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Abstract— Dexterous manipulation is a challenging and im-

portant problem in robotics. While data-driven methods are a

promising approach, current benchmarks require simulation or

extensive engineering support due to the sample inefficiency of

popular methods. We present benchmarks for the TriFinger sys-

tem, an open-source robotic platform for dexterous manipula-

tion and the focus of the 2020 Real Robot Challenge. The bench-

marked methods, which were successful in the challenge, can

be generally described as structured policies, as they combine

elements of classical robotics and modern policy optimization.

This inclusion of inductive biases facilitates sample efficiency,

interpretability, reliability and high performance. The key

aspects of this benchmarking is validation of the baselines

across both simulation and the real system, thorough ablation

study over the core features of each solution, and a retrospective

analysis of the challenge as a manipulation benchmark. The

code and demo videos for this work can be found on our website

(https://sites.google.com/view/benchmark-rrc).

I. INTRODUCTION

Dexterous manipulation is a challenging problem in
robotics, that has impactful applications across industrial
and domestic settings. Manipulation is challenging due to
a combination of environment interaction, high-dimensional
control and required exteroception. As a consequence, de-
signing high-performance control algorithms for physical
systems remains a challenge.

Due to the complexity of the problem, data-driven ap-
proaches to dexterous manipulation are a promising di-
rection. However, due to the high cost of collecting data
with a physical manipulator and the sample efficiency of
current methods, the robot learning community has primarily
focused on simulated experiments and benchmarks [1, 2, 3, 4,
5]. While there have been successes on hardware for various
manipulation tasks [6, 7, 8, 9], the hardware and engineering

*Equal contribution. Names are displayed in a random order.
1Department of Computer Science, Technical University of Darmstadt,

{niklas,julen,joe,jan}@robot-learning.de
2Toyota Technological Institute at Chicago, Chicago IL, USA,

{cbschaff, takuma, mwalter}@ttic.edu
3SAGA Robotics, Lincoln, UK, rishabhmadan96@gmail.com
4University of Washington, Seattle WA, USA, {ekgordon,

siddh, tapo}@uw.edu
5Max Planck Institute for Intelligent Systems, Tübingen, Germany,

{felix.widmaier, stefan.bauer}@tue.mpg.de
This work has been submitted to the IEEE for possible publication.

Copyright may be transferred without notice, after which this version may
no longer be accessible.

Fig. 1. The TriFinger platform performing a task in the Real Robot
Challenge, bringing a cube object to a desired pose.

cost of reproducing these experiments can be prohibitive to
most researchers.

In this work, we investigate several approaches to dex-
terous manipulation using the TriFinger platform [10], an
open-source manipulation robot. This research was moti-
vated by the ‘Real Robot Challenge’ (RRC)1, where the
community was tasked with designing manipulation agents
on a farm of physical TriFinger systems. A common theme
in the successful solutions can be described as structured
policies, methods that combine elements of classical robotics
and modern machine learning to achieve reliability, sample
efficiency and high performance. We summarize the solutions
here, and analyse their performance through ablation studies
to understand which aspects are important for real-world ma-
nipulation and how these characteristics can be appropriately
benchmarked.

The main contributions for our work are as follows. We
introduce three independent structured policies for tri-
finger object manipulation and two data-driven optimiza-

tion schemes. We perform a detailed benchmarking and

ablation study across policy structures and optimization
schemes, with evaluations both in simulation and on several
TriFinger robots. The paper is structured as follows: Section
II discusses prior work, Section III introduces the TriFin-

1See https://real-robot-challenge.com.
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ger platform, Section IV describes the structured policies,
Section V presents the approaches to structured policy op-
timization, and Section VI details the experiments. Finally,
Section VII discusses the findings.

II. RELATED WORK

Much progress has been made for manipulation in struc-
tured environments with a priori known object models
through the use of task-specific methods and programmed
motions. However, these approaches typically fail when the
environment exhibits limited structure or is not known ex-
actly. The contact-rich nature of manipulation tasks naturally
demands compliant motion. This has led to the development
of control objectives like force control [11], hybrid posi-
tion/force control [12], and impedance control [13]. Opera-
tional space control [14] has particularly been monumental in
developing compliant task space controllers that use torque
control.
Data-driven Manipulation Given the complexity of object
manipulation due to both the hardware and task, data-driven
approaches are an attractive means to avoid the need to
hand-design controllers, while also providing potential for
improved generalizability and robustness. For control, a
common approach is to combine learned models with optimal
control, such as guided policy search [15] and MPC [9, 16].
Model-free reinforcement learning (RL) has also been ap-
plied to manipulation [17, 18], including deep RL [5, 7],
which typically requires demonstrations or simulation-based
training due to sample complexity. Data-driven methods can
also improve grasp synthesis [19, 20].
Structured Policies Across machine learning, inductive bi-
ases are means of introducing domain knowledge to im-
prove sample efficiency, interpretability and reliability. In
the context of control, inductive biases have been applied to
enhance models for model-based RL [21], or to policies to
simplify or improve policy search. Popular structures include
options [22], dynamic movement primitives [23, 24, 25],
autoregressive models [26], model predictive control [27] and
motion planners [28, 29]. Structure also applies to the action
representation, as acting in operational space, joint space or
pure torque control affects how much classical robotics can
be incorporated into the complete control scheme [30].
Residual Policy Learning Residual policy learning [31, 32]
provides a way to enhance a given base control policy by
learning additive, corrective actions using RL [33]. This
allows well developed tools in robotics—such as motion
planning, PID controllers, etc.—to be used as an inductive
bias for learned policies in a RL setting. This combination
improves sample efficiency and exploration, leading to poli-
cies that can outperform classical approaches and pure RL.
Bayesian Optimization for Control Bayesian optimiza-
tion (BO) [34] is a sample-efficient black-box optimiza-
tion method that leverages the epistemic uncertainty of a
Gaussian process model of the objective function to guide
optimization. Due to this property, it can be used for hyperpa-
rameter optimization, policy search, sim-to-real transfer and
grasp selection [34, 35, 36, 20].

Strategy Level 1 Level 2 Level 3 Level 4 Total

MP-PG -5472 -2898 -9080 -21428 -124221
CPC-TG -3927 -4144 -4226 -48572 -219182
CIC-CG -6278 -13738 -17927 -49491 -285500

TABLE I
Final results of the RRC Phase 2. The score of each level is the average
reward over multiple runs. Total is a weighted sum returns over the four

levels. The strategies of our independent submissions to the challenge are:
Grasp and Motion planning (MP-PG), Cartesian position control with

Triangle Grasp (CPC-TG), and Cartesian impedance control with Center of
Three Grasp(CIC-TG). They ranked 1st, 2nd and 4th in the competition.

III. TRI-FINGER OBJECT MANIPULATION

In 2020, Wüthrich et al. introduced the TriFinger robot
[10], shown in Fig. 1. The inexpensive and open source
platform can be easily recreated and serves as the basis to
the RRC which aims to promote state-of-the-art research in
dexterous manipulation on real hardware.

A. About the Robot

The TriFinger robot consists of three identical “fingers”
with three degrees of freedom each. Its robust design to-
gether with several safety measures allows running learning
algorithms directly on the real robot, even if they send unpre-
dictable or random commands. The robot can be controlled
with either torque or position commands at a rate of 1 kHz.
It provides measurements of angles, velocities and torques
of all joints at the same rate. A vision-based tracking system
provides the pose of the manipulated object with a frequency
of 10 Hz. Users can interact with the platform by submitting
experiments and downloading the logged data.

B. The Real Robot Challenge

A cluster of seven TriFinger robots served as the basis to
the Real Robot Challenge 2020. While the herein presented
methods have been used in all the three phases of the
challenge, in the following, we focus on the second phase.

This phase deals with the task of moving a cube (shown
in Fig. 1) from the center of the arena to a desired goal
position. The cube has a side-length of 65 mm and weights
about 94 g. The surface of the cube is structured to make
grasping easier and each side has a different color to help
vision-based pose estimation.

The phase is subdivided into four difficulty levels (L1-
L4). We focus on the final two, L3 and L4 which sample
the goal pose from anywhere in the workspace, and only L4
considers the goal orientation.

Thus, for L3 the reward r only reflects the position error
of the cube. It is computed as a normalized weighted sum of
the distance on the x/y-plane and the distance on the z-axis:
r3 = �

⇣
1
2 · kexyk

dxy
+ 1

2 · |ez|
dz

⌘
, where e = (ex, ey, ez) is the

error between actual and goal position, dxy the range on the
x/y-plane and dz the range on the z-axis.

For L4, the orientation error is computed as the normalized
magnitude of the rotation q (given as quaternion) between



actual and goal orientation errrot = 2atan2(||qxyz||, |qw|)/⇡
and the reward is r4 = (r3 � errrot)/2.

This paper benchmarks the solutions of three independent
submissions to the challenge. Table I shows their perfor-
mance.

IV. STRUCTURED POLICIES

This section describes the structured controllers considered
as baselines. The controllers share a similar high-level struc-
ture and can be broken into three main components: cube
alignment, grasping, and movement to the goal pose. We
will discuss the individual grasp and goal approach strategies,
and then briefly mention cube alignment. For a visualization
of each grasping strategy, see Fig. 2. For a more detailed
discussion of each controller and alignment strategy, please
see the reports submitted for the RRC competition: motion
planning [37], Cartesian position control [38], and Cartesian
impedance control [39].

A. Grasp and Motion Planning (MP)

When attempting to manipulate an object to a desired goal
pose, the grasp must be carefully selected such that it can
be maintained throughout the manipulation. Many grasps
which are valid at the current object pose may fail when
moving the object. To avoid using such a grasp, we consider
several heuristic grasps and attempt to plan a path from the
initial object pose to the goal pose under the constraint that
the grasp can be maintained at all points along the path.
Path planning involves first selecting a potential grasp and
then running a rapidly exploring random tree (RRT) [40] to
generate a plan in task space, using the grasp to determine
the fingers’ joint positions. If planning is unsuccessful within
a given time frame, we select another grasp and retry. We
consider two sets of heuristic grasps, one with fingertips
placed at the center of three vertical faces and the other with
two fingers on one face and one on the opposite face. In the
unlikely event that none of those heuristic grasps admits a
path to the goal, we sample random force closure grasps [41]
until a plan is found. Throughout this paper we refer to this
method for determining a grasp as the Planned Grasp (PG).

To move the object to the goal pose, this approach then
simply executes the motion plan by following its waypoints
in open loop using a PD position controller. After execution,
to account for errors such as slippage or an inacurate final
pose, we iteratively append waypoints to the plan in a straight
line path from the current object position to the goal position.

B. Cartesian Position Control (CPC)

Much of the tasks presented in the challenge can be solved
using carefully designed position-based motion primitives.
We build upon this intution and implement a controller that
uses Cartesian space position as reference and outputs joint
torques to actuate the robot. To do so, we first reduce the
tri-finger joint space q 2 R9 into the 3D Cartesian position
space of each end effector x 2 R9, discarding finger orienta-
tion due to the rotational near-symmetry of the end effectors.

Fig. 2. Depicting the different grasp strategies. From left to right: triangle
grasp (TG), center of three grasp (CG), and opposite faces grasp (OG).
All permutations of fingers and vertical faces for the CGs and OGs are
considered for the planned grasp (PG) heuristic.

We retrieve the Jacobian matrix, J := @x
@q . The Jacobian-

inverse converts the task velocity to joint velocity according
to q̇ = J�1ẋ. J may be singular or non-square, so we use
its damped pseudo inverse to guarantee a good solution at the
cost of slight bias: q̇ = J> �

JJ> + �I
��1

ẋ. We combine
this with gravity compensation torques to command gravity-
independent linear forces at each finger tip.

We build upon these linear force commands to create
position-based motion primitives. Given a target position for
each fingertip, we construct a feedback controller with PID
gains tuned using [42] coupled with some minor adjustments
in response to performance changes. This approach works
well in simulation, but for the real system it results in
fingers getting stuck in intermediate positions in some cases.
Based on the limited interaction due to remote access to the
robots, this could be attributed to static friction causing the
motors to stop. We use a simple gain scheduling mechanism
that varies the gains exponentially (up to a clipping value)
over a specified time interval, which helps in mitigating
this degradation in performance by providing the extra force
required to keep the motors in motion.

Triangle Grasp (TG) The above controller is combined
with this grasp which places fingers on three of the faces
perpendicular to the ground. The fingers are placed such that
they form an equilateral triangle [43]. This ensures that the
object is in force closure and can easily apply forces on the
center of mass of the cube in any direction.

C. Cartesian Impedance Control (CIC)

Third, we present a Cartesian impedance controller (CIC)
[41, 44, 45, 46]. Using CIC enables natural adaptivity
with the environment for object manipulation by specifying
second-order impedance dynamics. This avoids having to
learn the grasping behaviour through extensive experience
and eludes complex trajectory optimization that must in-
corporate contact forces and geometry. Avoiding such com-
plexity results in a controller that has adequate baseline
performance on the real system that can then be further
optimized.

For the desired cartesian position of the ith fingertip
xi, we define x̄i to be the error between this tip position
and a reference position inside the cube xr, so x̄i =
xr � xi. We then define an impedance controller for x̄i,
a second order ODE that can be easily interpreted as a mass



spring damper system with parameters M ,D,K. Since the
cube’s position is estimated using a vision-based system, the
damping factor was zeroed for fast control. Converting this
cartesian space control law back to joint coordinates results
in ⌧1,i = M(q)J�1 ¨̄xi, where ⌧1,i denotes the torques to be
applied to finger i.

To perform cube position control, we follow the ideas
presented in [46] and design a proportional control law that
perturbs the center of cube xc based on the goal position
xg , x̂r = xr +K1(xg � xc).

The above components do not consider the fingers as a
whole, and so was limited in controlling the orientation of the
cube. Contact forces were also passively applied rather than
explicitly considered. To incorporate these additional con-
siderations, we superimpose four torques. First is the already
introduced position control and gravity compensation, which
is added with three contact and rotational terms explained in
the following, such that ⌧i =

P4
j=1 ⌧j,i.

To also allow directly specifying the force applied by each
finger, we introduce an additional component ⌧2,i = J>F2,i,
where F2,i is the force applied by finger i. We chose F2,i to
be in the direction of the surface normal of the face where
finger i touches the cube (F2,i = K2di). However, to not
counteract the impedance controller, the resulting force of
this component Fres =

P
i F2,i should account to zero.

By solving �Fres = [J�>,J�>,J�>][⌧3,1, ⌧3,2, ⌧3,3]>

for ⌧3,i, this is ensured. All previous components ensure
a stable grasp closure. This is essential for the following
orientation control law. Neglecting the exact shape of the
cube, we model the moment that is exerted onto the cube as
⌦ =

P
ri ⇥ F4,i =

P
SriF4,i, where ri = �x̄i/|x̄i|2 de-

notes the vector pointing from the center of cube towards the
finger position, Sri the respective skew-symmetric matrix,
and F4,i an additional force that should lead to the desired
rotation. The goal is now to realize a moment proportional
to the current rotation errors, which are provided in the form
of an axis of rotation r� and its magnitude �. Thus, the
control law yields ⌦ = K3�r�. We achieve ⌦ by solv-
ing ⌦ = [Sr1J

�>,Sr2J
�>,Sr3J

�>][⌧4,1, ⌧4,2, ⌧4,3]>, for
⌧4,i.

Center of Three Grasp (CG) The above controller is
combined with this grasp that places the fingers in the center
of three out of the four faces that are perpendicular to the
ground plane. The three faces are selected based on the task
and goal pose with respect to the current object pose. When
only a goal position is specified (L1-L3) the face which
is closest to the goal location is not assigned any finger,
ensuring that the cube can be pushed to the target. For
L4 cube pose control, two fingers are placed on opposite
faces such that the line connecting them is close to the axis
of rotation. To avoid colliding with the ground, the third
finger is placed such that an upward movement will yield
the desired rotation.

D. Cube Alignment
While we will focus our experiments on the above meth-

ods, another component was necessary for the teams to

perform well in the competition. Moving an object to an
arbitrary pose often requires multiple interactions with the
object itself. Therefore, teams had to perform some initial
alignment of the cube with the goal pose. All three teams
independently converged on a sequence of scripted motion
primitives to achieve this. These primitives consisted of
heuristic grasps and movements to (1) slide the cube to the
center of the workspace, (2) perform a 90 degree rotation
to change the upward face of the cube, (3) and perform a
yaw rotation. Following this sequence, the cube is grasped
and moved to the goal pose. For details on the specifics of
primitives used by each team and their sequencing, please
see their reports ([37, 38, 39]).

V. POLICY OPTIMIZATION

In addition to the approaches described above, the teams
experimented with two different optimization schemes:
Bayesian optimization and residual policy learning. In this
section we will briefly introduce these methods.

A. Bayesian Optimization

BO is a black-box method to find the global optimum of
an unknown function f : X �! R. This is achieved by ap-
proximating f with a nonparametric Gaussian process model
GP(0, k). Our Gaussian processes provide a zero-mean prior
distribution over functions with explicit uncertainty estimates
in which prior knowledge about f is encoded through the
covariance function k : X ⇥ X ! R. Using this prior,
BO selects the next point x 2 X from a set of candidates
such that x maximizes some criterion called the acquisition
function. f(x) is then evaluated and GP is updated with the
result. Candidates are iteratively selected and evaluated until
a budget constraint has been met.

In this work, we make use of the BoTorch optimization
library [47] and use Bayesian optimization to improve the
hyperparameters ✓ of the previously introduced structured
control policies. This is achieved by setting f=Eg [R(✓, g)],
where g represents the respective goal pose for the experi-
ment and R is the objective function used in the RRC. The
expectation over R is approximated by averaging over N
experiments, either in simulation or on the real platform.
Lastly, the uncertainty of the Gaussian process model is
estimated through Matérn 5/2 kernels and the best candidate
hyperparameters are obtained by maximizing the expected
improvement acquisition function after fitting the model to
the collected data.

B. Residual Policy Learning

In RL [33], an agent interacts with a MDP defined by the
tuple M = {S,A, T , r, �}. At any point in time, the agent is
in a state st 2 S and produces an action at 2 A. The MDP
then transtions to a new state st+1 2 S and the agent recevies
a reward r(st,at). The goal of the agent is to select a policy
⇡ mapping states to actions that maximizes the discounted
sum of rewards: ⇡⇤=argmax⇡ E⇡

hPT
t=0 �

tr(st,at)
i
.



In robotics, it is often easy to create a controller that
obtains reasonable performance on the desired task. Resid-
ual policy learning [31, 32] aims to leverage an existing
controller ⇡0 and use RL to learn corrective or resid-
ual actions to that controller. The learned policy acts by
adding an action ar

t ⇠ ⇡(st,a0
t ) to the action a0

t ⇠
⇡0(st) provided by the controller. From the agent per-
spective this is a standard RL setting with the state
space and transition dynamics augmented by ⇡0: M =
(S ⇥A,A, T 0,r, �), where T 0([st,a0

t ],a
r
t , [st+1,a0

t+1]) =
T (st,a0

t + ar
t , st+1)P(a0

t+1|⇡0(st+1)). Residual policy
learning benefits from the inductive bias of the base con-
troller ⇡0 which greatly improves exploration and sample
efficiency.

In this work, we learn residual controllers on top of the
three structured approaches defined above. To do this, we
use soft actor-critic (SAC) [1], a robust RL algorithm for
control in continuous action space based on the maximum
entropy RL framework. SAC has been successfully used to
train complex controllers in robotics [48].

VI. EXPERIMENTS
To provide a thorough benchmark of the above methods,

we perform a series of detailed experiments and ablations in
which we test the contribution of different components on
L3 and L4 of the RRC.

Experiment Setup In our experiments, we will be com-
paring different combinations of grasp strategies, controllers,
and optimization schemes in simulation and on the TriFinger
platform. For each combination, we will report the reward
and final pose error averaged over several trials as well as the
fraction of the time the object is dropped. In simulation, we
provide each method with the same initial object poses and
goal poses. On the TriFinger platform, we cannot directly
control the initial pose of the object, so we first move it to
the center of the workspace and the assign the goal pose
as a relative transformation of the initial pose. All methods
are tested with the same set of relative goal transforma-
tions. To isolate the performance of the grasp strategies and
controllers, we initialize the experiments so that no cube
alignment primitives are required to solve the task.

Mix and Match The choice of grasp heuristic and control
strategy are both crucial to success, but it is hard to know
how much each component contributed individually. To test
each piece in isolation we “mix and match” the three grasp
heuristics with the three structured controllers and report the
performance of all nine combinations. Each combination is
tested on L4 and results are averaged over 15 trials. Further,
the speed and accuracy of the initial cube alignments had a
large impact on the competition reward. To account for this
and to test the robustness of these approaches to different
alignment errors, we evaluate each approach under three
different initial orientation errors �✓ 2 {10, 25, 35} degrees.
When the MP controller is paired with when a grasp strategy
other than PG, a motion plan is generated using that grasp.

Bayesian Optimization All of our approaches are highly
structured and rely on a few hyperparameters. We investigate

whether BO can improve the performance of the controllers
through optimizing them for both L3 and L4. For all ex-
periments, we initialize the optimization with 4 randomly
sampled intial sets of parameters and run 50 optimization
iterations. We do not explicitly exploit any information from
our manually tuned values. Instead, the user only has to
specify intervals. This sample-efficient optimization process
only lasts about 12 hours for optimizing on the real system.
After the optimized parameters are found, each controller is
tested over 20 trials on the TriFinger platform with both
the manually tuned parameters and the BO parameters.
For our proposed approaches, we optimize the following
values: CIC - gains and reference position xr. CPC - gains,
including values for the exponential gain scheduling. MP -
hyperparameters that control the speed of the movement to
the goal location on the planned path.

Residual Policy Learning In these experiments, we in-
vestigate to what exent residual policy learning can be used
to improve the performance of our three controllers. To do
this we train a neural network policy to produce joint torques
in the bounded range [�0.05, 0.05] (the maximum allowed
joint torque on the system is 0.397), which are then added to
the actions of the base controller. The policies are trained on
L3 in simulation for 1M timesteps using SAC [1]. The reward
function consists of a combination of the competition reward
added with terms for action regularization, maximizing tip
force sensor readings, and maintianing the grasp of the
object. The policy architecture is as follows: The observa-
tion and base action are separately embedding into a 64
dimensional space. These embeddings are then concatenated
and passed to a three-layer feed forward network which
outputs a gaussian distribution over torque actions. Actions
are sampled from this distribution, squashed using a Tanh
function, then scaled to fit in the [-0.05, 0.05] range. We
evaluate MP-PG, CPC-TG, and CIC-CG in simulation over
20 trials for L3. We then test the ability of these policies to
transfer to the real system with another 20 trials.

VII. RESULTS

In this section we describe the results from running the
experiments described above. In total, we conducted more
than 20k experiments on the real system.

Mix and Match Experiment results on the real platform
are summarized in Table II. Drop refers to the percentage of
the episodes that the cube is dropped. Pos. and Ori. Err. are
the position and orientation errors at the end of the episodes.
The values are only calculated from those runs that do not
drop the cube. As a common trend, orientation error increases
as �✓ gets bigger, and except for CPC, position errors stay
close to zero with low variance across different settings.

We find that CPC drops the cube more frequently than
other approaches, and its performance varies a lot depending
on the choice of grasp. This is because it drives the fingertip
positions to the goal pose without considering whether the
grasp can be maintained. However, in the cases in which
it can retain its grasp, it achieves much lower orientation
errors than CIC or MP. While CIC is similar to CPC, it is



�✓ = 10 deg �✓ = 25 deg �✓ = 35 deg
Ori. Err. Pos. Err. Drop Ori. Err. Pos. Err. Drop Ori. Err. Pos. Err. Drop

Controller Grasp [deg] [cm] [%] [deg] [cm] [%] [deg] [cm] [%]

CIC
CG 55.9± 27.37 0.3± 0.14 0.0 47.0± 29.64 0.8± 1.12 0.0 58.2± 20.95 0.4± 0.16 6.7
PG 51.3± 26.72 0.4± 0.60 0.0 53.6± 27.26 0.7± 0.96 0.0 62.4± 31.69 0.4± 0.24 0.0
TG 30.3± 12.83 0.4± 0.22 0.0 39.4± 20.38 0.4± 0.17 13.3 30.7± 17.37 0.4± 0.21 6.7

CPC
CG 27.6± 36.74 3.0± 4.61 26.7 8.6± 5.24 1.5± 3.16 33.3 17.2± 15.38 3.3± 5.26 60.0
PG 14.0± 16.98 2.6± 4.65 26.7 36.2± 39.84 4.6± 4.49 33.3 35.4± 45.88 6.3± 6.14 13.3
TG 5.0± 3.19 0.5± 0.26 6.7 20.3± 48.96 1.5± 3.26 26.7 5.0± 2.99 0.4± 0.19 33.3

MP
CG 28.7± 10.86 0.4± 0.43 0.0 29.0± 13.95 0.5± 0.47 0.0 43.6± 11.49 0.6± 0.61 0.0
PG 30.5± 14.56 0.5± 0.46 0.0 28.0± 8.70 0.7± 0.60 0.0 30.5± 10.85 0.6± 0.80 0.0
TG 26.7± 11.24 0.4± 0.51 0.0 32.8± 15.22 0.6± 0.42 0.0 37.1± 13.31 0.6± 0.64 0.0

TABLE II
Mix-and-match experiment on the real platform. �✓ denotes the error between the goal and initial cube orientation, Drop is the fraction of episodes that
the cube is dropped. Pos. Err. and Ori. Err. are the position and orientation errors at the end of the episodes. Each value is calculated from 15 episodes.

L3 Real System L4 Real System
Control Policy R Pos. Err. [cm] Ori. Err. [deg] R Pos. Err. [cm] Ori. Err. [deg]

CIC-CG �7818.9± 3332.2 4.07± 2.49 N/A �6998.1± 1840.5 0.86± 1.63 42.18± 27.40
CIC-CG w BO �5613.6± 2643.7 2.15± 2.02 N/A �7534.4± 2976.9 1.17± 2.55 48.59± 37.20

CPC-TG �2912.2± 1738.0 1.43± 3.51 N/A �6150.8± 2754.7 2.53± 4.13 27.06± 48.68
CPC-TG w BO �2130.5± 1149.5 0.48± 1.04 N/A �5046.5± 1664.7 1.05± 1.60 13.95± 24.76

MP-PG �6267.3± 4363.8 2.15± 4.41 N/A �7105.0± 2109.1 0.64± 0.11 25.62± 15.04
MP-PG w BO �4510.4± 1412.4 0.53± 0.71 N/A �7239.2± 2257.7 0.45± 0.66 22.39± 11.90

TABLE III
Comparing the manually obtained parameters with the ones obtained from running BO on the real system for the L3 (left) and L4 (right) experiments.

more robust to drops at the expense of accuracy because it
explicitly considers the forces the fingertips need to apply
in order to achieve a desired motion. MP is the most
robust against drops and grasp choices because it attempts
to move only to locations in which the selected grasp can be
maintained. This comes at the expense of orientation errors
because the planner may have only found a point near the
goal for which the grasp is valid.

When comparing CG and TG, we find that TG performs
better in terms of both orientation error and drop rate. We
hypothesize that this is the case because the triangle shape
facilitates to apply forces to the cube in all directions. The
benefits of the planned grasp (PG) become apparent when
the initial orientation error is large, improving the drop rate
across all three controllers. This verifies the intuition for
grasp planning that, when the required orientation change
is large, it helps to carefully select a grasp that is feasible
both at the initial pose and near the goal pose.

Bayesian Optimization Table III depicts the results from
running BO on the real system to optimize the hyperaprame-
ters for the controllers. As can be seen on the left hand side,
for the L3 experiments, the newly obtained hyperparameters
significantly improve the policies’ mean reward as well as the
the mean position errors. Furthermore, although during train-
ing, we only averaged across 5 rollouts, the improvements
persist when evaluating the policies on 20 newly sampled
goal locations. From visually inspecting the rollouts, we
conclude that running BO results in higher gains such that
the target locations are reached quicker.

Repeating the same experiment for L4 yields the results

presented on the right hand side of Table III. As shown in
the table, only the performance for the CPC control strategy
can be improved significantly. Comparing the two sets of
parameters, the BO algorithm suggests to use lower gain
values. This results in a more stable and reliable control
policy and increases performance. In general, even though
we do not provide the manually obtained parameters as a
prior to the BO algorithm, for the other two approaches,
the performance of the optimized parameters is still on
par with the manually tuned ones. We reason that for the
MP approach, the two hyperparameters might not provide
enough flexibility for further improvements while the CIC
controller might have already reached its performance limits.
The results indicate that BO is an effective tool to optimize
and obtain performant hyperparameters for our approaches
and mitigates the need for tedious manual tuning.

Residual Learning Table IV shows the performance of
our control strategies with and without residual policy learn-
ing. We find that residual policy learning is only somewhat
effective, improving only the MP controller. When inspecting
the results we find that residual control is able to help the
MP policy to maintain a tight grasp on the cube, preventing
catastrophic errors such as dropping the cube and triggering
another round of planning.

Surprisingly, the learned policies are able to transfer to the
real system without any additional finetuning or algorithms
such as domain randomization [49]. For the MP controller,
we find improved grasp robustness and a reduction in the
drop rate. Additionally for CPC and CIC, it is surprising
that permormance was not more adversly affected given the



Simulation Transfer to the Real System
Control Policy R Pos. Err. [cm] Drop [%] R Pos. Err. [cm] Drop [%]

CIC-CG �112± 32.2 0.55± 0.28 0.0 �4410± 3304 1.60± 1.74 10.0
CIC-CG w RL �570± 350.6 3.52± 3.91 10.0 �4593± 3964 1.54± 1.53 10.0

CPC-TG �70.0± 9.42 0.25± 0.15 0.0 �2150± 860 0.50± 0.41 0.0
CPC-TG w RL �74.4± 4.97 0.18± 0.12 0.0 �2847± 1512 1.46± 3.16 0.0

MP-PG �122± 58.2 0.35± 0.43 0.0 �8638± 6197 8.47± 8.65 40.0
MP-PG w RL �85.8± 22.6 0.22± 0.18 0.0 �4573± 1547 1.74± 3.10 0.0

TABLE IV
This table shows the results of combining our controllers with residual policy learning. Reward and final pose errors are shown for L3 in simulation and

transferring the learned policies to the real system. Surprisingly, we find that in the case of the MP controller, the learned policy transfers to the real
system without any additional work to help manage the domain shift.

lack of improvement in simulation. We hyothesize that this
is the case for two reasons. One, the torque limits on the
residual controller are small and may not be able to cause
a collapse in performance, and two, the base controllers
provide increasing commands as errors are made that work
to keep the combined controller close to the training data
distribution. For example, the MP controller has a predefined
path and the PD controller following that path provides
increasing commands as deviations occur.

From these experiments, we conclude that residual policy
learning may be effective when small changes can be made,
such as helping maintain contact forces, to improve the
robustness of a controller, and that transferring a residual
controller from simulation is substantially easier than trans-
ferring pure RL policies.

Challenge Retrospective Overall, the newly obtained
results (see, e.g. Table III) differ only slightly compared to
the scores reported from the competition in Table I. CPC-TG
yields the best results on L3, but the team using MP-PG was
able to win. In part because they implemented more reliable
primitives for cube alignment. Through exploiting insights
from this approach, we assume that CPC-TC could perform
similarly. Nevertheless, the robustness of MP-PG might still
outweigh the gains on the successful runs of the reactive
policies, especially with increasing task difficulty.

VIII. CONCLUSION AND OUTLOOK

In this work, we present three different approaches to
solving the tasks from the RRC. We perform extensive ex-
periments in simulation and on the real platform to compare
and benchmark the methods.

We find that using motion planning provides the best trade-
off between accuracy and reliability. Compared to motion
planning, the two reactive approaches vary in both reliability
and accuracy. Concerning grasp selection, the results show
that using the triangle grasp yields best performance.

We further show the effectiveness of running Bayesian
optimization for hyperparameter optimization. Especially for
L3, the performance can be increased significantly across
all approaches. Augmenting the structured methods with a
learned residual control policy can improve the performance
when small changes to a controller are beneficial. Surpris-
ingly, we also find that transferring the learned residual

controllers required no finetuning on the real system or other
techniques to cross the sim-to-real gap, although applying
those techniques is likely to be beneficial.

We hope that our work serves as a benchmark for future
competitions and dexterous manipulation research using the
TriFinger platform.
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