69, 70], capacitive
sensing [71] and polymer optical fiber (POF) threads [72].
Soft strain sensors commonly consist of a conductive
material incorporated into stretchable supporting materials
such as silicone elastomers [73]. The conductive filling
serves as the active sensing material that responds to the
strain of the encasing. When the microchannels filled with
liquid conductive materials are deformed by stretching, the
electrical resistance of the microchannels increases due to
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(f)(e)(d)(c)(b)(a)

Fig. 4 Examples of wearable soft sensor designs: a eGaIn strain
sensor (©[2019] IEEE. Reprinted, with permission, from [61••]).
b Pneumatic force sensor (©[2018] IEEE. Reprinted, with permis-
sion, from [62•]. c Conductive textile capacitive force sensor (©[2010]
IEEE. Reprinted, with permission, from [63]. d Polymer optical fiber
strain and pressure sensor (©[2018] IEEE. Reprinted, with permission,

from [64]). e eGaIn multimode strain and force sensor (©[2012] IEEE.
Reprinted, with permission, from [65]). f Multimode multifunctional
sensor consisting of ionic liquid, conductive fabric and optical ele-
ment for bend, force and strain sensing (From [66••]. Reprinted with
permission from AAAS)

reduced cross-sectional area, increased channel length, or
both [18, 65, 69]. Recently, bGaIn was developed with
improved stable conductivity over large strains and extreme
stretchability, compared to the commonly used eGaIn [68].

Sensing strain with soft capacitive sensors is usually
achieved by stacking flat or concentric layers of conductive
plates with inter-layers of silicone elastomer, such that
when undergoing strain the distance between the conductive
plates changes and induces a change in the capacitance
measurement [70, 71]. The conductive layers can be
composed of ionically conductive fluid [70] or solid metal
plates such as aluminum and silver [71]. In [72], the POF
was utilized as a light-guiding thread for strain sensing.
In POF strain sensors the intensity of the transmitted light
drops along the length of the fiber. As the sensor is stretched
the length of the sensor changes which induces a change in
the light intensity.

Soft strain sensors usually demonstrate hyperelastic
characteristics, with some studies reporting stretching twice
their original length [18]. However, the viscoelasticity
of the material has been shown to create hysteresis in
dynamic stretching [74]. Two independent studies reported
a maximum hysteresis of 26.45% [75] and 21.34% [76]
of the respective sensor measuring resistance. Furthermore,
some have reported drift in the sensor measurements over
time and as a transient response to fixed strain conditions
[71, 74]. Overall, capacitance strain sensors exhibit lower
hysteresis and faster response times compared to resistance
sensors [73, 77].

Force Sensing To measure force, common mechanisms
employed in soft sensors include pneumatic chambers [62•],
liquid eGaIn [78, 79], conductive textiles [63, 80], carbon
fiber composite [81, 82], and POF [19].

Pneumatic chamber soft sensors consist of sealed air-
tight chambers that demonstrate a change in internal
pressure to applied loads and are commonly manufactured
from elastomeric materials or heat-sealable thermoplastic
polyurethane [62•], similar to Fig. 4b. In dynamic loading,
the viscoelastic characteristics influence the measurements
and cause hysteresis [83], which implies that the dynamic
characteristics of the air bladder cannot be neglected
[84]. A hyperelastic pressure transducer was fabricated
by embedding silicone rubber with microchannels of
conductive liquid eGaIn [78]. Pressing the surface of the
elastomer with pressure loads deform the cross-section
of the underlying channels and changes their electric
resistance. Circular patterned microchannels with eGaIn
allow sensing surface pressure and exhibit insensitiveness
to strains along any axis [65]. Multi-axis force sensing
was achieved in [79] by arranging three star-patterned
microchannels filled with liquid eGaIn.

Force sensing with conductive fabrics is achieved by
stacking two conductive layers with an inter-layer of a
compressible spacer material such that when the sensor is
compressed the distance between the layers change and the
capacitance measured between the conductive fabric also
changes [63] (see Fig. 4c). Carbon fiber composites can
be used as a conductive structure material that exhibits
changes in electrical resistance when the structure geometry
undergoes deformation. In [81], tensile loads of the sensor
induce changes in electrical resistance between the carbon
fiber composite structures as the layers of the U-shaped
sensor design were deformed closer together or further
apart. Multi-axis force sensing was performed with a set
of carbon fiber composite conductors in the shape of
a meander and positioned radially, such that forces on
the sensor change the electrical resistance between the
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carbon fiber structures [82]. The POF was used in [19]
for detection of insole contact forces. When the POF
sensor is pressed, the sensor bends and induces a variation
in the refractive index due to deformation of the fiber
and stress-optic effect leading to a change in the light
intensity [19].

Curvature and Angle Sensing Common principles to mea-
sure curvature include resistive flex sensors [17], liquid
eGaIn [85, 86], and POF. Curvature resistive flex sen-
sor designs consist of electrically conductive materials
embedded within a flexible substrate [17]. When under-
going bending the substrate causes a mechanical stress of
the conductive pattern that leads to a change in its elec-
trical resistance. Curvature sensing with liquid eGaIn can
be achieved by stacking two layers interconnected through
the edges and a middle strut that induces compression
loads on the liquid microchannel when the sensor is bent
[85]. Furthermore, when this design is embedded with a
serpentine pattern microchannel simultaneous sensing of
curvature and strain is possible [86]. Resistive flex sensors
are commercially available, although they exhibit drift in
the sensor measurements over time, even in mechanically
stationary conditions [17].

Soft sensor designs employing wearable inductive coils
[87], POF [19] and piezoresistive sensors [88] have shown
the capability to measure the relative angle between
segments. Wearable inductive coils were implemented in
[87] to measure the relative angle between two segments.
Relying on Faradays Law of Induction, wearable wrap-
around coils were designed to transmit and receive the
signal from one another through inductance. As the
relative angle between the coils changes, the transmission
coefficient will change due to misalignment of the coils.
This property allows for a sensing principle that directly
reacts to the joint angle state. In [88], a piezoresistive
hinge sensor was fabricated which during bending the
carbon particles are pulled apart or closer changing the
sensor’s resistance. Inductance-based sensors have reported
robustness to variation in human tissue dielectric properties
[87] and immunity to electromagnetic interference [89].

Multimodal Sensing Recent work has introduced single
sensor designs to simultaneously sense multiple deforma-
tion modes [65, 66••, 90]. An early work [65] achieved
sensing vertical force, and strain in two directions, by stack-
ing two strain sensor layers and one force sensor layers with
microchannels filled with liquid eGaIn (see Fig. 4e). A POF
was used in [90] to measure twisting and bending. In [66••]
(Fig. 4f) ionic liquid, conductive fabric and optical sens-
ing elements were integrated into a single sensor design to
allow sensing and decoupling combined deformation modes
of stretching, bending and compression.

Algorithms for Soft Sensor Fusion

Fusion algorithms in soft sensors allow compensating lim-
itations in individual sensors and improve the overall mea-
surement accuracy. Kalman Filter (KF) [91–93], Multiplica-
tive Extended Kalman Filter (MEKF) [94•] and machine
learning techniques [61••, 95, 96] have been implemented
to fuse readings from soft sensors and other sensing
approaches. In [91], a KF was implemented to fuse soft
resistive flex sensors with two infrared cameras to improve
the accuracy and reliability of fingertip position tracking
when occlusion is encountered in the camera system. The
KF was also implemented with soft resistance-based tex-
tiles [92] and POF curvature sensors [93] for fusion with
IMU data to improve knee joint angle estimation. This work
was extended to quaternion-based MEKF, which showed
further improved accuracy and repeatability for knee joint
angle estimation in the sagittal plane [94•]. Compared to the
KF, MEKF has demonstrated improved estimation results
since it is applicable to non-linear dynamic systems. A lim-
itation for both fusion methods in wearable applications is
that obtaining a model of the human joint dynamics is often
challenging.

To overcome this limitation, machine learning methods
have been implemented to fuse sensor information without
requiring a precise model of the human body dynamics
[61••, 95–97]. A long short-term memory (LSTM) model
was employed in [98] to fuse multiple soft strain sensors
distributed through the human body for reconstruction
of the 3D motion of the upper body. LSTM is a
deep learning method effective for capturing long-term
temporal dependencies [99]. A semi-supervised deep
learning architecture was proposed in [100], consisting
of a sequential encoder network, an alignment network,
and a motion representation network, to estimate 3D
position of the lower limb joints based on information
from two soft strain sensors. Artificial Neural Networks
(ANN) were employed in multimodal soft sensors to
identify combined deformations of stretching, bending and
compression [66••]. ANN [101], fuzzy logic [84, 102], and
segmental regression approach based on a hidden logistic
process (RHLP) [103] have been implemented to estimate
the gait phases upon GCF measured from the soft force
sensors.

Machine learning methods have demonstrated successful
fusion of different sensors without requiring knowledge of
the sensor dynamics. However, they require a considerable
amount of data to train the models. For example,
1000 cycles of sensor stretching were required to build
the training data set for one sensor [98]. In many
wearable applications, a machine learning model has to be
retrained for each human subject since the anthropometric
information significantly affects the training data. This
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can be inconvenient for the users. In addition, wearable
soft sensors can slide over the human body with human
movement, which may invalidate the learned model and
require frequent modeling retraining.

Control of Wearable Soft Robots

Wearable soft robots are often controlled in a layered
structure. The outer-layer or high-level controller uses the
sensor feedback of muscle activities, forces/torques, and/or
kinematics to estimate the states and intents of the users
and generate force/torque or motion references for the
actuator. The inner-layer or low-level controller is designed
to track the references, and the design of the low-level
controller heavily depends on the actuation mechanism. A
comparison of control strategies is shown in Table 1 and
controller evaluation with human subjects will be presented
in Section 2.

High-Level Controller

The most straightforward high-level controller is the
classical finite-state machine (FSM) which maps the sensor
measurements to a set of pre-defined reference trajectories.
One early work using this approach in a wearable soft device
was presented in [104•]. A three-state (grasp, release, and
hold) FSM was designed for a soft robotic glove and the
system provided constant assistance in each state. This work
was extended to a four-state (relax, extension, pinch flexion,
and power flexion) controller for a new soft hand with flex
sensors placed on each finger and force sensors attached to
the palm and fingertips [115]. In [119], a gait event based
control system was designed to assist the hip flexion from
pre-swing to terminal swing. The gait phases were identified
through the insole sensor measurements under both feet and
constant DC voltage was supplied to the system to assist hip
flexion.

To provide more personalized and adaptive assistance,
FSM have been combined with either human-model-based
or learning-based approaches [25, 105, 106••, 120–123].
The new approaches still divide a task into several states
but the trajectory in each state was generated through the
biomechanical models of the human joints or machine
learning models. In [105], the controller classified a gait
cycle into two phases: stance and swing, and then the
desired torque profile was calculated based on the identified
human quasi-stiffness and damping model of the knee
joint for the swing phase only. During the stance phase,
the controller was designed to provide zero assistance. In
[122], a two-state (bending and grasping) controller was
proposed for a pneumatic artificial muscle based soft glove.
The controller switched between the bending mode and

grasping mode based on the local sensor measurement.
The position mode utilized ANN to map from the bending
angle to the desired pressure while the force mode utilized
the mathematical model which was based on the theory of
conservation of energy to calculate the desired pressure. The
main advantage of the classic FSM and its variations comes
from the simple structure and implementation. This feature
also makes the FSM approach very popular in both rigid
and soft robots [124]. However, it requires careful tuning to
account for the variations between different subjects [125].

To overcome the limitations of the FSM method, many
controllers have emerged by using human models [109–
111, 126, 127]. These controllers utilized the biomechanical
models of human joints to estimate the joint torque and
then calculate the desired force/position profile for the
actuators. In [110••], the controller was designed to assist
squat (i.e., knee bent and back straight) and stoop (i.e.,
knee straight and back bent) lifting. The desired assistive
force was calculated using a simplified bending model of
the transition region between the lumbar spine and sacral
spine in the lower back. In [126], a controller was designed
to assist grasping and flexion/extension of the elbow joint
utilizing a simplified human arm dynamic model. The
simplified model utilized the measurements including the
mass and length of the forearm and the elbow’s angular
kinematic information to calculate the desired assistive
torque profile. An admittance controller was applied to map
such a torque profile to the desired angular position of
the actuator. In [127], a surface Electromyography (sEMG)
driven musculoskeletal model based controller was utilized
to assist the elbow flexion and extension. The elbow flexion-
extension torque was generated from three sEMG channels
and the elbow bending angle. The sEMG measurements
were converted to activation-dynamic components through
a muscle twitch model. The activation-dynamic components
were mapped to seven muscle-tendon units and the desired
assistive torque was calculated accordingly.

Compared with the FSM method, the human-model-
based controllers provide more natural and personalized
assistance profile. However, these controllers are usually
built on simplified human models such as static models
[110••] or second-order dynamic models [126, 127], and
the modeling uncertainties can significantly degrade the
controller performance. To mitigate the uncertainties from
the simplified human model, machine learning becomes
increasingly popular for the high-level controller design.
In [112], a deep learning algorithm was applied to the
pneumatic-driven soft glove. The pressure measurements
and the glove position were used as the input-output
pair to train the model and an open-loop control was
applied to drive the soft glove to the desired position.
In [113], a Vision-based Intention Detection network
from an Egocentric view (VIDEO-Net) framework was
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proposed to predict the grasping intention. The VIDEO-
Net framework utilized user arm behaviors and hand object
interactions through obtained visual information to detect
user intentions. The learning-based method provides an
alternative solution when the analytical or empirical model
of human joint is difficult to obtain and it shows reliable
results in known environments. However, it also requires a
large data set to capture the dynamics of the system and the
convergence proof is difficult to establish [34].

Low-Level Controller

Once the desired trajectory is generated, a low-level
controller will be tasked to track the reference. The
proportional–integral–derivative (PID) controller is the
most commonly used method for wearable soft robots [26,
107••]. In [110••], a simple PID controller was applied to
a cable-driven soft exoskeleton for stoop lifting assistance.
The controller was designed to drive the motor to the desired
velocity. Similarly, a PID controller was designed based
on the flow dynamics of the compressed air to drive the
pneumatic soft glove to the desired air pressure [115]. The
PID controller has a simple structure but the tuning of PID
control parameters can be challenging and time-consuming.

As an alternative approach, researchers have also looked
into model-based controller design. In [116], a model
predictive control (MPC) method was presented for a cable-
driven system to track the desired torque profile. Four state
variables: angular positions and velocities of the motor and
the human knee joint and three outputs: angular position
and velocity of the knee joint and assistive torque were
used to describe the state-space model. The MPC method
ensures that the system will satisfy the constraints on range
of motion and assistive force/torque. However, an accurate
actuator model is required for the MPC method but it
is challenging to build such models for soft actuators. In
addition, the computational cost for running the MPC is
usually high.

To address the modeling uncertainties, robust control
method also starts to emerge. In [117], a sliding mode
control (SMC) was applied to a soft pneumatic-driven glove.
The controller deadzone variable was also introduced to the
SMC controller design for noise rejection. The value of the
introduce variable contains a static term and a proportional
term to the reference pressure. When applying the SMC,
the system is more robust against the modeling uncertainties
of the soft actuators. However, the high control gain of
the SMC also over stiff those actuators.The challenges
for low-level controller design are related to the actuation
mechanism. For pneumatic-driven systems, the pneumatic
dynamics is important since it shows slower and more
nonlinear response compared with electromagnetic system
[34]. For cable-driven system, compensation algorithms are

preferred when friction, hysteresis and tendon coupling are
severe [128].

Experiment and Evaluation with Human

Wearable soft robots have been tested on both healthy users
and impaired users with slightly different goals. During
healthy participant testing, the primary goals are to justify
the design requirements, evaluate the overall benefit for
healthy users, and provide preliminary evidence for the
potential benefit on impaired users. Metabolic cost [26,
106••, 129] and muscle effort [105, 121, 122, 126, 130] are
the two primary evaluation criteria for healthy users. For
impaired user studies, the goal is concentrated on evaluating
the users potential benefit when wearing the device and
improvements in functional evaluation tasks are another
main criterion for impaired users [107••, 109, 111, 115,
131, 132].

The metabolic cost reflects the overall energy changes
when a wearable robot actively assists a user. In [26], a
preliminary study was conducted on four healthy users to
determine the gross benefit (device active versus device
worn but inactive). A statistically significant reduction
of the averaged metabolic was observed with the device
being active. In [106••], a study was conducted on three
healthy users to evaluate the benefit of an untethered soft
hip exosuit. The metabolic cost was reduced by 15.28%
when full gait cycle assisted was compared with no device
condition. Compared to the case without a soft robot,
a minimal increase in the metabolic cost is expected
with a passive soft wearable robot, and a reduction in
metabolic cost is expected when the device is active. The
metabolic cost can provide an overview of the benefits of
a soft wearable robot, but it cannot provide details on the
kinematic and kinetic changes of the assisted joint(s).

The muscle effort, in contrast to the metabolic cost,
indicates the changes of a specific muscle or muscle
group’s activity when the attached device is active versus
inactive [133]. sEMG sensors are the commonly used non-
invasive tools to estimate muscle force. In [105], a soft
inflatable knee exosuit was tested on one healthy participant
to assist the knee extension during the swing phase.
Five sEMG sensors were attached to the lower limb to
evaluate the muscle efforts (device active versus inactive). A
reduction was observed for the quadriceps when the device
was active. Similarly, in [119], a polyvinyl chloride gel soft
hip actuator was tested on one stroke patient with sEMG
sensors attached to the lower limb. It was demonstrated that
the device could reduce the burden on the lower limbs’
muscles during walking with an approximate reduction of
17% for the rectus femoris muscle, 11% for the Sartorius,
and 5% for the hamstring. Similar to the metabolic cost,
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wearing a passive soft wearable robot may not significantly
increase the muscle effort and a reduction is also expected
when the robot is active. Although sEMG sensors provide
reliable muscle force estimation, its performance is quite
sensitive to factors like skin conditions, external load on the
sensing area.

The improvements in functional evaluation task reflects
the impaired user’s performance changes in a specific
functional task when a soft wearable robot is turned on. In
[107••], a soft supernumerary finger was attached to one
impaired user to regain the grasping function. The Box and
Block Test and the Franchy Arm Test were performed on the
participant, and improvements were observed in both cases.
In [27], a soft knee exosuit was applied to three impaired
participants. A timed up-and-go test was performed to
evaluate the device performance during overground waking
and a reduction on execution time was observed. In [134],
a cable-driven soft exosuit was tested on six participants in
chronic phase after the stroke. Both 10-meter walk and six
minute walk tests were conducted for all impaired users.
Compared to the inactive case, the user walked 0.14 m/s
during the first test and traveled 32 m farther during the
second test on average. Similarly in [135], the cable-driven
soft exosuits were mounted on 44 post-stroke user for
treadmill and over ground training. After a 5 days training
session with the device active, the averaged maximum
walking speed for both device-assisted and unassisted were
increased by 0.1 m/s and 0.07 m/s. The functional evaluation
task is specifically selected for each class of the impaired
user and the assistance from the soft robots.

It should be noted that while both soft and rigid wearable
robots have been tested on healthy or impaired users, limited
research directly compares the performance of rigid and
soft robots [136], which presents an exciting topic for
future research. In general, soft wearable robots have a
great potential for assisting activities of daily living without
close supervision by medical professionals because of their
advantages in safety [137] and comfort [138]. Due to the use
of soft materials, human users will be at a lower risk even
when the actuators malfunction or misalign with the human
joints, compared to their rigid counterparts. While both
active rigid and soft robots have been shown to be effective
for healthy and impaired users, only soft robots can be
worn passively without significantly increasing metabolic
costs [106••] or muscle efforts [119]. Hence, a user can
wear these soft robots for a long time without feeling
uncomfortable. Despite many advantages, there are still
inherent problems yet to be resolved in soft wearable robots,
such as friction in cable-driven systems [110••] and slow
response in the fluid-driven systems [105].

Discussions of Open Challenges

Remaining Challenges

While some exciting progress has been made in different
aspects of wearable soft robots, we identify several
challenges that need to be addressed by the research
community. We hope a summary of these challenges will
inspire more interdisciplinary efforts to improve the safety,
reliability, and intelligence of wearable soft robots.

Novel Designs to Support Sophisticated and Fast Human
Motions One major challenge in wearable soft robots is
that most current designs only assist a single degree-
of-freedom motion. There are very few robots that can
assist a full spherical joint motion or full hand functions
which include joints with different ranges and directions
compacted in limited space. To achieve complex motion
profiles, actuators with multiple degree of freedom is
needed [139]. Another challenge in wearable soft robots is
their slow responses. For fluidic actuators, the inflation and
deflation process takes time. To solve that, the most simple
way is to increase flow rate. With limited flow rate, energy
can be restored and release when fast actuation is needed,
and some potential mechanisms include spring systems and
bistable structures [140, 141]. In some cases, there is an
challenge to maintain the compliance and comfortability
of soft robots when rigid components are necessary. There
is not an clear boundary between rigid and soft wearable
robots. It is important to determine appropriate stiffness of
wearable soft robots to assure both device functionality and
its safety and compatibility with human.

Novel Fusion Algorithms for Soft Sensors A common
challenge in wearable soft sensors includes characterizing
non-linearity and hysteresis due to the viscoelasticity of
the materials. Several works have implemented machine
learning algorithms to learn the complex dynamics of soft
sensors in wearable applications. To achieve this, extensive
data sets are required for training the model, which are
often highly dependant on the specific experimental and
sensor conditions. In soft sensor wearable applications, it
is common to observe shifting of the sensor location over
the body, as the interfaces are usually compliant and allow
relative motion. This introduces unreliability, hysteresis
and drift of the sensor measurements. As such, there is a
need for stand-alone models that take into account shifting
of the sensors and introduces compensation methods to
maintain performance. Introducing sensor shift-adaptive
models complementary to the characterization model could
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help improve sensor reliability and robustness for dynamic
and long-term applications.

Autonomous Operation for Personalized Assistance The
main challenge for the controller design for wearable soft
robotics is to find a personalized assistance profile for each
individual. This challenge requires either a more accurate
description of the human dynamics or a more robust
controller to cover the uncertainties from the simplified
model. However, introducing more sophisticated analytical
model can lead to a significant increase of the computational
cost [34, 142]. Efficient data collection is still missing for
model-free methods. The tasks during the training sessions
need to be investigated so that the algorithm can capture
the dynamics of the human [143]. One possible solution
for modeling uncertainties is robust control approaches but
such methods could increase the control gain, which makes
the soft actuator more sensitive to tracking errors and less
compliant [144].

Conclusions

Wearable soft robotics is a fast emerging field that has
seen significant advances in actuator, sensor and controller
designs. The safety, compliance and light weight of
wearable soft robots make them a promising candidate
to assist humans in various tasks and augment their
capabilities. This article reviews the recent trend in the field
of wearable soft robots with a focus in actuator, sensor, and
controller designs.

Fluid and cable-driven actuators and shape-memory
alloy actuators are popular types of actuators applicable to
wearable soft devices. There are remaining challenges in
design of wearable soft robots to support multiple degree-
of-freedom motion, improve actuation speeds in fluidic
actuators, and usage of rigid components.

The compliant characteristic of wearable soft sensors
allows sensing different types of physical deformations that
extend over the capabilities of traditional rigid sensors. A
recent trend in the design of soft multimodal and multi-
functional sensors has allowed improved form factor and a
more robust recognition of multiple deformation modes.

Multi-level controller becomes the most commonly use
method for wearable soft device. The high-level controller
maps the sensor measurements to the desired trajectory
for the actuator while the low-level controller closed
the loop internally to track the trajectory. Both model-
based and model free methods have been explored in
the design of the high-level and low-level controllers. A
combination of model-based and model-free method could
be a viable direction towards making future wearable soft
robots adaptive to different users and various tasks.
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A, Valentine AD, Walsh C, Lewis JA. Capacitive soft

strain sensors via multicore-shell fiber printing. Adv Mater.
2015;27(15):2440–2446.

71. Atalay O, Atalay A, Gafford J, Wang H, Wood R, Walsh
C. A highly stretchable capacitive-based strain sensor based
on metal deposition and laser rastering. Adv Mater Technol.
2017a;2(9):1700081.

72. Harnett CK, Zhao H, Shepherd RF. Stretchable optical
fibers: threads for strain-sensitive textiles. Adv Mater Technol.
2017;2(9):1700087.

73. Souri H, Banerjee H, Jusufi A, Radacsi N, Stokes AA, Park
I, Sitti M, Amjadi M. Wearable and stretchable strain sensors:
materials, sensing mechanisms, and applications. Adv Intell
Syst. 2020;2(8):2000039.

74. Kim DongWook, Kwon J, Jeon B, Park Y-L. Adaptive
calibration of soft sensors using optimal transportation transfer
learning for mass production and long-term usage. Adv Intell
Syst. 2020b;2(6):1900178.

75. Lu S, Chen D, Liu C, Jiang Y, Wang M. A 3-d
finger motion measurement system via soft strain sensors for
hand rehabilitation. Sens Actuator A Phys. 2019;285:700–
711.

76. Russo S, Ranzani T, Liu H, Nefti-Meziani S, Althoefer K,
Menciassi A. Soft and stretchable sensor using biocompatible
electrodes and liquid for medical applications. Soft Robotics.
2015;2(4):146–154.

77. Atalay A, Sanchez V, Atalay O, Vogt DM, Haufe F,
Wood R, Walsh C. Batch fabrication of customizable silicone-
textile composite capacitive strain sensors for human motion
tracking. Adv Mater Technol. 2017;2(9):1700136.

78. Park Y-L, Majidi C, Kramer R, Bérard P, Wood
R. Hyperelastic pressure sensing with a liquid-embedded
elastomer. J Micromech Microeng. 2010;20(12):125029.

79. Vogt DM, Park Y-L, Wood R. Design and characterization
of a soft multi-axis force sensor using embedded microfluidic
channels. IEEE Sens J. 2013;13(10):4056–4064.

80. Atalay O, Atalay A, Gafford J, Walsh C. A highly sensitive
capacitive-based soft pressure sensor based on a conductive
fabric and a microporous dielectric layer. Adv Mater Technol.
2018;3(1):1700237.

81. Araromi OA, Walsh C, Wood R. Hybrid carbon fiber-textile
compliant force sensors for high-load sensing in soft exosuits.
In: Proceedings of IEEE IROS. IEEE; 2017. p. 1798–1803.

82. Araromi OA, Castellanos S, Walsh C, Wood R. Compliant
low profile multi-axis force sensors. In: Proceedings of IEEE
ICRA. IEEE; 2018. p. 187–192.

83. Choi H, Kong K. A soft three-axis force sensor based
on radially symmetric pneumatic chambers. IEEE Sens J.
2019;19(13):5229–5238.

84. Kong K, Tomizuka M. A gait monitoring system based on
air pressure sensors embedded in a shoe. IEEE ASME Trans
Mechatron. 2009;14(3):358–370.

85. Majidi C, Kramer R, Wood R. A non-differential elastomer
curvature sensor for softer-than-skin electronics. Smart Mater
Struct. 2011;20(10):105017.

86. Kramer RK, Majidi C, Sahai R, Wood R. Soft curvature
sensors for joint angle proprioception. In: Proceedings of IEEE
IROS. IEEE; 2011. p. 1919–1926.

87. Mishra V, Kiourti A. Wrap-around wearable coils for
seamless monitoring of joint flexion. IEEE Trans Biomed Eng.
2019;10(10):2753–2760.

88. Sun X, Felton SM, Wood RJ, Kim S. Printing angle sensors
for foldable robots. In: Proceedings of IEEE IROS. IEEE;
2015. p. 1725–1731.



Curr Robot Rep

89. Sabri N, Aljunid SA, Salim MS, Fouad S. Fiber optic sensors:
short review and applications. In: Springer series in materials
science. Springer; 2015. p. 299–311.

90. Van Meerbeek IM, De Sa CM, Shepherd RF. Soft
optoelectronic sensory foams with proprioception. Sci Robot.
2018;3(24):eaau2489.

91. Ponraj G, Ren H. Sensor fusion of leap motion controller
and flex sensors using kalman filter for human finger tracking.
IEEE Sens J. 2018;18(5):2042–2049.

92. Tognetti A, Lorussi F, Carbonaro N, de Rossi D. Wearable
goniometer and accelerometer sensory fusion for knee joint
angle measurement in daily life. Sensors. 2015;15(11):28435–
28455.

93. Leal-Junior AG, Vargas-Valencia L, dos Santos WM,
Schneider FBA, Siqueira AAG, Pontes MJ, Frizera A. POF-
IMU sensor system: A fusion between inertial measurement
units and POF sensors for low-cost and highly reliable
systems. Opt Fiber Technol. 2018b;43:82–89.

94.• Vargas-Valencia L, Schneider FBA, Leal-Junior AG,
Caicedo-Rodriguez P, Sierra-Arevalo WA, Rodriguez-Cheu
LE, Bastos-Filho T, Frizera-Neto A. Sleeve for knee
angle monitoring: an IMU-POF sensor fusion system. IEEE
J Biomed Health Inform. 2021;25(2):465–474. A wearable
soft polymer optical fiber (POF) sensor was designed
to measure knee joint kinematics, and complemented
with a Multiplicative Extended Kalman Filter (MEKF)
fusion algorithm that combines IMU sensor information to
improve accuracy and repeatability.

95. Jin Y, Glover CM, Cho H, Araromi OA, Graule MA, Na L,
Wood R, Walsh C. Soft sensing shirt for shoulder kinematics
estimation. In: Proceedings of IEEE ICRA. IEEE; 2020. p.
4863–4869.

96. Tavassolian M, Cuthbert TJ, Napier C, Peng JY, Menon C.
Textile-based inductive soft strain sensors for fast frequency
movement and their application in wearable devices measuring
multiaxial hip joint angles during running. Adv Intell Syst.
2020;2(4):1900165.

97. Yang J, Yin Y. Novel soft smart shoes for motion intent
learning of lower limbs using LSTM with a convolutional
autoencoder. IEEE Sens J. 2021;1(2):1906–1917.

98. Chen Z, Wu R, Guo S, Liu X, Fu H, Jin X, Liao M.
3D upper body reconstruction with sparse soft sensors. Soft
Robotics. 2020a. page soro.2019.0187.

99. Greff K, Srivastava RK, Koutnik J, Steunebrink BR,
Schmidhuber J. LSTM: a search space odyssey. IEEE Trans
Neural Networks Learn Syst. 2017;28(10):2222–2232.

100. Kim D, Kim M, Kwon J, Park Yong-Lae, Jo S. Semi-
supervised gait generation with two microfluidic soft sensors.
IEEE RA-L. 2019b;4(3):2501–2507.

101. Prado A, Cao X, Ding X, Agrawal SK. Prediction of
gait cycle percentage using instrumented shoes with artificial
neural networks. In: Proceedings of IEEE ICRA; 2020. p.
2834–2840. Institute of Electrical and Electronics Engineers
Inc.
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