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ABSTRACT
Memory mapping enhances decision tree implementations by en-
abling constant-time statistical inference, and is particularly effec-
tive when memory mapped tables fit in processor cache. However,
memory mapping is more challenging when applied to random
forests—ensembles of many trees—as the table sizes can easily out-
strip cache capacity.We argue that careful system design for parallel
and cache efficiency can make memory mapping effective for ran-
dom forests. Our preliminary results show memory-mapped forests
can speed up inference latency by a factor of up to 30×.
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1 INTRODUCTION
Memory mapping, depicted in Figure 1, is a depth-first alternative
to breadth-first decision tree traversal. In this approach, a repre-
sentation of each path in the tree is encoded as a lookup table
address and the corresponding leaf-node result is stored in the ta-
ble at that address. By default, memory mapping uses one table to
represent all outcomes captured by a decision tree, so each table
entry (i.e., address) must specify a value for every feature in the
tree. In Figure 1, there are four paths through the tree but eight
possible combinations of values for features.

AI inference on memory-mapped trees proceeds as follows: First,
features from the input data are sorted and converted to a table
address, then the address is used to lookup a classification result.
Compared to breadth-first tree traversal, memory mapping avoids
conditional control flow, thus alleviating pressure on the branch
predictor and offering more opportunities for the CPU’s prefetcher.
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Figure 1: Memory mapping encodes each path in a tree as
a table lookup address that directly maps to a classification
result. Features that are irrelevant for particular paths result
in “don’t cares” in the table address.

However, memory mapping increases storage demands and poten-
tially increases cache misses. These storage demands unfortunately
increase exponentially with the size of the feature space and, gen-
erally, complex data sets will necessitate a large feature space for
sufficient classification accuracy. Furthermore, ensemble models,
such as random and deep forests [22] use many decision trees to
achieve high accuracy and, as a result, further increase storage
demands. Such storage demands can be mitigated by partitioning
the memory-mapped table, considering subsets of features in each
table. A “dictionary” that assigns samples to partitions based on the
value of certain features can reduce storage demands, however, in-
creasing the number of partitions (dictionary size) also incurs some
of the same inefficiencies as bread-first traversal such as branching.

Forest Packing [6] creates tables from subsets of trees in the
forest and reduces storage demands by avoiding repetition of leaf
nodes and by using memory mapping only for frequently used
(hot) paths. These paths can be retrieved from processor cache to
reduce the number of tree traversals. However, in forests that com-
prise many trees and features, input data is unlikely to match hot
paths. Ranger [21] batches multiple inputs together for inference,
improving execution efficiency. However, AI inference and local ex-
planation workloads increasingly demand low response times and
cannot wait to batch queries. Further, while both Forest Packing [6]
and Ranger [21] include efficient C++ implementations, neither
consider bit-wise data structure optimizations.
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Figure 2: Cache-aware data management (1) compresses a
given trained forest, (2) explores parameters to reduce stor-
age demand and latency and (3) uses filters to reduce mem-
ory lookups.

For this workshop paper, we outline a novel system design for
managing memory-mapped random forests. Our approach trans-
forms the data layout after a breadth-first forest is fully trained,
producing a memory-mapped forest that executes AI inference in
microseconds, orders of magnitude faster than competing, breadth-
first approaches used in practice.

Specifically, we make the following contributions:
• We present a method to manage storage and processing
demands for memory-mapped forests using clustering and
bloom filters.

• We present a method for exploring parameters, searching
for inference latency given a forest and available cores.

• In early work, we show that our approach significantly re-
duces response time for AI inference relative to state-of-the-
art methods.

The remainder of this paper is structured as follows: Section 2
presents our design. Section 3 presents empirical evaluations of our
approach. Section 4 describes related work and Section 5 draws
conclusions.

2 DESIGN
For our approach we focus on binary trees where nodes are features
and edges indicate values associated with a feature (0 or 1). A match-
ing path from root to leaf nodes means that each feature-value pair
in the path is also present in the input data. Each tree has exactly
one matching path for a given input. The terminal node (leaf node)
of the path represents the inference result (classification). Results
from each tree are aggregated to produce a final classification.

Our approach: Figure 2 presents our memory mapping approach
for forests that safely1 transforms trees, manages storage demand
and speeds up inference and explanation workloads. Our approach
accepts three inputs: a trained forest, number of available CPU
cores, and cache capacity of each core. The output is a collection
of structures that we call dictionaries2 and memory-mapped trees
ready for inference and corresponding to the original forest.

Our approach consists of three phases. Phase 1 splits the entire
forest into several tree paths and clusters similar paths (among all
trees) into tables to reduce storage demands. Phase 2 evaluates the
outcome of Phase 1 against the expected size of each table (stor-
age) and of each dictionary (latency) and searches for parameters
1Informally, safety means that transformations preserve classification results for all
inputs.
2These are not traditional dictionaries in the sense of associative maps with O (1)
lookup.

that reduce inference latency. Phase 3 speeds up path matching by
quickly filtering out tables that comprise only non-matching paths,
thereby avoiding unnecessary memory accesses.

2.1 Phase 1: Clustering and Compression
Recall from Figure 1 that naïve memory mapping forms a table
address from every feature present in a tree and the possible values
that feature can take on (here only 0 or 1). In that figure, even
though the highlighted path formed by (fa , 0) → (fb , 1) does not
include fc , fc still must be present in the address formed from the
features, since addresses (path table indexes) are a fixed length. This
results in two duplicate entries in the path table with the same result,
where fc is treated as a “don’t care” in the address. This approach
wastes space and inflates storage demand exponentially, since it
necessitates 2n table entries for n binary features, thus making
memory mapping untenable for forests comprising complex trees.
Note here that n comprises all distinct features used in all trees in
the forest (not all trees use the same features), so it can grow quite
quickly. We propose an alternative memory-mapping approach
to manage storage demands. The key insight we leverage for our
approach is that several trees within a forest may share paths,
presenting an opportunity for compression.

Figure 3 shows how our approach transforms an input random
forest comprising two decision trees into a set of data structures we
can use for fast, cache-friendly inference. First, paths (consisting
of a series of feature/value pairs) for each tree in the forest are
enumerated and sorted lexicographically Figure 3(1). The sorted
paths from the trees are then merged into a single, sorted list of
paths for the entire forest Figure 3(2). Clusters are formed by in-
crementally adding paths from this sorted list. This is done until a
tunable threshold is met.

The important thing to note about the clusters is that, at this
stage, each cluster will have its own compressed memory-mapped
path table (as opposed to a single large table for the whole forest).
We can see the path clusters superimposed on the original forest
(3) in the third column of Figure 3. By design, each cluster shares
a unique set of feature/value pairs common to all paths in that
cluster. In the figure, (a, 0) is common for the green cluster, (a, 1) is
common for the yellow cluster, and (h, 1) is common for the blue
cluster. The commonality of these features within the cluster allows
us to extract them out and use them as an identifier that determines
membership of inputs in cluster-specific path tables Figure 3(5). This
is accomplished using our “dictionary” data structure Figure 3(4).
When an input vector arrives, its features are compared against
entries in the dictionary to match it to an appropriate path table.
For example, an input of 0100 would match the first dictionary
entry (storing the common pair (a, 0)). The lookup would then
be directed to the first (green) path table. Note that now we only
have ten path table entries and three dictionary entries; “don’t care”
entries are eliminated entirely. This is in contrast to the 16-entry
table that would be used in the naïve approach, shown on the right
side of the figure. After clustering, and compression, our approach
outputs a dictionary in which every entry maps to a unique path
table. However, after this stage these tables must be recombined
into one single table to help identifying false positives (details in
§2.2). After recombination, this stage has one dictionary and one
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Figure 3: Compression of input forests
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path table for the entire forest. The dictionary entries now point to
subsets of entries in the unique memory-mapped table.

2.2 Phase 2: Parameter Selection
As described in the previous section, our approach makes use of
dictionaries to reduce the storage demands of memory mapping.
However, during inference each input must be compared to every
entry in the dictionary. While this lookup does not require mem-
ory accesses and uses fast bit-wise operations in lieu of branching,
a large number of dictionary entries can become the bottleneck
during inference, particularly if the path table already fits in cache
(fast memory accesses). Given the inverse proportionality between
number of entries in the dictionary and the size of the table, the clus-
tering threshold described in the previous section, which controls
dictionary size, must be carefully tuned.

Furthermore, the possibility of scaling to multiple cores adds
even more complexity. Figure 4 shows one possible division of a
forest across four cores using our approach. In this example, both
the path table and the dictionary are split into two partitions each.
Partitioning path tables requires running two copies of the dictio-
nary. For any input, a comparison is made with the key features
of the dictionary entries. If there is a match, a memory lookup is
attempted (a binary sequence is generated with the mapped fea-
tures and the address is mapped to an index of the table using the
entry ID), if the address searched is within the partition of the path
table that corresponds to that core, a result is computed. Path table
partitioning decreases storage demand per individual core but may

only indirectly affect latency. Dividing the path table only improves
latency if cache misses have a big impact on performance of the
specific workload. Figure 4 also shows the division of the dictionary.
When the dictionary is partitioned, a copy of each path table is
made. During inference, each core compares the input with the
key features of the available dictionary entries, and performs the
corresponding memory accesses. The partitioning of the dictionary
directly impacts latency, but the overhead of aggregating results
must be considered. Different values for inter-core communication
latency and different methods for result aggregation can lead to
different partition strategies. The combination of path table size,
dictionary size, the number of splits of these data structures across
cores, and the overhead of partitioning complicates modeling the
ideal strategy given a workload. Our algorithm searches the space
given by these parameters by exploring different parameter settings,
executing and selecting those partitioning strategies that lead to
best results.

2.3 Phase 3: Improving Path Table Selection
The use of dictionaries to compress a path table renders many
entries in the dictionary irrelevant for a particular input. For the
dictionaries to be effective, the decision to access a path table given
the features in a dictionary entry must be a fast one. To solve this,
we use bloom filters [3], a probabilistic data structure used to query
set membership. Unlike perfect hashing that correctly labels inputs
and non-members, bloom filters can report false positives; some
non-members can be labeled members but members are never la-
beled as non-members (i.e. no false negatives). When non-members
greatly outnumber members, like in our compressed forest with
many dictionary entries, bloom filters can afford fast, resource-lean
membership lookups.

During inference, for every dictionary entry, we use bit-wise
operations to simultaneously decide if the dictionary entry is rele-
vant to the input, and compute the location of the path table that
would be accessed if the dictionary entry is relevant to the input. As
shown in Figure 3, our dictionaries distinguish between common
and uncommon features.

Given input features, we use common and uncommon features
to create a binary sequence representing a mapping of the input in
the features present in the dictionary entry. Then, we use a bit-mask
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representing the common features to decide membership of the
input in the table mapped by that entry.

The approach described above suffices when the dictionary en-
tries map entire subtrees. However, because we allow for grouping
of paths from different trees or subtrees, and because of the greedy
algorithm for clustering, false positives are possible. To correct for
this, we use the entry ID of the dictionary entry when hashing the
binary sequence into the recombined memory mapped table.

3 EVALUATION
In this section, we compare our results to Forest Packing. We start
with a Forest trained by Scikit-learn. Our evaluation uses Python
scripts for front-end processing. The front-end communicates to
inference processing engines on a UNIX domain socket. We imple-
mented our design in C/C++, allowing for low level control of data
layout and bit operations.

We tested our approach on multiple processors with varying
cache size and clock frequency. Unless noted otherwise, we used an
Intel Xeon(R) E5-2650 v4 @ 2.20GHz with 12 cores, 30 MB of LLC
and 132 GB of memory. We also used (1) Intel Xeon(R) E5-2620, (2)
Intel Xeon E5504, and (3) AMD Ryzen 5 3500. Our default platform
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Figure 7: Workflow for AI inference using our approach.
This example shows digit recognition where input data is
a 28 x 28 image.
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timized forests against Forest Packing.

runs stock Linux kernel version 3.10.0, Python 3.6.8 and Scikit-learn
20.

For our comparison, we used the MNIST with 10K samples for
testing. Input data to MNIST are 28 × 28 images of a handwritten
digit. Each pixel is a feature (784 in total). The output classifies the
image as a digit (0–9).

Figure 8 examines response time across number of cores. We use
the experiments and results reported in [6] on MNIST to compare
our results with Forest Packing with multiple cores available. The
average response time for our design is measured by the running
10000 samples on MNIST dataset without batching. Both forests are
comprised of 256 trees. Two versions of each forest are compared,
with the maximum depth of each tree set to 6 and 10 respectively.
On those two settings, we achieve speedups of 34× and 4×.

Additionally, we observed 40× speedup for our approach over
Scikit-Learn on our experiments while also achieving a reduction
of both Branch Misses and Cache Misses of 99%.
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4 RELATEDWORK
Recent work has advanced explainable ML models [2, 7, 8, 10, 13,
16, 17] and shown that decision trees have unique properties for
explain-ability [11, 12]. Further, edge computing applications, e.g.,
unmanned aerial vehicles for crop scouting [4, 5], federated learn-
ing with active cameras [19], and interactive classrooms [14, 15],
increase the demand for explainable AI for end users. While trees
within forests are explainable, random forests are more complex
and require additional structure to track salient features. There is
also an innate performance to quality trade off with tree height,
improving accuracy but making forests more complex [9].

Forest Packing is the closest related work [6]. Browne et al. also
seek to speed up response time for AI inference services. Their
approach implicitly memory maps data by storing trees in depth-
first order. Nodes in the same path are loaded into the same cache
line and checked against input data. Paths are organized by how
frequently they are accessed in testing data, prioritizing cache lines
for hot paths. However, testing data may not reflect the statistical
path distribution observed when a forest runs inference as a service.
However, for complex data used on a wide range of services, hot
paths will likely differ. By explicitly memory mapping paths, our ap-
proach forests can cache whichever paths are used most frequently
by a service. Another key difference is that our approach does not
follow pointers from node to node. By using a dictionary, our ap-
proach reduces branch mispredictions and separates compute and
cache capacity concerns. Further, our approach is less dependent
on system scheduling and instruction-level parallelism.

Prior work has explored deterministic finite automaton (DFA) on
custom hardware [18, 20] and for processing XML and JSONfiles [1].
These efforts share our goals of efficiently using processor resources
for DFA workloads. our approach includes unique implementation
optimizations targeted at random forests.

5 FUTURE
In this workshop paper, we presented an approach to optimize
trained decision forests, reducing inference latency by compress-
ing via memory mapping. Our approach improve an otherwise
inefficient process by considering cache allocation and many core
processor configurations and by using efficient data structures to
minimize branch mispredictions and memory lookups that neg-
atively affect inference latency. Our approach includes a novel
method of compressing forests that combines memory mapping
with clustering to optimize the number of memory lookups and
storage demands. In future work, we will further explore the system
design, providing more rigorous models to guide optimizations. We
will also generalize our method for searching the space of hyper-
parameters to find minimal latency.

In this work, we present early and very promising results compar-
ing our approach against state-of-the-art decision forest libraries.
We achieved much faster inference speeds on the widely used
MNIST benchmark. However, in future work, we would like to
conduct a more detailed evaluation that considers multiple data
sets, inference on a wide range of heterogeneous, parallelized sys-
tems. Also, we would like to further explore explainability bench-
marks, an increasingly critical component of human-machine in-
teractions in edge and Internet-of-Things systems. We hypothesize

that memory-mapped forests can support single-pass explainabil-
ity, greatly improving throughput for this workload compared to
any other widely used machine learning platform, including neural
networks.
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