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Ontogenetic development can strongly shape species interactions. Yet, rarely is stage-
structure considered when analyzing species interaction networks, particularly net-
works that can account for more than feeding relationships. Here, we assess 1) if body
size or trophic level regulate the importance of species” ontogeny on their interactions
and 2) how including relevant stage-structure affects the topology of species interac-
tion networks. We use a count-based inferential method to create networks from adult
and juvenile fish count data and test stage-structure importance by comparing a model
that includes stage-structure for all species against models that include stage-structure
only for larger fishes and only for piscivorous fishes during network construction.
While the inferential method we use cannot differentiate between different types of
interactions, it can account for different interaction types within a network as a pair-
wise interaction is inferred when one species influences the abundance of another.
Next, we use graphlet-based techniques to test if including stage-structure alters overall
network topology and a linear model to measure if adult-juvenile size differences drive
interaction differences at a species-level. We find that the model that includes stage-
structure only for larger fishes outperforms other stage-structured models including
the model with only piscivore stage-structure, and that larger differences in body size
among juveniles and adults lead to greater interaction dissimilarities. Moreover, we
find topological differences between inferred networks that only include adults and
those that account for the stage-structure of larger species. Overall, our study dem-
onstrates how stage-structured topological changes can be measured using inferred
interaction networks and illustrates how larger species” juveniles fundamentally shape
the structure of stream fish communities.

Keywords: freshwater fish, inferred network, network topology, Poisson Lognormal,
species interactions, stage-structure

Introduction

Species interaction networks are used for conceptualizing complex webs of antagonis-
tic and mutualistic interactions, and can provide core insights into the stability and
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functioning of communities and ecosystems (Thompson et al.
2012, Peralta et al. 2014). Network topology, the architec-
tural description of ecological communities, influences and
is influenced by various ecological and evolutionary pro-
cesses (Guimaraes 2020). Identifying the topological differ-
ences between networks, therefore, can potentially indicate
when ecological systems and communities are fundamentally
shaped by different processes.

Most species interaction networks treat individuals as
identical (Losapio et al. 2018) with few studies exploring
empirically how intraspecific variation influences network
topology (Clegg et al. 2018). One of the largest sources of
intraspecific variation is ontogenetic variation, which arises
due to changes in species’ traits or ecology during develop-
ment (Rudolf and Eveland 2021). As the presence of diet
or habitat changes occurring throughout development can
modify conditions for species coexistence (Miller and Rudolf
2011) as well as indirectly or directly regulate the dynamics of
communities (Osenberg et al. 1992), investigating networks
that incorporate ontogenetic variation is useful from both a
theoretical and conservation perspective.

Among the few studies that have accounted for ontogenetic
differences by including stage-structure in their networks (de
Roos and Persson 2013, Nakazawa 2015, Clegg et al. 2018),
most contain only a single interaction type, often predation,
and ignore that competition, mutualism and parasitism may
also be present (but see Ke and Nakazawa 2018). As com-
bining multiple interaction types can non-randomly alter
network topology (Kéfi et al. 2015), accounting for different
interactions could advance our understanding of how com-
munities may respond to different environmental perturba-
tions. For example, recently theoretical models have shown
that stage-structured networks accounting for antagonistic
and mutualistic interactions could play a substantial role in
stabilizing communities under environmental changes (Ke
and Nakazawa 2018). Hence, constructing networks that
accommodate both stage-structure and different interaction
types could provide a better description of the structure and
dynamics of ecological systems.

The inclusion of stage-structure can alter the topology of
networks (Clegg et al. 2018) but not all species may con-
tribute equally. For example, larger and/or predator species’
stage-structure may disproportionately contribute to eco-
logical network topology due to the size and/or role changes
that such species undergo during their lifetime. Size can alter
the existence of interactions or influence the type of inter-
actions that an individual is engaged in, such as switching
from facilitation (i.e. mutualism or commensalism) to com-
petition as a species grows (Cameron et al. 2019). Species
that experience large body size changes commonly undergo
diet shifts throughout their lifespan (Werner and Gilliam
1984), which is especially true for predators (Persson 1988).
For example, while bluegill and pumpkinseed sunfish com-
pete for a common resource as juveniles, this competitive
interaction is non-existent for adults as they occupy different
dietary niches (Osenberg et al. 1992). Predator intraspecific
variation in size and morphology, in particular, can regulate

community structure and ecosystem processes by affecting
the structure and strength of complex trophic interactions
(Post et al. 2008).

Here, we create species interaction networks to test
whether stage-structure influences network topology and
whether all species’ stage-structure contributes equally to
this topology. In freshwater fish communities, various spe-
cies shift their interactions during development (e.g. Salmo
trutta (Sdnchez-Herndndez et al. 2017), Micropterus dolo-
mieu (Dauwalter and Fisher 2008)), with piscivore species
often undergoing large interaction shifts (Persson 1988).
Thus, freshwater stream fish provide a good model system for
exploring whether stage-structure can influence the architec-
ture of ecological networks.

Constructing species interaction networks can be chal-
lenging as observational data, including direct observa-
tons (e.g. a pollinator visiting a plant (Spiesman and
Inouye 2013)) and indirect evidence of interactions (e.g.
gut-content analysis (McLeod et al. 2020)), may be sparse.
For freshwater fish communities, such observations are
typically limited to a small number of commercial species
(Sinchez-Herndndez et al. 2019). As an alternative, inferen-
tial methods have been proposed to estimate species inter-
action networks when limited interaction data are available
(Morales-Castilla et al. 2015). EMtree (Momal et al. 2020),
an inferential tree-based method, uses species (or age-group)
counts and environmental covariates within a joint-species
distribution modelling framework to infer networks. Count-
based inferential methods have been proposed as an alter-
native to co-occurrence approaches as they provide more
information to make more refined inferences (Blanchet et al.
2020). Here, we adopt EMtree to infer two freshwater stream
fish interaction networks: an adult network (nodes of adult
fish only) and a stage-structured network (nodes of adult and
juvenile fish). As sampling smaller fish often requires differ-
ent sampling gear (Clavero et al. 2006) and juveniles may
inhabit different habitats than adults (St. Mary et al. 2000,
Ayllén et al. 2010), we compare adult-only and stage-struc-
tured networks to determine if sampling juveniles is worth
the additional effort.

We test for relevant stage-structure effects on species inter-
action networks at various points throughout our analyses.
First, during network construction, we compare different
stage-structured models including those that contain stage-
structure for all species, only for piscivores and only for larger
species to determine which stage-structure best explains the
sampled adult and juvenile counts. Following the construc-
tion of the adult and stage-structured networks, we assess
whether these networks exhibit any topological differences.
Lastly, if topological differences are detected, we evaluate
whether characteristics such as body size and piscivore status
(i.e. identification as a piscivore or non-piscivore) can help
explain the degree of dissimilarity in interactions between
adults and juveniles in the stage-structured network. We
hypothesize that including stage-structure will fundamentally
alter the topology of the freshwater stream fish networks and
that the stage-structure of piscivores and larger non-piscivores



will be most important for the stage-structured network
given both these types of species are known to experience

large shifts in their interactions during ontogeny (Werner
and Gilliam 1984, Persson 1988, Cameron et al. 2019).

Methods
Data

Stream fish counts were obtained from the ‘Fish electrofish-
ing, gill netting and fyke netting counts’ dataset provided
by the National Science Foundations National Ecological
Observatory Network (NEON 2020). This dataset includes
counts for freshwater stream fish species from 28 aquatic
monitoring stations across the United States. Alongside sam-
pling counts, species name, genus, length, weight and life
stage were recorded for most sampled fish. Of the 28 aquatic
monitoring stations, we considered six stream monitor-
ing locations (Supporting information) where counts were
reported per species per age class, for two to four consecu-
tive years between 2017 and 2020 — alongside geographic,
environmental and sampling variables, such as latitude, lon-
gitude, site name, water temperature, dissolved oxygen, date
of sampling and sampling pass identifier (i.e. the identifica-
tion code for each sampling event). Additional adult feeding
behaviours were obtained for each species from NatureServe
Explorer (NatureServe 2020). An overview of the species
names, their feeding behaviours, their adult and juvenile
counts and the sampling month and year can be found in the
Supporting information.

Overview

Figure 1 summarizes the progression through the first two
major sections of our analyses: 1) network construction
and 2) network comparison. In the network construction
section, we inferred adult and stage-structured interaction
networks by first using Poisson Lognormal (PLN) models
(Chiquet et al. 2018, 2019) to generate adult and stage-
structured joint species distribution models and then by
using the EMuree algorithm to construct adult and stage-
structured networks (Momal et al. 2020). For the PLN mod-
els, we tested three subsets of stage-structure to determine
which best explains the adult and juvenile count data: a) all
species (all species model), b) high trophic level species only
(piscivore species model) and ¢) large species only (larger spe-
cies model). Additionally, we tested a non-stage-structured
PLN model fit to adult and juvenile count data to ensure
that the use of stage-structured models was necessary. In the
network comparison section, we qualitatively and quanti-
tatively assessed the topological similarities and differences
between adult and stage-structured networks using the
graphlet-based techniques, graphlet correlation distance-11
and graphlet correlation matrix-11 (Yaveroglu et al. 2014).
If the inferred adult and stage-structured networks exhib-
ited topological differences, we performed an additional step

(within-network analysis), to test whether size differences
or piscivore status best explained interaction differences
between juvenile and adult stages within the inferred stage-
structured network. This final step was performed using a
dissimilarity index and a linear model. The R code used to
perform all analyses outlined above is publicly available and
can be found on Github (<https://github.com/kbbodner/

inferred-stage-structured-fish-networks>).

Network construction

EMtree (Momal et al. 2020) is an inference procedure that
uses spanning trees and expectation maximization algorithms
to infer conditional dependence networks. The EMtree
approach requires a Gaussian covariance matrix, which is
obtained from the PLN models created by the PLNmodels
R package (Chiquet et al. 2018, 2019). PLN models are
multivariate Poisson mixed models that infer species abun-
dances and their joint interactions from species’ sampling
data. These joint species distribution models combine gen-
eralized linear models, which account for environmental and
sampling effects, and a Gaussian latent structure, which cap-
tures species interactions. In a mixed model framework, the
dependency structure between species and/or life stages are
represented as correlated random effects.

To construct the inferred networks, the EMtree approach
uses the PLN models to generate spanning trees (a subset of the
network where nodes are connected by the minimum num-
ber of connections (Dale and Fortin 2014)). Here, counts are
modelled hierarchically using two hidden layers: the latent
Gaussian vectors specified in the PLN models and a random
tree where parameters for the latent Gaussian layer are mod-
elled conditionally on spanning trees that were drawn. The
final network is inferred by averaging the spanning trees with
each edge associated with a probability of being part of the
network (Supporting information). A threshold is selected
whereby only edges above a specified value are included and
a resampling procedure can be adopted to increase network
robustness. The expectation maximization algorithms in
EMtree provide an efficient exploration of the space of span-
ning tree structures (Momal et al. 2020). Additional details
on the EMtree approach can be found in Momal et al. (2020)
and in the Supporting information.

Step 1. PLN models
For all PLN models, we included sampling effort, calculated
as the sum of the total counts of fish caught (Paulson et al.
2013), and environmental and geographical covariates to
control for the effects of sampling and the main effects of
geography and the environment. We limited model explo-
rations to two environmental and geographic covariates in
three configurations to avoid convergence issues resulting
from model complexity: 1) Site name, 2) Site name + Water
temperature and 3) Site name + Dissolved oxygen.

Paired with these environmental factors, we created PLN
models to illustrate the effects of excluding and including
stage-structure: an adult PLN model constructed with adult



(a) Network construction (b) Network comparison

Inputs: e e e e e e 2110574810196
P ! Creation of 100 random |  Avg. random XXX:X
Adult species . - — — — — - — — _ _ _ _ . networks adult Graphlet
counts Poisson Lognormal model building Correlation
¢ ! ! Matrix-11
—_—>

G Envi tal
1 § | Adult only + variables !

,.
|
|
I
|
|
|
|
I
I
|
|
|

re=-====- A Q'
|| Adultonly |
EMtree
| + | —> S —
| Environmental | . .
L variables B Adult Graphlet Correlation Matrix-11 -
______ >

=
|
3
g
S
0.8 8]
06 | A
Inputs: 04| g
r———=—=—=-=-=-=-=== H o 02| .8
Ad!llt and | Poisson Lognormal model building | ! Creation of 100 random | Avg. random 0o &=
ﬁunvem]]:e species | Stage-structure: | ! networks . stage-structured 02| ©
counts — . ! Graphlet 0.4 g
PN | | | ot il
I Envire I : © Matrix-11 08 =
> Full + ! : °
| ull-stage variables | : !—> -1 =
S ! ’ i g
LD D oS- 4 i ; &)

¢ Model selection \ !

N 1

F———— - = . S |

Stage-structure | | EMtree Stage-structured

|

| + | —> Graphlet Correlation Matrix-11
Environmental

| . |

variables

Figure 1. Conceptual diagram illustrating the progression of our analyses through network construction and network comparison. (a)
Network construction: Poisson Lognormal (PLN) models were estimated from species count and environmental data, using either adult
counts only (adult PLN models) or both adult and juvenile counts (stage-structured PLN models). Separate models were constructed with
different environmental covariates and for adults and juveniles, also constructed using the stage-structure of all species, piscivore species or
larger species (cf. text for details). Models were tested and PLN models with the best predictive capabilities were selected. While not
depicted, non-stage-structured PLN models were also constructed and tested to ensure stage-structured models were the more appropriate
models for the adult and juvenile count data. Next, the EMtree algorithm was used to construct an adult and a stage-structured inferred
species network from the best-fitting adult and stage-structured PLN models, respectively. Finally, 200 random networks were created by
randomly rewiring inferred adult and stage-structured networks. (b) Network comparison: the inferred adult, stage-structured and ran-
domly rewired networks were compared using graphlet correlation matrix-11s, which demonstrate topological patterns of networks based
on local network properties in a matrix. Note that random network graphlet correlation matrix-11s were based on average numbers of node
appearances across the random networks. Circle size and colour indicate the direction and strength of correlations between orbits, and
crosses indicate insignificant relationships. The x- and y-axes of these matrices represent the 11 non-redundant orbits (cf. Fig. 2), with the
order of orbits on the x- and y-axes chosen to highlight the correlation patterns within the networks. Additionally, the graphlet correlation
distance-11 was calculated, which measures pairwise distances among networks based on their topological differences and provides a single
value representing the overall topological similarities and dissimilarities of different networks.

count data only and a set of stage-structured PLN models  model was constructed from separate count measures for all
built using both adult and juvenile count data under differ-  species’ juveniles (those classified as ‘young-of-year’ and ‘juve-
ent assumptions for the subset of stage-structure: a) all spe-  nile’), and adults at each sampling time whereas for the pisci-
cies, b) piscivore species and ¢) larger species. Stage-structure  vore species model, only piscivore species’ juvenile and adult
was included for all species in the all species model, only  count measurements were separated.

for species classified as piscivorous (according to adult feed- To evaluate PLN model performance, in-sample and
ing behaviours in NatureServe 2020) in the piscivore spe-  out-of-sample assessments were performed. For in-sample
cies model, and only for species classified as ‘larger’ (i.e. if assessment, we used a pseudo-R* measure, constructed by
the average adult length was at or above the 50th quantile  comparing the log-likelihood of the observed data, the log-
of all species) in the larger species model. Classifications of  likelihood of a saturated model (a model that contains one
species as ‘larger’ based on membership in the top 25th and ~ parameter per observation) and the null model (a Poisson
75th quantiles were also explored. We also ensured stage-  regression GLM with no latent structure; see Chiquet et al.
structured models were most appropriate by comparing their 2018 for more details). For out-of-sample assessment, we
performance to a non-stage-structured model created with  calculated the prediction error when one season of species
adult and juvenile aggregated counts. To create the stage- count data were withheld (19 sampling points per species
structured models, species’ adult and juvenile counts were  within the season of one year). Prediction error was measured
separated or amalgamated according to the stage-structure  using the cumulative root mean squared error (RMSE) and
of interest. For example, for the all species model, the PLN  the RMSE calculated only including species for which counts



were above zero (RMSE obs > 0). Models with lower RMSE
scores were considered better performing and if two mea-
sures disagreed, we used RMSE obs > 0 since the deciding
metric as it is not influenced by species” absences. We relied
mainly on these RMSE metrics for model selection given that
models validated on external data are typically more accurate
and reliable than those only assessed via in-sample perfor-
mance (Bodner et al. 2020). PLN models were constructed
and evaluated using the PLNmodels package (Chiquet et al.
2018, 2019).

Step 2. EMtree network construction

After selecting the best-ficting PLN models for the adult-only
and the juvenile and adult data, we used the EMtree pack-
age (Momal et al. 2020) in R ver. 4.0.3 (<www.r-project.
org>) to infer two networks: an adult and a stage-structured
network. If the non-stage-structured PLN model performed
better than our selected stage-structured model, a non-stage
structured network would be created using only aggregated
counts. The networks produced by EMtree were composed of
nodes representing either species or their life stage as well as
undirected links, which represented the interactions between
them. To reduce spurious connections, a higher minimum
probability threshold for including a species’ interaction can
be selected as a cut-off. We selected the highest threshold
before which any node lost all its connections, a general con-
servative guideline (Bassett et al. 2006). To increase network
robustness, each network was resampled 100 times.

Network comparison

Graphlet analysis

Graphlet correlation matrix-11 and graphlet correlation dis-
tance-11 (Yaveroglu et al. 2014) were used to measure the
type and degree of topological differences between different
networks. We selected these approaches over alignment-,
spectral- and other graphlet-based techniques because they
tend to perform best at discriminating undirected network
topologies (Tantardini et al. 2019). The graphlet correlation
matrix is a symmetric correlation matrix that captures each
network’s local topology based on graphlet node positions
(Fig. 2; Yaveroglu et al. 2014), whereas the graphlet corre-
lation distance measures the pairwise distances between the

local topology of all networks by comparing their graphlet

correlation matrices. The graphlet correlation matrix-11
and graphlet correlation distance-11 measures use graphlets
of 2-4 nodes and 11 non-redundant orbits (Fig. 2), where
orbits are defined as groups of nodes that are topologically
symmetrical in a graphlet (Przulj 2006) and are non-redun-
dant if they cannot be constructed using equations of other
orbits (see the Supporting information for an example of a
redundancy equation).

The graphlet correlation matrix-11 is an 11 X 11 matrix
representing 11 non-redundant orbits where each cell is a
Spearman correlation measuring the covariance of two orbits
using the number of times nodes occupy these orbit positions
(see the Supporting information for a visual example). For
example, if cell (4, j) contained a strong positive correlation,
this would indicate that nodes that rarely appeared in orbit 7
would also rarely appear in orbit j or those that appeared often
in 7 would also appear often in j. After calculating graphlet
correlation matrix-11s for each of the networks, a graphlet
correlation distance-11, denoted as GCD-11 in the equation
below, can be calculated for each pair of networks. The cal-
culation uses the Euclidean distance of the upper triangular
values of the graphlet correlation matrix-11s as follows:

GCD-11(K,,K,)

= \/i i (GCM—l 1 (4, 7) = GCM-11, (i,f))2

i=1 j=i+l

where GCM-11; and GCM-11;  are the graphlet corre-

lation matrix-11s for networks K, and K, (Yaveroglu et al.
2014). Higher graphlet correlation distance-11 scores indi-
cate greater topological differences between networks.

To test whether noise could impede our ability to detect
differences in our networks, we created random networks
(100 rewired adult networks and 100 rewired stage-struc-
tured networks) that each retained the same number of nodes
and degree for each node as their inferred counterpart. While
the preservation of these characteristics creates random net-
works that still retain characteristics of the inferred networks,
it ensures that all differences found between the inferred
and random networks are due to differences in their local
network topology rather than to differences in size or node

2-node graphlet
(=]
D)
3-node graphlets
[ 5]
I>;
4-node graphlets
9}

10 14
g 13
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Figure 2. The nine graphlets (G,), containing 4-nodes or fewer and their 15 labelled automorphism orbits. Nodes of the same shade within
a graphlet belong to the same automorphism orbit (i.e. these nodes are topologically symmetrical in the graphlet). The 11 orbits used by

the graphlet correlation distance-11 are highlighted in red.



degree. Graphlet analysis was performed on all random net-
works separately and metric multi-dimensional scaling (Cox
and Cox 2000) was performed to reduce the dimensional-
ity to 3-dimensions to visually inspect networks. To calculate
graphlet correlation distance-11 scores for groups, we aver-
aged the pairwise difference scores. For graphlet correlation
matrix-11 calculations for rewired random networks, we
averaged the number of node appearances across each adult
and stage-structured random network and used the averages
to calculate the correlations for the average random adult
and the average random stage structured graphlet correla-
tion matrix-11. Rewiring and metric multi-dimensional scal-
ing were performed in R ver. 4.0.3 (<www.r-project.org>)
using the packages igraph (Csardi and Nepusz 2006) and car
(Fox and Weisberg 2019), respectively. All graphlet count-
ing was performed in Python ver. 2.7.13 (Python Software
Foundation 2016) with code from Yaveroglu et al. (2014).

Within-network analysis: dissimilarity of adult-
juvenile connections

Following the creation of our stage-structured network, a lin-
ear regression was used to quantify the relationship between
both size and piscivore status and the dissimilarity of the
adult and juvenile connections. For size-based explanatory
variables, we used the average size and the proportional
size differences of the adults and juveniles (i.e. the average
length of adults — average length of juveniles; average length
of juveniles/average length of adults) and for piscivore status
we used whether adults of the species were classified as pisci-
vores. We only calculated the size and piscivore-based mea-
sures for adults and juveniles defined as separate nodes. The
dissimilarity measure adopted was the Jaccard dissimilarity
index (Jaccard 1900), /, which is defined as follows:

b+
a+b+c

where 4 is the number of common nodes connected to both
the adults and juveniles of a species, & is the number of nodes
connected to only the adults and ¢ is the number of nodes
connected to only the juveniles. Nodes represent either
an adult or juvenile of a species or simply another species
depending on how species” adult and juvenile counts were
aggregated in the stage-structured network.

Results
Network construction

When comparing models with different environmental covari-
ates, the adult PLN models Site name, Site name+ Water
temperature and Site name + Dissolved oxygen, had similar
pseudo-R? values (0.82, 0.83 and 0.84 respectively) but the
adult PLN models Site name and Site name + Dissolved oxy-
gen had lower RMSE and RMSE obs > 0 values (Table 1).
For both the stage-structured models and non-stage-struc-
tured models (built using aggregated juvenile and adult
counts), almost all PLN models fit with different environ-
mental covariates had a pseudo-R? value within 0.02 from
each other (the exception being the larger species model with
Site name + Water temperature with a difference of 0.04 from
the highest pseudo-R?% Table 1, Supporting information).
According to most RMSE and RMSE obs > 0, the most
appropriate environmental model across non-stage-struc-
tured and stage-structured models was Site name + Dissolved
oxygen (see Table 1 and the Supporting information for
RMSE values).

When testing which type of stage-structure was the most
appropriate, our stage-structured models performed similarly
during in-sample assessment (Table 1) but exhibited substan-
tial differences in performances during out-of-sample assess-
ment. The best-performing stage-structured model according
to out-of-sample assessment was the larger species model with
RMSE=4.01 and RMSE obs > 0=10.00, followed closely

Table 1. The in-sample assessment (pseudo-R?) and out-of-sample assessment (RMSE (root mean square error), RMSE obs > 0) for each adult
and stage-structured Poisson Lognormal model. Out-of-sample assessment was calculated by removing fish counts from the most recent
season and then predicting those counts for each species or species’ life stage. In total, 19 sampled counts from across six stream locations
from the last sampled season per site were used to validate each species or species’ life stage counts. The predictive ability of each model
was assessed using two measures: (1) RMSE using all species’ counts and (2) RMSE obs > 0 using only species that were present (i.e.

observed counts > 0).

Count data Stage-structure Variables Pseudo-R? RMSE  RMSE obs > 0
Adult None (31 species) Site name 0.82 3.45 8.59
Site name +Water temperature 0.83 3.96 9.07
Site name + Dissolved oxygen 0.84 3.48 8.61
Adult and juvenile  All species (57 species/stage-classes) Site name 0.89 6.21 13.34
Site name +Water temperature 0.87 5.33 13.58
Site name + Dissolved oxygen 0.88 5.07 13.34
Piscivore species (39 species/stage-classes) Site name 0.88 5.99 10.02
Site name +Water temperature 0.87 5.16 10.53
Site name + Dissolved oxygen 0.87 4.21 10.13
Larger species (44 species/stage-classes) Site name 0.87 5.84 9.50
Site name +Water temperature 0.85 5.19 10.19
Site name + Dissolved oxygen 0.87 4.01 10.00




by piscivore species (RMSE =4.21; RMSE obs > 0=10.03),
and then all species (RMSE =5.07; RMSE obs > 0=13.34).
The non-stage-structured model and the 25% and 75%
larger species models fit to the same adult and juvenile count
data performed better than the all species model but worse
than both the larger species and piscivore species models (see
Supporting information for RMSE metrics).

Given its performance during model testing, the larger spe-
cies model fitted with Site name + Dissolved oxygen was the
PLN model selected for network construction of the inferred
stage-structured network. Given that Site name and Site
name + Dissolved oxygen models fit to adult-only data had
similar performance, to maintain consistency with the stage-
structured model selection, the Site name + Dissolved oxygen
PLN model was selected for the adult network construction.

In the next step, the adult Site name + Dissolved oxygen
and the larger species stage-structured Site name + Dissolved
oxygen models were paired with EMtree to build the inferred
species interaction networks. Various potential threshold cut-
offs for classifying interactions as present were tested and the
most appropriate threshold was 0.7, as higher values resulted
in disconnected networks. The resulting inferred adult net-
work contained 31 nodes and 96 edges whereas the inferred
stage-structured network contained 44 nodes and 123 edges
(Supporting information). The average number of connec-
tions were similar across networks with an average of 2.8 and
3.1 connections for the stage-structured and adult networks,
respectively.

Network comparison

The graphlet correlation distance-11 scores between the
inferred stage-structured, inferred adult and randomly
rewired networks ranged from 0.80 to 3.62 and included
within-group distance measures for the random stage-struc-
tured and random adult networks (Fig. 3a). The within-group
random stage-structured networks and the within-group
random adult networks had the lowest graphlet correlation
distance-11 scores (0.80 and 0.99, respectively) indicating
high topological similarities within each network type. In
contrast, the inferred stage-structured and adult networks
were approximately twice that distance from their respective
random counterparts (1.95 and 1.99, respectively), indicat-
ing greater topological dissimilarities. The greatest dissimilar-
ity was between the random adult networks and the random
stage-structured networks (3.62) with the second greatest dis-
similarity between the inferred stage-structured network and
the inferred adult networks (2.61).

The graphlet correlation matrix-11s provided more in-
depth insight into the topological differences between net-
works (Fig. 3b). We expect that very different networks
should generally have very different orbit dependencies, and
thus very different matrices (Yaveroglu et al. 2014). As our
average random networks maintained the same number of
nodes and degree sequences as their inferred counterparts,
it is unsurprising that their graphlet correlation matrix-11s
contained many positive correlations given that the matrices

of the inferred networks also had substantially more positive
than negative correlations. However, in comparison with the
average random networks, our inferred networks produced
fewer strong correlations and fewer significant interactions.
In our inferred networks, strong positive correlations were
retained between all orbits representing internal nodes (2,
11, 7) and between most orbits representing external nodes
(1, 9, 6), except for orbit 4. Interestingly, for both inferred
stage-structured and adult networks, there were almost no
relationships between orbits representing external nodes and
those representing internal nodes.

The graphlet correlation matrix-11s revealed topological
differences between the inferred adult and inferred stage-
structured networks. First, there were more significant cor-
relations in the inferred stage-structured network than the
inferred adult network. Second, there were negative relation-
ships in the adult network that did not appear in the inferred
stage-structured network. In the inferred stage-structured
network, orbit 4, which represents the outside node of a
4-node chain, retained a moderately positive relationship
with all orbits except for orbits 8 and 6. In contrast, in the
inferred adult network, orbit 4 was insignificant for all inter-
nal nodes, but had a moderate to large negative correlation
with the other orbits.

Within-network analysis: dissimilarity of
adult-juvenile connections

Within-network analysis was performed on the larger species
stage-structured network. We found all ‘larger’ species had
a Jaccard dissimilarity index of 0.50 or above, indicating a
moderate to high dissimilarity of interactions between their
juvenile and adult stages (Fig. 4). The two largest species in
our analysis, Salvelinus fontinalis and Salmo trutta, scored 1
and 0.92 respectively, signifying no overlap and very minimal
overlap in their connections across their life stages. Using a
linear model, we found a positive relationship between the
Jaccard dissimilarity index of a species and the average length
difference between their juvenile and adult stages (§,=0.5;
B,=0.006, p < 0.05). The model had an adjusted R? of 0.31
when all species classified as ‘larger’ species were included,
and an adjusted R? of 0.63 when the two smallest piscivores,
Semotilus atromacularus and Lepomis megalotis were removed.
Adding piscivore status as an explanatory variable resulted in
a worse-fitting model (Supporting information). The linear
model containing the proportional size differences between
juveniles and adults explained less than 2% of the variability
of the dissimilarity index and was not significant (Supporting
information).

Discussion

Most species interaction networks treat individuals as
identical (Losapio et al. 2018) with few studies explor-
ing how intraspecific variation affects ecological network
topology (Clegg et al. 2018). Here, we explored how
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species characteristics such as body size and trophic posi-
tion interact with species’ stage-structure to influence
interactions, and how this stage-structure can produce
topological differences at a network level. Specifically, we
find that species body size and the size differences of juve-
niles and adults drive stage-structured species interactions,
and that explicitly considering the ontogenetic variation
of larger fishes fundamentally alters the estimated topol-
ogy of freshwater stream fish networks.

In our freshwater stream system, larger fish stage-structure
influenced interactions, suggesting body size and traits corre-
lated with body size play a strong role in shaping interactions.
This is not unexpected as species size influences both feed-
ing and competitive interactions (Grabowska et al. 2016).
Piscivore stage-structure was also important for explaining
interactions as six out of the eight piscivores were classified as
‘larger’. However, while body size commonly signalled stage-
structured importance, the consequences of the resulting
interaction shifts depend on the interaction type and species
role: predators may experience increased extinction risk if they
specialize in different resources at different life stages (Rudolf
and Lafferty 2011); prey may experience decreased predation
pressure if they outgrow predators (Pessarrodona et al. 2019);
and competitors may experience different levels of competi-
tion at different life stages as they undergo niche shifts. For all
larger species, understanding relevant interactions and their
potential consequences requires a detailed perspective that
considers different development periods.

At the network level, adult and stage-structured networks
had key topological differences (Fig. 3). These differences are
expected as ontogenetic diversity has been shown to increase
network complexity and the potential for indirect interac-
tions (Rudolf and Eveland 2021). One prominent difference
between the adult and stage-structured graphlet correlation
matrix-11s is the relationship of a four-node chain external
position (orbit 4) with other external node positions. The
negative correlation in the adult network graphlet correlation
matrix suggests species switch from an external to non-exter-
nal positions. This unintuitive result is likely due to missing
juveniles in the dataset, which may occupy this external chain
position acting as prey for larger piscivorous fish, or other
external positions as competitors for smaller fish. While pre-
vious studies have shown that stage-structure can influence
food web topology (Clegg et al. 2018), here we demonstrated
that this influence is driven by larger species and that topo-
logical changes can be found in networks that account for
more than only feeding interactions. Given these topologi-
cal differences, researchers should therefore increase efforts
to include the juveniles of larger fish species when sampling
species to build interaction networks.

The ability of inferred network approaches to infer inter-
actions without directly or indirectly observing them cre-
ates opportunities to build networks for a greater range of
species and interaction types (Faisal et al. 2010). However,
inferred networks constructed using these methods have
a higher possibility of including spurious interactions and
of ignoring true pairwise interactions compared to those

empirical networks built on observed species interactions
(Blanchet et al. 2020). To reduce potential issues, we used
a joint species distribution model framework to control for
abiotic factors, reducing the possibility of producing spuri-
ous relationships (D’Amen et al. 2018) and species counts,
improving inference by providing richer information than
presence—absence data (Blanchet et al. 2020). Moreover,
while our inferred networks account for more than just
trophic interactions (as connections are inferred when one
species or life stage influences the abundance of another;
Momal et al. 2020), they are undirected and therefore cannot
help identify the different types of interactions included in
the network. Consequently, if two species/life stages engage
in more than one type of interaction, we would only be aware
that an interaction exists. Overall, while we can assume non-
trophic interactions are likely contributing to the topology
of our interaction networks, their specific contributions can-
not be quantified using our adopted methodology. However,
if longer stationary time series data are available with fixed,
equal sampling intervals, empirical dynamic models could be
adopted to resolve some of these issues as they provide inter-
action direction and strength (Ushio et al. 2018).

Due to limited spatio-temporal sampling coverage in our
data, we had to construct inferred networks using temporally
and spatially aggregated species counts, but we limited tem-
poral aggregation to four consecutive years where minimal
yearly variability was detected (Brimacombe et al. 2021), and
implicitly controlled for spatial aspects by including a site
covariate in our PLN models. As adult and juvenile species
counts are continuously being collected by NEON, future
studies should have sufficient data to construct stage-struc-
tured spatial and/or temporal networks. Such studies could
illuminate whether stage-structure differentially influences
network topology across these gradients, thereby exploring
the context-dependency of freshwater stream fish stage-struc-
tured networks.

A key challenge is to identify the topological properties
useful for distinguishing ecological networks (Michalska-
Smith and Allesina 2019). Despite the ability of graphlet
correlation distance- and graphlet correlation matrix-11
to summarize and identify different network topologies
(Fortin et al. 2021), they have been rarely used in ecologi-
cal research to date. Previous ecological studies have often
instead characterized network topology using motifs, a tech-
nique that also uses subgraphs to measure network topology
(Stouffer et al. 2007, Baiser et al. 2016, Clegg et al. 2018).
However, motifs count subgraphs as any subset of connec-
tions between nodes, which reduces the ability to capture
topological similarities between networks (Yaveroglu 2013)
whereas graphlet correlation distance- and graphlet correla-
tion matrix-11 overcome this limitation by requiring that
all connections be accounted for when counting subgraphs
(Yaveroglu et al. 2014). Increasingly adopting these powerful
techniques could increase our ability to detect general topo-
logical patterns across systems and decipher how topologi-
cal differences between networks translate to differences in
dynamics and functioning.



The presence of ontogenetic shifts can affect the stabil-
ity of consumer resource dynamics, modify conditions for
coexistence and alter the direction and strength of trophic
cascades (Miller and Rudolf 2011). Accounting for such
intraspecific variation can improve our understanding of eco-
logical communities, including how anthropogenic changes
affect ecosystem resilience (Nakazawa 2011). Ontogenetic
shifts are not limited to predator—prey interactions, so
accounting for these shifts across interaction types can help
networks portray more realistic images of ecosystems (Ke
and Nakazawa 2018). In our system, we found that larger
species’ stage-structure most affected ecological network
topology suggesting that not all species’ stage-structure con-
tributes equally to influence interactions. With this result we
emphasize not only the potential generality of species’ body
size as an indicator of stage-structure importance in freshwa-
ter stream fish communities, but also the potential utility of
traits in general to act as indicators for when stage-structure
may be shaping species interaction networks. Lastly, the use
of inferred networks and graphlet-based techniques allowed
us to construct, characterize and compare adult and stage-
structured networks. By using approaches such as EMtree
and graphlet correlation distance- and graphlet correlation
matrix-11 to study how species traits and ontogeny shape
freshwater stream fish networks, we not only illuminate how
ontogenetic variation can shape species” interactions but also
illustrate a potential template for future network creations
and comparisons.
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