Session 1: Data Centers and HPC Systems

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

FPVM: Towards a Floating Point Virtual Machine

Peter Dinda

Northwestern University

Alex Bernat
Northwestern University

Christopher Kraemer
Northwestern University

Abstract

Alternatives to IEEE floating point arithmetic have become all the
rage. Some extract more representational power out of the avail-
able bits. Others offer the potential for lower or higher precision
than is available in IEEE-compatible hardware. Even an “interface
to the real numbers” has recently been proposed. Using such al-
ternative arithmetic systems within an existing scientific or other
significant codebase is a major challenge, however. We explore
how to address this challenge through virtualizing the IEEE float-
ing point hardware, specifically on x64. The goal of the floating
point virtual machine (FPVM) is to allow an existing application
binary to be seamlessly extended to support the desired alternative
arithmetic system with overheads determined by that system and
not the virtualization mechanisms. We describe the prospects, is-
sues, and tradeoffs for four different approaches for building FPVM:
trap-and-emulate, trap-and-patch, binary transformation, and IR
transformation. We then describe the design and implementation
of our current design, which combines static binary analysis/trans-
lation and trap-and-emulate execution. We evaluate our FPVM
implementation on several benchmarks, virtualizing them to use
posits and MPFR. Finally, we comment on kernel- and hardware-
level innovations that could further reduce overheads for floating
point virtualization.

CCS Concepts

« Software and its engineering — Operating systems; Vir-
tual machines; Correctness; Software reliability; Operational
analysis; « Mathematics of computing — Numerical analysis;
Arbitrary-precision arithmetic.

Keywords
floating point arithmetic, virtualization, software development,
IEEE 754

This project was supported by the United States National Science Foundation via
grants CNS-1763743, CCF-2028851, and CCF-2119069.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPDC °22, June 27-July 1, 2022, Minneapolis, MN, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9199-3/22/06...$15.00
https://doi.org/10.1145/3502181.3531469

Nick Wanninger

Northwestern University

Charles Bernat
Northwestern University

16

Jiacheng Ma

Northwestern University

Souradip Ghosh

Northwestern University

Yehya Elmasry

Northwestern University

ACM Reference Format:

Peter Dinda, Nick Wanninger, Jiacheng Ma, Alex Bernat, Charles Bernat,
Souradip Ghosh, Christopher Kraemer, and Yehya Elmasry. 2022. FPVM:
Towards a Floating Point Virtual Machine. In Proceedings of the 31st Interna-
tional Symposium on High-Performance Parallel and Distributed Computing
(HPDC °22), June 27-Fuly 1, 2022, Minneapolis, MN, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3502181.3531469

1 Introduction

Virtually all applications in scientific and engineering domains, as
well as applications built on machine learning techniques, make
extensive use of IEEE 754 floating point arithmetic [32, 33] through
its numerous implementations. Floating point has proven to be
extremely effective at enabling high performance while providing
behavior that is sensible to a knowledgeable developer.

Motivation: The preeminence of IEEE floating point hardware
implementations is being challenged along three fronts. First, al-
ternatives such as unums/posits [26, 37], BFloats[38], logarithmic
arithmetic [3], and others [29, 43] potentially extract more useful
representational power out of the same number of bits, or have
range/precision tradeoffs that are more suitable for some modern
workloads such as machine learning. The second front involves
using these representations, as well as IEEE floating point arith-
metic (for example in GNU MPFR [23] or libBF [7]), at arbitrary
precisions, including much higher precision than the hardware
directly implements. Finally, there are proposals to rethink float-
ing point and related representations altogether in favor of an API
to the real numbers [11]. Such an API would allow programmers
to reason about their code using the rules of standard arithmetic
and achieve reasonable performance in many cases. This approach
(or higher precision) might also mitigate the effects of misunder-
standings developers have about various aspects of IEEE floating
point [18, 20].

Limitations of state-of-the-art approaches: Despite their
benefits, using alternative arithmetic systems within an existing
scientific or other significant codebase is a major challenge. A night-
mare scenario is having to rewrite the application using a new APL
A more pleasant scenario is when the programming language sup-
ports pluggable number representations, such as Fortran 90’s kind
parameter for type specification, or the recent VPFloat [35, 36]
extension to C++. In this case, the programmer needs to modify
much less source code, but they still must deal with cross-language
issues (if even possible) and update and rebuild any libraries their
codebase uses. Of course, these become daunting tasks for a large
application. Additionally, any freshly rebuilt application may need

https://doi.org/10.1145/3502181.3531469
https://doi.org/10.1145/3502181.3531469

Application Binary Application Binary
— —Tm —-
FPVYM

Parameters Parameters

— Results
With Alternative
Arithmetic Model

End User Job Submission Production Scheduler Running Job

1 Overhead Limited by
1 Alternative

v Arithmetic Model
Application Binary, Application Binary} — > Results
— —_— FPVM Wl.lh Altgrnatlvc
Arithmetic Model
Parameters Parameters

Analyst Independent Test or
Submission Clone

Running Job on Test HW
or Production HW
\,

Figure 1: Desired FPVM model.

re-certification if there are critical dependencies to it. What if we
want to use alternative arithmetic in an existing, trusted binary?!

There are also a large range of tools (e.g. [6, 8, 9, 14, 15, 22, 39, 42,
44, 48, 52-54]) whose goal is to improve the quality of the source
code, generally by identifying sections that have high dependence
on precision or on compiler/hardware optimization choices. These
sections may have numerical stability problems that are due to algo-
rithmic design and implementation issues, or where optimizations
are buggy or change the semantics of the source code. Tools such
as the ones listed often incorporate shadow arithmetic that is done
using a different precision than the original code. Some of the tools
operate on existing application binaries, avoiding the issues with
source-level approaches to using alternative arithmetic described
above. However, because the tools’ goal is to point out problematic
code to the programmer, they typically have substantial perfor-
mance overheads. Execution under one of these tools quickly builds
code coverage, making this less of a concern.

Key insights and contributions: We propose an alternative
approach, namely virtualization of IEEE floating point hardware.
Existing, unmodified application binaries could be run in a Floating
Point Virtual Machine (FPVM) with the user choosing the desired
alternative arithmetic system when the program is run. Each in-
struction would run directly on the underlying hardware at full
speed provided the instruction’s arithmetic does not create an im-
precise result. When an imprecise result occurs, the instruction
would instead be executed via the alternative arithmetic system.?
Data would flow through the dynamically executing instructions
of the original binary in precisely the way it does using standard
execution, with the floating point values in the program either
serving as actual IEEE numbers or as proxies for the numbers in
the alternative arithmetic system.

Our use of the term “virtualization” is no accident. General-
purpose virtual machines have little to no overhead compared to
native execution. Our goal is for FPVM to have similar performance
characteristics. In particular, we want the cost of virtualizing the
hardware floating point unit to be low enough that it is dominated
by the cost of the alternative arithmetic system. Reaching this
cost objective would make it practical to substitute alternative
arithmetic and/or arbitrary precision much as we might choose to
use virtualization to effortlessly gain the use of a more powerful

We note that changing the arithmetic system used by a certified application binary
might well require it to be re-certified for the results to be trusted. However, being
able to run below a certified binary would allow for experiments in which only one
variable—the arithmetic system—is changed.

2 Another choice would be to always use the alternative arithmetic system.

remote server. Figure 1 illustrates the desired model. The top path
shows the use in production, while the lower path shows the use
by an analyst. In both cases, we want to be able to operate on
the specific binaries used for production science, and we want the
overhead of using FPVM to be the overhead of using the alternative
arithmetic system.

Experimental methodology and artifact availability: In
this paper, we describe our progress toward building an effective
and performant FPVM. We examine four different approaches for
building an FPVM as well as their specific benefits and tradeoffs.
These approaches are trap-and-emulate, trap-and-patch, static bi-
nary analysis and transformation, and intermediate representation
(IR) transformation. We then describe the design and implementa-
tion of a FPVM that uses a hybrid approach that combines static
binary analysis and transformation with dynamic trap-and-emulate
execution. The hybrid FPVM was then validated on several common
floating-point benchmarks and then evaluated on select scientific
applications.

Interestingly, much like the general purpose x86 ISA prior to
the availability of hardware virtualization support, the x64 floating
point ISA(s) and hardware are almost virtualizable: Some instruc-
tions unfortunately do not trap under all the necessary conditions.
As a consequence, a completely trap-and-emulate approach, in
which there is no overhead unless an alternative arithmetic value
is produced or consumed, is not possible. Our hybrid approach
uses static analysis and transformation to find any such instruc-
tion where a floating point value could flow. These locations are
then patched with software checks to detect NaNs. In this way,
we can track our NaN-boxed values even in those instances where
hardware currently cannot do so. Similar to general purpose virtu-
alization, we believe that hardware changes to allow the floating
point unit to be “fully virtualizable” are possible.

Our detailed contributions are as follows.

e We outline the concept of a floating point virtual machine
(FPVM) that can add alternative arithmetic to existing pro-
grams, ideally at the level of existing, unmodified binaries,
and can do so with low virtualization overhead.

e We describe how NaN-boxing can be used as the vehicle for
tracking alternative arithmetic values using the program’s
original floating point values, as well as the limits in this
approach.

e We describe the prospects and tradeoffs of four basic ap-
proaches building an FPVM: dynamic trap-and-emulate, dy-

namic trap-and-patch, static binary transformation, and compiler-

based approaches, in particular static IR-level transforma-
tion.

e We describe the design and implementation of a hybrid
FPVM for x64 that is based on trap-and-emulate, but uses
static binary analysis and transformation to handle cases
that x64 hardware cannot currently detect.

e We show that our hybrid FPVM can be combined with several
alternative arithmetic systems: emulated x64 floating point,
posits, and arbitrary precision floating point arithmetic as
implemented in GNU MPFR.

Session 1: Data Centers and HPC Systems

64-bit double format

63 62 52 51 0
I+/-[Exponent]

Mantissa/Fraction l

NaN Boxing

63 0
[uint64_t Pointer (MPFR)]

l FPVM Mask Clear Encoding
[0x0000] 48 bit address (payload)]

l FPVM Set Mask
[0x7ff4] 48 bit address l

Cast to Double
63 62 52 51 47 v 0
0 1111111111?]0100] 48 bit address] Signaling NaN

0x0000 48 bit address

[uint64_t Pointer (MPFR) I

Figure 2: NaN-boxing of pointers using signaling NaNs.

e We validate our FPVM tool by running it with benchmarks
and test codes from FBench, NAS, Mantevo, Enzo, a Lorenz
system simulator, and a three-body problem simulation.

e We analyze the overhead of our tool on the same test codes,
considering the cost of floating point virtualization and the
overall effect on performance.

e We apply our FPVM tool to the test codes where higher pre-
cision is likely to change results due to modeling of chaotic
dynamics, primarily Lorenz and three-body.

e We describe changes to the hardware and operating systems
layers that would further reduce the overhead and avoid the
use of static analysis and transformation.

Our FPVM prototype is not yet available, but we intend to make it
publicly available via presciencelab.org.

Limitations of the proposed approach: As noted above, there
are two current limitations to a trap-and-emulate approach to float-
ing point virtualization, such as our prototype. The first is the high
hardware and kernel costs involved in delivering a trap on x64.
The second is that the fact that x64 floating point hardware only
partially meets the requirements for classical virtualization, ne-
cessitating a hybrid approach. Section 3 compares and constrasts
our approach with others, while Section 6 describes hardware and
kernel changes that would reduce the overhead.

2 NaN-boxing

Conceptually, in an FPVM system, both original floating point
values and values in the alternative arithmetic system co-exist,
with promotion/demotion between them occurring on an as needed
process. Whenever possible, an instruction is executed directly by
the hardware using its original unpromoted input operands and
producing unpromoted output operands. If the output cannot be

18

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

computed exactly®, the instruction is emulated using the alternative
arithmetic system and the output operands are promoted. When
an instruction uses a promoted input operand, the instruction is
similarly emulated.

All of our approaches to floating point virtualization thus share
the common need of being able to track the flow of a promoted value
from instruction to instruction in precisely the same way that the
unpromoted value would have flowed. Additionally, we would like
to readily and cheaply identify when a promoted value is used as
an input operand of an instruction. To achieve these requirements
we use the technique of NaN-boxing. With NaN-boxing, a given
floating point value in the original program, whether in memory
or in a register, can represent one of two things:

e An unshadowed value, which is an original floating point
value that is not a NaN.

o A shadowed value, which encodes a pointer or key that is used
to find the corresponding value (the shadow value) within
the alternative arithmetic system that is being used. The
shadowed value is encoded as signaling NaN.

As we describe later, the x64 hardware, and others, can be config-
ured to trap when encountering a signaling NaN, and hence can
detect when shadowed values are used in our scheme. Note also
that NaN values (and hence shadowed values) flow through the
program directly in place of the IEEE floating point values.

NaN-boxing [13, 58] is technique that is used in some high-level
language implementations. The observation is that the IEEE stan-
dard floating point values have numerous possible representations
of a NaN. For a 64 bit floating point value, 52 bits are used for the
mantissa, and 11 for the exponent. A NaN is encoded by setting
the exponent bits to all be high, and allowing for at least one bit of
the mantissa to be nonzero. It is common to differentiate signaling
NaNs (those that can raise an exception when generated or used)
and quiet NaNs (those that do not do so) through the use of the
high-order bit of the mantissa (if it is set, we have a signaling NaN).
Suppose we require only signaling NaNs. As can be readily seen,
there are 2°! possible encodings of a signaling NaN.*

NaN-boxing makes use of this flexibility to encode up to 51
bits of extra information into a signaling NaN. In some JavaScript
implementations, for example, all scalar values are encoded at their
base as 64 bit floating point values. Integers and pointers (e.g.,
strings) are encoded by creating a NaN and embedding the value as
the 51 extra bits that are available. When handed a scalar value, the
JavaScript interpreter can readily check its encoding to determine
if it is an actual floating point value, a NaN, or some other type by
simply checking the exponent and two bits of the mantissa.

We use NaN-boxing to encode pointers (shadowed values) to
alternative arithmetic values (shadow values) into the existing float-
ing point values that are used by x64 floating point instructions.
This encoding is such that the “NaN” will be interpreted by the

3For example, if the original instruction causes an overflow, underflow, or rounding
event.

41t is important to note that while the size of the x64 virtual address space is technically
2%, given canonical addressing, only a fraction of this can actually be used. In Linux,
the user portion of the address space (< 48 bits, currently) readily fits into 51 bits
at this time. On a different platform, or if this ever ceases to be the case on x64, the
shadow value allocator could be implemented to use a chunk of address space that
can be addressed with 51 bits, or the 51 bits could simply be used as a key to a hash
lookup scheme instead of directly as a pointer.

Session 1: Data Centers and HPC Systems

hardware as a signaling NaN, resulting in an exception whenever
such a value is used by an instruction. This exception is ultimately
handled by FPVM, which decodes the “NaN” into the embedded
pointer to find the corresponding shadow value. If a new shadow
value is generated, the pointer to it is encoded into a signaling NaN.
Figure 2 illustrates our specific decoding and encoding processes.

Limitation: NaN-space ownership: In our scheme, all sig-
naling NaNs are “owned” by FPVM. If the program itself is using
signaling NaNs, it will still operate, but will never “see” a signaling
NaN.

Limitation: universal NaNs: Regardless of the arithmetic sys-
tem involved, some computations simply do not result in real num-
bers. For example, g is not a real number and thus will be a NaN in
any alternative arithmetic system. How such a universal NaN can
be made visible to the original program is unclear. One possible
approach is to treat any signaling NaN without a corresponding
shadowed value as a universal (“true”) NaN.

Limitation: float problem: Our scheme is designed for 64 bit
(and larger) IEEE floating point numbers. Of course, NaN-boxing
can also be applied to smaller numbers, such as floats. However,
given that their mantissas are much smaller (23 bits for float) the
number of distinct pointers or keys that can be encoded is likely to
be insufficient.

Limitation: externals: Floating point virtualization should ide-
ally be independent of the structure of code within a virtualized
process. However, this is quite challenging for some of our ap-
proaches. If there is a boundary in the process between code that
is under FPVM control and code that is not, the boundaries need
conversions from shadowed values to regular floating point values.
This is a particular issue for the static patching and compiler-based
approaches.

Limitation: printing problem: Standard output facilities, such
as printf are specifically designed to convert an IEEE floating
point representation to a human-readable string. Of course, for
shadowed values, these tools would simply see signaling NaNs. To
handle this, we must hijack such output functions to call back to our
output code, for example, to promote “%1f”. Section 4.2 describes
our technique for this.

Limitation: serialization problem: Code that writes floating
point values to storage or to a network connection will instead
be writing shadowed values (i.e., the NaN-box encoded signaling
NaNs. While in principle FPVM could transport the shadow values
alongside the shadowed values and reconstruct the result at the
destination® or in the file, this is in effect the deep copy problem
from RPC. Another approach that could be taken is to do conversion
back to IEEE floating point values at the point of serialization, but
this would entail losing all the promoted values.

3 Approaches to floating point virtualization

We considered four approaches to building an FPVM. These points
in the design space have tradeoffs with respect to code coverage,
ease of use, static and dynamic overheads, software engineering
focus, and other aspects that are summarized in Figure 3. The hybrid
FPVM described in Section 4 adopts the trap-and-emulate approach,

5By interposing on MPI calls, for example.

19

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

but uses simple static analysis-and-transformation to work around
the fact that the x64 floating point is not (yet) fully virtualizable.

3.1 Trap-and-emulate

The trap-and-emulate approach takes its inspiration from how a
classic virtual machine or hypervisor operates [25, 56], although
it can (and should ideally) operate entirely at the same privilege
as the application, since protection is not a concern. Whether it
is user-level or kernel-level software, it is also unconcerned with
interrupts. It is driven entirely by exceptions caused by floating
point instructions and related instructions in the ISA. In effect, this
FPVM approach adds the floating point virtualization capability to
an existing process abstraction. This also makes it readily applicable
to any code that a process executes. This is a major plus from a
requirements perspective—if the user has something that runs, we
can virtualize its floating point operations.

The formal requirements for hardware to support virtualization
are well-known [49]. For the trap-and-emulate approach to floating
point virtualization when Section 2’s NaN-boxing approach is used,
the general requirements simplify: the hardware requirement is
that a floating point instruction that consumes a NaN, or produces a
rounding, denormalization, underflow, or overflow event must trap
so that FPVM is invoked. This requirement is partially met already
by the x64 hardware, and in our hybrid approach (Section 4) we
patch instructions where this is not true, similarly to how VMware
handled the partially virtualizable x86 general purpose ISA prior to
2005 [17].

For a dynamic floating point instruction that does not trap (and is
not patched), there is no overhead—it simply executes as normal. If
the instruction does trap, FPVM is invoked to decode the instruction
and emulate it using the alternative arithmetic system.

Shadowing and garbage collection: Unlike instruction emula-
tion in a general-purpose VMM, a trap-and-emulate FPVM must
maintain essentially arbitrary shadow values (numbers represented
in the alternative arithmetic system)—these are not constrained to
privileged register state as in a VMM. Moreover, temporary values
are included. Conceptually, each time an instruction is emulated,
a new shadow value is potentially produced. While the shadowed
value (the NaN-boxed pointer to the shadow value) is implicitly
“garbage collected” by normal function execution,® these events are
invisible to a trap-and-emulate FPVM. As a consequence, shadow
values accumulate in FPVM and must be explicitly garbage collected
by it.

3.2 Trap-and-patch

The trap-and-patch approach extends and builds upon the trap-
and-emulate approach, and can offer the same ideal interface to the
user. Trap-and-patch uses the same hardware trap mechanism as
trap-and-patch, but instead of decoding and emulating the faulting
instruction, it instead replaces the instruction with a new instruc-
tion sequence (the patch), and also dynamically generates a custom
handler for the instruction being replaced. While these two ele-
ments can be combined, the patch is typically size-constrained so

®For example, on a return instruction, variables on the stack frame values, are garbage
collected. As another example, when an instruction is executed twice with the same
destination operand, the operand is overwritten and the old value is discarded.

Session 1: Data Centers and HPC Systems

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

Approaches
Aspects Trap-and-emulate Trap-and-patch Static analysis-and- | Compiler-based-
transform transform

Code supported

all (any process)

all (any process)

complete binaries that are
statically available

complete IR / source code
that is statically available

User requirements

none

none

must provide all binary
code (libraries) before use

must provide all IR code
or source code before use

Fully virtualizable FP (or

Fully virtualizable FP (or

HW requirements selective patch) selective patch) none none
Static costs (compilation) || none none huge large
Run-time overhead when
alternative arithmetic not || none low low low (<binary approaches)
involved Fend s
un—tlm.e overhead When || pioh (but OS+HW depen- .
alternative arithmetic in- low low low (<binary approaches)
dent, see §6)
volved
Hardware-independent no no no yes
Major SE focus RT/OS RT/OS/JIT Binary analysis/trans- Compiler
form tool

Figure 3: Comparison of the approaches. Boldface indicates most desirable properties.

that it can be easily inlined, while the custom handler is a separate
function.

The next time the instruction site is encountered, no hardware
exception can occur. Instead, the patch invokes the custom handler.
The handler does a precondition check that determines if any of the
input operands to the replaced original instruction are a NaN. If not,
then the original instruction, embedded in the handler, is executed,
knowing it will not fault. The handler then does a postcondition
check to see if the result was rounded, underflowed, overflowed,
etc. If not, then execution returns to the normal flow subsequent
to the patched instruction. If either check fails, the custom handler
includes instruction-specific code that invokes FPVM internals to
emulate the original instruction. These checks are effectively the
same checks as the hardware performs in trap-and-emulate.

The trap-and-patch approach is substantially more complex than
trap-and-emulate because it is doing architecture-specific binary
code generation for both the patch and the custom handler. Addi-
tionally, it must be able to apply the patch regardless of the size of
the original instruction. However, if the original instruction were
to frequently see or produce shadowed values, trap-and-patch can
operate with much less overhead than trap-and-emulate. The pri-
mary reason why is that the delivery cost of a floating point trap
generated by the hardware is currently substantially higher than
the cost of executing the patch, detecting a precondition/postcondi-
tion check failure, and calling into the handler. On the other hand,
if the original instruction rarely sees or produces shadowed values,
trap-and-emulate will be cheaper because software checks always
have an overhead, unlike the hardware checks, which only have
overhead only when they fire.

On a typical RISC architecture, patch generation is simplified
due to the simple instruction sizing, and the patch can essentially
be a single instruction. On x64, however, it is nontrivial because
instructions may be short. In particularly, if the instruction is five
bytes or longer, it can be replaced with a relative jump or call to the
custom handler. If it is shorter than five bytes, the patch needs to
span multiple instructions and may straddle the end of a basic block.
These are not showstoppers, and there are tools that accomplish
such patches (e.g., DyninstAPI [30]), but engineering complexity
now expands to include those tools.

To consider the prospects of trap-and-patch, we developed a
simple proof-of-concept that would create a patch and handler for

20

a simple x64 SSE addition operating on a pair of registers. Our goal
here was to measure the runtime overheads of a patch+handler
operating when the conditions are met versus not. These numbers
are included in Section 5.

Note that the software engineering effort of trap-and-patch is
focused on the JIT code generator needed to produce the patch
and handler. Operating at this level—writing the code to generate
the code that will be used at run-time—is substantially more error
prone and difficult to debug. However, given a working trap-and-
emulate system, the trap-and-patch approach could be developed
incrementally.

3.3 Static binary analysis and transformation

In this approach, instead of the trap-and-patch model of dynami-
cally patching the running process with invocations of FPVM, we
instead statically transform the application binary so that all in-
structions that could possibly employ a shadowed value are patched.
This instrumented binary is then linked with FPVM and used in
place of the original. At runtime, no hardware checks are used at all.
Because the transform is static, it is simpler than dynamic patching,
and there is a wider range of tools, such as e9patch [21], which
we employ later, that can be leveraged. A deficiency is that all in-
struction sites now include the overhead of the software condition
checks regardless of whether they ever trigger. Another deficiency
is that the static analysis and transformation process can be very
time consuming, and likely needs to be repeated whenever the
binary changes.

It is important to point out that with this approach, it is the binary,
as opposed to the process, that is patched. As a consequence, it is
necessary for all code that the program could ever use to be available
to the static transform process. This a tall order for the user because
most binaries use dynamic linking aggressively. Furthermore, larger
scientific applications are likely to use more dynamically linked
libraries. There is also no guarantee that all dynamic libraries will
be visible as imports in the application binary—a shared library
can always be explicitly linked into the program at runtime using
a name available only at runtime.” Finally, even if the entire binary
is statically linked, some libraries, such as libm.a and the GNU
standard C library still do architecture-specific code selection via
an internal patching scheme.

"The class loader interface of Java is one example.

Runtime

Final Binary + DLLs

Unmodified System
Libraries

FPVM Compilation

o llvm-link
Application Code WPIR + FPVM Runtime
(C,C++, etc.)

gclang FPVM Pass

Math
Wrapper

Object Files
(application.o)

LD

gclang

Whole Program IR
(WPIR)

Alternative
Arith i

(e.g. MPFR) Clang

Transformed IR ‘

Output Final Object File

Unmodified Kernel
Wrapper
Custom))
Allocator Final Binary Unmodified Hardware

Figure 4: Compiler-based approach.

3.4 Compiler-based

The compiler-based approach requires that intermediate representa-
tion (IR) code (including for all libraries) is available. If only source
code is available, it is first compiled into IR. Note that this increases
the challenge for the user well beyond that of the static analysis
and transformation approach because they must now collect IR
code or source code. That said, on some systems (e.g. Apple), code
is starting to be distributed in an IR representation to facilitiate
optimizing it for the specific machine at install time. This would
reduce the challenge.

The IR represents the program in an abstract, architecture in-
dependent manner that is suitable for analysis, transformation,
optimization, and the generation of architecture-specific object
code. We specifically use LLVM IR [41], which is a static single
assignment form (SSA) using a relatively small abstraction instruc-
tion set. In contrast to something like the x64’s several(!) floating
point ISAs, their hundreds of instructions, and handful of encod-
ings, there are only a tiny number (13) of LLVM IR instructions
that we are concerned with. There exist widely used third-party
tools that complement LLVM, such as WLLVM [51] and gclang [31],
which allow us to extract whole-program IR of the entire program
with extremely small modifications to the build process. Using
the whole-program IR and building from it greatly simplifies the
transformation step (as there is only one IR module to transform)
and produces more opportunities for successful interprocedural
analysis and optimization.

The compiler-based approach transforms the code at IR level to
introduce the equivalent of the patches and custom handlers intro-
duced by the static analysis and transformation approach. Because
the LLVM IR is so much simpler than any ISA, this transformation
involves far less engineering effort. Additionally, the transformed
code can be subjected to another round of optimization which may
be able merge the patches and handlers with application code, thus
reducing their overheads compared to binary patching. The run-
time system for the approach is essentially the same as for the other
approaches. Figure 4 illustrates the compiler-based approach as we
have implemented it in an initial prototype. The compilation aspects
of the VPfloat system [35, 36] are similar, except they make the
“pluggable float” type explicit in the language (C++). The program-
mer also needs to modify the source to use it. In a compiler-based
FPVM, the compiler and a complementary runtime would manage
shadowing of objects in the alternative arithmetic system and their

allocation/deallocation via static analysis and transformation-also
similar to the VPFloat system’s backend code generators.

While rebuilding the entire codebase is a substantial disadvan-
tage for our usage scenario compared to the other approaches, the
compiler-based approach has two substantial advantages as well.
First, the compiler’s code generator can easily target a different ISA,
which means targeting a different processor (e.g., ARM, RISC-V,
possibly GPU) does not require a new engineering effort. The other
approaches require rebuilding much of the system to support a
different processor. Second, the transformation can take into ac-
count the connection between shadowed values and shadow values
more cleverly. In particular, it knows exactly when a program tem-
porary is garbage collected, and thus can easily add a callback to
the runtime to also free the shadow value. This can substantially
simplify garbage collection within FPVM, lower the overhead of
garbage collection, and reduce memory overheads. Finally, at the
compiler-level there are additional opportunities to merge and/or
reuse shadow values through the use of liveness analysis. Such
optimizations would reduce overheads.

4 Hybrid FPVM for x64

Our prototype hybrid FPVM system is designed to run at user-
level on top of an unmodified x64 platform running an unmodified
Linux kernel. It runs underneath an existing application binary.
The core of the implementation is a trap-and-emulate engine akin
to a classical VMM that allows an alternative arithmetic system to
be used. Before the binary can be used, however, it must be run
through a static analysis and patching process to catch corner-cases
that trap-and-emulate will fail to catch on its own. An abstraction
layer allows alternative arithmetic systems to be ported for use
with FPVM.

4.1 Trap-and-emulate engine

The core trap-and-emulate functionality of our FPVM implementa-
tion leverages the ideas behind our FPSpy analysis tool [19]. As with
FPSpy, FPVM is implemented as an LD_PRELOAD library, loaded by
the dynamic linker at program launch time before all other libraries.
This allows FPVM to insert itself in front of any other part of the
runtime, effectively acting as a shim between the application binary
and its libraries. Like FPSpy, FPVM also installs itself as the handler
of SIGFPE signals, which result when the floating point hardware
detects exceptional conditions. FPVM manages the floating point
hardware control state such that these conditions are configured to
be detected and to result in hardware faults.

FPSpy responds to a hardware fault and the resulting SIGFPE by
recording the execution of the faulting instruction, and then allow-
ing it to be executed as normal. In contrast, FPVM responds to the
same situation by emulating the faulting instruction using the alter-
native arithmetic system, and storing pointers to the shadow results
in the process’s memory and/or registers using the NaN-boxing
technique of Section 2. The runtime component the hybrid FPVM
is broken down into four main components: trapping, decoding,
emulating, and garbage collecting. An overview of the architecture
is shown in Figure 5.

Trapping: The x64 floating point hardware includes a control
and status register, %mxcsr, that maintains a set of condition flags

Session 1: Data Centers and HPC Systems

Emulator

R »
Decode Cache [~2¢he Hit

=y

Capstone
Disassembler

Binder

Operator Dispatch

Decoder

? Decode

FPVM Signal Handler

Alternative Math

Clear %mxcsr
Read %rip

? SIGFPE (rounding, denorm, underflow, NaN produced) ¢

—} Application Code addsd %xmmO, %xmmi subsd %xmm2, 16(%rsp)

Figure 5: Hybrid FPVM prototype’s trap-and-emulate architecture

defined by the IEEE floating point specification. Unlike integer con-
dition codes, these flags are sticky, meaning they must be manually
cleared by software. FPVM manages these flags so that they start
at zero for each instruction. The flags record a small set of events
(result was rounded, result overflowed, result underflowed, result
was denormalized, and NaN was produced or consumed). %mxcsr
also contains parallel exception mask flags for each of these condi-
tion flags, that, when clear, cause a precise exception (a fault) to be
raised to the kernel if the corresponding condition code flips to one
(ie., when the event occurs) during the execution of an instruction.

The kernel translates this exception into a SIGFPE signal to the
process. The signal is delivered to the handler FPVM previously
installed. FPVM inspects and records the %mxcsr register to deter-
mine the reason for the signal, and then clears the condition codes
within in preparation for the next instruction. The signal handler
then reads the instruction pointer from the kernel-provided signal
trap frame to determine the location of the faulting instruction.

Decoding and decode cache: Once the address of the faulting
instruction is known, it is then fed into the decoding subsystem.
This code keeps a cache of decoded instructions—a map from address
to struct instruction-that is quickly queried to avoid decoding
the same instruction multiple times. This decode cache is critical
to lowering latencies, as is discussed in Section 5.3.

If there is a cache miss, the decoder invokes the Capstone disas-
sembler [2] to decipher the x64 instruction. It then simplifies the
decoding for use specifically in floating point emulation. The re-
sulting struct instruction contains both a high-level, Capstone-
independent representation, and the low-level Capstone-dependent
representation. The rest of the system uses the Capstone-independent
representation to allow for future plugability of decoders. The hun-
dreds of different x64 floating point instructions flatten down to
about 40 operation types. The Capstone-independent representa-
tion is also designed to minimize architecture-specificity with the
eventual goal of supporting architectures other than x64. That said,
due to the challenges of representing the side-effecting nature of
some x64 instructions, this is a work in progress. Once decoded,
the instruction is then placed in the decode cache.

Binding: The struct instruction, whether it came from the
decode cache or is a new instruction, next has its operands “bound”
to memory locations. A bound instruction is an abstract normal-
ized representation, containing direct pointers to the sources and
destinations of the instruction, the size of the values being operated
on, a simplified op-code which is later used for emulation, and

22

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

any special details (like side effects). For example, the instruction
addsd %xmm@, @(%rsp) and addsd %xmm@, %xmml are bound into
the same FPVM_OP_ADD operation, where the former’s source value
points to the stack, and the latter’s to the register file saved by the
signal handler.

By explicitly binding each instruction, the construction of the em-
ulator is vastly simplified. The emulator need not handle accesses
to memory or registers differently, it only needs only read/write
through a void#*. The details of registers, immediates, and the com-
plex x64 memory operand address computations, are hidden.

Emulation: Once the instruction has been decoded and bound,
the emulator is invoked. Recall that the instruction’s Capstone-
independent representation marks it as having one of about 40
operation types. The implementation for each operation type is
given simply by a function pointer stored in a map, op_map, which
indexed by the operation type. These functions constitute the core
of the interface to the alternative arithmetic system, which is dis-
cussed in more detail in Section 4.3.

By abstracting these operations, only a single scalar function
needs to be implemented to handle all forms of an instruction like
“add”. For example, to handle a vector instruction, the emulator
simply calls the function multiple times with different source and
destination pointers.

These functions all fundamentally operate in the same way. They
first attempt to unbox the values stored in the source operands. If
the source registers are not NaN-boxed values (shadowed values),
they are promoted from their double representation to the alterna-
tive arithmetic system’s representation. The alternative arithmetic
system’s implementation of the instruction is then carried out on
these promoted values. The resulting shadow value is then stored in
anewly allocated cell which is NaN-boxed into the pointer (creating
a shadowed value) provided by the decoder. Because FPVM must
maintain the illusion that the numbers that the application is oper-
ating on are values, not pointers, the NaN-boxed data must remain
immutable. For example, if a NaN-boxed reference is written to
every location in an array, mutating the value will indirectly modify
every value in said array. This unfortunately leads to significant
memory pressure, as every instruction allocates a new cell.

Garbage collection: In order to tame the memory demands of
FPVM, a garbage collector must be utilized to reclaim references
that are no longer stored in NaN-boxes (i.e., to delete any shadow
value that no longer has any shadowed value in the program to point
to it). This garbage collection problem is not the general garbage
collection problem, however, since there is no general pointer graph.
Instead, the pointer graph is bipartite, between potential shadowed
values in the program, and shadow values in FPVM. Conceptually,
any memory location in the program could contain a pointer (a
shadowed value), but no memory location (a shadow value) in FPVM
can point back into the program. An additional simplification is
that any reference held by a NaN-box is guaranteed not to point
into the middle of an object.

As a consequence, a relatively naive conservative mark-and-
sweep collector is used. All allocations are stored in a simple data
structure along side a “marked” bit. Every epoch (typically 1s), the
garbage collector scans all writable program memory for data that
appears to be a NaN-box. It then decodes it, and sets the mark bit if
it is located in the data structure. It then sweeps through the set of

- foo S~
e push rbp ‘\\
extern double fp; mov rbp, rsp N

int foo (double fp) { movsd QWORD PTR [rbp-8],; xmme
return *(int*) &fp; lea rax, [rbp-8]
} mov! eax,! DWORD PTR [rax]

pop rbp

ret

Figure 6: Double to Int conversion through pointers.

call malloc

typedef struct A{
mov QWORD PTR [rbp-8], rax

int i;

double d; movsd xmm@, QWORD PTR fp[rip]
} A; mov rax, QWORD PTR [rbp-8]
extern double fp; movsd QWORD PTR [rax+8], xmm@
int foo(){ mov rax, QWORD PTR [rbp-8]
A* ptr = malloc(sizeof(A)); mov DWORD PTR [rax], @
ptr->d = fp; mov rax, QWORD PTR [rbp-8]
ptr->i = 0; add rax, 8
return *(int*) &ptr->d; mov eax, DWORD PTR [rax]
3 leave

ret

Figure 7: Double to Int conversion through pointers with struct.

all allocated values and frees their backing storage (shadow values)
if they are not marked.

While an off-the-shelf collector such as Boehm [10] could be
used instead, it would require significant patching to support NaN-
boxing. It also would not take advantage of the simplifying proper-
ties of the specific garbage collection problem that arises in FPVM.

4.2 Static binary analysis and transformation

The correctness of FPVM’s trap-and-emulate model requires that
that all instructions involving NaN-boxed values are captured by
our system. Unfortunately, some x64 instructions can operate on
NaN-boxed values without triggering a hardware fault and thus
FPVM. For example, developers have the ability to cast memory
references to floating point values to integers to operate on their
bits directly, as is done in much of the implementation of the GNU
standard math library or in printf. Perhaps less obviously, modern
compilers will often optimize common operations by operating on
the bits of a floating point register directly, for example by flipping
the sign bit using the xorpd instruction (vector xor operation). With
current hardware, none of these instructions will trap when oper-
ating on NaN-boxed values, possibly leading to a sea of undefined
behavior as the application begins to blindly operate on NaN values
introduced by FPVM.

We illustrate an example of this behavior in Figure 6. Here a
double-precision float’s bits are reinterpreted through pointer cast-
ing. The argument, fp, is stored in %xmm@ per the calling convention,
which is then stored into a memory location on the stack. The con-
tent of this location is then loaded into the %eax register. If the
value stored in %xmm@ register were a NaN-boxed (shadowed) value,
%eax now partially contains said NaN-box, possibly resulting in
unexpected results if the application relies on or operates on the
bit-pattern of %eax.

Whether or not the value stored in %xmm@ was a NaN-boxed
(shadowed) value, any bitwise operations on %eax will not fault,

FPVM will thus be unaware of them, and this will likely lead to
invalid results, or memory faults caused by NaN-box corruption.

Figure 7 is another variation of this issue, showing that the bit-
level access can be complicated by indirection and structs/unions.

Correctly identifying instructions that might lead to this behav-
ior is instrumental to maintaining correctness in FPVM. Given an
oracle where all such instructions were known ahead of time, FPVM
could defensively demote NaN-boxed values to their lower precision
representations (IEEE doubles) in order to maintain correctness and
transparency. Demotion not only means to switch back to the IEEE
double representation, but also to store that actual value in place
of the NaN-boxed shadow value. One solution is to demote NaN-
boxed values every time they are stored to memory. This solution
unfortunately obviates the goal of using the alternative arithmetic
system, but guarantees correctness. What we really want to do is
minimize the number of demotions needed to maintain correctness.
In order to maintain program correctness while avoiding demo-
tions, code analysis must be utilized to identify instructions that
can produce problematic behavior.

Our approach to solve this problem is to statically analyze appli-
cations prior to running. Our static analysis is designed to identify
vulnerabilities in programs when running with FPVM by tracking
how data flows through all instructions and control flow. The analy-
sis leverages Value Set Analysis (VSA) [5]. The analysis categorizes
instructions into two categories: sources and sinks. In FPVM, a source
is any instruction that stores a floating point value to memory, and
a sink is any instruction that later loads from any memory loca-
tion that was previously been written to by a source. Instructions
that operate only on registers are not considered, as double—int
reinterpretation in a register is not generated by either GCC or
Clang/LLVM.

The input to our static analysis algorithm is an unmodified ap-
plication binary, and the output is the set of sinks (instructions) at
which FPVM must demote. Modern VSA often leverages symbolic
execution to determine the possible values of any registers or mem-
ory at every instruction. By building on the information given by
VSA, we can more accurately identify sink instructions, patching
in demotions only as needed.

Unfortunately, as with most static analysis, such as alias analysis,
VSA is not generally solvable [40, 50], and will not always give
precise results. Thus, if VSA returns a conservative result, FPVM
follows suit and assumes there exists a NaN-boxed double that may
need demotion. For example, if an application calls into an external
library external library that is not analyzed, the worst case must be
assumed, and demotion is done at the call site.

Since the scientific applications FPVM targets are often huge,
containing more than a million instructions (excluding external
libraries), we tweak VSA under consideration of both running time
and space consumption. First, our VSA treats each instruction as a
basic block and associates a persistent state with each instruction.
FPVM’s VSA builds a preliminary Control Flow Graph (CFG) and
then starts from the first instruction at the entry point and analyzes
the program sequentially. Through symbolic execution, the set of
possible values for each register/memory location is maintained.

After running VSA on the existing, unmodified application bi-
nary, we obtain states, including register states and memory states,
before and after each instruction that was analyzed. Building on

,,,,,,,,,,, External
i printf 3 Libraries

\
addsd xmme, xmm1 ; . :
: i fwrite | sep libc.so
divsd xmm@,xmml : i pow " [rax] if fread : Libm. so
22 o ol e 090 800
S\GFPEH TRAPl | TRAPl ‘ TRAP| ‘ TRAP ‘ [
T v T v v
FPVM Bitwise Math
Core Operation Functions Demote NaNBoxed Values

Figure 8: Overall model after static binary analysis and patching.

this, we identify sources and sinks defined above. Once sink instruc-
tions are identified, they are patched to explicitly trap into FPVM to
demote the NaN-boxed value if it is discovered at run-time to truly
be NaN-boxed, and then re-execute the instruction. For calls into
external libraries, NaN-boxed values passed as arguments can be
problematic, for example, when printing out floating-point values.
Hence, we demote NaN-boxed floating point registers at the call
site.

When running the patched binary, the dynamic interaction be-
tween the application, external libraries, and FPVM is as shown in
Figure 8. What is different compared to Figure 5 is that FPVM is
also invoked by the intentional traps introduced by static analysis
for the reasons given above. If our analysis performs well, then
these intentional traps which involve a overhead whether they are
triggered or not, will be rare compared to the hardware-detected
events, which only have an overhead when they occur.

FPVM’s static analysis was built on top of angr [55], a tool that
disassembles instructions, lifts into intermediate-representation,
and carries out symbolic execution. Angr provides various static
analysis techniques on top of its abstract register/memory repre-
sentation. After VSA via angr converges on a result, FPVM’s static
analysis produces a list of sink instructions which must be patched
to include traps to FPVM based on VSA results. We call those traps
correctness traps. We use e9patch [21] to patch those instruction
to explicitly trap to FPVM, where NaN-boxed values are demoted
back to IEEE floats and the instruction is re-executed by using the
x64’s trap mode to do single instruction stepping.

4.3 Alternative arithmetic interface

FPVM includes an interface for alternative arithmetic systems to
be plugged in. This parallels the abstract interface of the decoder,
and consists of a small number (currently 37) scalar functions (the
emulator handles vectors) that must be provided. 23 of these con-
sist of arithmetic operations like add, multiply, multiply-add, sin,
cosine, and square root, etc, 10 are conversion operations, and 4 are
comparisons. Conversions and comparisons are the hairiest part
of the interface as these require matching of the system to implicit
input (e.g. rounding mode) and output (e.g. flags register) operands.
FPVM also provides the alternative arithmetic system with memory
management. We have thus far ported three alternatives to this
interface.

Vanilla: This system implements the functions using regular
IEEE 64 bit floating point operations. The primary purpose of
Vanilla is to allow us to test the other elements of FPVM indepen-
dently. If FPVM is working correctly, then Vanilla should produce
the identical results to running without FPVM.

MPFR: This system interfaces to the GNU Multiple-Precision
Floating-point Representation library [23]. MPFR is a widely used
tool for arbitrary precision arithmetic. It essentially implements the
IEEE floating point standard in software, but with dynamic runtime
selectable precision. The fraction can be an arbitrary number of
bits long, while the exponent is a 64 bit unsigned number. In our
implementation, the precision used by FPVM is determined by a
compile-time configurable parameter or environment variable, and
we are also considering an adaptive precision version.

Posit: This system interfaces to the Universal Numbers Library [47]
implementation of the posit standard [26, 37]. A posit number
has four parts which include sign, regime, exponent and fraction.
Among the four, exponent and fraction have variable length. The
posit sizes/precisions available in the library can be chosen at
compile-time.

5 Evaluation

We now describe the testing and initial performance evaluation of
the hybrid FPVM prototype.

5.1 Testbed, benchmarks, and applications

Unless otherwise noted, all testing was conducted on a Dell R815,
which sports four 16 core 2.1 GHz AMD Opteron 6272 processors
and 128 GB of RAM split among 8 NUMA zones. These processors
support the SSE4.2 and AVX floating point instruction sets. The
machine runs Ubuntu 16.04 with 4.4.0 kernel. The Ubuntu-default
gee 5.4 toolchain was used to compile all code.
Our test code consists of the FBench floating point benchmark [57],

a version of the Lorenz system simulator that we developed, a three-
body problem simulation, selections from the NAS 3.0 Application
Benchmark Suite [4, 34, 46], miniAero, and an Enzo application.
MiniAero is a Mantevo [16] miniapp (one of several used for evalu-
ation of supercomputing environments by Sandia National Labs)
that solves the compressible Navier-Stokes equation. miniAero is
written in C++ and C and contains about 4400 lines of code. mini-
Aero is dependent on kokkos for OpenMP and Pthreads. Enzo [12]
is an astrophysics and hydrodynamics simulator. Enzo is written
in C, Fortran, and Python and contains about 307,000 lines of code.
Enzo depends on HDFS5 for data storage, as well as an MPI library.

5.2 Validation

In order to validate the functionality of FPVM, we ran a selection of
our codes with and without FPVM. When run under FPVM, we used
the Vanilla math implementation outlined in Section 4.3. Recall that
this simply interposes virtualization, but uses IEEE 64 bit floating
point. In all of the cases, the results were identical, as expected,
indicating that the core emulator operates correctly. As alternative
math libraries such as MPFR are used, the results vary as outlined
in Section 5.4.

5.3 Overheads

In the trap-and-emulate model, overhead is only incurred if the
hardware detects an event (such as rounding, overflow, underflow,
denorm, or use of NaN). When such an event is detected, the cost of
executing the instruction expands to include FPVM. Figure 9 illus-
trates the average costs in this situation for our test codes, which
range from 12,000-24,000 cycles. The figure also breaks these down

[hardware overhead
fbench 1 = kernel overhead
3 decoder cache
v [bind
e
© Three-Body - ‘ ” ‘ E 3 emulate
g 3 gc
[o B correctness overhead
8 miniAero 1 correctness handler
ws e] | [
Y
ero | | Z,
7
T T T T T
0 5000 10000 15000 20000 25000

Cycles

Figure 9: Average cost of virtualizing a floating point instruction,
and its breakdown into constituant parts.

into their constituent components.® The emulation component in-
cludes MPFR computation with 200 bit precision.’

The correctness overhead and correctness handler components
reflect the amortized dynamic cost of the trap instructions intro-
duced via static analysis. These costs are virtually zero except for
Enzo, where they are substantial. In Enzo, the traps occur in crit-
ical loops because the static analysis could not prove they were
unneeded. The vast majority of the dynamic checks succeed how-
ever, meaning no special handling is needed. This gives hope that
advances in our static analysis work could eliminate more of them.
In contrast, miniaero’s dynamic checks do not typically succeed,
but they are not encountered in critical loops either. As a result, the
correctness overheads are in the noise. The other codes are similar.

The “hardware overhead”, “kernel overhead”, and “correctness
overhead” are the costs paid to dispatch into FPVM for a floating
point exception or a correctness trap. As we describe in Section 6,
these overheads are likely to become much smaller by kernel and
hardware extensions. There is nothing intrinsic to them. We also
note that the correctness overhead could be eliminated without
kernel or hardware changes by having the static analysis patch in
a direct call instruction to the FPVM entry point instead of a trap
instruction or by inlining the dynamic check and invoking a trap
only if it fails. This is only a matter of implementation effort.

FPVM operation generates considerable amounts of garbage due
to the problem of temporaries noted above. Figure 10 measures the
garbage collector behavior (> 95% of shadow values are collected
on each garbage collection pass) and performance in more detail.
Note, however, that this is not a dominant component of overhead—
as Figure 9 makes clear, it is 2nd or 3rd order behind the kernel
overhead, emulation overhead (similar to this), and the correctness
overhead (on codes where this is significant). That said, there is
plenty of room to enhance our garbage collector.

Recall that our goal with floating point virtualization is to have
the overhead dominated by the alternative arithmetic system, and
not the virtualization mechanisms. Of course, achieving this goal
depends on the performance of the alternative arithmetic system.

8The decode component is the amortized cost over all faulting floating point instruc-
tions, and is very tiny because there are only a small number (typically 1000s) of these
instructions, but they are executed millions to billions of times, thus the decode cache
hit rate is nearly 100%.

9200 bit MPFR operations themselves take from 93 (add) to 2175 (divide) cycles.

alive Zfreed ¢ latency (us) ‘

10000000 10000000
1000000 1000000
100000 100000

10000 10000 5

+~ 1000 1000 £
S 100 100 o
S 1w 10 £
1 1 =

Enzo

o
o
Q
<
g
£

Lorenz
Attractor
NAS CG
FBench
Three-Body

Figure 10: Garbage collector statistics and performance.

100,000,000,000
10,000,000,000 +Add Sub
1,000,000,000 Mul Div

1

1

1

1

1

1

100,000,000 !
10,000,000 !
1,000,000 '
1

1

1

!

I

1

1

1

1

1

Za

Zd
Vol
AT
't
o

s

100,000

D SR

Cycles

10,000 P
&

1
1
1
1
1,000 o \

|
L3 Cache

K e L

100 o L2 Cache '

10 L1 Cache : i

T 1

1

1

1 1

5 10 15 120
Log2(number of precision bits)

25 30

Figure 11: Performance of MPFR as a function of precision.

Figure 11 shows the measured performance of different MPFR oper-
ations, as a function of the precision (mantissa bit width). Assuming
a crossover point at 12,000 cycles, for example, as with most of our
codes, means that MPFR begins to dominate at 2! bits (division)
to 218 bits (addition). This is prior to the optimizations we envi-
sion in Section 6 and above. With them!?, we would be left with
about 4,000 cycles (dominated by emulation and garbage collection),
where MPFR would begin to dominate at 28 bits (division) to 21
bits (addition).

The 4,000 cycles we note above include emulation and garbage
collection costs. It is possible that this cost could be further reduced
through concurrent garbage collection techniques. Additionally, our
emulation logic has not yet been optimized, and the measurements
of Figure 11 include both the emulation cost and the cost of the
Vanilla arithmetic system. We speculate that the ultimate overhead
limit is substantially less than 4,000 cycles.

Figure 12 illustrates the wall-clock slowdown of each of our codes
in the current implementation. Tests are done on three machines.
R815 is as described in Section 5.1 and was used for the previous
results. Notice that R815’s slowdowns are substantially smaller than
would be implied by Figure 9. This is because are many dynamic
instructions other than floating point instructions or correctness
traps. Furthermore, the floating point instructions only invoke

011 particular, user—user trap with fast delivery, extending floating point traps for
all x64 instructions, and trap on NaN-load

Session 1: Data Centers and HPC Systems

Machine
Benchmarks Specifics R815 7220 R730xd
FBench n.a. 1,808x 720x 667x
Lorenz Attractor n.a. 268x 116x 243x
Three-Body n.a. 789x 685% 916x
miniAero Flat Plate 1,811x - —
NAS IS Class S 204x 313x 294x
NAS EP Class S 396x 542x 533x
NAS CG Class S 12,169x 3,537x 3,855x
NAS CG Class A 3,900x - —
NAS MG Class S 5,163x 5,543x 3,129x
NAS LU Class S 10,773x 10,080x 11,443x
Enzo Cosmology Sim. 1,976x — —

Figure 12: Summary of Benchmarks.

IEEE

MPFR Start

Figure 13: Lorenz system using IEEE and MPFR via FPVM. Blue
trajectory is IEEE. Orange trajectory is MPFR. Trajectories and final
state are different between the two arithmetic systems.

FPVM when a special event occurs. If an instruction uses non-NaN
values and its result was not rounded, and did not overflow or
underflow, FPVM is not invoked. The machine 7220 is a Dell 7720
with an Intel Xeon E3-1505M v6 and 32 GB of RAM running Ubuntu
20.04 with a stock 5.4.0 kernel. The machine R730xd is a Dell R730xd
with two Intel Xeon E5-2695 v3 processors and 220 GB of RAM
running RHEL 8.5 with a 4.18.0 kernel. Slowdowns are similar on
these newer machines, although CG.S is an outlier.

5.4 Effects

Figure 13 shows the output of running a Lorenz system simula-
tion for 2500 time steps under the hybrid FPVM prototype using
three different arithmetic systems (original IEEE doubles, IEEE dou-
bles emulated via FPVM (Vanilla), and MPFR emulated via FPVM)
plugged in. Simply adding the FPVM layer, and thus trapping and
emulating all floating point instructions that round, does not change
the answer. There is no difference between the original IEEE dou-
bles and the emulated IEEE doubles. On the other hand, using
MPFR, with a higher precision, does indeed change the answer, as
expected. Given a common starting point, the trajectories of IEEE
and MPFR soon diverge, and this divergence is reflected in the final
state (position).

What is happening here is that the Lorenz system is the classic
example of a chaotic dynamic system [45]. As such, tiny changes
in the initial condition, or tiny perturbations in intermediate states
result in a divergence, typically an exponential divergence, over
time. Each rounding event in the computation is such a perturbation.

26

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

The rounding events encountered by IEEE and MPFR are different,
resulting in the different trajectories and ending points.

5.5 Software engineering complexity

Part of the feasibility of FPVM stems from the software engineering
effort and time spent building it. The hybrid FPVM outlined in
Section 4 was comprised of roughly 6300 lines of C and C++ for the
trap-and-emulate component, and 1484 lines of Python for the static
analyzer. Individually, each alternative math binding was roughly
350 lines of code, leading us to believe that extending FPVM to
support new alternative arithmetic is relatively simple.

5.6 Beyond x64

The design and implementation of our prototype is tightly coupled
to x64. Is it portable to other CPU platforms, such as ARM and
RISC-V? Or to GPU platforms?

A core requirement of our prototype (as well as the trap-and-
emulate, and trap-and-patch approaches in general) is that the
hardware can convert detection of the floating point exceptions
(e.g., overflow, underflow, rounding, invalids, etc) into traps/inter-
rupts that are delivered to the underlying kernel and thus to FPVM.
These traps/interrupts are what drive FPVM. The x64 standards
guarantee this behavior. The ARM standards make this behavior op-
tional. Some platforms we have tested (such as ThunderX2, A64FX,
and Apple M1) do indeed have the needed behavior. Others (such
as ThunderX1) do not have it. RISC-V, at least in its “F” and “D”
extensions, explicitly do not support this behavior for performance
reasons. This is a shame because the “N” extension would be very
beneficial for FPVM, as we describe later.

Is the hybrid FPVM prototype portable to GPUs? It is our under-
standing that current NVIDIA GPUs support neither the floating
point condition codes nor raising a trap/interrupt when a condi-
tion code is set. This was also true in the past for AMD and Intel
GPUs, but AMD’s Vega architecture has support for floating point
condition codes and exceptions.

On platforms in which traps/interrupts on floating point events
are not available, FPVM would likely need to be implemented using
the static analysis and transformation approach or the compiler-
based transform approach.

6 Prospects for reducing overhead

We now describe techniques for further reducing the costs and com-
plexity of floating point virtualization. Although our presentation
is geared to the Linux and x64 context, all the techniques could
be applied to other environments provided they have the basic
functionality of presenting IEEE floating point exceptions as traps.
If they do not, a static binary transformation, or the compiler-based
approach would be needed to introduce checks in software.

6.1 Kernel-level support

Recall that in the trap-and-emulate model there is no overhead
unless a shadowed value is involved. These events are detected by a
hardware floating point exception. The overhead of delivering such
an exception dominates the virtualization overhead of the FPVM
prototype because they must propagate all the way to the user-level
implementation of FPVM.

Session 1: Data Centers and HPC Systems

25000 4 &2 User Signal Delivery 24206
OO0 Kernel Trap Delivery
20000 4 \\
m
2 15000 4
o
>
@)
10000 A \
6114 6137
5000
0 2 23 S
2x AMD 4122 4x AMD 6272 Intel Phi 7210
Testbed

Figure 14: Overhead of user-level versus kernel-level exceptions/in-
terrupts (quoted from [24]).

Figure 14 shows the measured overhead of delivering the excep-
tion to user-level and to kernel-level in three different platforms,
including an AMD 6272-based machine similar to the one used for
performance measurement in this paper. Kernel-level delivery has
7 to 30 times lower overhead. These numbers were measured on a
kernel without Spectre/Meltdown mitigations and thus are likely
to be conservative. One way to make use of these results would be
to make FPVM a kernel-level service, implemented, for example,
as a kernel module for Linux. This would reduce the overhead to
be closer to that of kernel-level delivery, but we would still bear
the cost of crossing the kernel-user boundary. A more aggressive
option would be to incorporate FPVM into a pure-kernel execution
model, such as in the hybrid run-time (HRT) model [27, 28]. By
discarding kernel-user crossings altogether, the baseline overhead
for FPVM would be similar to the “Kernel Trap Delivery” variants
in Figure 14. Currently, only an implementation of FPVM as a Linux
kernel module is planned.

6.2 Hardware support

Several small hardware changes would allow us to reduce or elimi-
nate the need for static analysis, as well as to reduce the runtime
overhead of FPVM-like trap-and-emulate virtualization of the float-
ing point hardware.

Extending floating point traps for all x64 instructions:
Our hybrid FPVM prototype uses expensive static binary analysis
in order to handle edge cases in virtualizing the floating point
hardware. One of these cases is straightforward: the x64 floating
point hardware also includes support for integer and saturating
arithmetic. As a result, it is possible, for example, for a NaN to flow
into an logical operation like an XOR. While situations like this are
rare, they do occur because these non-FP operations may be used
by the compiler to optimize FP math. Currently, these situations
do not result in an FP exception or trap, and thus our analysis and
patching is necessary. The hardware could support a NaN input
check for all operations, letting us avoid some of this analysis.

Trap on NaN-load: Similarly, a floating point value stored in
memory might be treated as as an integer value in some circum-
stances, for example, from idiomatic C like *(uint64_t =) (&x)
where x is a double. The majority of our static analysis is done
to conservatively handle this kind of situation, forcing a trap into
FPVM so it can determine if the value that is escaping as an integer
is a NaN-boxed value.

NaNs, however, have bit patterns that make them unusual to be
encountered in the wild. Furthermore, when running with FPVM,

27

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

the majority of 8 byte quantities loaded that match a NaN pattern
are likely to be NaN-boxed values created by FPVM. If the hardware
could optionally trigger an exception when a NaN pattern is loaded
as a value, the static analysis could be avoided.

User—user trap with fast delivery: As Figure 14 shows, the
overhead of the delivery of a floating point exception as a trap is
substantial, even ignoring kernel—user delivery. The hardware cost
of delivery and return is on the order of 1000 cycles. In part, this
high cost is due to the complex, stack-based exception/interrupt
delivery mechanism on x64 and the need for a user—kernel —»user
privilege transition sequence. However, traps resulting from float-
ing point operations do not require any of this—of the six traps
available on x64 (Invalid, Inexact, Underflow, Overflow, Denorm,
DivideByZero), only DivideByZero might have a consequence for
the kernel or other processes. And DivideByZero applies only to
integer operations (a floating point divide by zero is an Overflow).

A specialized exception delivery system geared to user—user
privilege transfer similar to RISC-V’s “N” extension [1] could dra-
matically lower the overhead of FPVM-like systems. For floating
point virtualization, all that is needed is a same-privilege control
flow transfer, which we anticipate could be brought down to less
than 10 cycles on x64 through integration with branch prediction, a
technique we refer to as a “pipeline interrupt”. A proof-of-concept
of this exists (in PIN). The interface is similar to the x64 syscall
instruction, which already avoids stack operations for system calls,
and to the TSX RTM transactional memory feature, which has a
user—user transaction abort. Our scheme in effect dispatches the
exception as a jump to a target address stored in an MSR!! with the
address of the faulting instruction and current flags placed in link
registers implemented as MSRs.!? We have measured TSX RTM
transaction abort times as low as 100 cycles on current proces-
sors (Intel 17-9850H, specifically), and that includes unwinding the
aborting transaction, which a user—user transfer would not do.

7 Conclusions

As promising alternative arithmetic representations emerge, provid-
ing higher precision than existing IEEE floats, they have not seen
major adoption among the scientific community. This can mostly
be attributed to the significant engineering effort required to such
enormous codebases to support them. In this work, we explored
possible approaches to address this challenge through classical
VMM techniques by virtualizing the IEEE floating point hardware,
specifically on x86. The goal of a floating point virtual machine
(FPVM) is to allow existing application binaries to be transpar-
ently extended to support arbitrary alternative arithmetic systems
without incurring significant virtualization overhead. We discussed
the design and implementation of a prototype hybrid FPVM using
trap-and-emulate and static value set analysis to evaluate the ef-
fects of alternative arithmetic on various scientific applications and
benchmarks. We evaluated the overheads of said implementation,
deficiencies of existing floating point hardware, as well as a few
prospects to reduce virtualization overheads in future hardware.

'FPVM would load this with its entry point.
12FPVM would use these to resume execution after handling a delivered fault.

Session 1: Data Centers and HPC Systems

References

[8

=

(9]

[10]

[11]

[12

[13]

[14]

[15

[16]

[17]

(18]

[19]

[20]

[21]

[22

[23]

[24

[25]

The risc-v instruction set manual. volume i: User-level isa.

Capstone: The ultimate disassembler, 2021.

ARNOLD, M. G., BAILEY, T. A, COWLES, J. R., AND CUPAL, J.]. Redundant logarith-
mic arithmetic. IEEE Transactions on Computers 39, 8 (Aug. 1990), 1077-1086.
BaiLey, D., BArszcz, E., BARTON, J., BROWNING, D., CARTER, R., Dacgum, L.,
FatooHr, R., FINEBERG, S., FREDERICKSON, P., LASINKSI, T., SCHREIBER, R., SIMON,
H., VENKATAKRISHNAN, V., AND WEERATUNGA, S. The nas parallel benchmarks
(nas 1). Tech. Rep. RNR-94-007, NASA, March 1994.

BALAKRISHNAN, G., AND REPs, T. Analyzing memory accesses in x86 executables.
In International conference on compiler construction (2004), Springer, pp. 5-23.
Bao, T., AND ZHANG, X. On-the-fly detection of instability problems in floating-
point program execution. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA) (October 2013).

BELLARD, F. Libbf: The tiny big float library. Available at https://bellard.org/libbf/,
2017.

BENTLEY, M., BRIGGS, 1., GOPALAKRISHNAN, G., AHN, D. H,, LAGUNA, I, LEE,
G. L., AND JoNEs, H. E. Multi-level analysis of compiler-induced variability and
performance tradeoffs. In Proceedings of the 28th ACM Symposium on High-
performance Parallel and Distributed Computing (HPDC 2019) (June 2019).
BENz, F., HILDEBRANDT, A., AND HACK, S. A dynamic program analysis to find
floating-point accuracy problems. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI) (2012).
BoenM, H.-J. Simple garbage-collector-safety. In Proceedings of the ACM SIGPLAN
1996 Conference on Programming Language Design and Implementation (New York,
NY, USA, 1996), PLDI "96, Association for Computing Machinery, p. 89-98.
BoeHM, H.-]. Towards an api for the real numbers. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI) (June 2020).

Bryan, G. L., NormAN, M. L., O’SuEA, B. W,, ABEL, T., WisE, J. H,, Turk, M. J.,
ReyNoLDs, D. R., CoLLINs, D. C., WANG, P., SKILLMAN, S. W, SMITH, B., HARKNESS,
R. P., BORDNER, J., KiMm, J.-H., KuHLEN, M., XU, H., GoLDBAUM, N., HUMMELS, C.,
KriTsuk, A. G., TASKER, E., Skory, S., Simpson, C. M., HanN, O,, O1sHy, J. S.,
So, G. C, Zuao, F, Cen, R,, L1, Y., AND THE ENZO COLLABORATION. ENZO: An
Adaptive Mesh Refinement Code for Astrophysics. The Astrophysical Journal 211,
2 (March 2014), 19.

CHERKAEV, A. The secret life of a nan. https://anniecherkaev.com/the-secret-
life- of-nan, March 2018.

CHIANG, W.-F., BARANOWSKI, M., BRIGGS, 1., SOLOVYEV, A., GOPALAKRISHNAN,
G., AND RAKAMARIC, Z. Rigorous floating-point mixed-precision tuning. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL) (2017), pp. 300-315.

CouRskET, C. Nsan: A floating-point numerical sanitizer. In Proceedings of the 30th
ACM SIGPLAN International Conference on Compiler Construction (CC) (March
2021).

CROZIER, P., THORNQUIST, H., NUMRICH, R., WiLLIAMS, A., EDWARDS, H., KEITER,
E., RajaN, M., WILLENBRING, J., DOERFLER, D., AND HEROUX, M. Improving
performance via mini-applications. Tech. Rep. SAND2009-5574, Sandia National
Laboratories, January 2009.

DEVINE, S., BUGNION, E., AND ROSENBLUM, M. Virtualization system including a
virtual machine monitor for a computer with a segmented architecture. United
States Patent Number 6397242.

DINDA, P., AND BERNAT, A. Comparing the understanding of ieee floating point
between scientific and non-scientific users. Tech. Rep. NWU-CS-2021-07, De-
partment of Computer Science, Northwestern University, December 2021.
DINDA, P., BERNAT, A., AND HETLAND, C. Spying on the floating point behavior
of existing, unmodified scientific applications. In Proceedings of the 29th ACM
Symposium on High-performance Parallel and Distributed Computing (HPDC 2020)
(June 2020). Best Paper.

DiNDA, P., AND HETLAND, C. Do developers understand IEEE floating point?
In Proceedings of the 32rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2018) (Apr. 2018).

Duck, G. J., Gao, X., AND ROYCHOUDHURY, A. Binary rewriting without control
flow recovery. In Proceedings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (New York, NY, USA, 2020), PLDI
2020, Association for Computing Machinery, p. 151-163.

FEVOTTE, F., AND LATHUILIERE, B. VERROU: assessing floating point accuracy
without recompiling, October 2016. working paper or preprint.

Foussk, L., HANROT, G., LEFEVRE, V., PELISSIER, P., AND ZIMMERMANN, P. Mpfr:
A multiple-precision binary floating-point library with correct rounding. ACM
Transactions on Mathematical Software (TOMS) 33, 2 (June 2007).

GHosH, S., CUEVAS, M., CAMPANONTI, S., AND DINDA, P. Compiler-based timing
for extremely fine-grain preemptive parallelism. In Proceedings of the ACM/IEEE
Conference on High Performance Networking and Computing (SC 2020) (November
2020).

GOL]))BERG, R. Survey of virtual machine research. IEEE Computer (June 1974),
34-45.

28

(35]

&
2

(37

(38]

[42

[43

(44

[45

[46]

[47

(48]

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

GUSTAFSON, J. The End of Error: Unum Computing. Chapman and Hall/CRC, 2015.
HALE, K., AND DINDA, P. A case for transforming parallel runtimes into operating
system kernels. In Proceedings of the 24th ACM Symposium on High-performance
Parallel and Distributed Computing (HPDC 2015) (June 2015).

HALE, K., AND DINDA, P. Enabling hybrid parallel runtimes through kernel
and virtualization support. In Proceedings of the 12th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 2016) (April
2016).

Hickey, T, Ju, Q., AND VAN EMDEN, M. H. Interval arithmetic: From principles to
implementation. Journal of the ACM 48, 5 (Sept. 2001), 1038-1068.
HOLLINGSWORTH,]. K., AND BUck, B. DyniInstAPI Programmer’s Guide Release 1.0,
July 1997. http://www.cs.umd.edu/ hollings/dyninstAPI/dyninstUserGuide.pdf.
IAN A. MasoN, S. I. https://github.com/SRI-CSL/gllvm, 2018.

IEEE FLOATING POINT WORKING GROUP. IEEE standard for binary floating-point
arithmetic. ANSI/IEEE Std 754-1985 (1985).

IEEE FLOATING POINT WORKING GROUP. IEEE standard for floating-point arith-
metic. IEEE Std 754-2008 (Aug 2008), 1-70.

JiN, H.,, FRUMKIN, M., AND YAN, J. The openmp implementation of nas parallel
benchmarks and its performance (nas 3). Tech. Rep. NAS-99-011, NASA, March
1999. OpenMP 3.0 version available at https://github.com/benchmark-subsetting/
NPB3.0-omp-C.

JosT, T., DURAND, Y., FABRE, C., COHEN, A., AND PETROT, F. Vp float: First
class treatment for variable precision floating point arithmetic. In Proceedings
of the ACM International Conference on Parallel Architectures and Compilation
Techniques (PACT) (September 2020).

Jost, T. T, DURAND, Y., FABRE, C., COHEN, A., AND PERROT, F. Seamless compiler
integration of variable precision floating-point arithmetic. In 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO) (February-
March 2021).

KanAN, W. A critique of john L. gustafson’s the end of error—unum computation
and his a radical approach to computation with real numbers. In Proceedings of
the 23rd IEEE Symposium on Computer Arithmetic (ARITH) (July 2016).
KALAMKAR, D., MUDIGERE, D., MELLEMPUDI, N., DAs, D., BANERJEE, K., AVANCHA,
S., Voortury, D. T.,, JAMMALAMADAKA, N., HUANG, J., YUEN, H., YANG, J., PARK,
J., HEINECKE, A., GEORGANAS, E., SRINIVASAN, S., KUNDU, A., SMELYANSKIY, M.,
Kaut, B., AND KunpU, P. D. A study of BFLOAT16 for deep learning training.
arXiv preprint arXiv:1905.12322, May 2019.

Lam, M. O., HOLLINGSWORTH,]. K., AND STEWART, G. Dynamic floating-point
cancellation detection. Parallel Computing 39, 3 (2013), 146-155.

Lanpr, W. Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1, 4
(dec 1992), 323-337.

LATTNER, C., AND ADVE, V. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04) (Palo Alto, California,
Mar 2004).

Leg, W.-C.,Bao, T., ZHENG, Y., ZHANG, X., VORA, K., AND GUPTA, R. Raive: Runtime
assessment of floating-point instability by vectorization. In Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA) (2015).

Martura, D. W., AND KOorRNERUP, P. Finite precision rational arithmetic: Slash
number systems. IEEE Transactions on Computers C-34, 1 (Jan 1985), 3-18.
MiLroy, D. J., BAKER, A. H., HAMMERLING, D. M., DENNISs, J. M., MICKELSON, S. A.,
AND JEssup, E. R. Towards characterizing the variability of statistically consistent
community earth system model simulations. Procedia Computer Science 80, C
(June 2016), 1589-1600.

MooN, F. C. Chaotic and Fractal Dynamics: An Introduction for Applied Scientists
and Engineers. John Wiley and Sons, Inc., 1992.

OmNI OPENMP COMPILER GROUP, UNIVERSITY OF VERSAILLES SAINT QUENTIN
EN YVLINES. Nas parallel benchmarks 3.0—unofficial openmp c version. https:
//github.com/benchmark-subsetting/NPB3.0-omp-C, 2014.

OMTzIGT, E. T. L., GOTTSCHLING, P., SELIGMAN, M., AND ZORN, W. Universal
Numbers Library: design and implementation of a high-performance reproducible
number systems library. arXiv:2012.11011 (2020).

PANCHEKHA, P., SANCHEZ-STERN, A., WILCOX, J. R., AND TATLOCK, Z. Automati-
cally improving accuracy for floating point expressions. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI) (June 2015).

PoPEK, G., AND GOLDBERG, R. Formal requirements for virtualizable third gener-
ation architectures. Communications of the ACM (July 1974), 413-421.
RAMALINGAM, G. The undecidability of aliasing. ACM Trans. Program. Lang. Syst.
16, 5 (sep 1994), 1467-1471.

Ravrren, T. https://github.com/travitch/whole-program-llvm, 2016.
RuBro-GonzALez, C., NGUYEN, C., NGUYEN, H. D., DEMMEL, J., KAHAN, W., SEN,
K., BaiLey, D. H., Iancu, C., AND HouGH, D. Precimonious: Tuning assistant
for floating-point precision. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (Supercomputing)
(2013).

https://bellard.org/libbf/
https://anniecherkaev.com/the-secret-life-of-nan
https://anniecherkaev.com/the-secret-life-of-nan
https://github.com/SRI-CSL/gllvm
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://github.com/travitch/whole-program-llvm

Session 1: Data Centers and HPC Systems

[53]

[54]

[55]

SANCHEZ-STERN, A., PANCHEKHA, P., LERNER, S., AND TATLOCK, Z. Finding root
causes of floating point error. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI) (June 2018).
SAWAYA, G., BENTLEY, M., BRIGGS, 1., GOPALAKRISHNAN, G., AND AHN, D. H. Flit:
Cross-platform floating-point result-consistency tester and workload. In Pro-
ceedings of the 2017 IEEE International Symposium on Workload Characterization
(IISWC) (Oct 2017), pp. 229-238.

SHOSHITAISHVILI, Y., WANG, R., SALLS, C., STEPHENS, N., POLINO, M., DUTCHER,
A., GROSEN, J., FENG, S., HAUSER, C., KRUEGEL, C., AND VIGNA, G. Sok: (state of)

29

[56

[57

(58]

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

the art of war: Offensive techniques in binary analysis.

SUGERMAN, J., VENKITACHALAN, G., AND LiM, B.-H. Virtualizing I/O devices on
VMware workstation’s hosted virtual machine monitor. In Proceedings of the
USENIX Annual Technical Conference (June 2001).

WALKER, J. Fbench: Floating point benchmarks. https://www.fourmilab.ch/
fbench/, September 2021.

WINGO, A. Value representation in javascript implementations.
http://wingolog.org/archives/2011/05/18/value- representation-in-javascript-
implementations, May 2011.

https://www.fourmilab.ch/fbench/
https://www.fourmilab.ch/fbench/
http://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations
http://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations

	Abstract
	1 Introduction
	2 NaN-boxing
	3 Approaches to floating point virtualization
	3.1 Trap-and-emulate
	3.2 Trap-and-patch
	3.3 Static binary analysis and transformation
	3.4 Compiler-based

	4 Hybrid FPVM for x64
	4.1 Trap-and-emulate engine
	4.2 Static binary analysis and transformation
	4.3 Alternative arithmetic interface

	5 Evaluation
	5.1 Testbed, benchmarks, and applications
	5.2 Validation
	5.3 Overheads
	5.4 Effects
	5.5 Software engineering complexity
	5.6 Beyond x64

	6 Prospects for reducing overhead
	6.1 Kernel-level support
	6.2 Hardware support

	7 Conclusions
	References

