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Bose-Einstein Condensate on a Synthetic Topological Hall Cylinder

Chuan-Hsun Li ,1,2 Yangqian Yan ,2,‡ Shih-Wen Feng,2 Sayan Choudhury,2 David B. Blasing,2
Qi Zhou,2,3,* and Yong P. Chen2,1,3,†

1
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA

2
Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA

3
Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA

 (Received 10 August 2021; accepted 7 December 2021; published 31 January 2022)

The interplay between matter particles and gauge fields in physical spaces with nontrivial geome-
tries can lead to novel topological quantum matter. However, detailed microscopic mechanisms are often
obscure, and unconventional spaces are generally challenging to construct in solids. Highly controllable
atomic systems can quantum simulate such physics, even those inaccessible in other platforms. Here, we
realize a Bose-Einstein condensate (BEC) on a synthetic cylindrical surface subject to a net radial syn-
thetic magnetic flux. We observe a symmetry-protected topological band structure emerging on this Hall
cylinder but disappearing in the planar counterpart. BEC’s transport observed as Bloch oscillations in the
band structure is analogous to traveling on a Möbius strip in the momentum space, revealing topological
band crossings protected by a nonsymmorphic symmetry. We demonstrate that breaking this symmetry
induces a topological transition manifested as gap opening at band crossings, and further manipulate the
band structure and BEC’s transport by controlling the axial synthetic magnetic flux. Our work opens
the door for using atomic quantum simulators to explore intriguing topological phenomena intrinsic in
unconventional spaces.
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I. INTRODUCTION

Physical spaces with nontrivial geometries can give rise
to novel phenomena difficult to attain in planar spaces.
Such unconventional spaces are studied in various dis-
ciplines such as general relativity and cosmology [1],
photonics [2–6], and condensed matter physics [7–10]. For
example, gravity stems from curved spacetimes in gen-
eral relativity [1]. Superfluids on curved surfaces carry
vortices with no counterpart in planar spaces [11,12]. Frac-
tional quantum Hall states become degenerate on a torus,
underlying the profound concept of topological order [13].
Highly controllable atomic systems offer opportunities to
quantum simulate [14,15] various phenomena and uncover
new physics inherent in unconventional spaces, including
those challenging to study in conventional platforms. For
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instance, various analogues of cosmic phenomena [16–18]
have been observed in table-top experiments with a
Bose-Einstein condensate (BEC), in which excitations
such as phonons are in an effective curved spacetime
[19,20]. Superfluid properties can be studied in detail with
a BEC prepared in a ring trap [21,22].

Topological quantum matter [23–26] has received great
attention across different areas because of its robust prop-
erties promising for reliable devices and quantum infor-
mation processing [27]. Whereas topological phenomena
in planar spaces have been studied extensively, those
intrinsic in unconventional spaces remain substantially
unexplored in experiments, because it is challenging to
realize spaces that simultaneously incorporate the under-
lying novel geometries with crucial ingredients such as
gauge fields and to manipulate the required Hamiltoni-
ans. For instance, threading a magnetic flux through a
two-dimensional (2D) plane has led to the remarkable dis-
covery of the quantum Hall effects and various topological
quantum matter [23–26] for electrons. However, creating a
net radial magnetic flux through the cylindrical surface of a
nanotube is extremely difficult. Such a Hall cylinder is an
important paradigm for many theoretical studies of topo-
logical physics [28–33], but its experimental exploration
is largely lacking. The microscopic mechanisms of how
changing the geometry of the underlying space may give
rise to distinct topological matter require further research.

2691-3399/22/3(1)/010316(22) 010316-1 Published by the American Physical Society

https://orcid.org/0000-0003-4613-5181
https://orcid.org/0000-0002-3237-5945
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.3.010316&domain=pdf&date_stamp=2022-01-31
http://dx.doi.org/10.1103/PRXQuantum.3.010316
https://creativecommons.org/licenses/by/4.0/


CHUAN-HSUN LI et al. PRX QUANTUM 3, 010316 (2022)

Atomic quantum simulators, such as atoms in optical
lattices [34–37] subject to additional ingredients like syn-
thetic gauge fields [38–44], have been employed to explore
topological quantum matter in planar spaces [45–48].
Material properties such as the topology of band struc-
ture [49–59] can be probed with the high precision and
tunability available in atomic systems. On the other hand,
there have been proposals for creating unconventional real
spaces, such as a torus’s surface [60] or arbitrary Riemann
surfaces [61], but relevant experiments remain elusive due
to potential technical challenges in real space.

Synthetic spaces incorporating synthetic dimensions
can bypass many constraints in the real space, hold-
ing promise for creating novel geometries with arbi-
trary dimensions. Synthetic dimensions can be constructed
using atomic internal states [62,63], momentum states
[64,65], time [66], or other degrees of freedom. Synthetic
spaces have enabled experimental exploration of high-
dimensional quantum matter, such as 4D quantum Hall
systems [66] and a Yang monopole in a 5D parameter
space [67]. Besides, manipulating boundary conditions is
possible. This has allowed observations of edge states in
synthetic 2D planes subject to magnetic fluxes [68–72]. In
addition, there have been rich ideas exploiting the versa-
tile nature of synthetic spaces for creating unconventional
spaces [29–33,63,73], such as the surface of a cylinder,
torus, or Möbius strip, with or without gauge fields. How-
ever, there remains very limited experimental exploration
[74,75] of topological quantum matter and transport in
unconventional spaces.

Here, we realize a BEC on a synthetic cylindrical sur-
face, composed of a real spatial dimension and a curved
synthetic dimension formed by cyclically coupled atomic
spin states, subject to a net radial synthetic magnetic
flux. We observe intriguing topological phenomena, such
as emergent topological band crossings and topological
Bloch oscillations, stemming from the interplay between
gauge fields and nontrivial geometries of spaces. We also
observe a topological transition manifested as gap open-
ing at band crossings and further manipulate the band
structure and BEC’s transport via controlling the axial syn-
thetic magnetic flux. In striking contrast, these phenomena
emerging on the Hall cylinder vanish when we unzip the
cylinder into a planar Hall strip, illustrating the crucial and
intriguing role of topology and geometries of spaces in
novel topological quantum phenomena.

II. EXPERIMENTAL SETUP

In our experiments, a 87Rb BEC is produced in an optical
dipole trap [76]. As shown in Figs. 1(a) and 1(b), four inter-
nal spin states, |F , mF〉 = |2, 2〉, |2, 1〉, |1, 0〉, |1, 1〉, respec-
tively relabeled as |1〉, |2〉, |3〉, |4〉, form discrete sites in
the synthetic dimension (the w direction), where F (mF )
is the hyperfine spin (the magnetic quantum number). The
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FIG. 1. Setup for realizing a synthetic Hall cylinder. (a) Coun-
terpropagating Raman lasers with orthogonal linear polariza-
tions (parallel to ẑ and x̂) and microwaves (propagating in the
x-y plane) are applied to a BEC with typical atom number
(1–2)×104. Gravity “g” is toward −ŷ. (b) Internal spin states |1〉,
|2〉, |3〉, and |4〉 as discrete sites in the synthetic dimension ŵ are
cyclically coupled by Raman couplings �R1,R2 and microwave
couplings �1,2. Linear Zeeman splitting �ωZ = ��ωR is gener-
ated by a bias magnetic field, where �ωR is the Raman lasers’
angular frequency difference. The quadratic Zeeman shift is ε0 ≈
2.4 Er. (c) Connecting two edges of a Hall strip (left) gives
rise to a Hall cylinder (right), a cylindrical surface threaded
by synthetic magnetic fields (yellow arrows in shaded regions).
The magnetic flux through a unit plaquette (highlighted area)
formed by four maxima of the emergent BEC density modula-
tions (wavy patterns with a periodicity of d/2; note that such
density modulations do not occur in the Hall strip) corresponds
to an Aharonov-Bohm phase of π . The phase (with + and −
respectively denoting 0 and π at positions of maximum density)
of each spin component has a periodicity of either d or d/2.

synthetic dimension w along with the real spatial dimen-
sion y together span a synthetic cylindrical space. Raman
lasers along ±ŷ couple |1〉 and |2〉 as well as |3〉 and
|4〉 with respective Raman couplings �R2 and �R1. The
Raman lasers’ wavelength (λ ≈ 790 nm) defines the pho-
ton recoil momentum �kr = 2π�/λ and recoil energy Er =
�2kr

2/(2m) respectively used for units of momentum and
energy, where � is the reduced Planck constant and m
is the mass of 87Rb. Two microwave fields, with cou-
pling strengths �1 and �2, respectively couple |2〉 and
|3〉, and |1〉 and |4〉. This setup delivers a cyclic coupling
(a periodic boundary condition) in the w direction. Differ-
ently from other cyclic couplings for creating 2D spin-orbit
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couplings [77,78] and Yang monopoles [67], our scheme
shown in Figs. 1(b) and 1(c) connects two edges of a
2D planar Hall strip (with a synthetic magnetic field dis-
cussed below) and thus synthesizes the y and the curved w
dimensions into a Hall cylinder.

For either the Hall strip or the Hall cylinder, the syn-
thetic magnetic flux is identical and engineered by making
atoms obtain a phase after completing a closed trajectory
on the y-w surface. An atom at location y hopping along
±ŵ via a Raman transition obtains a net momentum of �K
along ±ŷ, acquiring a Raman laser-imprinted y-dependent
phase, ±Ky (Appendix A), where K = 2kr. For the shaded
regions in Fig. 1(c), the phase acquired by an atom after
traveling around an area of�y times one unit length along
ŵ is ±K�y. Such a phase is analogous to the Aharonov-
Bohm phase acquired by charged particles in a magnetic
field, and thus corresponds to an artificial magnetic field
and flux (yellow arrows) [62,68,69,79,80].

Since the transverse x and z directions are decou-
pled from the cylinder, the single-particle Hamiltonian for
atoms on the Hall cylinder [Fig. 1(c)] is written in the basis
of {|1〉, |2〉, |3〉, |4〉} as (Appendix A)

H = p̂2
y

2m
I

+

⎛
⎜⎜⎜⎝

0 �R2
2 e−iKy 0 �2

2
�R2

2 eiKy ε0
�1
2 0

0 �1
2 ε0

�R1
2 e−iKy

�2
2 0 �R1

2 eiKy 0

⎞
⎟⎟⎟⎠ ,

(1)

where p̂y = −i�(∂/∂y), I is the identity matrix, and ε0
is the quadratic Zeeman shift. Here, the Raman-induced
y-dependent phase factor, e±iKy , cannot be gauged away
due to our implemented periodic boundary condition,
unlike open boundary conditions such as when �2 = 0
(Appendix A). This makes H possess a translational sym-
metry under a translation of d = 2π/K . Furthermore, H
has a nonsymmorphic symmetry [44]: a translation of d/2
along ŷ followed by a unitary transformation along ŵ,
|1〉 → |1〉, |2〉 → −|2〉, |3〉 → −|3〉, |4〉 → |4〉.

III. EMERGENCE OF BEC CRYSTALLINE
ORDER AND TOPOLOGICAL BAND STRUCTURE

Even in the absence of an external lattice, the cylin-
drical surface (with the periodic boundary condition in
the ŵ direction) along with the radial synthetic magnetic
flux cause the BEC to develop an emergent periodic or
crystalline order in the y direction with an underlying
nonsymmorphic symmetry (Appendix D). As sketched in
Fig. 1(c) (see also Fig. 5 in Appendix F), the BEC den-
sity (squared amplitude of the wavefunction) along ŷ has
a period of d/2 (half the period of H ) while the phase of

the BEC wavefunction of each spin component modulates
with a period of either d or d/2. A plaquette [highlighted
in Fig. 1(c)] formed by four maxima of the density modu-
lations thus has a magnetic flux 	/	0 = (Kd/2)/(2π) =
1/2 corresponding to a phase of π , where 	0 = 2π�/e is
the magnetic flux quantum with q ≡ −e (e is the elemen-
tary charge) defined as the effective charge of a particle.
Interestingly, here the emergent crystalline order corre-
sponds to the generation of a subwavelength lattice having
a periodicity of d/2 = λ/4 (Anderson et al. [81] reported
a more detailed study on this context).

To gain further insights, Fig. 2(a) illustrates how states
in momentum space are coupled by the light fields. These
states are simply basis states for a generic lattice. How-
ever, they are coupled in a special way such that novel
topological band structures can occur: there are two inde-
pendent branches (solid and dashed circles, each branch
connected by lines representing couplings), with Hamil-
tonians Hi=1,2(qy), offset from each other by K , i.e.,
H1(qy) = H2(qy ± K), where �qy is the quasimomentum.
Besides, each branch is invariant under a 2K translation,
i.e., Hi(qy) = Hi(qy + n × 2K), where n is an integer, thus
corresponding to the d/2 periodicity in the BEC den-
sity modulations. These two branches correspond to two
groups of Bloch bands (each has a periodicity of 2K) that
are also offset from each other by K and thus intersect
at points occurring periodically by K (Appendix D). As
shown in Fig. 2(b), the band structure possesses topologi-
cal band crossing points that result from and are protected
by the nonsymmorphic symmetry. Such band crossings are
topologically robust against perturbations respecting the
symmetry, such as variations of parameters in Eq. (1), and
have played important roles in topological quantum matter
such as topological semimetals [44,82,83].

IV. TOPOLOGICAL BAND CROSSINGS AND
TOPOLOGICAL BLOCH OSCILLATIONS

To probe the band structure, we perform spin- and
momentum-resolved quantum transport measurements. A
BEC is initially prepared (Appendix J) around qy = 0 in
either band 1 or band 2 [Fig. 2(b)]. Then, the dipole trap
is abruptly turned off, allowing atoms to fall under gravity
(toward −ŷ) for various holding times, thold, during which
the Raman and microwave couplings remain on. In other
words, the gravity induces transport of the BEC toward
negative qy in Fig. 2(b) for various thold. Subsequently, we
immediately turn off all coupling fields to release the atoms
for a 15-ms time of flight (TOF), including a 9-ms spin-
resolved Stern-Gerlach process, and then perform absorp-
tion imaging. These TOF images unveil the mechanical
momentum (along ŷ) and spin compositions of the atoms.
We obtain atoms’ average momentum by summing over all
population-weighted mechanical momentum components
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FIG. 2. Topological band crossings protected by the nonsymmorphic symmetry and observed topological Bloch oscillations. (a) In
momentum space, basis states for a lattice are coupled by lasers and microwaves to form two independent branches (line-connected
solid and dashed circles) offset from each other by �K , manifesting the underlying nonsymmorphic symmetry. (b) Band structure (with
a periodicity of �K in quasimomentum space) showing topological band crossings is calculated (see Appendix G) using �R1(R2) =
−2.3(3.2), �1(2) = 2.3(3.3), and ε0 = 2.4, all in units of Er. The first Brillouin zone is between the dashed lines. A BEC initially
prepared around qy = 0 (dashed circles) in either band 1 or band 2 undergoes gravity-induced transport (indicated by arrows) and
Bloch oscillations for various thold. (c) Select TOF images showing atoms’ spin and mechanical momentum compositions at various
thold and the corresponding quasimomentum. Labels “band 1” and “band 2” imply different initial preparations. OD is the optical
density. (d) Average mechanical momentum of atoms versus thold and quasimomentum. (e) (Fractional) spin population versus thold
and quasimomentum for the transport in band 1. In (d),(e), circles are experimental data (error bars are standard errors of typically
five repetitive measurements). Dashed lines (labeled as “eigenstate”) are eigenstate calculations and solid lines (labeled as “GP”) are
Gross-Pitaevskii (GP) simulations; see the text. These conventions also apply to Figs. 3(f), 3(g), and 4(d).

(Appendix L). The (fractional) population of a spin compo-
nent is obtained by summing over (fractional) populations
of all mechanical momentum components corresponding
to that spin state.

Figure 2(c) shows select TOF images at various thold and
the corresponding quasimomentum (the relation between
thold and quasimomentum is determined by experimental
calibration; see Fig. 7 in Appendix H). The extracted aver-
age momentum and spin population are shown as circles in
Figs. 2(d) and 2(e), respectively. In Fig. 2(c), TOF images
show the reoccurrence of similar patterns (indicated by
colored rectangles) with a period of 2�K in quasimo-
mentum (2.6 ms in time), consistent with the periodicity
revealed in Figs. 2(d) and 2(e). These are Bloch oscilla-
tions [84] that possess twice the periodicity of the band
structure (�K), analogous to traveling on a “momentum-
space Möbius strip”: atoms have to travel twice the period
of the band structure to reach the same quantum state,
because at a band touching point they undergo a dia-
batic transition from the ground to the first excited bands.
Such period-multiplied topological Bloch oscillations can

unveil the band topology, which is characterized by a
symmetry-protected topological invariant, the period mul-
tiplier μ [85,86]. Here, the observed 2�K periodicity
(μ = 2) is protected by the nonsymmorphic symmetry, and
is consistent with the d/2 periodicity of the density mod-
ulations [Fig. 1(c)]. Besides, similar TOF images for band
1 and band 2 are offset from each other by �K or 1.3
ms, consistent with the out-of-phase Bloch oscillations in
Fig. 2(d). These observed transport properties uncover the
band crossings.

Unlike previous works using external optical lattices
[62,68,69,74], here, the emergent BEC crystalline order
and topological band structure result from “curving” the
Hall strip into the Hall cylinder and vanish on the Hall
strip (which we realize by setting one of the microwave
couplings to zero; see Fig. 8 in Appendix I). Note that
both the cylindrical surface and the net radial magnetic
flux are essential for the emergent phenomena here, which
disappear when either ingredient is absent (Appendix C).

We have performed calculations using similar experi-
mental parameters to gain further insights into experimental
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observations. The calculation results are shown in
Figs. 2(d) and 2(e), as explained below. First, we have
calculated the average momentum and spin populations
of the eigenstates of band 1 and band 2. Results of such
eigenstate calculations (dashed lines) correspond to the
transport of a noninteracting BEC. We have also solved the
time-dependent 3D Gross-Pitaevskii (GP) equation for an
interacting BEC (Appendix M), showing results as solid
lines. The experimental results exhibit notable damping,
consistent with GP simulations, but deviating from the
eigenstate results that exhibit no damping. These results
show that interparticle interactions, which can broaden the
momentum distribution of atoms, are important and can
cause damping of the transport and Bloch oscillations (see
Fig. 9 in Appendix M).

V. TOPOLOGICAL TRANSITION AND EFFECTS
ON TRANSPORT

We can further break the nonsymmorphic symmetry that
protects the band crossings by introducing a symmetry-
breaking perturbation, a radio-frequency (rf) wave cou-
pling |1〉 and |2〉 as well as |3〉 and |4〉 with respective

coupling strengths �rf2 and �rf1 [Fig. 3(a)]. This per-
turbation induces a topological transition manifested as
gap opening at band crossings and makes the band struc-
ture now depend on a synthetic axial magnetic flux 	axial
(no planar analogue) through the cylinder, as explained
below. In the momentum space, such a rf wave changes
how the basis states for a lattice are coupled. rf cou-
plings merge the two independent branches in Fig. 2(a)
into one that has a �K periodicity [Fig. 3(b)], break-
ing the nonsymmorphic symmetry (Appendix E). Besides,
any two basis states are now connected by multiple path-
ways, distinct from Fig. 2(a) in which there is either
one or zero pathways for any two states in the same
or different branches, respectively. These multiple path-
ways cause an interference effect controlled by an axial
phase θaxial, where θaxial = 2θrf + θ1 − θ2 (Appendix B),
θrf is the phase associated with �rf1,rf2 (generated from
one rf wave, thus sharing the same rf phase), and θ1,2
is the phase associated with �1,2. This axial phase θaxial
gives rise to 	axial [	axial/	0 = θaxial/2π , Fig. 3(c)],
which can affect the band structure as well as trans-
port properties. We can calibrate and precisely control
	axial by performing quench experiments (see Fig. 10 in
Appendix N).

(a) (b) (f)

(g)(e)(d)(c)

FIG. 3. Topological transition induced by breaking the nonsymmorphic symmetry and effects on transport. (a) A rf wave matching
the Raman lasers’ frequency difference is applied to couple |1〉 and |2〉, and |3〉 and |4〉, with respective coupling strengths�rf2 and�rf1.
(b) rf couplings (wiggling lines) merge the two independent branches in Fig. 2(a) into one, breaking the nonsymmorphic symmetry.
(c) A cylinder with broken nonsymmorphic symmetry. Both the BEC density and phase modulations have a periodicity of d (see
also Fig. 6 in Appendix F). The synthetic axial magnetic field, represented by the thick black arrow, corresponds to a magnetic flux
	axial (see the text). (d) Band structure showing the band gap opening is calculated using similar parameters to those for Fig. 2(b)
with additional rf couplings �rf1(rf2) = 1.4(−2.0) Er with	axial/	0 = 0.6. (e) Select TOF images at various thold and quasimomentum
for transport of a BEC starting around qy = 0 [dashed circle in (d)] in the ground band. Panels (f) and (g) respectively show atoms’
average mechanical momentum and spin population versus thold and quasimomentum.
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To demonstrate band gap opening between the two low-
est bands, a specific band structure with a relatively large
gap induced by a large rf coupling is chosen [Fig. 3(d)] and
probed by the same type of quantum transport measure-
ment, in which a BEC is initially prepared at the bottom of
the ground band. Figure 3(e) presents select TOF images
at various thold and the corresponding quasimomentum.
The extracted average momentum and spin population are
shown as data points in Figs. 3(f) and 3(g), respectively.
We observe that both momentum and spin oscillations
exhibit half the period of those observed in Fig. 2. This
directly indicates that most atoms stay in the ground band
(i.e., the transport is nearly adiabatic) because of the large
gap opened. That is, upon breaking the symmetry, the topo-
logical invariant μ changes from 2 to 1, signifying the
topological transition manifested by the gap opening. The
observed Bloch oscillations in Figs. 3(f) and 3(g) pos-
sess damping, again consistent with GP simulations (solid
lines) that include effects of interparticle interactions, but
deviating from the noninteracting eigenstate calculations
(dashed lines).

VI. CONTROLLING TRANSPORT VIA TUNING
AXIAL SYNTHETIC MAGNETIC FLUX

Lastly, we demonstrate that controlling 	axial allows
manipulating both the band structure and transport prop-
erties. Whereas this axial flux can be gauged away when
the nonsymmorphic symmetry protects the band crossings,
it becomes important when rf couplings lift the symmetry
and open the band gap, due to the previously discussed
interference between pathways in the momentum space
(see details in Appendix B). As shown in Fig. 4(a), we
perform the same type of quantum transport with a BEC
initially prepared around qy = 0 in band structures at mod-
erate rf couplings (giving an intermediate gap size) with
various 	axial, focusing on measuring spin populations at
qy = −1K (at thold = 1.3 ms, indicated by dashed lines).
Such spin populations are sensitive to the	axial-dependent
gap size [Fig. 4(b)] between the two lowest bands, because
different gap sizes can cause notable differences in atoms’
Landau-Zener tunneling probability [87] to the excited
band. Figure 4(c) presents select TOF images for the mea-
surements at qy = −1K with various 	axial. The extracted
spin population at various 	axial, shown in Fig. 4(d),
is consistent with both the GP simulations (solid lines)
and the prediction (dashed lines) by the Landau-Zener
formula (considering the gap size and eigenspin compo-
sitions of the two lowest bands at various 	axial). The
observed strong dependence of a transport property (here
spin population following transport) on the synthetic axial
magnetic flux, reminiscent of a “magnetotransport” behav-
ior [88], reflects the underlying 	axial-dependent band
structures.
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FIG. 4. Effects of the synthetic axial magnetic flux 	axial on
band structures and transport. (a) Band structures calculated
using similar parameters to those for Fig. 2(b) with additional
rf couplings �rf1(rf2) = 0.8(−1.1) Er at representative values of
	axial. We focus on transport measurement at qy = −1K (at
thold = 1.3 ms, indicated by dashed lines) for a BEC initially
prepared around qy = 0 (dashed circles). (b) Calculated band
gap size between the two lowest bands at various 	axial. (c)
Select TOF images measured at qy = −1K with representative
values of 	axial. (d) Spin population versus 	axial measured at
qy = −1K , compared with GP simulations (solid line) and the
prediction (dashed line) by the Landau-Zener formula; see the
text.

VII. DISCUSSION

Our work differs from another Hall cylinder [74]
recently realized in a number of fundamental ways. (1)
Our setup does not use an external real-space optical lattice
as in Ref. [74] (we also noted another recent experiment
[75] exploring incommensurability-induced effects, where
an external optical lattice is important). Rather, BEC crys-
talline order and topological band structure emerge due
to curving the Hall strip into a Hall cylinder and thus
are intrinsic properties of a Hall cylinder, not relying
on an extra real-space lattice potential. (2) Topological
band structures are distinct. We observe topological band
crossings protected by a nonsymmorphic symmetry, while
Ref. [74] revealed a gapped topological band protected by
a generalized inversion symmetry. Based on (1) and (2),
our work and Ref. [74] respectively reveal the intrinsic
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and extrinsic topological properties of a Hall cylinder.
Besides, once the emergent intrinsic crystalline order is
incommensurate with the external lattice, intriguing local-
ization phenomena are predicted to arise [89], where the
axial flux would strongly influence the physical observ-
ables when near the localization-delocalization transitions.
In fact, all these phenomena reflect the rich physics aris-
ing on a Hall cylinder yet absent in the planar counterpart
(the Hall strip). This illustrates the crucial and intriguing
role of geometries of spaces in novel topological phenom-
ena. (3) We perform quantum transport measurement to
probe the band structures as well as the topological tran-
sition and demonstrate topological Bloch oscillations. We
also conduct quench experiments to calibrate the axial syn-
thetic magnetic flux. In Ref. [74], quench dynamics is used
to probe a band gap closing associated with a topological
transition from trivial to topological gapped bands, where
the transition is induced by varying one of the couplings
between spin states. (4) We demonstrate the capability of
tuning the axial synthetic magnetic flux to control the band
structure as well as BEC’s transport. References [33,75,89]
point out that such a flux should play an important role, but
it is not considered in Ref. [74].

VIII. CONCLUSIONS AND OUTLOOK

In summary, engineering the geometry of space subject
to a synthetic magnetic field has allowed us to observe
an emergent topological band structure and a topologi-
cal transition as probed by quantum transport measure-
ments. Our work may offer valuable insights to exploring
novel quantum matter intrinsic to unconventional spaces,
a multidisciplinary direction in quantum science and engi-
neering that is of high interest to broad communities of
atomic and molecular physics, condensed matter physics,
and photonics quantum simulations [48]. Future direc-
tions may include investigating topological transitions
induced by the tunable axial magnetic flux [33], study-
ing superfluidity on curved surfaces [11,12], implementing
a Laughlin’s charge pump [28] [e.g., by making Eq. (1)
time dependent], exploring the fractal energy spectrum
of Hofstadter’s butterfly as suggested in Ref. [62], and
using Laguerre-Gaussian beams for the Raman lasers to
create a Hall torus [32]. Even more possibilities arise
if interparticle interactions can be tuned by means such
as optical lattices [34] or Feshbach resonances [90]. For
example, it is interesting to study quantum many-body
phases such as topologically ordered states, for example
fractional quantum Hall-like states, on a Hall cylinder or
torus [29–31,72,73] or in curved spaces such as hyperbolic
surfaces [61].

Future experiments can also study how interactions
can affect the quantum transport, such as Landau-Zener
transitions [22,91,92]. Our GP simulations (Fig. 11 in
Appendix O) performed for a BEC on a synthetic Hall

cylinder (but in a 1D trap different from our current exper-
imental setup to enhance the interaction effects) have
revealed that the Landau-Zener tunneling from ground to
excited bands increases and approaches 1 with increasing
interactions. This suggests that strong interactions could
make the quantum transport of the BEC more diabatic,
effectively experiencing a different topology (Möbius strip)
in the momentum space, compared to a noninteracting
BEC.

Our technique can be extended to engineer other inter-
esting geometries [63] subject to gauge fields, such as
a Hall torus by using Laguerre-Gaussian beams for the
Raman lasers [32] or two Hall tori (or cylinders) glued
together via additional couplings [32]. Such unconven-
tional spaces may be relatively challenging to fabricate
using external optical lattices or in other conventional
systems. Therefore, our technique may shed new light
on engineering synthetic spaces of nontrivial geometries
subject to gauge fields.
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APPENDIX A: SINGLE-PARTICLE
HAMILTONIANS

To derive the Hamiltonians, here we relabel the spin
states |2, 2〉 = |1̃〉, |2, 1〉 = |2̃〉, |1, 0〉 = |3̃〉, and |1, 1〉 =
|4̃〉 (where the tilde refers to a nonrotating frame, as
explained below), with respective energies E1, E2, E3,
and E4. Raman lasers along ±ŷ with an angular fre-
quency difference �ωR couple |1̃〉 and |2̃〉, and |3̃〉 and
|4̃〉, with respective coupling strengths �R2 and �R1. Two
microwaves with angular frequencies ω1 and ω2 couple
|2̃〉 and |3̃〉, and |1̃〉 and |4̃〉, with respective coupling
strengths �1 and �2. Note that |�R1| �= |�R2| (�R1 < 0,
�R2 > 0) and �1 �= �2 (�1,2 > 0) because of the differ-
ent Clebsch-Gordan coefficients associated with different
atomic transitions.

We define E3 − E4 = �ωZ + ε0 and E1 − E2 = �ωZ −
ε0, where �ωZ is the effective linear Zeeman splitting
and ε0 is the effective quadratic Zeeman shift. In our
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experiments, ε0 ∼ 2.4 Er, given by the applied bias mag-
netic field (about 5 gauss). We define the (two-photon)
Raman laser detuning δR = [2��ωR − (E3 − E4)− (E1
− E2)]/2 = �(�ωR − ωZ) and the (one-photon) microwave
detunings δ1 = �ω1 − (E2 − E3) and δ2 = �ω2−
(E1 − E4).

In the following, we derive the single-particle Hamilto-
nians for various coupling schemes: (1) the Hamiltonian H
and the corresponding momentum-space Hamiltonian Hqy
for the Hall cylinder with a nonsymmorphic symmetry;
(2) the Hamiltonian H ′ and the corresponding momentum-
space Hamiltonian H ′

qy
for the Hall cylinder with a bro-

ken nonsymmorphic symmetry; (3) the momentum-space
Hamiltonian Hstrip for the Hall strip.

1. Hall cylinder with the nonsymmorphic symmetry

The free atomic Hamiltonian taking into account the
motion along ŷ is written as

H̃free = p̂2
y

2m
I + E1|1̃〉〈1̃| + E2|2̃〉〈2̃| + E3|3̃〉〈3̃|

+ E4|4̃〉〈4̃|, (A1)

where I is the identity matrix and p̂y = −i�(∂/∂y) is the
momentum operator along ŷ. In the rotating-wave approx-
imation, the Hamiltonians describing the Raman (H̃Raman)
and microwave (H̃1,2) couplings are respectively written as

H̃Raman = ei(−Ky−�ωRt)
(
�R2

2
|1̃〉〈2̃| + �R1

2
|3̃〉〈4̃|

)

+ H.c., (A2)

H̃1 = �1

2
e−iω1t(|2̃〉〈3̃|)+ H.c., (A3)

H̃2 = �2

2
e−iω2t(|1̃〉〈4̃|)+ H.c., (A4)

where K = 2kr, H.c. stands for Hermitian conjugate, and
the initial phases of these coupling fields are ignored
temporarily but will be considered later.

We choose a rotating frame defined by the following
unitary transformations to eliminate the time-dependent
terms in Eqs. (A2)–(A4):

|1̃〉 = ei�ωRt|1〉eiω1t/2, |2̃〉 = eiω1t/2|2〉,
|3̃〉 = e−iω1t/2|3〉, |4̃〉 = e−i�ωRt|4〉e−iω1t/2.

(A5)
In such a rotating frame (without tildes),

Hfree = p̂2
y

2m
I +

(
E1 − ��ωR − �ω1

2

)
|1〉〈1|

+
(

E2 − �ω1

2

)
|2〉〈2| +

(
E3 + �ω1

2

)
|3〉〈3|

+
(

E4 + ��ωR + �ω1

2

)
|4〉〈4|, (A6)

HRaman = e−iKy
(
�R2

2
|1〉〈2| + �R1

2
|3〉〈4|

)
+ H.c., (A7)

H1 = �1

2
(|2〉〈3|)+ H.c., (A8)

H2 = �2

2
e−iω2tei2�ωRteiω1t(|1〉〈4|)+ H.c., (A9)

where HRaman and H1 become time independent. By further
requiring

ω2 = 2�ωR + ω1, (A10)

Eq. (A9) becomes H2 = (�2/2)(|1〉〈4|)+ H.c., which is
also time independent. Equation (A10) is called the reso-
nance condition for the cyclic coupling and is realized in
this work [as depicted in Fig. 1(b)].

Therefore, in the rotating frame defined by Eq. (A5)
and when the resonance condition in Eq. (A10) is fulfilled,
H = Hfree + HRaman + H1 + H2 is time independent. In the
basis of {|1〉, |2〉, |3〉, |4〉},

H = p̂2
y

2m
I +

⎛
⎜⎜⎜⎝

E1 − ��ωR − �ω1
2

�R2
2 e−iKy 0 �2

2
�R2

2 eiKy E2 − �ω1
2

�1
2 0

0 �1
2 E3 + �ω1

2
�R1

2 e−iKy

�2
2 0 �R1

2 eiKy E4 + ��ωR + �ω1
2

⎞
⎟⎟⎟⎠ . (A11)

The above equation shows that a Raman transition cor-
responds to a y-dependent phase factor, e±iKy , while a
microwave transition does not lead to a position-dependent
phase. Redefining all energies such that E3 + �ω1/2

= ε0 + δ1
2 and using the definitions of ε0, δR, δ1, δ2, and

the resonance condition in Eq. (A10), we obtain

δ1 + 2δR = δ2 (A12)
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and rewrite Eq. (A11) as

H = p̂2
y

2m
I +

⎛
⎜⎜⎜⎝

−δR − δ1
2

�R2
2 e−iKy 0 �2

2
�R2

2 eiKy ε0 − δ1
2

�1
2 0

0 �1
2 ε0 + δ1

2
�R1

2 e−iKy

�2
2 0 �R1

2 eiKy δR + δ1
2

⎞
⎟⎟⎟⎠ .

(A13)

This equation includes Raman and microwave detunings,
which can be nonzero during the initial state preparation
process as discussed later. After the initial state prepara-
tion, δR = δ1 = δ2 = 0 is achieved and Eq. (A13) becomes
Eq. (1). Thus, all the detunings are zero in the main text.

To calculate band structures, we derive the momentum-
space Hamiltonian Hqy by considering the coupling
scheme in Fig. 2(a). The spin and mechanical momentum
states comprise a plane-wave basis, denoted by

{|�(qy + nK); m〉} = {ei(qy+nK)y |m〉}, (A14)

where �(qy + nK) is the mechanical momentum, m =
1, 2, 3, 4 label the spins, �qy is the quasimomentum, and
n is an integer. Then, Hqy reads

Hqy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
... . . .

. . . A−2 B 0 0 0 . . .

. . . B† A−1 B 0 0 . . .

. . . 0 B† A0 B 0 . . .

. . . 0 0 B† A1 B . . .

. . . 0 0 0 B† A2 . . .

. . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A15)

where the An matrices are on the diagonal of Hqy .
Each An is a 4-by-4 matrix written in the basis of
{|�(qy + nK); m〉}, where the four spin states have iden-
tical mechanical momentum (i.e., same n). Thus, An only
includes microwave couplings. When all the detunings are
zero,

An =

⎛
⎜⎜⎜⎝

�
2

2m (qy + nK)2 0 0 �2
2

0 �
2

2m (qy + nK)2 + ε0
�1
2 0

0 �1
2

�
2

2m (qy + nK)2 + ε0 0
�2
2 0 0 �

2

2m (qy + nK)2

⎞
⎟⎟⎟⎠ . (A16)

Here B is a 4-by-4 matrix responsible for the Raman coupling between adjacent An matrices:

B =

⎛
⎜⎝

0 0 0 0
�R2/2 0 0 0

0 0 0 0
0 0 �R1/2 0

⎞
⎟⎠ . (A17)

2. Hall cylinder with a broken nonsymmorphic symmetry

A rf wave whose angular frequency equals �ωR couples |1〉 and |2〉, and |3〉 and |4〉, with respective coupling
strengths �rf2 and �rf1. Note that |�rf1| �= |�rf2| (�rf1 > 0 and �rf2 < 0) due to the different Clebsch-Gordan coeffi-
cients associated with different transitions. The corresponding Hamiltonian H ′ is obtained by adding the rf couplings to
H as

H ′ = p̂2
y

2m
I +

⎛
⎜⎜⎜⎝

−δR − δ1
2

�rf2
2 + �R2

2 e−iKy 0 �2
2

�rf2
2 + �R2

2 eiKy ε0 − δ1
2

�1
2 0

0 �1
2 ε0 + δ1

2
�rf1

2 + �R1
2 e−iKy

�2
2 0 �rf1

2 + �R1
2 eiKy δR + δ1

2

⎞
⎟⎟⎟⎠ . (A18)

Let δR = δ1 = δ2 = 0 for simplicity. Since the rf wave only couples spin states that have the same mechanical momentum,
the corresponding momentum-space Hamiltonian H ′

qy
has the same form as Eq. (A15) but with a modified An denoted

by A′
n:

A′
n =

⎛
⎜⎜⎜⎜⎝

�
2

2m (q + nK)2 �rf2
2 0 �2

2
�rf2

2
�

2

2m (q + nK)2 + ε0
�1
2 0

0 �1
2

�
2

2m (q + nK)2 + ε0
�rf1

2
�2
2 0 �rf1

2
�

2

2m (q + nK)2

⎞
⎟⎟⎟⎟⎠

. (A19)
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3. Hall strip

In this case, only �R1,R2 and �1 are present. To derive the corresponding Hamiltonian Hstrip, we apply a unitary
transformation

Û0 =

⎛
⎜⎝

eiKy 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iKy

⎞
⎟⎠ (A20)

to H in Eq. (A13), Û0HÛ0
−1

, with �2 = 0 and δR = δ1 = δ2 = 0. Noting that p̂2
y /(2m)I = �2q2

y/(2m)I for the plane-
wave basis, this transformation gauges away the y-dependent phase factor in H and leads to Hstrip. In the basis of
{|1〉, |2〉, |3〉, |4〉},

Hstrip =

⎛
⎜⎜⎜⎝

�
2

2m (qy + K)2 �R2
2 0 0

�R2
2

�
2

2m (qy)
2 + ε0

�1
2 0

0 �1
2

�
2

2m (qy)
2 + ε0

�R1
2

0 0 �R1
2

�
2

2m (qy − K)2

⎞
⎟⎟⎟⎠ . (A21)

It is important to realize that if �2 �= 0, the transformation cannot gauge away the y-dependent phase factor because
Û0HÛ0

−1
would still have the y-dependent terms �2e−2iKy and �2e2iKy .

APPENDIX B: PHASES IN HAMILTONIANS AND SYNTHETIC AXIAL MAGNETIC FLUX

Now, we take into account phases associated with the Raman, microwave, and rf couplings, denoting them respectively
as θR, θ1,2, and θrf. Without loss of generality, we consider Hamiltonians without detunings, δR = δ1 = δ2 = 0.

1. Hall cylinder with the nonsymmorphic symmetry

We refer the reader to Fig. 1(b). In this case, we show that θR and θ1,2 can be gauged away and thus have no effect on
the band structure. The Hamiltonian H in Eq. (A13) becomes

H = p̂2
y

2m
I +

⎛
⎜⎜⎝

0 �R2
2 e−iKyeiθR 0 �2

2 e−iθ2
�R2

2 eiKye−iθR ε0
�1
2 e−iθ1 0

0 �1
2 eiθ1 ε0

�R1
2 e−iKyeiθR

�2
2 eiθ2 0 �R1

2 eiKye−iθR 0

⎞
⎟⎟⎠ . (B1)

We apply a unitary transformation to H :

Û−1
1 HÛ1 = p̂2

y

2m
I +

⎛
⎜⎜⎝

0 �R2
2 e−iKyei�θt 0 �2

2
�R2

2 eiKye−i�θt ε0
�1
2 0

0 �1
2 ε0

�R1
2 e−iKyei�θt

�2
2 0 �R1

2 eiKye−i�θt 0

⎞
⎟⎟⎠ . (B2)

Here

Û1 =

⎛
⎜⎜⎝

ei(θ1/2−θ2/2) 0 0 0
0 1 0 0
0 0 eiθ1 0
0 0 0 ei(θ1/2+θ2/2)

⎞
⎟⎟⎠ (B3)

and�θt = θR − θ1/2 + θ2/2. Let y ′ = y −�θt/K . The final Hamiltonian is then independent of all the phases and equiv-
alent to Eq. (A13). Note that �θt is simply half of the accumulated phase acquired by an atom completing a close
trajectory counterclockwise in the synthetic dimension [Fig. 1(b)], corresponding to a synthetic axial magnetic flux
	axial/	0 = �θt/π . In conclusion, 	axial (�θt) here can only lead to a spatial translation in y and has no effect on the
band structure.
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2. Hall cylinder with a broken nonsymmorphic symmetry

Refer to Fig. 3(a). In this case, we show that θR only causes a spatial translation in y and can still be gauged away, while
an axial phase θaxial = 2θrf + θ1 − θ2 cannot be gauged away and thus can affect the band structure. The Hamiltonian H ′
in Eq. (A18) becomes

H ′ = p̂2
y

2m
I +

⎛
⎜⎜⎝

0 �R2
2 e−iKyeiθR + �rf2

2 e−iθrf 0 �2
2 e−iθ2

�R2
2 eiKye−iθR + �rf2

2 eiθrf ε0
�1
2 e−iθ1 0

0 �1
2 eiθ1 ε0

�R1
2 e−iKyeiθR + �rf1

2 e−iθrf
�2
2 eiθ2 0 �R1

2 eiKye−iθR + �rf1
2 eiθrf 0

⎞
⎟⎟⎠.

(B4)

Let y ′ = y − θR/K + θrf/K , the Hamiltonian H ′ becomes

H ′ = p̂2
y

2m
I +

⎛
⎜⎜⎝

0 (
�R2

2 e−iKy + �rf2
2 )e−iθrf 0 �2

2 e−iθ2

(
�R2

2 eiKy + �rf2
2 )eiθrf ε0

�1
2 e−iθ1 0

0 �1
2 eiθ1 ε0 (

�R1
2 e−iKy + �rf1

2 )e−iθrf
�2
2 eiθ2 0 (

�R1
2 eiKy + �rf1

2 )eiθrf 0

⎞
⎟⎟⎠, (B5)

which does not depend on θR. Apply a unitary transformation Û2 to H ′:

Û−1
2 H ′Û2 = p̂2

y

2m
I +

⎛
⎜⎜⎝

0 �R2
2 e−iKy + �rf2

2 0 �2
2 eiθaxial

�R2
2 eiKy + �rf2

2 ε0
�1
2 0

0 �1
2 ε0

�R1
2 e−iKy + �rf1

2
�2
2 e−iθaxial 0 �R1

2 eiKy + �rf1
2 0

⎞
⎟⎟⎠ . (B6)

Here θaxial = 2θrf + θ1 − θ2 and

Û2 =

⎛
⎜⎜⎝

1 0 0 0
0 eiθrf 0 0
0 0 ei(θrf+θ1) 0
0 0 0 ei(2θrf+θ1)

⎞
⎟⎟⎠ . (B7)

The transformed Hamiltonian depends on a single phase,
θaxial. Thus, here the synthetic axial magnetic flux
	axial/	0 = θaxial/2π is crucial as it can affect the band
structure.

APPENDIX C: IMPORTANCE OF THE
SYNTHETIC RADIAL MAGNETIC FLUX

As mentioned in the main text, the net radial magnetic
flux is key to many phenomena emerging on the Hall
cylinder, which otherwise disappear. To understand this,
for example, one can realize a periodic boundary condi-
tion by replacing the Raman couplings in Fig. 1(b) with
rf couplings, which do not change the momentum of an
atom. Such a cyclic coupling delivers a cylinder with-
out any magnetic field on the cylindrical surface. The
corresponding Hamiltonian is similar to H but without
the y-dependent phase factors, i.e., e±iKy = 1. The corre-
sponding dispersion remains parabolic and nonperiodic.

Consequently, there are no Bloch oscillations and those
observed phenomena in the main text vanish.

Interestingly, one may realize another periodic boundary
condition by applying two different pairs of Raman lasers
in Fig. 1(b) such that the matrix element 〈3|H |4〉 (〈4|H |3〉)
in Eq. (1) changes from e−iKy (eiKy) to eiKy (e−iKy). Con-
sequently, a cylinder is penetrated by magnetic fields, but
the net radial magnetic flux is zero. In this case, the y-
dependent phase factors in the corresponding Hamiltonian
can be gauged away, and the observed phenomena in the
main text disappear. This again uncovers the essence of the
net radial magnetic flux for the emergence of the observed
phenomena.

APPENDIX D: SYMMETRIES OF THE
HAMILTONIAN H

1. Generalized inversion symmetry and band
symmetry

When δR = δ1 = δ2 = 0 and �R1 = �R2, the Hamilto-
nian H in Eq. (A13) is invariant under a generalized inver-
sion symmetry, i.e., a spatial inversion (y → −y) followed
by a spin inversion (|1〉 , |2〉 , |3〉 , |4〉 → |4〉 , |3〉 , |2〉 , |1〉).
This generalized inversion symmetry guaranties that the
band structure or energy spectrum E(qy) is symmetric with
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respect to qy , i.e.,

E(qy) = E(−qy). (D1)

However, in general, �R1 �= �R2, which gives rise to
asymmetric band structures with respect to qy as verified
by numerical calculations. We also provide a mathematical
argument below.

The generalized inversion symmetry operator is writ-
ten as Î = ÎsÎy , where Îy is the spatial inversion operator
that replaces y by −y and Îs replaces spin 4, 3, 2, 1 by spin
1, 2, 3, 4. Considering the Hamiltonian H in Eq. (A13) with
δR = δ1 = δ2 = 0, we define

H0 = p̂2
y

2m
I +

⎛
⎜⎜⎜⎝

0 �̄
2 e−iKy 0 �2

2
�̄
2 eiKy ε0

�1
2 0

0 �1
2 ε0

�̄
2 e−iKy

�2
2 0 �̄

2 eiKy 0

⎞
⎟⎟⎟⎠

(D2)

and

H ′
0 = H − H0

=

⎛
⎜⎜⎝

0 δ�
2 e−iKy 0 0

δ�
2 eiKy 0 0 0

0 0 0 − δ�
2 e−iKy

0 0 − δ�
2 eiKy 0

⎞
⎟⎟⎠ ,

(D3)

where �̄ = (�R1 +�R2)/2 and δ� = (�R1 −�R2)/2. We
readily see that H0 = Î−1H0Î and H ′

0 = −Î−1H ′
0Î . In

momentum space, Î replaces K by −K and spin 4, 3, 2, 1 by
spin 1, 2, 3, 4, and we obtain H0(−qy) = Î−1H0(qy)Î and
H ′

0(−qy) = −Î−1H ′
0(qy)Î .

Thus, if ψ(qy) is an eigenstate of H0(qy) with an
eigenvalue E0, i.e., H0(qy)ψ(qy) = E0(qy)ψ(qy), then
H0(−qy)Î−1ψ(qy) = E0(qy)Î−1ψ(qy). This means that
Î−1ψ(qy) is an eigenstate of H0(−qy) with the same eigen-
value E0. This shows that the band structure of H0 is
inversion symmetric with respect to qy = 0.

Recall that H = H0 + H ′
0. The band structure of H is

simply that of H0(qy) plus H ′
0(qy). For a small but finite

δ�, H ′
0 can be treated as a perturbation, and its contribu-

tion to H can be estimated by the first-order perturbation
theory. At qy , such an energy contribution to H is
δE0(qy) = 〈ψ(qy)|H ′

0(qy)|ψ(qy)〉, while at −qy it is oppo-
site, i.e., δE0(−qy) = 〈Î−1ψ(qy)|H ′

0(qy)|Î−1ψ(qy)〉 =
−δE0(qy). Therefore, the band structure of H is not inver-
sion symmetric even though H0(qy) is inversion symmet-
ric, unless when �R1 = �R2 (δ� = 0) is fulfilled such that
H ′

0 vanishes.

2. Nonsymmorphic symmetry and band crossings

The Hamiltonian H in Eq. (A13) as well as Eq. (1) is
also invariant under a nonsymmorphic symmetry, which
comprises a translational operation Ĝ = e−ip̂d/(2�) (d =
2π/λ) followed by a unitary transformation Û given by

Û =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠ . (D4)

That is, ÛĜHĜ−1Û−1 = H . Defining the nonsymmorphic
symmetry operator Ŝ = ÛĜ, we readily obtain [Ŝ, H ] = 0,
which implies that Ŝ and H share the same set of eigen-
states. The physical meanings of Û and Ĝ are explained
below. First, the translational operator Ĝ can be under-
stood as shifting the entire y coordinate to y + d/2
by half the period (d) of H . Applying Ĝ to H , i.e.,
ĜHĜ−1, the matrix elements 〈1|H |2〉, 〈2|H |1〉, 〈3|H |4〉,
and 〈4|H |3〉 flip their sign. Second, the unitary trans-
formation Û can be understood as flipping the sign of
the second and third spin states. Applying Û to ĜHĜ−1,
i.e., ÛĜHĜ−1Û−1, the matrix elements 〈1|ĜHĜ−1|2〉,
〈2|ĜHĜ−1|1〉, 〈3|ĜHĜ−1|4〉, and 〈4|ĜHĜ−1|3〉 flip
their sign. The Hamiltonian after these two symme-
try operations (Û and Ĝ) thus returns to the original
Hamiltonian H .

The operator Ŝ2(= Ĝ2) is a translational operator cor-
responding to a shift of d in the y coordinate, such that
[Ŝ2, H ] = 0. Therefore, the Hamiltonian H is invariant
after a shift of d in y, a discrete translational symmetry.
The eigenvalues of H thus have a periodicity of d in y.
The eigenwavefunctions of H can be written in the form
of Bloch waves, eiqy yw(y), where w(y) has a period of d.
Since the nonsymmorphic symmetry operator Ŝ and the
Hamiltonian H share the same set of eigenstates, we can
construct the eigenstates of H (and Ŝ) in the following
two types (in the form of Bloch waves) by considering the
physical meanings of Ŝ mentioned above:

ψp(qy) = eiqy y(u1(y) |1〉 + u2(y) |2〉
+ u3(y) |3〉 + u4(y) |4〉),

(D5)

ψm(qy) = eiqy y(v1(y) |1〉 + v2(y) |2〉
+ v3(y) |3〉 + v4(y) |4〉).

(D6)

Here u1(y + d/2)− u1(y) = u2(y + d/2)+ u2(y)

= u3(y + d/2)+ u3(y)

= u4(y + d/2)− u4(y)

= 0, (D7)
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v1(y + d/2)+ v1(y) = v2(y + d/2)− v2(y)

= v3(y + d/2)− v3(y)

= v4(y + d/2)+ v4(y)

= 0. (D8)

Applying Ŝ to Eqs. (D5) and (D6), one can verify that ψp

and ψm are eigenfunctions of Ŝ with the corresponding
eigenvalues ±eiqy d/2. With Eqs. (D7) and (D8), we also
see that ψp(qy) and ψm(qy) are still Bloch waves labeled
by qy .

Consider two sets of eigenfunctions {ψp(qy),ψm(qy)}
and {ψp(qy + K),ψm(qy + K)}. Their corresponding
eigenvalues of the operator Ŝ are {eiqy d/2, −eiqy d/2} and
{−eiqy d/2, eiqy d/2}. Thus, one obtains ψp(qy) = ψm(qy +
K) and ψm(qy) = ψp(qy + K). This suggests two prop-
erties associated with the nonsymmorphic symmetry: (I)
both ψp(qy) and ψm(qy) have a periodicity of 2K in qy ,
and (II) ψp(qy) and ψm(qy) are offset from each other by K
in qy . Denote the corresponding eigenenergies (eigenval-
ues of H ) for ψp(qy) and ψm(qy) as Ep and Em; the energy
spectrum also possesses properties associated with the
nonsymmorphic symmetry, corresponding to properties (I)
and (II) above. Corresponding to (I), we have

Ep(qy) = Em(qy + K). (D9)

This suggests that the band structure has crossing points
at some qy . Recall that the Hamiltonian H with δR = δ1 =
δ2 = 0 and �R1 = �R2 possesses a generalized inversion
symmetry in Eq. (D1). Given the relations in Eqs. (D1)
and (D9), we obtain

Ep(qy) = Em(−qy + K). (D10)

Consequently, for qy = (2n + 1)K/2 where n is an inte-
ger, Ep is equal to Em, corresponding to a degenerate point
(band crossing) in the band structure. Such a degeneracy
at qy = (2n + 1)K/2 is protected by the nonsymmorphic
symmetry and the generalized inversion symmetry. If any
of δR, δ1, δ2 is nonzero or if �R1 �= �R2, the generalized
inversion symmetry is broken while the nonsymmorphic
symmetry is retained; the two branches still cross but at
qy �= (2n + 1)K/2.

Furthermore, the two independent branches in the spin-
mechanical momentum coupling scheme in Fig. 2(a)
implies that the plane-wave basis {|�(qy + nK); m〉} in
Eq. (A14) can also be decomposed into two subsets based
on the nonsymmorphic symmetry. These two branches can
be written in the forms

φp(qy) =
∑

n

(c1,n |qy + 2nK ; 1〉 + c2,n |qy + 2nK + K ; 2〉

+ c3,n |qy + 2nK + K ; 3〉 + c4,n |qy + 2nK ; 4〉)
(D11)

and

φm(qy) =
∑

n

(d1,n |qy + 2nK + K ; 1〉 + d2,n |qy + 2nK ; 2〉

+ d3,n |qy + 2nK ; 3〉 + d4,n |qy + 2nK + K ; 4〉).
(D12)

Equating Eqs. (D11), (D12) with Eqs. (D5), (D6) respec-
tively, the coefficients in the above equations satisfy

∑
n

c1,nei2nKy = u1(y),
∑

n

c2,nei(2nK+K)y = u2(y),

∑
n

c3,nei(2nK+K)y = u3(y),
∑

n

c4,nei2nKy = u4(y),

(D13)

and
∑

n

d1,nei(2nK+K)y = v1(y),
∑

n

d2,nei2nKy = v2(y),

∑
n

d3,nei2nKy = v3(y),
∑

n

d4,nei(2nK+K)y = v4(y).

(D14)

From Eqs. (D11) and (D12), we readily see that φp(qy) and
φm(qy + K) are identical if one equates d1,n with c1,n+1,
d4,n with c4,n+1, d2,n with c2,n, and d3,n with c3,n. Thus,
Eqs. (D11) and (D12) respectively correspond to band 1
and band 2 in Fig. 2 in the main text, providing another way
to understand band crossings due to the nonsymmorphic
symmetry.

APPENDIX E: SYMMETRIES OF THE
HAMILTONIAN H ′

When the rf wave is applied, the corresponding Hamilto-
nian H ′ [Eq. (A18)] is obtained by adding the rf couplings
to the Hamiltonian H . These y-independent rf terms are
added to the Raman terms in the 〈1|H |2〉, 〈2|H |1〉, 〈3|H |4〉,
〈4|H |3〉 matrix elements of H . Upon d/2 translation by Ĝ,
the Raman terms flip sign but the y-independent rf terms
do not; therefore, the nonsymmorphic symmetry is broken
in H ′. However, a d translation still leaves H ′ invariant.
Similar to H , the generalized inversion symmetry is also
broken in H ′ and thus the band structure is asymmetric.

APPENDIX F: CALCULATIONS OF BEC
WAVEFUNCTIONS IN THE REAL SPACE

We solve the eight-spin version (Appendix P) of the
Hamiltonians Hqy or H ′

qy
[see Eqs. (A15) and (A19)] to

obtain the probability amplitude (bqy
n,m) of the constituent

plane waves of the form bqy
n,mei(qy+nK)y |m〉, whose superpo-

sition gives the BEC wavefunction in the real space. From
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the wavefunction, we obtain the variations of the density
and phase in the real space for each spin state. For exam-
ple, we perform such calculations for a BEC at qy = 0 in
the ground or first excited band in two exemplary cases
(in units of Er). (1) A band structure with band crossings
at �R1 = 2.3, �1 = 2.3, and other Raman and microwave
couplings obtained by the corresponding scaling relations
(Appendix P). No rf couplings. (2) A band structure with
gap opening at �R1 = 2.3, �1 = 2.3, �rf1 = 0.8, θaxial =
0, and other Raman, microwave, and rf couplings obtained
by the corresponding scaling relations. The results shown
below focus on spin states |1〉, |2〉, |3〉, and |4〉.

Case 1. The calculated population and phase in the real
space for each spin state shown in Figs. 5(a) and 5(b) are
respectively for a BEC in the ground and the first excited
bands. The red line, green dashed line, blue circles and
black squares respectively correspond to |1〉, |2〉, |3〉, and
|4〉. The BEC wavefunction corresponding to Fig. 5(a)[(b)]
can be described by φp(qy = 0) [φm(qy = 0)] in Eq. (D11)
[Eq. (D12)], an eigenfunction of the Ŝ operator with an
eigenvalue of eiqy d/2 = 1 (−eiqy d/2 = −1). Because of the
nonsymmorphic symmetry, we find that (I) the calculated
population of each spin state has a periodicity of d/2; (II)
for the ground band, the phase of |1〉 and |4〉 (|2〉 and |3〉)
have a period of d/2 (d). For the first excited band, the
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FIG. 5. Spin population and phase versus y for case 1 (see the
text). Calculations are performed for a BEC at qy = 0 in the
(a) ground band and (b) first excited band. The red line, green
dashed line, blue circles, and black squares correspond to the
spin states |1〉, |2〉, |3〉, and |4〉, respectively. The plotted popula-
tion of the spin component i, ρi, is normalized by the condition∑

i

∫ 1
0 ρid(y/d) = 1 (also used for Fig. 6).
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FIG. 6. Spin population and phase versus y for case 2 (see the
text). Calculations are performed for a BEC at qy = 0 in the (a)
ground band and (b) first excited band. The red line, green dashed
line, blue circles, and black squares correspond to |1〉, |2〉, |3〉,
and |4〉, respectively.

phase of |1〉 and |4〉 (|2〉 and |3〉) have a period of d (d/2).
In general, for qy �= 0, the phase of two spin states would
have a periodicity of d while the phase of the other two
would have a periodicity of d/2. This is because a nonzero
qy only introduces an overall phase to the spin states at
qy = 0.

Case 2. The calculated population and phase in the real
space for each spin shown in Figs. 6(a) and 6(b), respec-
tively, correspond to a BEC in the ground and first excited
bands. The periodicity of the population and phase for
each spin is identical to the periodicity of the Hamilto-
nian, d. The maximum population of the ground state sits
at y = ±nd, where n is an integer, because of the s-wave
nature of the ground state. On the other hand, for the first
excited state, the maximum population of |1〉 and |4〉 sits
at y = ±(2n + 1)d/2 rather than y = ±nd. Besides, there
is also local peak population appearing at y = ±nd.

APPENDIX G: EIGENSTATE CALCULATIONS

We use the eight-spin version (Appendix P) of the
Hamiltonians Hqy and H ′

qy
[see Eqs. (A15), (A16),

and (A19)] to calculate the corresponding band struc-
tures in Figs. 2, 3, 4 with n ranging from −13 to 13,
i.e., each Hamiltonian is a 108-by-108 matrix. We use
the eight-spin version of Hstrip [see Eq. (A21)] to calcu-
late the dispersion in Fig. 8. We solve the eigenstates of
Hqy , H ′

qy
, and Hstrip as a function of quasimomentum to
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obtain the corresponding average mechanical momentum
and spin compositions. These results can be converted to
functions of time based on the calibrated relation between
quasimomentum and time. In general, the eigenstate is
a normalized vector of the form (. . . , bqy

n,m, . . .)T. The
coefficient bqy

n,m is the probability amplitude (|bqy
n,m|2 cor-

responds to the population) of the state |�(qy + nK); m〉.
According to the discussions in Appendix P, the average
mechanical momentum of the eigenstate at qy is deter-
mined as �

∑
n,m |bqy

n,m|2(qy + nK)/(
∑

n,m |bqy
n,m|2), where

m = 1, 2, 3, 4. The fractional population of spin state |m〉
at qy is

∑
n |bqy

n,m|2/(∑n,m |bqy
n,m|2), where m = 1, 2, 3, 4.

APPENDIX H: CALIBRATION OF
QUASIMOMENTUM VERSUS thold

The quasimomentum of the BEC at thold can be mea-
sured by the displacement of the mechanical momentum
components of, say |1〉 or |4〉, at thold relative to those
at thold = 0 (qy = 0). Figure 7 shows the calibrated rela-
tion between quasimomentum and thold. The corresponding
slope, d(�qy)/d(thold), is obtained by the linear fit to the
data. The average slope, 0.751 �K/ms, serves as the cal-
ibration used for calculations. The calculated physical
quantities that are functions of quasimomentum can then
be converted to functions of thold. Note that the calibrated
slope is slightly smaller than the predicted 0.843 �K/ms,
which is obtained by using g = 9.81 m/s2 for the grav-
ity. This small difference may be due to the presence of
small background (e.g., magnetic) fields that counteract the
gravity during experiments.

APPENDIX I: TRANSPORT IN A HALL STRIP

To realize a planar Hall strip [Fig. 8(a)], we remove �2
and keep�R1,R2 and�1 in Figs. 1(b) and 1(c), imposing an
open boundary condition along ŵ. The strip is pierced by
the same magnetic field as for the cylinder. Nonetheless,
as shown in Eqs. (A20) and (A21), the Raman-imprinted
phase factor e±iKy can now be gauged away, resulting in
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FIG. 7. Calibration of quasimomentum versus thold. Panels (a)
and (b), corresponding to the spin components |1〉 and |4〉,
respectively, are obtained from the band-1 transport experiment
in Fig. 2. Dots are experimental data and lines are linear fits.
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FIG. 8. Transport in a Hall strip. (a) Schematic of a Hall strip.
(b) The single-particle dispersion. (c) Select TOF images for the
quantum transport measurement with a BEC initially prepared
around the minimum of the right well [dashed circle in (b)]. (d)
Average momentum versus thold and quasimomentum. Circles are
experimental data (error bars are standard errors of typically five
repetitive measurements). Solid lines are eigenstate calculations.

a nonperiodic single-particle dispersion [Fig. 8(b)]. We
probe this dispersion by performing the same type of quan-
tum transport measurement with a BEC initially prepared
around the minimum of the right well in the ground band
[Fig. 8(b)].

Figure 8(c) presents select TOF images at various thold
and the corresponding quasimomentum. The extracted
average momentum is shown in Fig. 8(d), in which circles
are experimental data and solid lines are eigenstate cal-
culations. In this case, BEC’s average momentum keeps
increasing due to the gravity. No Bloch oscillations or
periodic occurrences are observed.

APPENDIX J: INITIAL STATE PREPARATIONS IN
EXPERIMENTS

(1) Band 1 and band 2 in Fig. 2(b). We note that the
eigenstate around qy = 0 in band 1 (band 2) has dominant
populations in |4〉 and |1〉 (|3〉 and |2〉). Thus, to load a BEC
around qy = 0 in band 1 (band 2), a BEC is first prepared at
|4〉 (|3〉) with δR, δ1 < −2.5 Er. The value of δ2 is inferred
from Eq. (A12).

For band 1, we then ramp on the Raman and microwave
couplings �R1,R2 and �1,2 from zero to final values while
ramping δR and δ1 to zero in 15 ms.

For band 2, we then ramp on the microwave couplings
�1,2 from zero to final values while ramping both δR and δ1
to around −0.6 Er in 15 ms. Subsequently, while keeping
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�1,2 at the final values, we ramp on the Raman couplings
�R1,R2 from zero to final values in 5 ms, during which we
ramp δR and δ1 to zero in 3 ms and then hold δR and δ1 at
zero for the remaining 2 ms.

(2) Ground band in Figs. 3(d) and 4(a). A BEC is first
prepared at |4〉 with δR, δ1 < −5 Er. Then, we ramp on
the Raman and microwave couplings �R1,R2 and �1,2 from
zero to final values while ramping δR and δ1 to zero in 15
ms. At the very beginning (at which δR, δ1 < −5 Er, so the
rf wave is off resonant) of this 15-ms ramp, the rf cou-
plings �rf1,rf2 are abruptly turned on to the final values.
Then,�rf1,rf2 are held at the same final values while δR and
δ1 are ramped to zero in 15 ms.

(3) Ground band in Fig. 8(a). To prepare a BEC around
the minimum of the right well, a BEC is first prepared at
|4〉 with δR, δ1 < −2.5 Er. Then, we ramp on the Raman
and microwave couplings �R1,R2 and �1 from zero to final
values while ramping δR and δ1 to zero in 15 ms. In this
case, �2 is zero throughout the experiment.

APPENDIX K: CONDENSATE FRACTION

In experiments, the condensate fraction before loading
atoms to band structures is 90%, decreases to 50%–70%
after a 15-ms loading procedure, and then drops to
40%–60% after another 7-ms holding time for transport.
We find that the decreasing of the condensate fraction (with
a typical time scale of 40–60 ms) is mainly due to the finite
lifetime of atoms in the F = 2 hyperfine manifold in our
system.

APPENDIX L: IMAGING ANALYSIS

For each spin state in TOF images, a proper window
is chosen to enclose the corresponding atomic clouds. We
sum the optical density of each pixel over the entire win-
dow to obtain the atom number Ni of spin state i. The
average mechanical momentum pi of atoms in spin state
i is determined by the difference in average pixel position
between the atoms and a BEC that has zero mechani-
cal momentum. Such a difference is then converted to
mechanical momentum based on the calibrated conversion
between �K and image pixels. The average mechanical
momentum p of all atoms is the weighted average of
the mechanical momentum of each spin state, i.e., p =
Nipi/(

∑
i Ni).

APPENDIX M: GROSS-PITAEVSKII
SIMULATIONS

We solve the time-dependent Gross-Pitaevskii equation
to simulate BEC’s transport with an atom number N of
15 000. We have checked that the small spin-dependent
interaction has negligible effect in our calculated results,
so a spin-independent scattering length as = 93.2467aB is
used for all the scattering lengths, where aB is the Bohr

radius. The effective Hamiltonian reads Heff = H + V + U,
where H , V, and U respectively correspond to the kinetic
energy plus light (Raman, microwave, rf) couplings, har-
monic trapping potential, and interactions. The interaction
term is U = (4π�2as/m)n(
r), where n(
r) is the density of
all the spin states and is normalized to N , i.e.,

∫
r n(
r)dr =

N . Recursively applying the Trotter formula, e(A+B)δt =
eAδt/2eBδteAδt/2 + O(δt3), we obtain an approximation of
the short time propagator that is a product of the expo-
nentials of H , V, and U. The kinetic energy propagator
eKδt is evaluated in momentum space and the rest in real
space.

(1) Initial state preparation and time evolution. To pre-
pare the initial state of a BEC starting in the ground band
in Figs. 2, 3, 4, we use imaginary time evolution to find
the ground state of Heff. That is, an arbitrary initial state
ψtrial is evolved by applying the operator e(Heffδt/�) until
the normalized wave function does not change. We apply
e−iHeffδt/� consecutively to propagate the wavefunction in
real time.

To prepare the initial state of a BEC starting in the first
excited band in Fig. 2, we follow the same preparation
method used in the experiment. In this case, more than 90%
of atoms is loaded to the first excited band.

(2) Comparison between GP and eigenstate calcula-
tions. Figure 9 presents a comparison between eigenstate
and GP (interacting and noninteracting) calculations for
the transport in Figs. 2 and 3. Figure 9(a) compares these
calculations of the average momentum versus thold for the
transport in band 1 and band 2 in Fig. 2(b). The spin pop-
ulation versus thold corresponding to the transport in band
1 is shown in Fig. 9(b). Figure 9(c) compares these cal-
culations of the average momentum versus thold for the
transport in Fig. 3(d). The corresponding spin popula-
tion versus thold is shown in Fig. 9(d). By comparing the
results of interacting and noninteracting GP, we see that
interactions lead to damping of both the momentum and
spin oscillations. In addition, results of noninteracting GP
and eigenstate calculations are similar, almost overlapping
with each other except for transport in band 2 in Fig. 9(a).

For the transport in band 2, the results of interacting GP
are only slightly more damped than that of the noninter-
acting GP. Besides, these GP results are notably different
from that of the eigenstate calculation. This is probably
because the ramping procedure used in GP for the initial
state preparation in this case is relatively fast compared to
the time scales of both interactions and adiabatic loading.
This gives rise to small interaction effects and nonadiabatic
loading to band 2.

APPENDIX N: CALIBRATION OF THE AXIAL
PHASE AND AXIAL MAGNETIC FLUX

To calibrate the axial phase θaxial and axial magnetic flux
	axial (	axial/	0 = θaxial/2π ) for the experiment in Fig. 4,
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FIG. 9. Comparison between GP (interacting and noninteracting) and eigenstate calculations. (a) Calculations of the average
momentum versus thold for the transport in band 1 and band 2 in Fig. 2(b). The spin population versus thold corresponding to the trans-
port in band 1 is shown in (b). (c) Calculations of the average momentum versus thold for the transport in Fig. 3(d). The corresponding
spin population versus thold is shown in (d).

we perform quench experiments. We refer the reader to
Fig. 3(a). We first prepare a BEC at |4〉, and then sud-
denly turn on only microwave and rf couplings [�1(2) =
2.2(3.2) Er and �rf1(rf2) = 1.1(−1.6) Er] with correspond-
ing phases θ1,2 and θrf for 90 μs. This results in spin
dynamics that depends on a single phase θaxial = 2θrf +
θ1 − θ2, as explained in Eq. (B6). The parameters are cho-
sen such that the sensitivity of spin dynamics to θaxial is
measurable and allows the phase calibration. Specifically,
at the end of such a pulse, we measure the spin-|4〉 popu-
lation as a function of θaxial. The experimental results are
then compared with numerical results obtained by solving
the time-dependent Schrödinger equation to calibrate θaxial.
Figure 10 presents a typical calibration, demonstrating our
capability of controlling θaxial (	axial).

To independently control θrf and θ1 − θ2, we use a rf
function generator with two outputs. One output chan-
nel generates the desired rf field with phase θrf at atoms.
Another output channel sends a rf signal to a microwave
mixer, which mixes this rf signal with a microwave (from
a microwave generator) and then outputs the desired
microwave fields 1 and 2, where θ1 − θ2 is controlled by
the phase of the rf signal sent to the mixer. We thus can
control θaxial. Our rf generator can control the phases of the
rf signals within ±1.75 milliradian. For daily experiments,
the stability of θaxial is estimated to be within ±0.035π

(including the fitting uncertainty of ±0.025π ) obtained by
monitoring the drift of the experimental curve (Fig. 10) in
a day.
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FIG. 10. Calibration of the axial phase and axial magnetic flux.
Spin-|4〉 population versus θaxial (	axial) at the end of a 90-μs
pulse, composed of microwaves and rf waves and applied to a
BEC initially prepared at |4〉. In this case, �1(2) = 2.2(3.2) Er
and �rf1(rf2) = 1.1(−1.6) Er. Blue circles are experimental data
and black dots are numerical results obtained by solving the time-
dependent Schrödinger equation. Error bars are standard errors of
typically five repetitive measurements.
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APPENDIX O: EFFECTS OF INTERPARTICLE
INTERACTIONS ON LANDAU-ZENER

TUNNELING

While in our experiment it is difficult to control the
interparticle interactions of 87Rb by adjusting its scatter-
ing length, we have performed GP simulations to explore
how (repulsive) interparticle interactions may affect atoms’
quantum transport in a gapped band when rf couplings are
applied. In the simulation, 15 000 87Rb atoms at zero tem-
perature are prepared in a shallow 1D harmonic trap (along
the Raman beam or transport direction ŷ), where the trap
frequency is 25 Hz. Such a 1D trap is not available in
our current experimental setup but is chosen for our sim-
ulation setup to enhance and demonstrate the interaction
effects that could be explored in future experiments, and
for the relative ease of simulation (where we can use the
1D GP equation rather than the more time-consuming 3D
GP equation but still demonstrate the essential physics).
In principle, the 1D trap can be experimentally realized by
applying a 2D optical lattice that realizes parallel 1D tubes,
where interparticle interactions can be tuned by adjusting
the lattice confinement. To reduce computation time and
without loss of generality, this simulation adopts the 1D
GP equation in a four-spin model (see below for details
of four-spin and eight-spin models) with otherwise similar
parameters used for the simulation in Fig. 3 except that the
rf couplings are applied such that the single-particle band
gap is 0.14 Er. In the simulation the interaction energy
per particle is varied by varying an effective 1D scattering
length (or coupling parameter g1D), which could, for exam-
ple, be varied by the confinement potential if the 1D tubes
are realized by a 2D optical lattice. Applying a force leads
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FIG. 11. Simulated effects of interparticle interactions on
Landau-Zener tunneling. (a) Schematic showing atoms in the
ground band tunnel to the excited band with a Landau-Zener
tunneling probability of PLZ. (b) Calculated PLZ increases and
eventually approaches 1 with increasing interaction energy per
particle. In the simulation, 15 000 87Rb atoms are prepared in
a shallow 1D harmonic trap, where the trap frequency is 25
Hz. The single-particle gap size is 0.14 Er. Here dqy/dt = 0.188
K /ms.

to quantum transport of the atoms (with dqy/dt = 0.188
K /ms), which are initially prepared at the ground band and
now tunnel to the excited band with a probability of PLZ
[Fig. 11(a)]. After the atoms pass the gap, we calculate the
fraction of atoms in the excited band, i.e., PLZ. As shown
in Fig. 11(b), the calculated PLZ increases and eventually
approaches 1 with increasing interaction energy per par-
ticle. This means that a strong interaction could change
the topology underlying the transport in the momentum
space, making atoms effectively experience a Möbius strip
(band crossings) rather than a regular strip (gapped band
structure) experienced by a noninteracting BEC.

APPENDIX P: HAMILTONIANS INCLUDING
EIGHT SPIN STATES

(1) The eight-spin model. When the Zeeman splitting
is not big enough, the four states discussed in the main
text may not be completely decoupled from other hyper-
fine spin states. It is thus desirable to investigate effects
of those extra spin states. In this section, we consider
the effects of the additional ground hyperfine spin states
(|5〉 = |2, 0〉, |6〉 = |2, −1〉, |7〉 = |2, −2〉, |8〉 = |1, −1〉)
other than the four spin states |1〉, |2〉, |3〉, |4〉 we have
focused on so far. Figure 12 shows all the eight spin
states in the F = 1 and F = 2 hyperfine manifolds of 87Rb,
where�R1,...,R6 are Raman couplings,�1,2,3 are microwave
couplings, and �rf1,...,rf6 are rf couplings. Note that in our
experiment these Raman couplings are delivered from the
same pair of Raman lasers, and these rf couplings come
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FIG. 12. Level diagram of 87Rb and light couplings.
Schematic of the eight spin states |1〉,. . . ,|8〉 in the F = 1 and
F = 2 hyperfine manifolds. Here �R1,...,R6 are Raman couplings,
�1,2,3 are microwave couplings, �rf1,...,rf6 are rf couplings, and
ε1,..,8 are respective “site energies” for spin states |1〉,. . . ,|8〉 in
the synthetic dimension.
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from the same rf wave. On the other hand, microwave cou-
plings �1,2 respectively originate from microwaves 1 and
2 of different frequencies. Note that microwave 1 can also
induce a microwave coupling �3 because the energy split-
ting between |2〉 and |3〉 slightly differs from that between
|4〉 and |5〉 by ε5. However, we empirically find the upper
bound of |�3/�1| in our setup is only 0.2, which makes
the effects of �3 unimportant, as verified by the detailed
calculations below.

In units of Er, ε1 = 0, ε2 = ε0 = 2.4, ε3 = ε0 = 2.4,
ε4 = 0, ε5 = 3.8, ε6 = 4.2, ε7 = 3.7, and ε8 = 5.7 are
determined by the Zeeman splittings and frequencies of
the light fields. They are respective “site energies” for spin
states |1〉,. . . ,|8〉 in the synthetic dimension.

Previously, we only considered spin states |1〉, |2〉, |3〉,
and |4〉 in Hamiltonians. This adequately describes the
physics presented in this work. However, since ε5,6,7,8 are
not large enough, spin states |5〉, |6〉, |7〉, and |8〉 cannot
be completely neglected. In fact, we have included such
extra spins into both the eigenstate and GP calculations to
better capture the transport experiments quantitatively, as
explained below.

Consider the Hamiltonian H ′ in Eq. (A18) with zero
detunings. Based on Fig. 12, we can extend the 4-by-
4 matrix in H ′ to an 8-by-8 matrix H ′

8×8 written in the
basis of {|1〉 , . . . , |8〉}. The matrix elements 〈i|H ′

8×8|j 〉,
i, j = 1, 2, 3, 4, are exactly identical to those in H ′. The
extra nonzero matrix elements are

〈2|H ′
8×8|5〉 = 〈5|H ′

8×8|2〉∗ = �R3

2
e−iKyeiθR + �rf3

2
e−iθrf ,

〈3|H ′
8×8|8〉 = 〈8|H ′

8×8|3〉∗ = �R6

2
eiKye−iθR + �rf6

2
eiθrf ,

〈4|H ′
8×8|5〉 = 〈5|H ′

8×8|4〉∗ = �3

2
eiθ3 ,

〈5|H ′
8×8|5〉 = ε5,

〈5|H ′
8×8|6〉 = 〈6|H ′

8×8|5〉∗ = �R4

2
e−iKyeiθR + �rf4

2
e−iθrf ,

〈6|H ′
8×8|6〉 = ε6,

〈6|H ′
8×8|7〉 = 〈7|H ′

8×8|6〉∗ = �R5

2
e−iKyeiθR + �rf5

2
e−iθrf ,

〈7|H ′
8×8|7〉 = ε7,

〈8|H ′
8×8|8〉 = ε8.

Theoretically, for the Raman couplings, �R6/�R1 = 1,
�R2,R5/�R1 = −√

2, �R3,R4/�R1 = −√
3. Such scaling

relations also hold for the rf couplings. For the microwave
couplings, �2/�1 = √

2. We have checked that the above
relations are consistent with our experimental measure-
ments. For transport experiments, we typically measure
�R1, �R2, �1, �2, �rf1 and use these values and the above
scaling relations to obtain other couplings for calculations.

Similarly, we can extend all the previous four-spin
Hamiltonians to the corresponding eight-spin Hamiltoni-
ans. For the parameter regime in this work, we find that
including extra spins can notably modify the shape of band
structures and thus atoms’ transport. This is the main rea-
son why we need to use eight-spin Hamiltonians for both
the eigenstate and GP calculations. On the other hand, in
both experiments and calculations, the fractional occupa-
tion of extra spins is typically small, with an estimated
maximum of 5%. Therefore, for all the calculated results
shown in figures, we calculate the fractional population
of spin i (i = 1, 2, 3, 4) as ni = Ni/(

∑
i=1,..,4 Ni) and the

average momentum as
∑

i=1,..,4 nipi, where Ni and pi are
respectively the population and mechanical momentum of
spin i.

In summary, the presence of extra spins mainly modifies
the band structures and atoms’ transport quantitatively. On
the other hand, the occupation of these extra spin states
is typically small. The four-spin model is a good approxi-
mation and adequately captures the key physics we study
here.

(2) Symmetry in the eight-spin model. Similar to the
four-spin model as discussed above, the generalized inver-
sion symmetry is also broken in the eight-spin model. On
the other hand, following similar arguments as for the four-
spin model, we show that the eight-spin model still has
the nonsymmorphic symmetry when rf couplings are zero.
Recall the nonsymmorphic symmetry operator Ŝ = ÛĜ. In
the eight-spin model, the unitary transformation operator
Û becomes |1〉 〈1| − |2〉 〈2| − |3〉 〈3| + |4〉 〈4| + |5〉 〈5| −
|6〉 〈6| + |7〉 〈7| + |8〉 〈8|. Acting Ĝ (Ĝ−1) to the left (right)
of H8×8 (H ′

8×8 with zero rf couplings) flips the sign of the
second, third, sixth rows (columns). Acting Û (Û−1) to the
left (right) of ĜHĜ−1 flips the sign of the second, third,
sixth rows (columns) again. Thus, ÛĜH8×8Ĝ−1Û−1 =
H8×8, i.e., H8×8 is invariant under the nonsymmorphic
symmetry. The nonsymmorphic symmetry guaranties band
crossings. However, like the four-spin model, the bro-
ken generalized inversion symmetry makes band crossings
occur not at the edge of the first Brillouin zone.
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