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Abstract— In this work, we propose a video-based transfer
learning approach for predicting problem outcomes of stu-
dents working with an intelligent tutoring system (ITS). By
analyzing a student’s face and gestures, our method predicts
the outcome of a student answering a problem in an ITS
from a video feed. Our work is motivated by the reasoning
that the ability to predict such outcomes enables tutoring
systems to adjust interventions, such as hints and encour-
agement, and to ultimately yield improved student learning.
We collected a large labeled dataset of student interactions
with an intelligent online math tutor consisting of 68 sessions,
where 54 individual students solved 2,749 problems. We will
release this dataset publicly upon publication of this paper. It
will be available at https://www.cs.bu.edu/faculty/
betke/research/learning/. Working with this dataset,
our transfer-learning challenge was to design a representation
in the source domain of pictures obtained “in the wild” for
the task of facial expression analysis, and transferring this
learned representation to the task of human behavior prediction
in the domain of webcam videos of students in a classroom
environment. We developed a novel facial affect representation
and a user-personalized training scheme that unlocks the
potential of this representation. We designed several variants of
a recurrent neural network that models the temporal structure
of video sequences of students solving math problems. Our final
model, named ATL-BP for Affect Transfer Learning for Behavior
Prediction, achieves a relative increase in mean F-score of 50%
over the state-of-the-art method on this new dataset.

I. INTRODUCTION

Research on developing intelligent tutoring systems (ITS)

is a promising avenue for improving learning and educa-

tion [32], [4], [47]. Previous work has shown that real-

time signals from students can be used to improve their

learning [3], [16], [17]. Predicting whether students are

having trouble with problems can allow an ITS to provide in-

terventions, such as providing hints or encouragement, which

could help the students understand or solve the problem, thus

improving learning outcomes.

MathSpring [32] is a popular online browser-based ITS

that uses multimedia to encourage and support students as

they solve math problems. Using the MathSpring ITS, a

dataset named MathSpringSP [22] was collected, which in-

cludes 1,596 segmented videos of study sessions of students

interacting with the ITS. Each problem tackled by a student

has an associated outcome label automatically annotated by

Fig. 1. Our proposed Affect Transfer Learning for Behavior Prediction

(ATL-BP) model for predicting the behavior of students working with an
intelligent tutoring system. The target-domain ATL-BP model consists of
three components, an affect network trained for the source domain problem
of affect recognition, a facial analysis network, and an LSTM.

the ITS. Some example labels are skipped, solved on first try,

solved with hint, among others. In this work we address the

problem of predicting the outcome label from a video feed

of the student while they are solving the problem. Being

able to have a model that can successfully predict outcomes

while a student is completing a problem can help the ITS

provide interventions such as hints or encouragement when

the student is having difficulties.

Facial and gesture analysis are valuable tools for pre-

dicting emotions, but the question of how to use them for

predicting student performance with an ITS remains chal-

lenging since cues can be very subtle or ambiguous. A smile,

for example, does not necessarily mean that the student

is happily solving an exercise. Instead, it could indicate

a student’s embarrassment for not knowing the answer to

a question. Moreover, in our experience, trying to obtain

valid ground truth labels of the student videos from human

annotators is a futile experimental task because humans have

a very low accuracy rate when predicting problem outcomes

from video. Just like automated facial analysis tools, human

annotators struggle with interpreting the ambiguity in and

limited amount of information given by student gestures.

Prior research in transfer learning for facial analysis tasks978-1-6654-3176-7/21/$31.00 ©2021 IEEE
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mostly focuses on transfer learning for the same task in

order to bridge domain gaps such as personalization of a

prediction system to specific individuals [1], [7], [8], [43],

[50], improving results on a benchmark by fine-tuning neural

networks that are pre-trained on external datasets for a

similar prediction task [25], or improving results by pre-

training on a related facial analysis task [48]. In contrast, our

work tackles the more challenging transfer learning across

domains and tasks, which is a form of transductive transfer

learning [39], Specifically, we tackle the problem of learning

a representation in the source domain of in-the-wild pictures

for the task of facial expression analysis and transferring

this learned representation to the task of human behavior

prediction in the domain of webcam videos in a controlled

environment (Fig. 1). While prior work has explored trans-

fer learning from facial analysis to behavior analysis, for

example, using VGG-Face facial recognition embeddings

to predict driver distraction [15], our work is, to the best

of our knowledge, the first to propose leveraging an affect

representation, learned using a deep neural network, for a

behavior prediction task. Our learned affect representation

is general and can be used not only for predicting problem

outcomes on an ITS, but in any human behavior prediction

problem where affect and expression are important cues.

The largest obstacle in training an end-to-end deep learn-

ing model for behavior analysis problems is the fact that data

are relatively scarce, which increases the risk of overfitting.

As a first step to alleviating the data problem, we present

MathSpringSP+, an extended version of the MathSpringSP

dataset, which is roughly double the size of the original

dataset. Next, we propose a novel facial affect representation

for behavior prediction problems that is learned from a large

affect classification dataset. We show that, by incorporating

this affect embedding, we can obtain improvements com-

pared to more traditional deep face embeddings such as the

VGG-Face facial recognition embedding [40]. We developed

a two-layer Long Short Term Memory (LSTM) model [20]

that takes into account the temporal structure of the problem

and successfully leverages our affect embedding. We show

that, by conducting user-personalized training where a small

portion of a student’s initial captured data is used to fine-tune

the model, our method outperforms the previous state-of-the-

art method [22] by 50%. Finally, we present a video dataset

of problem-solving interactions of children and show that

finetuning the ATL-BP affect network using children face

images further improves the performance. We summarize our

contributions as follows:

• We present MathSpringSP+: a large labeled dataset of

student interactions with an intelligent online math tutor

consisting of 68 sessions, where 54 individual students

solved 2,749 problems. This dataset includes two views

of students solving each problem as well as problem

outcome labels that describe the performance of the

students on each individual problem. We will release

this dataset upon acceptance.

• We present a transfer learning facial affect represen-

tation that can be used for behavior prediction tasks.

This representation is learned from a large facial affect

dataset.

• We are the first to model the temporal structure of

video sequences of students solving math problems

using a recurrent neural network architecture, improving

performance on existing datasets.

• Our proposed Affect Transfer Learning for Behavior

Prediction (ATL-BP) model outperforms the previous

state-of-the-art method by 50%.

• We present a dataset of children problem-solving inter-

actions collected in the same manner as MathSpringSP+

and show that finetuning the ATL-BP affect network

using children face images further improves the perfor-

mance on this target domain.

II. RELATED WORK

a) Intelligent Tutoring Systems: Intelligent tutoring

systems have been evaluated and shown to produce learn-

ing gains [14], [33], [34], [36], [45]. One meta-analysis

shows test score improvements from the 50th to 75th per-

centile [29]. Some ITS have been shown to match the success

of one-on-one human tutoring and students using these tutors

outperform students from conventional classes in 92% of

the controlled evaluations and perform twice as high as

for students using typical (non-intelligent systems) [9], [18],

[28].

There is a large amount of work that analyzes user affect,

emotions and expressions from interactions with games or in-

telligent tutoring systems [2], [5], [10], [14], [13], [21], [23],

[30], [37], [38], [41], [42], [46]. In certain cases the predicted

affect information is used to improve learning. For example,

Strain and D’Mello [44] have studied the role of emotion in

ITS engagement, task persistence, and learning gain. Gaze

prediction has also been used in an effort to respond to

students’ boredom and to perform interventions [14]. Further,

relationships between visual facial Action Unit (AU) factors

and self-reported traits such as academic effort, study habits,

and interest in the subject have been studied [38].

In contrast to this body of work, our work focuses on

using predicted deep affect embeddings that are learned from

a large facial affect dataset to improve behavior prediction

in an ITS. Behavior prediction can be useful in improving

learning by tailoring the interventions of the ITS to the pre-

dicted actions of the student. To the best of our knowledge,

our work is the first to use an affect embedding for behavior

prediction in an ITS.

b) Interventions in an Online Tutor: Prior research

has examined the impact of several interventions in ITS to

improve student outcome and affect, specifically, affective

messages delivered by avatars and empathetic messages that

responded to students’ recent emotions [47]. Interventions in

the MathSpring ITS led to improved grades in state standard-

ized exams [11] as well as influence students’ perceptions

of themselves as learners [24]. Empathetic characters which

provide interventions generate superior results both to im-

prove student interactions with the system, address negative
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student emotions, and in the overall learning experience [27].

Predicting outcomes of problems for students is a valuable

source of information for planning and executing ITS inter-

ventions for improving learning [12], [49]. For example the

ITS could provide hints when the system predicts that the

student will not be able to successfully complete the problem.

c) Predicting Exercise Outcome: Joshi et al. [22]

presented a first attempt at tackling the problem of exercise

outcome prediction. They did not explore deep learning

representations but used traditional facial analysis features

such as head pose, gaze and facial action units (AUs). They

also did not attempt to model the temporal component of

the videos, which is a rich source of information, and instead

opted to summarize features from a video into one single fea-

ture vector. The method by Joshi et al. [22] can be considered

the previous state of the art in student outcome prediction,

and, thus, our experimental results include a performance

comparison between this method and our models.

III. MATHSPRINGSP+ DATASET

In order to build an ITS capable of understanding student

behavior and producing interventions, it is critical to build

tailored datasets that allow development of behavior under-

standing techniques. To this end, in this work we expand

the MathSpringSP dataset described by Joshi et al. [22],

following the same data collection protocol. We name the

extended dataset MathSpringSP+. MathSpringSP+ is roughly

double the size of the original MathSpringSP dataset.

MathSpringSP+ consists of Webcam and GoPro videos

that are recorded while college students solve math problems

using the online tutor MathSpring [32] on a laptop. The

webcam is positioned on the laptop and films the student at

a frontal angle. The designated spot for the GoPro camera is

above the notepad, to the front-right of the student. Figure 2

illustrates our data capturing setup from three viewpoints.

Students work on solving math problems for 30–40 minutes

or approximately 50 problems. The number of problems

solved is variable between sessions depending on the rate

at which each student solves problems. We divide each

student’s video session into shorter video segments, where

each segment is associated with an individual math problem.

Each math problem video clip has an associated problem

outcome y, recorded in the log files of the ITS [22]. This

problem outcome is automatically labeled by the software

using a rule-based algorithm that chooses from the following

seven possible student outcomes:

• ATT (attempted): Student did not see any hints and

solved the problem after one incorrect attempt

• GIVEUP: Student tried to answer the problem or asked

for a hint but ultimately skipped the problem

• GUESS: Student did not see hints, but solved the

problem after more than one incorrect attempts

• NOTR (not read): Student performed some action, but

the first action was too fast for the student to have read

the problem

• SHINT (solved with hint): Student eventually submitted

the correct answer after seeing one or more hints

TABLE I

SIZE COMPARISON OF OUR EXTENDED MATHSPRINGSP+ DATASET

COMPARED TO MATHSPRINGSP

MathSpringSP MathSpringSP+
Individual Students 30 54
Student Sessions 38 68
Problem Samples 1,596 2,749

• SKIP: Student skipped the problem without asking for

a hint or attempting to answer the problem

• SOF (solved on the first attempt): Student answered

correctly on the first attempt, without seeing any hints

Examples of the variation in student facial expression

throughout the process of answering problems in the math

tutor are shown in Figure 3. We note that expressions can

be very subtle. Expressions can also be ambiguous: a frown

can mean that the student is very focused and will solve the

problem correctly or that they are having difficulties with

the problem. Expression intensities and variance depend on

the individual, and it is challenging to generalize to different

identities. Finally, our method has to deal with hand gestures,

face occlusions and extreme pose changes, some of which

are shown in Figure 3. A total of 24 students participated

in the extended study, compared to 30 in the original study.

The dataset will be made publicly available. We note that

the dataset only includes individuals who have provided

written consent that their data may be used publicly for

research purposes. Several students participated in multiple

sessions. Each session lasted approximately one hour. In

total, 30 student sessions were recorded, which yielded 1,153

problem samples. Thus, the extended MathSpringSP+ dataset

contains videos of a total of 54 unique students, 68 student

sessions and 2,749 problem samples. This amount of data

almost doubles the original MathSpringSP dataset, which

contains 38 student sessions and 1,596 problem samples. A

detailed breakdown of the relative sizes of MathSpringSP

and MathSpringSP+ are shown in Table I.

IV. METHOD

The dataset consists of labeled video pairs (X,y), where

the video X is a time series of RGB frames X = {Xt | t =
1..T} of a student solving a problem, and the scalar label

y indicates the outcome class for that problem. The task at

hand is a 7-label classification problem, i.e., y ∈ {1, ..., C},

for C = 7.

Our challenge was to work out how to leverage state-of-

the-art affect recognition techniques to compute an output

label y from the input video X . Affect recognition models

provide affect estimates from images of faces that typically

show strong emotions, e.g., the disgust expressed in the

women’s face on the left in Fig.1. We decided to use a

ResNet-50 network [19] and the AffectNet dataset [35],

which contains more than one million facial images collected

“in the wild” from the Internet, to solve the source domain

problem of predicting eight emotions, neutral, happiness,

sadness, surprise, fear, disgust, anger, contempt, plus the
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Fig. 2. Data capture setup for the MathSpringSP+ dataset from three views (front, side and back). The student completes problems on a laptop. The laptop
webcam and Go-Pro camera on the right side of the student are used to capture the student’s upper body and face during the completion of problems.

Fig. 3. Example face-cropped images from the MathSpringSP+ dataset showing the evolution of student expressions. In particular we notice changes
in head pose, hand gestures, face occlusion and facial gestures throughout the videos. Expressions in videos can be very subtle, as well as ambiguous,
making the prediction problem challenging.

two classes, uncertain, and non-face. We employ this trained

affect network to solve the target-domain problem of student

outcome prediction.

The proposed ATL-BP model consists of three main com-

ponents, see Figure 1, the affect network, a facial analysis

network, and an LSTM. We also study variants of our model

by either removing the affect network or replacing it with a

face recognition network.

First, from the last layer of the trained affect network,

ATL-BP extracts a fixed-size embedding of size 8,192,

computed for each frame Xt, and compresses it into a lower-

dimensional vector ρ(Xt) by learning the weights for a fully-

connected neural network layer ca (Fig. 1, magenta).

Second, ATL-BP uses a facial analysis model to extract

facial Action Unit (AU) presence and intensity, gaze di-

rection, and head pose for each frame Xt. We note these

traditional facial analysis features as ψ(Xt) (Fig. 1, green).

We chose the OpenFace 2.0 model [6] to compute student

head position, head pose, gaze, facial AU presence, and facial

AU intensity from individual frames in each video segment.

For our main ATL-BP model we devised a feature rep-

resentation that is based on concatenating the outputs of

our proposed affect representation and the facial analysis

components:

φ(Xt) = ca(ρ(Xt))⊕ ψ(Xt),

where ⊕ is the concatenation operation for vectors. The

compressed embedding ca(ρ(Xt)) is 100-dimensional. The

full feature vector φ(Xt) has dimension 149 for every frame

videot.

For our model variants, we replace the affect network by

a face recognition model in order to extract face related fea-

tures. We selected the pre-trained VGG-Face network [40],

which computes an embedding ξ of dimension 2,622. ATL-

BP compresses the feature representation ξ(Xt), computed

by this network for each video frame Xt, using another fully-

connected layer cv , into cv(ξ(Xt)).

Finally, in order to model the temporal nature of the

videos, we designed a unidirectional 2-layer LSTM classifier

hθ with 200 hidden units that processes the feature vector

φ(Xt) frame by frame and produces the final estimate of

student outcome y (Fig. 1, orange).

V. EXPERIMENTS

We present experiments on problem outcome prediction

on the MathSpringSP+ dataset. These experiments study our

contributions, which include incorporating temporal infor-

mation from video streams by using an LSTM and using

our affect transfer learning representation. The experiments

also show how user-personalized training unlocks the effec-

tiveness of our affect representation. We also study early
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prediction as well as present ablation studies for the di-

mensionality reduction that is accomplished by the proposed

fully-connected layer. In this work we limit ourselves to the

webcam video stream of the student.

A. Model Training

a) Training the Affect Representation Network: For

source domain affect training, we selected a ResNet-50 net-

work. We pre-trained the affect network on a subset of 50,000

randomly sampled images from the AffectNet dataset and

validated the network on 5,000 randomly selected images.

We limited ourselves to a subset since the dataset contains

more than one million examples. Note that our training and

validation data subsets are not the same as used by [35]. On

our subset, our network achieves a mean accuracy of 47.3%,

which is close to the accuracy reported by [35] on their skew-

normalized validation set of 54%, and much higher than the

random baseline of 9.0%. The relatively low accuracy scores

can be contributed to a data that is unbalanced, noisy, and

overall challenging.

We extracted the target domain affect features from our

videos by performing inference of the affect network on

every frame. We chose a granularity of three frames per

second, down from 30 frames per second in our videos,

in order to save on processing time and storage space. We

found that this granularity was a good compromise between

performance and cost. The affect network uses each frame as

an input and the last-layer features are extracted as a vector

of dimension 8, 192.

We trained the affect network with the Adam optimizer

with a learning rate of 3×10−4, β1 of 0.9, and β2 of 0.999.

The standard batch normalization layers of the ResNet-50

were used and fixed throughout training.

b) Training ATL-BP to Predict Student Exercise Out-

come: For each frame used, the feature vector computed is

φ(Xt) = ψ(Xt)⊕ca(ρ(Xt))⊕cv(ξ(Xt)). We observed that

the dimensionality reduction due to the compression layer

stabilizes training and improves performance. The feature

vector φ is used to train the LSTM with two stacked layers.

Specifically, at each instant t, features φ(Xt) are fed to the

LSTM. The LSTM is trained on all the video segments. It

outputs a class probability for each problem outcome. The

LSTM is trained using the cross-entropy loss function. The

Adam optimizer is used for training. We use a learning rate

of 3× 10−5 for 30 epochs, and a batch size of 1.

B. Experimental Setup for Testing

a) Model Variations for Testing: In addition to our

main proposed ATL-BP, shown in Figure 1 and which

we call “ATL-BP with affect embedding” for clarity, we

implemented and test two variants of ATL-BP. The first

variant is ATL-BP without transfer learning. In this model,

the LSTM directly interprets the output ψ of the facial

analysis network and does not use the embedding scheme

we propose in this work. The second variant is ATL-BP with

VGG-Face embedding. In this model, the LSTM interprets

the output cv(ξ(Xt)) concatenated with the output ψ of the

facial analysis network.

Furthermore, for comparison baselines, we reproduced the

method described by Joshi et al. [22] and show results for a

majority vote classifier. The majority vote classifier simply

selects the most prevalent class in our dataset, “Solved on

First Try,” for every video.

b) Random Dataset Split: Following the experimental

setup in [22], we performed five-fold cross validation on our

dataset by randomly shuffling video segments and construct-

ing five different train and test splits. The train splits contain

80% of the data while the test splits contain the rest.

Experiments conducted using this random splitting exper-

imental setup cannot reliably measure generalization to new

users since videos of problems from the same student can

be present in both the training and test set. This means

that the network does not have to learn how to generalize

to a completely new identity. We propose an improved

experimental setup next.

c) User Generalization Split: In order to test gener-

alization to new users we propose a leave-users-out exper-

imental setup where users are exclusively split into either

the training or test set. In other words, we enforce the rule

that no video clips of the same user can be in both the test

and training sets. In this manner we can measure how the

system performs when applied to an unseen user. This is a

substantially more challenging task since the network has to

generalize to new identities and features. We suggest that

all future research on this dataset use this type of setup.

We created five leave-users-out splits for five-fold cross-

validation and train different model variations for each split.

C. Results and Discussion

a) ATL-BP Results for Random Splits: Using the

experimental protocol of a random dataset split, our ATL-BP

for problem outcome prediction on MathSpringSP+ achieves

an accuracy of 60.2% (Table II). Compared to the previous

state-of-the-art method [22], this is an increase of 14 percent

points (pp) in accuracy. ATL-BP also achieves a 44% relative

increase in mean F-score improving from 0.238 to 0.330. The

mean F-score is computed by first computing the individual

F-score for all classes and averaging over all classes. By

comparing the results for ATL-BP without transfer learning

and those by Joshi et al. [22], we can see that by integrating

an LSTM architecture that allows for modeling the temporal

component in the videos we can achieve a marked increase

in performance (5.6 pp). We achieve a further increase in

performance by using deep embeddings (8.6 pp for using

the VGG-Face embedding ξ), and especially our proposed

affect embedding ψ (as mentioned, 14 pp).

b) MathSpringSP Results: We conducted experiments

on the original MathSpringSP dataset in order to verify

that our proposed ATL-BP model with affect embeddings

achieves improved results in the same testing environment

presented by Joshi et al. [22]. Our results show a consistent

improvement in mean F-score and accuracy of our method

(Table III).
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TABLE II

RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE

MATHSPRINGSP+ DATASET USING FIVE-FOLD CROSS-VALIDATION AND

RANDOM DATA SPLITS

Method Mean F-Score Accuracy
Majority Vote Classifier 0.103 56.1%

Joshi et al. [22] 0.228 46.2%

ATL-BP w/o transfer learning 0.295 51.8%

ATL-BP w/ VGG-Face embedding 0.304 54.8%

ATL-BP w/ affect embedding 0.330 60.2%

TABLE III

RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE ORIGINAL

MATHSPRINGSP FOR ATL-BP FOLLOWING THE DATA SETUP FROM

JOSHI ET AL. [22]

Method Mean F-Score Accuracy
Joshi et al. [22] 0.270 54.0%

ATL-BP w/ affect embedding 0.362 61.0%

c) Early Prediction of Problem Outcome: We ex-

perimented with obtaining prediction using only the five

first seconds of each video clip (Table IV). Early outcome

prediction is important since the ITS should have time to

react and deliver the intervention should it be decided to do

so. It turns out that is straightforward to do early prediction

using an LSTM since it outputs a prediction at every time

step, as opposed to the method proposed by Joshi et al. [22],

where each video has to be summarized into a fixed-sized

vector before being fed into a multilayer perceptron. We

observe that ATL-BP achieves a large increase (6.7 pp) in

performance over [22]. ATL-BP without transfer learning

obtains the best F-score (0.295) in this experimental setup.

d) Deep Embedding Dimensionality Reduction: We

performed an ablation study on the fully-connected layer

that is used for reducing the dimensionality of the deep

embeddings that are used as inputs for our LSTM architec-

ture (Table V). While the mean F-score does not change on

both the VGG-Face and proposed affect embedding ATL-BP

variants, dimensionality reduction does improve the accuracy

of the models by 3.5 pp and 1.5 pp, respectively.

e) ATL-BP Results for User Generalization: For the

user generalization split of the training and testing data, we

report the mean F-score and mean accuracy in Table VI for

the “Majority Vote Classifier” benchmark, Joshi et al. [22]

and our proposed model with different combinations of

embeddings. We observe that the temporal modeling im-

TABLE IV

RESULTS FOR EARLY PREDICTION OF PROBLEM OUTCOME USING ONLY

THE FIRST FIVE SECONDS OF VIDEO FOOTAGE ON THE MATHSPRINGSP+

DATASET (FIVE-FOLD CROSS-VALIDATION, RANDOM DATA SPLITS).

Method Mean F-Score Accuracy
Majority Vote Classifier 0.103 56.1%

Joshi et al. [22] 0.173 46.7%

ATL-BP w/o transfer learning 0.295 51.8%

ATL-BP w/ VGG-Face embedding 0.239 47.0%

ATL-BP w/ affect embedding 0.270 53.4%

TABLE V

EMBEDDING DIMENSIONALITY REDUCTION ABLATION STUDY. WE

SHOW RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE

MATHSPRINGSP+ DATASET USING FIVE-FOLD CROSS-VALIDATION AND

RANDOM DATA SPLITS

Method Mean F-Score Accuracy
ATL-BP w/ VGG-Face 0.304 51.3%

ATL-BP w/ VGG-Face & dim. reduction 0.304 54.8%

ATL-BP w/ affect 0.330 58.7%

ATL-BP w/ affect & dim. reduction 0.330 60.2%

TABLE VI

RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE

MATHSPRINGSP+ DATASET USING FIVE-FOLD CROSS-VALIDATION AND

THE MORE CHALLENGING LEAVE-USERS-OUT SPLITS

Method Mean F-Score Accuracy
Majority Vote Classifier 0.102 55.9%

Joshi et al. [22] 0.182 41.9%

ATL-BP w/o transfer learning 0.270 50.3%

ATL-BP w/ VGG-Face embedding 0.246 51.8%

ATL-BP w/ affect embedding 0.251 54.0%

proves results from Joshi et al. [22] substantially (12.1 pp in

accuracy). We observe that ATL-BP without transfer learning

outperforms the ATL-BP version with our proposed affect

embedding with regards to the F1 score. We hypothesize that

leveraging affect embeddings is more difficult in this setup

since the model does not have access to baseline levels of

expression for each user.

f) Personalization of Prediction: An effective real-

time tutoring system would benefit from personalizing its

prediction using initial data captured from a specific user

stream. People have different emotional and expression base-

lines that can be learned using data collected in a trial

run of the system. Specifically, we want the model to act

on the variations of our affect embedding compared to

the mean affect embedding, since each person will have a

different baseline expression and thus a different baseline

affect embedding. The model does not have any way to

integrate this information without it being personalized for

each user.

We propose a personalization scheme in which our system

can be tailored to individual users and can fully utilize our

proposed affect embedding. In this scheme, the network is

fine-tuned on the initial problems corresponding to 20% of

the session for users in the test set for 30 epochs. Our

experiments show that user personalization unlocks the po-

tential of the affect features (Table VII). ATL-BP with affect

embedding achieves the highest F-score of 0.308 and the

highest accuracy of 55.1% compared to the other methods.

Our full method achieves a relative increase of 50% in mean

F-score as well as an absolute increase in accuracy of more

than 11 pp compared to the previous state of the art [22].

Our full method also outperforms variants of ATL-BP, which

do not use our proposed affect representation.

g) Outcome Prediction for Children: As a final ex-

periment we tested our method on a new dataset of children
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TABLE VII

RESULTS FOR PROBLEM OUTCOME PREDICTION (7-CLASSES) ON THE

MATHSPRINGSP+ DATASET AFTER USER PERSONALIZATION (FIVE-FOLD

CROSS-VALIDATION AND LEAVE-USER-OUT SPLITS)

Method Mean F-Score Accuracy
Majority Vote Classifier 0.090 45.3%

Joshi et al. [22] 0.206 43.8%

ATL-BP w/o transfer learning 0.278 48.4%

ATL-BP w/ VGG-Face embedding 0.262 48.7%

ATL-BP w/ affect embedding 0.308 55.1%

TABLE VIII

RESULTS FOR PROBLEM OUTCOME PREDICTION (7-CLASSES) ON THE

CHILDREN DATASET (FIVE-FOLD CROSS-VALIDATION, RANDOM DATA

SPLITS).

Method Mean F-Score Accuracy
Majority Vote Classifier 0.070 32.3%

Joshi et al. [22] 0.202 32.0%

ATL-BP w/o transfer learning 0.238 33.4%

ATL-BP w/ affect embedding 0.260 39.6%

ATL-BP w/ LIRIS children affect embedding 0.272 45.2%

ATL-BP w/ CAFE children affect embedding 0.273 44.4%

ATL-BP w/ LIRIS+CAFE affect embedding 0.278 45.2%

working on math problems. Following the same data collec-

tion protocol as MathSpringSP+, we collected 968 recorded

problem-solving interaction samples of fifty-one K12 stu-

dents who used MathSpring. We show some extracted frames

from the dataset in Figure 4. Results on this Children dataset

show that our model consistently outperforms the baseline

and previous state-of-the-art method (Table VIII).

Since the AffectNet dataset mainly captures facial expres-

sions of adults, we further finetuned the affect representation

network using two datasets of children facial expressions,

LIRIS [26] and CAFE [31], in order to tailor the model

specifically for children. LIRIS contains 208 video clips of 6-

to-12-year-old children showing six basic spontaneous facial

expressions, while CAFE dataset contains 1,192 images of

2-to-8-year-old children posing for seven facial expressions.

We trained three variants of models using LIRIS only

(frames), CAFE only, and a combination of both datasets.

The best model among the three achieves the highest accu-

racy (45.2%) and mean F-score (0.278), improving on the

previous state-of-the-art [22] (13.2 pp absolute increase in

accuracy and 38% relative increase in mean F-score) on the

challenging task of predicting future outcome using only

student face movements and gestures. The prediction task

has 7 classes which contributes to the difficulty.

VI. CONCLUSION

We introduced a large labeled dataset of student interac-

tions with an intelligent online math tutor that consists of

68 sessions, where 54 individual students solved 2,749 math

problems. Using this dataset we design a transfer learning

model ATL-BP that improves problem outcome predictions

for students interacting with the ITS and answering math

problems. By modeling the temporal structure of the videos

with ATL-BP, we achieved a substantial increase in classifi-

cation F-score and accuracy compared to previous state of the

Fig. 4. Example face-cropped images from the Children dataset showing
the evolution of student expressions.

art in this task. Additionally, using a novel affect represen-

tation along with user personalization, we achieved a further

increase in performance. More generally, these promising

results suggest that leveraging affect representations might

be valuable in behavior analysis applications more generally.

Our final method achieves a 50% relative increase in mean

F-score as well as an absolute 11 percentage point increase

in accuracy compared to previous work. Finally, we collect a

dataset of children student interactions and present results on

this dataset. We show that finetuning of the Affect network

with age-appropriate images and video further improves

performance in this scenario. These results pave the way for

future improvements in solutions for this task. Future tutor

systems may use our proposed outcome prediction model

in order to deliver real-time interventions to improve the

learning of students.
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