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Abstract

Contemporary approaches to perception, planning, estimation, and control have allowed robots to

operate robustly as our remote surrogates in uncertain, unstructured environments. This progress now

creates an opportunity for robots to operate not only in isolation, but also with and alongside humans in

our complex environments. Realizing this opportunity requires an e�cient and flexible medium through

which humans can communicate with collaborative robots. Natural language provides one such medium,

and through significant progress in statistical methods for natural-language understanding, robots are

now able to interpret a diverse array of free-form navigation, manipulation, and mobile-manipulation

commands. However, most contemporary approaches require a detailed, prior spatial-semantic map of

the robot’s environment that models the space of possible referents of an utterance. Consequently, these

methods fail when robots are deployed in new, previously unknown, or partially-observed environments,

particularly when mental models of the environment di↵er between the human operator and the robot.

This paper provides a comprehensive description of a novel learning framework that allows field and

service robots to interpret and correctly execute natural-language instructions in a priori unknown,

unstructured environments. Integral to our approach is its use of language as a “sensor”—inferring

spatial, topological, and semantic information implicit in natural-language utterances and then exploiting

this information to learn a distribution over a latent environment model. We incorporate this distribution

in a probabilistic, language grounding model and infer a distribution over a symbolic representation of

the robot’s action space, consistent with the utterance. We use imitation learning to identify a belief-

space policy that reasons over the environment and behavior distributions. We evaluate our framework

through a variety of di↵erent navigation and mobile-manipulation experiments involving an unmanned

ground vehicle, a robotic wheelchair, and a mobile manipulator, demonstrating that the algorithm can

follow natural-language instructions without prior knowledge of the environment.

1 Introduction

Advancements in perception, planning, and control have enabled robots to move from controlled isolation in
factories and laboratories to semi-structured and unstructured environments. Notable domains where field
and service robots have proven successful at operating in the presence of uncertainty include material han-
dling (Durrant-Whyte, 1996; Durrant-Whyte et al., 2007; Walter et al., 2015), underground mining (Scheding
et al., 1997, 1999; Roberts et al., 2000; Marshall et al., 2008; Du↵ et al., 2003), disaster mitigation (Nagatani
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et al., 2008, 2013; Keiji et al., 2011), space science and exploration (Maimone et al., 2007; Furgale and Bar-
foot, 2010; Arvidson et al., 2010), underwater science and exploration (Singh et al., 2004; Johnson-Roberson
et al., 2010; Williams et al., 2012; Yoerger et al., 2007; Bowen et al., 2008; Camilli et al., 2010; German et al.,
2008), and autonomous driving (Thrun et al., 2006; Urmson et al., 2006, 2008; Bacha et al., 2008; Miller et al.,
2008; Montemerlo et al., 2008; Bohren et al., 2008; Leonard et al., 2008). With few exceptions (Walter et al.,
2015), however, current operational, field-robotic systems function with either full autonomy or under at
least partially-supervised teleoperation. More common in field operations, including those conducted by the
military (Kang et al., 2003; Ryu et al., 2004; Yamauchi, 2004), teleoperation places significant cognitive load
on the operator, who must interpret the robot’s multiple, diverse sensor streams in order to establish situa-
tional awareness, while simultaneously and continuously controlling the robot’s low-level degrees of freedom.
Consequently, teleoperation limits the e↵ectiveness and e�ciency of the tasks that can be performed.

Figure 1: A robot is directed to “retrieve the ball inside
the box” in an a priori unknown environment.

A long-standing goal is to realize field and service
robots that operate in the continuum between full
autonomy and supervised teleoperation, not only as
our surrogates, but also as our partners working
with and alongside people. Achieving this goal re-
quires command and control mechanisms that are
both intuitive and e�cient, and spoken language
o↵ers a flexible medium through which people can
communicate with robots, without the need for spe-
cialized interfaces or significant training. For ex-
ample, people can issue verbal instructions that di-
rect robotic forklifts (Walter et al., 2015) to load
and unload cargo in semi-structured storage and dis-
tribution facilities. Similarly, a voice-commandable
wheelchair (Hemachandra et al., 2011) enables peo-
ple with limited mobility to navigate their environ-
ments independently and safely simply by speaking
to their wheelchair, rather than requiring the use of
traditional sip-and-pu↵ arrays or head-actuated switches.

The potential of natural language as an e↵ective command and control mechanism has motivated sig-
nificant advances in statistical approaches to language understanding. These models and algorithms enable
robots operating in a variety of domains to interpret free-form instructions commanding tasks that include
navigation (Kollar et al., 2010; Matuszek et al., 2010; Chen and Mooney, 2011; Matuszek et al., 2012;
Thomason et al., 2015) and object manipulation (Tellex et al., 2011; Howard et al., 2014b; Thomason et al.,
2016, 2018; Shridhar and Hsu, 2018), as well as to generate natural-language utterances (Tellex et al., 2014;
Daniele et al., 2017; Shridhar and Hsu, 2018). Natural-language understanding is often formulated as a
symbol-grounding problem, wherein the task is to associate linguistic phrases with their corresponding ref-
erents in the robot’s symbolic model of its state and action spaces. Most contemporary approaches assume
that this model is known a priori in the form of a “world model” that expresses relevant information about
the robot’s environment (e.g., the location, semantic class, and colloquial name of every object and spatial
region that the user may refer to). Such a world model is typically constructed by manually adding semantic
information to spatial maps produced using an o↵-the-shelf SLAM algorithm (Kaess et al., 2008, 2009). This
practice inherently prevents natural-language understanding in environments that are unknown or partially
known to the robot. Consider a mobile manipulator that is placed in a new environment consisting of multi-
ple boxes that are all outside the field-of-view of the robot’s sensors (Fig. 1). Suppose that a person directs
the robot to “retrieve the ball inside the box”. Without knowledge of the environment, the robot is unable
to associate the phrases “the ball” or “the box” to specific locations (i.e., symbol instantiations). In this
case, most existing methods would either fail to ground the instruction or cause the robot to naively explore
the environment until it happens upon a ball contained in a box.

This paper provides a comprehensive presentation of a framework that enables robots to follow natural-
language instructions that command navigation and mobile manipulation in a priori unknown environments
(Fig. 2). Key to our approach is its exploitation of the spatial, topologic, and semantic information that the
utterance conveys, e↵ectively treating language as another “sensor.” Three algorithmic contributions are
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integral to this formulation.

• First, a learned language-grounding model e�ciently infers environment “observations,” implicit or
explicit in the command, as well as the desired behaviors.

• Second, an estimation-theoretic algorithm hypothesizes the structure of the unobserved environment
by using these language-based observations and those from the robot’s traditional sensor streams to
build and maintain a probability distribution over the world model (Fig. 2(b)).

• Third, an imitation learning-based approach learns a belief-space policy that reasons over this world
model distribution to identify navigation and manipulation actions that are optimal, given limited
environment knowledge (Fig. 2(d)).

In the following sections we first position our work in the context of contemporary approaches to language
understanding. We then provide a thorough technical description of the proposed model and give the
details of the experimental results on navigation and mobile manipulation tasks using three di↵erent robotic
platforms. We then conclude with a discussion of the strengths and weaknesses of the proposed approach,
along with directions for current and future work that seeks to address these limitations in order to facilitate
more e�cient human-robot collaboration.

2 Related Work

Natural-language understanding for human-robot interaction has been studied extensively over the past
several decades. Symbol grounding (Harnad, 1990) is a common approach to language understanding,
whereby words and phrases are interpreted in terms of their associated symbols in the robot’s model of the
world. Early work in symbol grounding (Winograd, 1971; Roy et al., 2003; MacMahon et al., 2006) utilizes
manually engineered correspondences and features that relate words to symbols comprised of the actions
and a structured environment model. Consequently, these approaches employ a compact, predetermined
grammar and a small set of symbols that limit the diversity of language that they can handle.

In contrast, contemporary approaches use statistical models that are trained in a data-driven fashion to
learn to express a large set of linguistic, spatial, and semantic features. These approaches enable robots to
successfully interpret natural-language utterances that command navigation (Kollar et al., 2010; Matuszek
et al., 2010; Chen and Mooney, 2011; Matuszek et al., 2012; Thomason et al., 2015), object manipula-
tion (Bollini et al., 2010; Howard et al., 2014b; Misra et al., 2016; Thomason et al., 2016, 2018; Shridhar and
Hsu, 2018; Paul et al., 2018), and mobile manipulation (Tellex et al., 2011; Walter et al., 2015), as well as to
generate natural-language utterances (Tellex et al., 2014; Daniele et al., 2017; Shridhar and Hsu, 2018) in a
variety of complex domains. Data-driven approaches to symbol grounding (Tellex et al., 2011; Howard et al.,
2014b,a; Paul et al., 2018) learn probabilistic models that exploit the hierarchical structure of language in
order to associate (i.e., “ground”) each phrase in an utterance to its corresponding referent in a symbolic
representation of the robot’s state and action spaces. These methods generally require that the robot has
prior knowledge of the the environment, for example in the form of a spatial-semantic map of the di↵erent
objects and regions (e.g., rooms). In practice, these maps are often generated by first teleoperating the robot
around the environment and using a state-of-the-art SLAM algorithm (Olson et al., 2006; Kaess et al., 2008)
to build a metric map of the environment. These maps are then manually annotated to include semantic
information, e.g., by delineating each object and room, and then assigning them a label, to arrive at an envi-
ronment map su�cient to provide a symbolic world model. An alternative is to incorporate this information
as part of the initial mapping using a semantic SLAM framework (Galindo et al., 2005; Mart́ınez Mozos
et al., 2007; Meger et al., 2008; Vasudevan and Siegwart, 2008; Krieg-Brückher et al., 2005; Zender et al.,
2008; Pronobis et al., 2010; Hemachandra et al., 2011; Pronobis and Jensfelt, 2012). These approaches build
on the e↵ectiveness of SLAM by augmenting a low-level metric map with layers that encode the topological
and semantic properties of the environment extracted from the robot’s sensor data (e.g., LIDAR scans and
camera images), using scene classifiers (Nüchter et al., 2003; Mart́ınez Mozos et al., 2007; Pronobis et al.,
2010) and object detectors (Torralba et al., 2003; Meger et al., 2008; Vasudevan and Siegwart, 2008; Kollar
and Roy, 2009). For a comprehensive discussion of the role of environment representations in language-based
spatial reasoning, we refer the reader to the survey by Landsiedel et al. (2017).
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(a) Time t = 0 sec (b) Time t = 90 sec

(c) Time t = 320 sec (d) Time t = 563 sec

Figure 2: Our framework learns to exploit environment-related information implicit in a given utterance to
hypothesize a distribution over possible maps in a priori unknown environments. Traditional approaches to
language grounding involve reasoning over a detailed world model that is assumed to be known a priori. In
order to allow grounding in a priori unknown or partially observed environments, our method maintains a
distribution over hypothesized, spatial-semantic maps based upon environment information conveyed in the
utterance. Consider a scenario in which the robot is instructed to “pick up the ball inside the box” in an
unknown environment. Upon receiving the instruction, (a) the algorithm uses information extracted from
the command to hypothesize the location of potential boxes, some of which contain a ball. Here, we visualize
samples drawn from this distribution. The solid green cube denotes the hypothesized box that is the current
goal of the planner. As the robot navigates, it (b) detects actual boxes (green wireframe) that are found
to not contain a ball, while also failing to confirm the presence of hypothesized boxes sampled from the
distribution. The algorithm updates the world model distribution accordingly, and the planner updates the
goal. This continues until (d) the robot observes a box containing a ball and subsequently retrieves the ball,
satisfying the instruction.

While most language grounding methods rely on access to such a prior map of the environment, there
are notable exceptions that are capable of language understanding in unknown environments. Particularly
relevant is the work of Duvallet et al. (2013), which opportunistically builds a deterministic map of the a
priori unknown environment as the robot navigates. This map serves as input to a policy that is trained via
imitation learning to emulate the way in which humans follow instructions in unknown environments. Our
approach similarly uses imitation learning to identify the robot’s policy based on human demonstrations, but
unlike the work of Duvallet et al. (2013), our policy reasons over a probabilistic model of the environment
that makes explicit information that the instruction conveys. Also relevant are recent neural network-
based approaches to language-based navigation in novel (i.e., unknown) environments (Mei et al., 2016;
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Anderson et al., 2018). Unlike our approach, these methods map language directly to actions, and do not
(explicitly) infer a distribution over possible world models from language. Meanwhile, statistical parsing-
based methods (Matuszek et al., 2010; Chen and Mooney, 2011; Matuszek et al., 2012; Thomason et al.,
2015) associate natural-language utterances to a meaning representation that typically takes the form of a
lambda calculus. Such an approach avoids the need for an explicit world model, typically at the expense of
requiring a down-stream controller capable of executing inferred plans in unknown environments.

Also relevant is recent work that focuses on grounding unknown or ambiguous utterances. One approach
to dealing with ambiguous utterances is to utilize inverse grounding (Tellex et al., 2014; Gong and Zhang,
2018) to generate targeted questions for the user that are deemed to be most informative, e.g., in terms of
the reduction in entropy for the grounding distribution (Tellex et al., 2012). Meanwhile, several methods
learn a priori unknown grounding models by exploring the relationship between novel linguistic predicates
and the robot’s world model and/or its percepts (Thomason et al., 2016; She and Chai, 2017; Tucker et al.,
2017; Thomason et al., 2018). Our work di↵ers in that we assume that the concepts are known, but that
the instantiations of these concepts in the robot’s environment are unknown.

Meanwhile, much attention of late has been applied to the problem of navigating a priori unknown
environments towards a desired goal using only onboard sensing, typically in the form of monocular or
RGBD images (Kim and Chen, 2015; Zhu et al., 2017; Gupta et al., 2017; Rasouli et al., 2020), laser
scans (Chiang et al., 2019; Zeng et al., 2019), or a combination of the two (Kollar and Roy, 2009; Aydemir
et al., 2011, 2013). While language typically plays little-to-no role in these approaches (e.g., the goal may be
specified by its named type), they are relevant to our work in that they learn a policy that is responsible for
deciding where to navigate to next based on the robot’s observation history. Similar to our approach, earlier
work in this area reasons over a structured state space that is assumed to be partially observable. Search
is then formulated as a decision-theoretic problem (e.g., in the context of a POMDP), whereby methods
attempt to solve for the policy that is optimal based on the current state distribution. Similar to the way
in which we use language to inform this distribution, these active search methods may exploit object-object
and object-scene co-occurrence information (Kollar and Roy, 2009), spatial relations (Aydemir et al., 2011),
or scene semantics (Aydemir et al., 2013).

Most recent approaches to active visual search model the navigation policy as a neural network that
maps low-level sensor data directly to actions. Trained in an end-to-end manner via reinforcement learning,
the architectures learn to reason over scene semantics in an entirely data-driven fashion. In contrast, our
framework maintains a distribution over the seen and unseen parts of the world, which serves as an explicit,
intermediate representation suitable for language grounding and planning under uncertainty. Another no-
table di↵erence compared to our work is that this family of methods typically assumes that the agent is aware
of the distance and direction of the goal (i.e., the location of the goal relative to the robot) at each time step.
In practice, this means that there is some way of localizing the robot in the environment (presumably, using
an a priori map available to an oracle). We assume that the robot has no such information. Additionally,
they assume that the agent’s motion and observations are noise-free, which is not true for robots in practice.
With few exceptions (Sadeghi and Levine, 2017; Tai et al., 2017; Bansal et al., 2019), these methods have
thus only been demonstrated in photorealistic simulators or on datasets (Mirowski et al., 2018; Zeng et al.,
2019).

A key aspect of our approach is its use of language as a sensor, whereby information conveyed in the
instruction is used to build and maintain a distribution over the map of the environment. In this way, our
approach is similar to recent methods that enable robots to learn spatial-semantic environment models from
linguistic descriptions together with traditional sensor streams (Zender et al., 2008; Pronobis and Jensfelt,
2012; Walter et al., 2013, 2014; Hemachandra et al., 2014). Our method builds on this work in order to
maintain a distribution over a model of the environment. However, this earlier work assumes access to free-
form utterances that explicitly describe the robot’s environment. In contrast, our proposed framework learns
to infer environment knowledge that is implicit in natural-language descriptions. Additionally, these previous
approaches focus on estimation as it pertains to building spatial-semantic environment models, whereas we
consider mapping jointly with planning under uncertainty specifically to satisfy a user’s natural-language
instruction.
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3 Technical Approach

Contemporary approaches to natural-language understanding formulate the problem as probabilistic infer-
ence over a learned distribution that associates linguistic elements with their corresponding referents in a
symbolic representation of the robot’s state and action spaces. The space of symbols � = {�1, �2, . . . , �n}
includes concepts derived from the robot’s environment model, such as the location and category of objects
and spatially extended regions (e.g., rooms, buildings, etc.), and a symbolic representation of viable robot
behaviors, such as manipulating a specific object or navigating to a desired location. The distribution over
symbols is conditioned on the parse of the free-form utterance ⇤t = {�1,�2...�n},1 and a world model St

that represents environment knowledge extracted from the history of sensor measurements zt using a set
of perceptual classifiers. Framed as a symbol-grounding problem (Harnad, 1990), natural-language under-
standing then typically follows as maximum a posteriori inference over the power set of referent symbols
P(�)

�⇤

t = arg max
P(�)

p(�|⇤t, St). (1)

This approach reasons over a model of the world St that is assumed both to be known a priori and to
express all information necessary to ground the given utterance. This precludes language understanding in
unobserved (i.e., novel) or partially observed environments for which the world model is empty or incomplete,
making accurate inference (1) infeasible.

3.1 Approach Overview

We address this problem by treating symbol grounding as inference conditioned on a latent model of the
robot’s environment St. In particular, we learn a probabilistic world model that exploits environmental
information implicit in an utterance to build and maintain a distribution over the topological, metric, and
semantic properties of the environment

p(St|⇤
t, zt, ut), (2)

where ⇤t, zt, and ut denote the history of utterances, sensor observations (e.g., laser scans, image streams, and
object detections from the robot’s perception pipeline), and odometry, respectively. In this way, we maintain
a world model distribution that not only fuses information perceived with sensors onboard the robot, but
also models the unperceived information about the environment that is expressed in the utterance. Treating
the environment model as a latent random variable, we formulate symbol grounding as a problem of inferring
a distribution over robot behaviors �t. A behavior in �t is a symbolic representation of the intended robot
actions expressed by the symbols in the inferred groundings �⇤

t , and may include navigating to a specific
location, grasping a particular object, etc.

The optimal trajectory x⇤
t that the robot should take in the context of a distribution over behaviors then

amounts to a planning under uncertainty problem formulated as inference over a model that marginalizes
over the space of world models and robot behaviors

x⇤

t = arg max
xt2Xt

Z

St

Z

�t

p(xt|�t, St)| {z }
planning

⇥ p(�t|⇤t, St)| {z }
behavior
inference

⇥ p(St|⇤
t, zt, ut)| {z }

semantic
mapping

dSt d�t (3)

By structuring the problem in this way, we approach language understanding in a priori unknown en-
vironments as inference over three coupled learning problems. The framework (Fig. 3) first converts the
parsed natural-language instruction into a set of environment annotations using a learned language ground-
ing model. It then treats these annotations as observations of the environment (i.e., the existence, name,
and relative location of objects and rooms) that it uses together with data from the robot’s onboard sensors
to learn a distribution over possible world models (the third term in Eqn. 3). Following the example of
executing the command to “retrieve the ball inside the box” (Fig. 1), this may result in a distribution that
hypothesizes the potential location of boxes in the environment, some of which contain hypothesized balls
(Fig. 2(a)). Our framework then infers a distribution over behaviors conditioned on the world models and
the current utterance (the second term in Eqn. 3). In our example, this distribution would favor performing

1In this way, we assume that the instructions are grammatically correct.
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annotation
inference

semantic
mapping

motion
planning

behavior
inference

policy
plannermap distribution

p(St|↵t, zt, ut)

annotation distribution
p(↵t|⇤t)

behavior distribution
p(�t|St,⇤t)

parser

instruction:
“retrieve the ball
inside the box”

observations zt

parse tree(s) ⇤t

action atcontrol inputs ut

Figure 3: Our framework for language understanding in a priori unknown environments exploits environ-
ment descriptions available in a given instruction together with traditional sensing modalities to maintain
a distribution over the environment model. A policy then reasons over this distribution together with in-
ferred behaviors to identify an appropriate high-level action (e.g., an intermediate goal). A motion planner
converts these actions into control inputs that the robot executes. This process then repeats as the robot
makes new observations, until the policy decides that the instruction has been satisfied. Details regarding
state estimation, semantic perception, etc. are omitted for clarity.

the “pick” action on an object of type “ball” whose location is consistent with being “inside” a box. Note
that we assume that relevant information in any previous utterances, i.e., ⇤t�1, is captured in the map
distribution. We then solve for the navigation and/or manipulation actions that are consistent with this
behavior distribution (the first term in Eqn. 3) using a learned belief-space policy that commands a single,
high-level action to the robot (e.g., navigating to a location where there is a high likelihood of there being
a box). As the robot executes this action, we update the world model distribution based upon any new
utterances and sensor observations, and subsequently select an updated action according to the policy. This
process repeats until the policy concludes that the robot satisfied the instruction.

Reasoning over the entire space of behaviors and semantic maps would be intractable, particularly as
the environment and behavior spaces grow. In order to make instruction-following tractable, we employ
approximations to the individual distributions in Equation 3 as well as use approximate inference methods. In
particular, we represent the latent map and behaviors as discrete samples from their respective distributions.
Each map sample represents one hypothesis of the robot’s environment, and each behavior sample is a set
of action constraints inferred from language in the context of a particular hypothesized map. We maintain
the world model distribution using a Rao-Blackwellized particle filtering framework. The following details
each component of our approach.

3.2 Natural-Language Understanding

The approach to natural-language understanding of robot instructions in this paper relies on variations of the
Distributed Correspondence Graph (DCG) (Howard et al., 2014b; Hemachandra et al., 2015; Boteanu et al.,
2016; Barber et al., 2016; Broad et al., 2017; Oh et al., 2017; Patki and Howard, 2018; Arkin et al., 2018;
Patki et al., 2019; Arkin et al., 2020). The DCG and the Hierarchical Distributed Correspondence Graph
(HDCG) (Chung et al., 2015), Adaptive Distributed Correspondence Graph (ADCG) (Paul et al., 2016),
and Hierarchical Adaptive Distributed Correspondence Graph (HADCG) (Paul et al., 2018) variations of the
model formulate the problem of natural-language understanding as probabilistic inference in a factor graph
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using models to approximate the conditional probabilities of a correspondence variable � in the context of
language ⇤, symbols �, and the environment model S from corpora of annotated examples. Such models have
the ability to generalize to instructions that are not explicitly represented in the corpora by independently
learning the conditional probabilities of concepts for linguistic structures like nouns (e.g., “the box” and “
briefcase”), prepositions (e.g., “near” and “inside”), and verbs (e.g., “drive” and “pick up”) and leveraging
the structure of the parse tree for probabilistic inference. Natural-language instructions are converted to parse
tree representations to construct DCGs in this framework as studied and more explicitly demonstrated in Paul
et al. (2018). Inference is made e�cient by assuming conditional independence across linguistic and symbolic
constituents. The HDCG, ADCG, and HADCG employ approximations of the symbolic representation �
informed by expressed symbols to further improve the e�ciency of probabilistic inference. Consider the
example illustrated in Figure 4. This figure shows the DCG and the corresponding parse tree for the
instruction “retrieve the ball inside the box”. Each of the symbols �ij in this graph represent objects, spatial
relations, actions, and other concepts needed to interpret the meaning of the instruction. The connection to
the environment model S is implicit in this illustration of the DCG.

retrieve

�0

�01

�02

�0n

�01

�02

...

�0n

�1

�11

�12

�1n

�11

�12

...

�1n

ball
the

�2

�21

�22

�2n

�21

�22

...

�2n

inside
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�31

�32

�3n

�31

�32

...

�3n

box
the

�4

�41

�42

�4n

�41

�42

...

�4n

DT NNINDT NNVB

NP (�4)NP (�2)

PP (�3)

NP (�1)

VP (�0)

Figure 4: The DCG for the expression “retrieve the ball inside the box” aligned with the corresponding
parse tree. The observed and unknown variable nodes in the factor graph are shown in white and gray,
respectively.

Assuming that the symbol-grounding model is accurately trained from corpora of annotated examples,
there are three potential outcomes that are observed to be conditioned on the information contained in the
robot’s model of the environment. To illustrate such outcomes, we consider the example utterance “the
ball inside the box” from Figure 1. First, if the environment model is known or partially known and there
is only one “ball” object that is uniquely identified as being inside of a “box” object, then the inference
procedure returns a behavior that describes the navigation and manipulation action with respect to those
physically grounded objects. Second, if the environment model is known or partially known and there
is more than one “ball” object that satisfies the relationship of being inside of a “box” object, then the
model would express this ambiguity to the user through a di↵erent set of symbols. The third case, which
is the focus of this paper, is that the environment model is partially known and there are no “ball” objects
that satisfy the relationship of being inside of a “box” object. The results of the inference procedure are
no symbols that express a relationship to this unknown object because the object and the corresponding
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actions and spatial relations are not part of the symbolic representation �. However, the user implies that
there is an object that satisfies a specific relationship, indicating that their representation of the world is
richer in this dimension than the robot’s environment model. We therefore approach the problem of natural-
language understanding as a two-part process that first exploits the environment-related information explicit
or implicit in the utterance to build a distribution over possible world models that now contains hypothesized
objects and spatial relationships that were missing in the incomplete world model. This is followed by a
step that infers the behaviors in the context of this distribution over environment models that is informed
by sensor observations and the information gleaned from the first step. The first and second steps, described
as annotation inference and behavior inference, respectively, use specially adapted symbolic representations
suitable for each problem. We describe the space of symbols in the annotation and behavior inference models
as in Paul et al. (2018), which expresses each space as the union of di↵erent symbols and their constituents.

For annotation inference, we assume a symbolic representation that is independent of an environment
model because it is meant to inform the state of the world, whereas behavior inference exploits the synthesized
environment model from the semantic mapping process using the outputs of annotation inference and past
sensor observations. The symbolic representation for annotation inference is defined by four di↵erent types
of symbols. First, a space of object classes �OC is defined by an object type OC . These symbols represent the
meaning of noun phrases like “box” or “ball” in the aforementioned example. Note that object class symbols
do not correspond to specific instances of these objects in the environment model. Object class symbols
bridge the gap between the diversity of language and the space of semantic object classes interpretative
by the robot. Second, a space of locations �L corresponds to physical locations in the environment model
defined by a location type L. These are similar to objects in that they occupy some bounded region in
the environment model, but they are not observed using traditional object detectors to infer their location.
Third, a space of spatial relation classes �S is defined by a spatial relation label S. Spatial relation classes
can be used to represent noun phrases like “the left” or “front”. Next, we define a space of region types
�RS by a spatial relationship class S for every object class in OC . Region classes are used to represent
prepositional phrases like “inside the box” or “to the left of the ball’. Lastly, a space of relationships �RC

is defined by a spatial relationship S between a pair of object classes in OC . Relationship classes are used
to represent spatial relationships between pairs of objects that occur in noun phrases like “the ball inside
the box” or “the car behind the garage”. When environments are partially observed, the extraction of these
relationships from language can inform the distribution of objects and locations in the environment model
constructed from visual perception. These relationships can be extracted implicitly from instructions like
“pick up the ball from inside the box,” or the last of part of a dialogue that begins with an ambiguous
instruction (e.g., “pick up the ball” in an environment without a ball), a question that the robot poses to the
human (“where is the ball”), and a response describing one or more of these relationship (“the ball is inside
the box underneath the table on the far side of the room”). The space of symbols for annotation inference
�A is defined as the union of object, spatial relation, region, and relation symbols

�A =
�
�OC [ �L

[ �S
[ �RS [ �RC

 
, (4a)

where the constituent symbol spaces are defined as

�OC =
�
�oci |oci 2 OC

 
(4b)

�L = {�li |li 2 L} (4c)

�S = {si|si 2 S} (4d)

�RS =
n
�si
ocj

|si 2 S, ocj 2 OC

o
(4e)

�RC =
n
�si
ocj ,ock

|si 2 S, ocj 2 OC , ock 2 OC

o
. (4f)

For behavior inference, we assume a symbolic representation formed from objects, spatial relations, and
regions. The space of objects �O is described by the object O from the environment model S. These
symbols represent actual objects that the robot has a model of and enables unique reference of objects by
their semantic class (“the box” in an environment model with only one box) or by their spatial, temporal,
or other relationship to other objects in an environment not uniquely defined by their semantic class (“the
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box underneath the table” in an environment with several boxes but only one table or bench). The space
of regions �RO is defined as the composition of a spatial relation with an object. Notice that the space of
regions is defined by the uniquely defined objects in the environment model. The spaces of spatial relation
and object classes are also applied for behavior inference. The space of modes �M defines variations of
actions that influence the cost functions used to determine the optimal plan. Mode types such as “safe” and
“quickly” given the same set of goals may, for example, produce di↵erent actions in the same environment.
Lastly, the space of actions �AO is defined by a unique object, spatial relation, reference object, and action
type AO. The space of spatial relation classes is additionally used in behavior inference. The space of
symbols for behavior inference �B is defined by an object, spatial relation class, region, and action symbols.

�B =
�
�O
[ �S

[ �OC [ �RO [ �M
[ �AO

 
, (5a)

where the new constituent symbol spaces are defined as

�M = {mi|mi 2M} (5b)

�O = {�oi |oi 2 O} (5c)

�RO =
n
�si
oj |si 2 S, oj 2 O

o
(5d)

�AO =
�
�
si,aom,mn
oj ,ok |si 2 S, oj 2 O, ok 2 O, aom 2 AO,mn 2M,

 
(5e)

(5f)

These symbols generally describe a uniform representation of the search space for the experiments de-
scribed in Section 4. Note that the complexity of these symbolic representations can be increased or decreased
depending on the diversity of tasks explored in the application of this framework. Existing works (Paul et al.,
2016, 2018) consider grounding natural-language expressions in relation to inferred object sets, however this
is not studied here.

3.3 Semantic Mapping

Integral to our approach is the ability to exploit environment-related information implicit in the natural-
language instruction to maintain a distribution over the world model. Here, we detail a Bayesian filtering-
based approach to maintaining this distribution. We represent the world model as a modified semantic
graph (Walter et al., 2013) St = {Gt, Xt, Lt}, a hybrid metric, topological, and semantic representation of
the robot’s environment, which we visualize in Figure 5.

The topology Gt consists of a set of nodes that represent objects (e.g., boxes, balls, cones, etc.) and
places (e.g., o�ces, lobbies, etc.) in the environment that have either been observed or visited by the robot,
or are hypothesized based upon language. Nodes are partitioned into regions Ri = {n1, n2, . . . , nm} that
represent spatially coherent areas (e.g., rooms and hallways), which we refer to as spatial regions, as well as
individual objects (e.g., boxes), which we refer to as object regions. Object regions typically consist of a single
node. Edges in the topology model spatial relationships between nodes, and reflect the robot’s motion, or
constraints inferred from language. More specifically, similar to pose graph formulations of SLAM (Eustice
et al., 2005; Olson et al., 2006; Kaess et al., 2008), an edge connects two nodes (locations) that the robot has
transitioned between or nodes (objects or places) that it has observed, as well as nodes for which language
indicates the existence of a specific spatial relation (e.g., that the kitchen is “down” the hallway or that
there is a ball “inside” a box). We associate a pose xi with each node ni. The concatenation of these poses
constitutes the metric map Xt. The semantic layer Lt expresses the semantic attributes of each spatial and
object region, which include its colloquial name and type lRi .

Annotations that are inferred from a given instruction under our language model provide information
regarding the existence, type, and location (relative to the robot or another landmark) of entities in the
environment. We learn a distribution over possible world models consistent with these annotations by
treating them as observations ↵t in a filtering framework, e↵ectively treating language as another sensing
modality. We combine these observations with those from other sensors onboard the robot (e.g., LIDAR
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Figure 5: The semantic graph St models the metric (spatial), topological, and semantic properties of the
environment. The topology Gt consists of a set of nodes that represent objects and locations in the environ-
ment that have either been observed or visited by the robot, or are hypothesized based upon language. Each
node is associated with a region Ri that represents spatially coherent areas in the environment. Edges in the
topology, where intra- and inter-region edges are rendered in blue and green, respectively, and model spatial
relationships between nodes, reflect the robot’s motion, observations, or constraints inferred from language.
The edge rendered in red between the two regions is for visualization purposes only. The topology induces
a pose graph, which corresponds to the metric map Xt. The semantic layer Lt models the category lRj of
each region Rj , which we infer from language �Rj and node-level scene and object classifiers ink .

and camera-based object and spatial region appearance observations) zt to maintain a distribution over the
semantic map:

p(St|⇤
t, zt, ut) ⇡ p(St|↵

t, zt, ut) (6a)

= p(Gt, Xt, Lt|↵
t, zt, ut) (6b)

= p(Lt|Xt, Gt,↵
t, zt, ut) p(Xt|Gt,↵

t, zt, ut) p(Gt|↵
t, zt, ut), (6c)

where we replace the utterance ⇤t with the set of inferred annotations ↵t (Sec. 3.2). The factorization in
the last line models the metric map as being induced by the topology, much like is done with pose graph
approaches to SLAM (Kaess et al., 2008).

In theory, the set of possible graphs for any given environment is combinatorial, because the number of
edges can be exponential in the number of nodes. This suggests that it would be intractable to maintain a full
distribution over the set of graphs for all but trivially small environments. To simplify this complexity, we
adopt an assumption made by others (Ranganathan and Dellaert, 2011)) that the distribution is dominated
by only a few topologies. More specifically, unless the environment is perceptually aliased, a large number
of particles will be inconsistent with the robot’s observations and will thus be assigned low likelihood.
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Conditioning on the environment annotations further supports this assumption as it decreases the probability
of edges that are inconsistent with the command. Any structure in the environment will also bound the inter-
connectivity of nodes (e.g., walls occluding the robot’s LIDAR prevent observations of an adjacent room that
would otherwise result in an edge to the node that denotes the robot’s pose) as does the limited field-of-view
of the robot’s sensors, further increasing the number of topologies having near-zero likelihood. Consequently,
only a few topologies that are consistent with the observations and annotations will be associated with non-
negligible likelihoods. In environments for which this assumption does not hold (e.g., open areas with objects
distributed sparsely throughout), our framework can still be used, but the computational cost will increase
due to the need to maintain a distribution over the larger set of topologies.

Leveraging this assumption, we use a sample-based representation of the posterior distribution over graphs
p(Gt|↵t, zt, ut) in Equation 6c. Specifically, we maintain the factored semantic map distribution using a Rao-
Blackwellized particle filter (RBPF) (Doucet et al., 2000), where we employ a sample-based representation of
the distribution over the environment topology p(Gt|↵t, zt, ut) and a Gaussian representation of the metric
(pose) distribution p(Xt|Gt,↵t, zt, ut) that is induced by the topology. We parameterize the Gaussian pose
distribution in the canonical (information) form, i.e., in terms of the information (inverse covariance) matrix
and information vector, as opposed to the standard covariance form. The structure of the information matrix
follows that of the topology (Eustice et al., 2005; Walter et al., 2007; Kaess et al., 2008), which is sparse for
typical environments, thereby allowing us to exploit this sparsity to improve the e�ciency of inference (Thrun
et al., 2004; Eustice et al., 2005; Kaess et al., 2008; Walter et al., 2007).

We model the semantic distribution p(Lt|Xt, Gt,↵t, zt, ut) using a factor graph, which we visualize in
plate notation in Figure 5 (top). The factor graph includes a random variable for each region that expresses
its type (i.e., category) lRi . The factor graph includes variables that express language-based annotations,
where the node �Ri denotes a potential reference to region Ri in the natural-language utterance, while �i is
a Boolean variable that specifies whether or not the reference corresponds to the region. For each node n in
the region, the robot makes indirect observations of the region’s appearance an, which is coupled with the
region’s category, via image-based scene classifiers in.

Together, this gives rise to the following parameterization of the posterior

Pt =
n
P (1)
t , P (2)

t , . . . , P (n)
t

o
, (7)

where each particle P (i)
t includes a candidate topology G(i)

t , Gaussian pose graph X(i)
t , semantic map L(i)

t ,

and particle weight w(i)
t

P (i)
t =

n
G(i)

t , X(i)
t , L(i)

t , w(i)
t

o
(8)

The robot detects and labels objects in the environment based on camera observations, using a neural
object detector built on top of the YOLO V3 architecture (Redmon and Farhadi, 2018). A neural image-
based scene classifier also provides noisy observations of the semantic class of spatial regions. In addition to
assigning labels, we use the inferred scene classes to segment spatial regions, using the presence of conflicting
appearance labels to suggest a region segmentation. As we describe next, we couple this with a spectral
clustering-based measure of the spatial coherence between laser scans in order to refine the boundaries of
spatial regions. Since this clustering reasons over the similarity of laser scans associated with di↵erent nodes,
it typically segments a region after the robot last observes it. However, using inferred scene classes allows the
method to be aware of new regions when they are first observed, enabling us to immediately evaluate each
particle’s likelihood based on the observation of region appearance. In turn, we can down-weight particles
that are inconsistent with the actual layout of the world sooner, reducing the number of actions the robot
must take to satisfy the command.

We maintain each particle through the three steps of the RPBF as detailed in Algorithm 1. First,
we propagate the topology by sampling modifications to the graph when the robot receives new sensor
observations or annotations. Second, we perform a Bayesian update to the pose distribution based upon the
sampled modifications to the underlying graph. Third, we update the weight of each particle based on the
likelihood of generating the given observations, and resample as needed to avoid particle depletion. We now
outline this process in more detail.
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Algorithm 1: Semantic Mapping Algorithm

Input: Pt�1 =
n
P (i)
t�1

o
, and (ut, zt, at,↵t), where P (i)

t�1 =
n
G(i)

t�1, X
(i)
t�1, L

(i)
t�1, w

(i)
t�1

o

Output: Pt =
n
P (i)
t

o

for i = 1 to n do

1. Employ proposal distribution p(Gt|G
(i)
t�1, z

t�1, ut,↵t) to propagate the graph sample according to
odometry on ut, the inferred region labels lt, and scene classifications zt.

(a) Sample region allocation

(b) Sample region edges

(c) Merge newly connected regions

2. Update the Gaussian distribution over the node poses X(i)
t according to the constraints induced by

the newly-added graph edges.

3. Update the factor graph representing semantic properties for the topology based on appearance
observations zt and language-based annotations ↵t.

4. Compute the new particle weight w(i)
t based upon the previous weight w(i)

t�1 and the metric data zt.

end

Normalize weights and resample if needed, i.e., if Ne↵ < n/2, where Ne↵ = 1Pn
i=0 w2

i
.

3.3.1 The Proposal Distribution

We compute the predictive posterior over the graph Gt using a proposal that is the distribution over the
current graph given the previous graph Gt�1, sensor data (excluding the current time step), appearance
data, odometry, and language

p(Gt|G
(i)
t�1, z

t�1, ut,↵t). (9)

For each particle P (i)
t�1, we update the topology G(i)

t�1 according to the robot’s motion, annotations inferred
from language, and environment observations. In particular, we first add a node nt that denotes the robot’s
current pose and an edge between it and the previous node that encodes the temporal (odometry) constraint
between the two poses.2 We initially assign the new node to the nearest region, which most often is that of

the previous node, resulting in an intermediate graph G(i)�
t .3 We then propose modifications to the graph

�(i)
t = {�(i)

t,↵,�
(i)
t,z} based upon appearance observations �(i)

t,z and natural-language annotations �(i)
t,↵:

p(G(i)
t |G(i)

t�1, z
t�1, ut,↵t) = p(�(i)

t,↵|G
(i)�
t ,↵t) p(�(i)

t,z|G
(i)�
t , zt�1) p(G(i)�

|G(i)
t�1, ut), (10)

where we define the three distributions on the right-hand side below. This formulation updates the graph

G(i)�
t with modifications �(i)

t that can include the addition and deletion of nodes and regions, as well as the
addition of edges that model spatial relations inferred from environment observations and natural language-
based annotations. We sample graph modifications from two independent proposal distributions, one for
those that reflect annotations ↵t and the other that reflects traditional observations zt�1.

Updating the current spatial region The term p(G(i)�
|G(i)

t�1, ut) in Equation 10 is the distribution
that follows from adding the node and edge that account for the robot’s motion. which results in the

intermediate graph G(i)�
t . We then probabilistically bisect the robot’s current spatial region Rc using the

2We add a node corresponding to the robot’s current pose when it observes a new object or spatial region, or has traveled
more than a specified distance. In practice, we typically use 1.0m as the distance threshold.

3This and the remainder of this discussion apply to individual particles, however we remove the particle label for readability.
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spectral clustering method proposed by Blanco et al. (2006). We generate the similarity matrix based on the
overlap between the laser scans associated with each pair of nodes in the spatial region. Equation 11 defines
the likelihood of bisecting the region, which is based on the normalized cut value Nc of the graph involving
the proposed segments. The likelihood of accepting a proposed segmentation increases as the value of Nc

decreases, i.e., as the separation of the two segments increases (minimizing the inter-region similarity).

P (s/Ncut) =
1

(1 + ↵N3
c )

(11)

The result is that areas that are more spatially distinct have a greater probability of being represented as
separate spatial regions, i.e., more particles will model these regions as distinct. If a particle chooses to
segment the current region, it creates a new spatial region Ri that does not include the newly added node.

Modifying the graph based on observations In the event that the algorithm creates a new region Ri

via segmentation, it then considers connecting the new region to existing regions in the topology, including
those that are hypothesized based on language. The method samples edges to observed regions using a
spatial distribution that is a function of the regions’ constituent nodes. We refer to these modifications to

each particle as �(i)
t,z, giving rise to the corresponding distribution from Equation 10

p(�(i)
t,z|G

(i)�
t , zt�1, ut,↵t�1) =

Y

j:eij /2E�

t

p(Gij
t |G

(i)�
t , zt�1, ut,↵t�1) (12)

Here, we assume that additional edges expressing constraints that involve the current node eij /2 E�

t are
conditionally independent.

We model the spatial distribution prior in terms of the distance dij between the nodes in each of the two
regions that are nearest to the center of the region

p(Gij
t |G

(i)�
t , zt�1, ut,↵t�1) =

Z

X�

t

p(Gij
t |X

�

t , G(i)�
t , zt�1, ut,↵t�1) p(X�

t |G(i)�
t , zt�1, ut,↵t�1) (13a)

⇡

Z

dij

p(Gij
t |dij , G

(i)�
t , zt�1, ut,↵t�1) p(dij |G

(i)�
t , zt�1, ut,↵t�1). (13b)

The conditional distribution p(Gij
t |dij , G

(i)�
t , zt�1, ut,↵t�1) expresses the likelihood of adding an edge be-

tween spatial regions Ri and Rj based upon the location of their mean nodes. We represent the distribution
for a particular edge between regions Ri and Rj with distance dij = |X̄Ri � X̄Rj |2 as

p(Gij
t |dij , G

(i)�
t , zt�1, ut,↵t�1) = p(Gij

t |dij) /
1

1 + �d2ij
, (14)

where � expresses a distance bias.4 We approximate the distance prior p(dij |G
(i)�
t , zt�1, ut,↵t�1) with a

folded Gaussian distribution.

Merging with observed or hypothesized regions After adding a new spatial region Ri and any inter-
region edges, we then evaluate whether to merge the region with any of the regions to which it is connected.
We merge the region with an existing (connected) region if the modes of their distributions over region type
(i.e., category) are the same. This results in regions being merged when the robot revisits locations already
represented in the graph. This merge process is designed such that the complexity of the topology increases
only when the robot explores new areas, leading to more e�cient region edge proposals as well as more
compact language groundings.

If the newly added spatial region was not merged with one that was previously visited, or when an
object region was added based upon camera observations, we check whether it matches a region that was
previously hypothesized based on an annotation (for example, a toolbox that the robot detected may be
the same one that was hypothesized earlier based on the instruction). We do so by sampling a grounding

4In practice, we have found � = 0.3 to work well empirically.
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to any unobserved regions in the topology using a Dirichlet process prior. If this results in a grounding to
an existing hypothesized region, we remove the hypothesized region and adjust the topology accordingly,
resampling any edges to yet-unobserved regions. For example, if an annotation suggested the existence of
a “toolbox inside the garage,” and we grounded the robot’s current region to the hypothesized garage, we
would reevaluate the “inside” relation for the hypothesized toolbox with respect to this detected garage.

Modifying the graph based on natural language In the third part of the proposal step (Eqn. 10),
we sample modifications to the graph for each particle based on (the possibly empty) set of annotations
↵t = {↵t,j} using a factored form of the distribution:

p(�(i)
t,↵|S

(i)�
t ,↵t) =

Y

j

p(�(i)
↵t,j

|S(i)�
t ,↵t,j). (15)

An annotation ↵t,j contains a spatial relation and figure when the language describes one region (e.g., “go
to the elevator lobby”), and an additional landmark when the language describes the relation between two
regions (e.g., “retrieve the wrench from inside the toolbox” or “get the mug from the kitchen”), which may
be spatial or object regions. We use a likelihood model over the spatial relation to sample landmark and
figure pairs for the grounding. This model employs a Dirichlet process prior that accounts for the fact that
the annotation may refer to regions that exist in the map or to regions that are currently unknown. For
each landmark and/or region that is sampled as being new, we add a new node to the graph and assign
the node to its own region. We then add an edge between the figure and landmark and define the metric
constraint associated with this edge based on the spatial relation. We represent the distribution associated
with this constraint as a Gaussian with a mean expressed as a linear function of features that describe the
locations of the regions, their bounding boxes, and the robot’s location at the time of the utterance. We
learn this function along with the covariance of the Gaussian using a natural-language corpus of spatial
relations (Tellex et al., 2011).

3.3.2 Updating the metric map based on new edges

The proposal step results in an update to the graph G(i)
t associated with each particle that includes the

addition of a node representing the robot’s current pose, the addition of edges, and the possible creation
and merging of regions. These modifications need to then be reflected in the distribution over poses. To
that end, we first augment the pose vector X�

t to include the robot’s current pose. We then incorporate
the relative pose constraints expressed by the new edges, including the temporal (odometry) edge between
the current and previous poses, into the Gaussian representation for the marginal distribution over the pose
history

p(Xt|Gt,↵
t, zt, ut) = N

�1(Xt;⌃
�1
t , ⌘t), (16)

where ⌃�1
t is the information (inverse covariance) matrix and ⌘t is the information vector that together

parameterize the canonical form of the Gaussian.5 Key to this parameterization is that it corresponds to a
Gaussian Markov random field, whereby the structure of the information matrix is given by the topology
of the underlying graph. Specifically, the o↵-diagonal blocks of the information matrix relating pose xi

and pose xj are non-zero if and only if there is an edge in the graph between the corresponding nodes
ni and nj . For any new edge added to the graph during the proposal step, we update the corresponding
entries of the information matrix following the standard information filtering procedure (Eustice et al., 2005;
Walter et al., 2007; Kaess et al., 2008). We refer the reader to Walter et al. (2007) for a description of this
process. Critically, the sparsity of the information matrix is determined by the underlying graph Gt, which
is generally sparse for typical environments. We exploit this sparsity to improve the computational cost of
inference (Paskin, 2003; Thrun et al., 2004; Eustice et al., 2005; Walter et al., 2007; Kaess et al., 2008). In
particular, we utilize the iSAM algorithm (Kaess et al., 2008) to update the canonical form by iteratively
solving for the QR factorization of the information matrix. We refer the reader Kaess et al. (2008) for the
details of this process.

5We maintain separate parameters for each particle, but omit the superscript indicating the particle ID for readability.
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3.3.3 Re-weighting particles and resampling

After modifying each particle’s topology, we perform a Bayesian update to its Gaussian distribution. We then
re-weight each particle according to the likelihood of generating language annotations and region appearance
observations:

w(i)
t = p(zt,↵t|S

(i)
t�1)w

(i)
t�1 = p(↵t|S

(i)
t�1)p(zt|S

(i)
t�1)w

(i)
t�1. (17)

When calculating the likelihood of each region appearance observation, we consider the current node’s
region type and calculate the likelihood of generating this observation given the topology. In e↵ect, this
down-weights any particle with a sampled region of a particular type existing on top of a known traversed
region of a di↵erent type. We use a likelihood model that describes the observation of a region’s type, with
a latent binary variable v that denotes whether or not the observation is valid. We marginalize over v to
arrive at the likelihood of generating the given observation, where Ru is the set of unobserved regions in

particle S(i)
t�1:

p(zt|S(i)
t�1) =

Y

Ri2Ru

 
X

v21,0

p(zt|v,Ri) p(v|Ri)

!
. (18)

We define the probability of annotations p(↵t|S
(i)
t�1) as the language grounding likelihood under the map

at the previous time step (Sec. 3.2). As such, a particle with an existing pair of regions that conform to
a specified language constraint will be weighted higher than one without. In an e↵ort to avoid particle
depletion, we resample the particles when the variance of the weights exceeds a threshold, as measured by
the number of e↵ective particles (Doucet, 1998)

Ne↵ =
1Pn

i=0 w
2
i

. (19)

In the experiments conducted in this paper, we set the threshold to half of the number of particles.

3.4 Planning Under Uncertainty

It is intractable to search over the complete trajectory that is optimal in the distribution over maps. In-
stead, we formulate instruction-following in unknown environments as a planning under uncertainty problem,
whereby we seek a policy ⇡ that minimizes the one-step expected cost c.

In earlier work (Duvallet et al., 2013), the cost was a function of a single topological representation of
the environment, which included nodes that were previously visited as well as those that represent frontiers
in the environment. In this work, however, the planner must reason over a distribution over semantic maps
as opposed to a single world model. Thus, we express the cost c as a function of the robot’s current pose xt,
the available actions at 2 At, and the map distribution p(St)

⇡ (xt, p(St)) = arg min
a2At

c (xt, at, p(St)) , (20)

where the belief-space actions include paths from the robot’s current pose to each node (landmark) in the
graph vt 2 Gt, paired with the distribution over the nodes. The action space also includes an explicit stop
action astop that declares that the planner has satisfied the instruction.

At = {path(xt, vt)⇥ p(vt) 8vt 2 Gt} [ {astop} (21)

In this manner, the planner di↵erentiates between landmarks that the robot has detected and thus have low
uncertainty, and those that are hypothesized from language and correspondingly more uncertain. Repre-
sented in this way, the robot can choose to explore unknown locations (e.g., continuing to search the hallway
or navigating to a box that is hypothesized as containing the ball), backtrack when a previous action hasn’t
been fruitful (e.g., traveling to the wrong room or to an empty box), and stop when the planner concludes
that the instruction has been satisfied.

The following sections explain how the policy reasons in belief space, and the novel imitation learning
formulation to train the policy from demonstrations of correct behavior.
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Figure 6: A simplified illustration of the computation of feature moments in the space of hypothesized
landmarks. In this example, there are two hypothesized boxes. In order to determine the features over a
landmark distribution, we compute the features for each action across all hypothesized landmark samples
and aggregate by means of moment statistics.

3.4.1 Belief-Space Reasoning using Distribution Embedding

A standard choice for the cost function is to represent it as a linear combination of features over the current
state and actions (Ratli↵ et al., 2006; Abbeel and Ng, 2004; Syed et al., 2008), where the state nominally
includes the robot’s pose, the semantic map, and the current time. However, rather than a single world model,
the semantic map distribution p(St) provides a distribution over the observed and hypothesized location of
landmarks (i.e., objects and regions) relevant to the given natural-language instruction. As such, the policy
⇡ must represent and compute distances between distributions over action features when computing the cost
of any action at.

Hilbert Space embeddings (Smola et al., 2007; Gretton et al., 2007) provide a convenient representation of
distributions with which one can e�ciently measure the distance between distributions via a pseudometric.
We embed the distribution over action features in a Reproducing Kernel Hilbert Space (RKHS), using the
mean feature map (Smola et al., 2007; Gretton et al., 2007) that consists of the first K moments of the

features computed with respect to each map sample S(i)
t and its likelihood as a sample-based representation

of the distribution

�̂1 (xt, at, St) =
X

S(i)
t

p(S(i)
t ) �

⇣
xt, at, S

(i)
t

⌘
(22a)

�̂2 (xt, at, St) =
X

S(i)
t

p(S(i)
t )

⇣
�
⇣
xt, at, S

(i)
t

⌘
� �̂1

⌘2
(22b)

...

�̂K (xt, at, St) =
X

S(i)
t

p(S(i)
t )

⇣
�
⇣
xt, at, S

(i)
t

⌘
� �̂1

⌘K
. (22c)

The vector �(xt, at, S
(i)
t ) is a concatenation of features that are a function of action at and a single

landmark in S(i)
t . These include geometric features that express the shape of the path associated with the

action, such as the cumulative change in angle, which may be correlated with actions that go straight or
that turn. They also include features that express the geometry of the landmark, such as the area of the
landmark region, and relationships between the action and landmark, such as the di↵erence between the
distance from the landmark at the start and the distance at the end of the path, which may be correlated
with going towards vs. away from the landmark. Please see our earlier work Duvallet et al. (2013) for a
thorough description of these features.

This RKHS-based representation of the features (Eqn. 22) computes features individually for the action
and all hypothesized landmarks in the sample-based representation of the map distribution. We aggregate
these feature vectors, and then compute moments of the feature vector distribution (i.e., the mean, variance,
and higher order statistics). Figure 6 provides a simple illustration of how we compute belief-space features
for two actions with a hypothesized box that has two possible locations.
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We express the cost function in Equation 20 as a weighted sum of the first K moments of the feature
distribution (Eqn. 22):

c (xt, at, St) =
KX

k=1

w>

k �̂k (xt, at, St) . (23)

where wk is the weight vector associated with moment k. Concatenating the weights and moments into

column vectors W =
⇥
w1 · · · wK

⇤>
and F =

⇥
�̂1 · · · �̂K

⇤>
, we can express the policy in Equation 20

as minimizing a weighted sum of the feature moments Fat for action at :

⇡ (xt, St) = arg min
at2At

W>Fat . (24)

3.4.2 Imitation Learning Formulation

We train the policy using imitation learning whereby we treat the problem of predicting the action as a
multi-class classification problem. Specifically, given an expert demonstration, we seek a policy that correctly
predicts their chosen action among all possible actions for the same state. Our earlier work proposed the
use of imitation learning for training a direction-following policy, however it assumes that the environment
is at least partially known a priori (Duvallet et al., 2013). We make no such assumption here, and instead
train a belief-space policy that reasons in a distribution of hypothesized maps, thereby supporting instances
in which the agent has no a priori knowledge of the environment.

We assume that the expert’s policy ⇡⇤ minimizes the unknown immediate cost c(xt, a⇤t , St) of performing
the demonstrated action a⇤t from state xt, under the map distribution p(St). However, since we cannot
directly observe the true costs of the expert’s policy, we must instead minimize a surrogate loss that penalizes
disagreements between the expert’s action a⇤t and the action at selected by the policy using the multi-class
hinge loss (Crammer and Singer, 2002), computed over all demonstrations:

` (xt, a
⇤

t , c, St) = max

✓
0, 1 + c (xt, a

⇤

t, St)� min
at 6=a⇤

t

[c (xt, at, St)]

◆
. (25)

Formulated in this manner, the policy selects an action that di↵ers from that of the expert (i.e., at 6= a⇤t )
if and only if the cost associated with that action (c(xt, at, St)) is less than the cost of the expert’s action
(c (xt, a⇤t, St)) by a margin of one. The loss can be re-written and combined with Equation 24 to yield:

` (xt, a
⇤

t ,W, St) = W>Fa⇤

t
�min

at

⇥
W>Fat � lxa

⇤
, (26)

where the margin lxa = 0 if at = a⇤t and lxa = 1 otherwise. This ensures that the expert’s action is better than
all other actions by a margin (Ratli↵ et al., 2006). We further add a regularization term � to Equation 26,
yielding the complete optimization loss:

` (xt, a
⇤

t ,W, St) =
�

2
kWk2 +W>Fa⇤

t
�min

at

⇥
W>Fat � lxa

⇤
. (27)

Although this loss function is convex, it is not di↵erentiable. However, we can optimize it e�ciently by
taking the subgradient of Equation 27 and computing action predictions for the loss-augmented policy (Ratli↵
et al., 2006):

@`

@W
= �W + Fa⇤

t
� Fa0

t
(28)

where a0t is the best loss-augmented action associated with state xt (i.e., the solution to our policy using the
loss-augmented cost):

a0t = arg min
at

⇥
W>Fat � lxa

⇤
. (29)

The subgradient leads to the update rule for the weights Wt:

Wt+1  Wt � ↵
@`

@W
(30)
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with a learning rate ↵ / 1/t� . Intuitively, if the current policy disagrees with the expert’s demonstration,
Equation 30 decreases the weight (and thus the cost) for the features of the demonstrated action Fa⇤

t
, and

increases the weight for the features of the planned action Fa0

t
. If the policy produces actions that are

consistent with the expert’s demonstration, only the regularization term is updated. As in our prior work,
we train the policy using the DAgger algorithm (Ross et al., 2011), which learns a policy by iterating
between collecting data (using the current policy) and applying expert corrections on all states visited by
the policy (using the expert’s demonstrated policy).

Treating direction following in the space of possible semantic maps as a problem of sequential decision
making under uncertainty provides an e�cient approximate solution to the belief-space planning problem.
By using a kernel embedding of the distribution of features for a given action, our approach can learn a
policy that reasons about the distribution of semantic maps.

4 Experiments

To evaluate the e↵ectiveness of the proposed approach to natural-language instruction-following in a priori
unknown environments, we performed experiments on the three di↵erent robotic systems illustrated in Figure
7. For each of these, we used a form of a symbolic representation for annotation inference and behavior
inference that involved several di↵erent types of symbols.

(a) Clearpath Robotics Husky A200 UGV (b) Robotic Wheelchair (c) Clearpath Robotics Husky A200 UGV with
a Universal Robotics UR5 Manipulator

Figure 7: The three robots used in physical experiments. The Clearpath Robotics Husky A200 UGV in
(a) and the Robotic Wheelchair in (b) were used for experiments involving following of route instructions
in Section 5.1.2 while the Clearpath Robotics Husky A200 UGV outfitted with a Universal Robotics UR5
manipulator in (c) was used for natural language understanding for mobile manipulation in Section 5.2

The first system evaluated was an unmanned ground vehicle. For annotation and behavior inference for
these experiments we assumed seven di↵erent spatial relation types S (“unknown”, “near”, “away”, “front”,
“back”, “left”, “right”), eight object types OC (” unknown”, “robot”, “cone”, “tree”, “car”, “building”,
“hydrant”, and “wall”) and no location types. For the space of behaviors, we considered two possible action
types AO (“unknown” and “navigation”) and three possible modes M (“safely”, “quickly”, and “unknown”).
For symbol grounding, both annotation and behavior inference used the DCG model Howard et al. (2014b)
with a corpus of 39 fully labeled examples. Additional information on the symbolic representation and corpus
used in the experiments can be found in Duvallet et al. (2014).

The second system evaluated was a robotic wheelchair. This system was evaluated in an o�ce building
environment. For both annotation and behavior inference, we assumed 12 di↵erent spatial relation types
S (“unknown”, “near”, “away”, “front”, “back”, “left”, “right”, “down”, “through”, “towards”, “past”,
and “around”) and 17 object and location types. Specifically, we used eight object types OC (“unkown”,
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“robot”, “cone”, “tree”, “car”, “building”, “hydrant”, and “wall”) and nine location types L (“generic”,
“kitchen”, “o�ce”, “hallway”, “lab”,“lounge”, “elevator”, “conference room”, and “cafeteria”). These ex-
periments also included twelve spatial relation types. For the space of behaviors, we considered four possible
actions (“unknown”, “navigation”, “right”, and “left”) and three possible modes M (“safely”, “quickly”,
and “unknown”). For annotation inference and behavior inference, we used the HDCG Chung et al. (2015)
model with a corpus of 54 fully labeled examples. More information about the symbolic representation used
in these experiments can be found in Hemachandra et al. (2015).

The third system that we evaluated was a mobile manipulator consisting of a Clearpath Robotics Husky
A200 Unmanned Ground Vehicle outfitted with a Universal Robotic UR5 manipulator and Robotiq Adaptive
Robotic Gripper. We conducted experiments in both indoor and outdoor environments with a series of
instructions that required the robot to both navigate and manipulate objects. A subset of these objects were
selected from the YCB dataset Calli et al. (2015). For annotation inference, the object types OC included
“drill”, “suitcase”, “banana”, “pitcher”, “cracker box”, “mustard bottle”, “ball”, “box”, and “cone”, the
location types L included “lab”, “hallway”, and “o�ce”, and the spatial relation types S included “inside”,
“behind”, “left”, “right”, “front”, and “back”. For behavior inference, the action types AO included “pick”,
“retrieve”, and “navigate”, the object types OC included “drill”, “suitcase”, “banana”, “pitcher”, “cracker
box”, “mustard bottle”, “ball”, “box”, and “cone”, and the spatial relation types S included “inside” and
“behind”. No model types were used for the mobile manipulation experiments. For symbol grounding, both
annotation and behavior inference used the DCG model Howard et al. (2014b) with a corpus of 115 fully
labeled examples. The corpus contained instructions such as “Pick up the drill behind the cone”, “Pick
up the pitcher”, “Go to the mustard bottle”, “Retrieve the crackers box inside the box” etc. Additional
information on the symbolic representation and corpus used in the experiments can be found in Patki et al.
(2020).

5 Experimental Results

In the following, we discuss the results of the various experiments intended to evaluate the performance of
our framework. We first consider the experiments focused on route instruction-following with the di↵erent
robot platforms. We then analyze the results of the experiments that task a robot with carrying out natural
language commands that involve mobile manipulation.

5.1 Instruction Following for Robot Navigation

We evaluated our algorithm’s ability to follow route instructions in a priori unknown environments through
experiments conducted in simulation as well as those involving the Husky and wheelchair robots. For
comparison, we include a “Known Map” ground-truth baseline that performs language understanding with
the environment being completely known. In this manner, the baseline provides an upper-bound on the
performance of our framework.

5.1.1 Monte Carlo Simulations

Object-relative navigation We begin with a series of Monte Carlo simulation-based evaluations of our
framework for the task of following natural language route directions. The first set of experiments considers
a simple setup in which a Husky A200 Unmanned Ground Vehicle navigates an open environment consisting
of di↵erent combinations of objects. We consider four environment templates, with di↵erent numbers of
hydrants and cones. For each configuration, we sample ten environments, each with di↵erent object poses.
For these environments, we issued three natural language instructions “go to the hydrant,” “go to the hydrant
behind the cone,” and “go to the hydrant nearest to the cone.” We note that these commands were not part
of the corpus that we used to train the DCG model. Additionally, we considered six di↵erent settings for the
robot’s field-of-view, 2m, 3m, 5m, 10m, 15m, and 20m, and performed approximately 100 simulations for
each combination of the environment, command, and field-of-view. As a ground-truth baseline, we performed
ten runs of each configuration with a completely known world model.

Table 1 presents the success rate and distance traveled by the robot for these 100 simulation configura-
tions. We considered a run to be successful if the planner stops within 1.5m of the intended goal. Comparing
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 8: The evolution of our framework for a simulation-based experiment that tasks the Husky with
following the instruction “go to the hydrant behind the cone”. When the robot receives the command, (a)
the tra�c cone is visible, but not the hydrant, which is occluded by the cone. Our algorithm (b) proposes a
distribution over the environment that e↵ectively hypothesizes the location of the hydrant, which we visualize
as the mean location for each of the particles. Based on this distribution, (c) the imitation learning-based
policy decides to navigate behind the cone. At this point, (d) the robot observes the hydrant upon which
the environment distribution e↵ectively converges to the location of the detected hydrant (in practice, the
distribution will still assign small, but non-zero likelihood for the hydrant being located elsewhere), which
the policy then identifies as the goal.

Table 1: Monte Carlo simulation results with 1� confidence intervals for the Husky experiments.

Success Rate (%) Distance (m)

Environment FOV (m) Relation Known Ours Known Ours

1 hydrant 1 cone 3.0 null 100.0 93.9 8.75 (1.69) 16.78 (7.90)
1 hydrant 1 cone 3.0 “behind” 100.0 98.3 8.75 (1.69) 13.43 (7.02)
1 hydrant 2 cones 3.0 null 100.0 100.0 11.18 (1.38) 32.54 (18.50)
1 hydrant 2 cones 3.0 “behind” 100.0 99.5 11.18 (1.38) 40.02 (29.66)
2 hydrants 1 cone 3.0 null 100.0 54.4 10.49 (1.81) 21.56 (10.32)
2 hydrants 1 cone 3.0 “behind” 100.0 67.4 10.38 (1.86) 18.72 (10.23)
2 hydrants 1 cone 5.0 “nearest” 100.0 46.2 9.19 (1.54) 12.05 (5.76)

against commands such as “go to the hydrant” that do not provide an explicit spatial relation, the results
demonstrate that our algorithm achieves greater success and yields more e�cient paths by taking advantage
of relations in the command (i.e., “go to the hydrant behind the cone”). This is apparent in environments
that consist of a single hydrant as well as more ambiguous environments that consist of two hydrants. Par-
ticularly telling is the variation in performance as a result of di↵erent fields-of-view. Figure 9 shows how
the success rate increases and the distance traveled decreases as the robot’s sensing range increases, quickly
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Figure 9: Plots of the (top) distance traveled and (bottom) success rate as a function of the field-of-view
for the commands (left) “go to the hydrant behind the cone” and (right) “go to the hydrant nearest to the
cone” in simulation.

(a) t = 0 sec (b) t = 4 sec (c) t = 8 sec

Figure 10: A visualization of the evolution of the semantic map distribution over time for the command “go
to the hydrant behind the cone,” where the triangle denotes the robot’s location, squares represent observed
cones, and circles denote hydrants that are either hypothesized (open) or observed (filled). (a) The robot
starts o↵ observing both cones, and hypothesizes possible hydrants that are consistent with the command.
(b) The robot moves towards the left cluster, but having not observed the hydrant, the map distribution
shifts the mass to the right. (c) The robot then moves right and observes the actual hydrant.

approaching the performance of the system when it begins with a completely known map of the environment.

One interesting failure case is when the robot is instructed to “go to the hydrant nearest to the cone”
in an environment with two hydrants. In instances where the robot sees a hydrant first, it hypothesizes the
location of the cone, and then identifies the observed hydrants and hypothesized cones as being consistent
with the command. Since the robot never actually confirms the existence of the cone in the real world, this
results in the incorrect hydrant being labeled as the goal.
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Multi-room navigation The second set of Monte Carlo experiments goes beyond object-based navigation
and considers natural language direction-following in a larger environment modeled after a multi-room o�ce
building (the MIT Stata Center) that consists of a laboratory, multiple hallways, and a kitchen. We compare
our framework against two baselines. The first baseline (“Known Map”) considers the ideal case in which the
world model is known a priori, employing our HDCG statistical language grounding model to infer the actions
consistent with the route instruction. The second assumes no prior knowledge of the environment (as with
our method), but does not use language to modify the map. Instead, the baseline uses our HDCG framework
to opportunistically ground the command in the current semantic map generated from observations zt (but
not language). Note that, as with our framework, this baseline performs the grounding anew as the map
evolves. We refer to this method as the “Without Language” baseline. Note that this and the “Known
Map” baselines use an anytime RRT⇤ planner (Karaman et al., 2011) to plan paths to the goal identified by
language grounding.

Table 2: Simulation-based evaluation of natural language route direction-following.

Distance (m) Time (sec)

Algorithm Mean Standard Deviation Mean Standard Deviation

Known Map 12.88 0.06 18.32 3.54
With Language (Ours) 16.64 6.84 82.78 10.56
Without Language 25.28 12.99 85.57 17.80

Table 2 compares the total distance traveled along with the execution time for the three methods,
averaged over ten Monte Carlo simulations, along with the standard deviation. As expected, with access to
the world model, the “Known Map” baseline has the robot navigate directly to the desired goal, achieving
the shortest path and smallest execution time. In contrast, the “Without Language” baseline continues to
ground the instructions in incomplete maps, often choosing to initially explore the second (incorrect) hallway,
before opportunistically discovering the kitchen. This results in longer average paths (and higher standard
deviation) as well as significantly higher execution times (also with higher standard deviation). By taking
advantage of the environment knowledge implicit in the command, our method enables the robot to act more
deliberately, reaching the intended goal along paths that are only slightly longer than those of the “Known
Map” baseline. However, our framework does require significantly more time to follow the directions than
the known map scenario. In part, this increase results from the robot stopping each time it reaches an
intermediate goal selected by the policy, at which time the algorithm updates the semantic map distribution,
grounds the instruction to a set of behaviors, and then evaluates the policy to identify the next action. In
contrast, the robot navigates without stopping until it reaches the goal with the known map baseline. The
additional computational requirements of our framework will inherently result in larger runtimes, however
we note that a non-negligible fraction of the additional time is due to our implementation, which explicitly
required the robot to pause for several seconds before moving on to the next waypoint.

5.1.2 Physical Experiments

We further evaluate our method through a series of experiments in which di↵erent robots were tasked
with following natural language navigation instructions in a priori unknown environments. The first set
of experiments emulates the aforementioned Monte Carlo experiments in which a Clearpath Husky A200
Unmanned Ground Vehicle (Fig. 7(a)) and a voice-commandable wheelchair (Fig. 7(b))6 were instructed to
navigate to an unknown object. As with the simulation-based experiments, these commands did not match
those used to train our language grounding models.

Each experiment involves a variation in the number and position of various objects in the environment
(namely, cones and hydrants), the command, as well as changes in the robot’s field-of-view. Figure 11 shows
one such experiment in which the Clearpath Husky robot is instructed to navigate to the hydrant behind

6The wheelchair employs a cloud-based speech recognizer to convert spoken instructions to text, which is then provided as
input to our architecture. The platform also supports limited onboard recognition (Hetherington, 2007) in the event that the
cloud-based recognizer is unavailable.
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(a) (b) (c)

(d) (e) (f)

Figure 11: Third- (top) and first-person (bottom) perspectives of a Clearpath Robotics Husky A200 Un-
manned Ground Vehicle responding to the command “navigate to the hydrant behind the barrel” in an a
priori unknown environment. Subfigures (a) and (d) show the third- and first-person perspective when the
robot receives the initial instruction. Note that the hydrant is not in view, so that object is not available
for grounding in the baseline approach. Subfigures (b) and (e) followed by (c) and (f) show the robot as it
navigates to a hypothesized hydrant behind the observed barrel. Once the hydrant becomes visible and is
placed in the environment model, the distribution converges to the visually observed state.

the cone. Initially, only the cone is visible to the robot (Figs. 11(a) and 11(d)), at which point the algorithm
hypothesizes the location of the hydrant. As the robot navigates according to the world model distribution,
it detects the presence of a hydrant (Figs. 11(b) and 11(e)), and then drives straight to the goal (Figs. 11(c)
and 11(f)). For each configuration of the environment, command, and field-of-view, we perform ten trials
with our algorithm with the wheelchair and six with the Husky. As a baseline, we perform an additional run
with a completely known world model. We consider a run to be a success when the robot’s final destination
is within 1.5m of the intended goal.

Table 3: Wheelchair object-relative navigation experimental results with 1� confidence intervals.

Success Rate (%) Distance (m)

Environment FOV (m) Relation Known Ours Known Ours

1 hydrant 1 cone 2.5 null 100.0 100.0 4.69 16.56 (7.20)
1 hydrant 1 cone 2.5 “behind” 100.0 100.0 4.69 9.91 (3.41)
1 hydrant 2 cones 3.0 “behind” 100.0 100.0 4.58 7.64 (2.08)
2 hydrants 1 cone 2.5 “behind” 100.0 80.0 5.29 6.00 (1.38)
2 hydrants 1 cone 4.0 “nearest” 100.0 100.0 4.09 4.95 (0.39)
2 hydrants 1 cone 3.0 “nearest” 100.0 50.0 6.30 7.05 (0.58)
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Go to the kitchen 
that is down 
the hallway

(a) Voice-commandable wheelchair
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(b) Occupancy grid map of the environment

Figure 12: A (a) voice-commandable wheelchair was tasked with following natural language route instructions
in (b) a 30m ⇥ 30m (approx.) o�ce-like environment consisting of multiple hallways and rooms. The
wheelchair employs a cloud-based speech recognizer to convert spoken instructions to text, which is then
provided as input to our architecture. The platform also supports limited onboard recognition (Hetherington,
2007) in the event that the cloud-based recognizer is unavailable.

Table 3 presents the performance of our algorithm averaged over ten runs per scenario with the wheelchair,
and compares against the baseline that has full knowledge of the environment. Experiments with the Husky
demonstrate similar results with an average distance traveled of 8.1m (� = 1.3m) with our method compared
to 8.4m (� = 0.6m) with the known map baseline and a success rate of 83.3% v.s. 100% with the baseline,
based on six runs each. Together, the results demonstrate that our algorithm is able to take advantage of
spatial relations that may be implicit in the instructions to identify more informed, deliberate paths to the
goal. The ability to leverage information about spatial relations is important when there are multiple objects
in the environment that match the figure in the instruction. For example, when there were two hydrants
and the user commands the robot to “go to the hydrant behind the cone”, the robot successfully identifies
the correct hydrant as the goal in eight of the ten experiments. Similar to the failure discussed above for the
simulation-based experiments, the two failures occur when the robot initially sees only the incorrect hydrant,
upon which the semantic map hypothesizes the existence of cones in front of the hydrant. This results in
a behavior distribution that is peaked around this goal. In the eight successful trials, the robot observes
all three objects and infers the correct behavior. Similarly, if we consider the command “go to the hydrant
nearest to the cone” we find that the robot reaches the goal in all ten experiments with a 4m field-of-view.
However, reducing the field-of-view to 3m results in the robot reaching the goal in only half of the trials.

Next, we evaluate our framework on a mobile robot tasked with following natural language route instruc-
tions in an unknown environment. We implemented our architecture on a voice-commandable wheelchair
(Fig. 12(a)) that is equipped with three forward-facing monocular cameras with a collective field-of-view of
120 degrees, and forward- and rearward-facing Hokuyo UTM LIDARs. The wheelchair was placed in a lobby
within MIT’s Stata Center, with several hallways, o�ces, and lab spaces, as well as a kitchen on the same
floor. In an e↵ort to facilitate perception, these experiments employed AprilTag fiducials (Olson, 2011) to
identify the existence and semantic type of regions in the environment. We trained the HDCG models on a
parallel corpus of 54 fully labeled examples. We then directed the wheelchair to execute the instruction “go
to the kitchen that is down the hallway” that was not seen during training.

As with the previous experiments, we compare our framework with two baselines. The “Known Map”
baseline emulates the previous state-of-the-art and uses a known map of the environment in order to infer
the actions consistent with the route direction. The second “Without Language” baseline assumes no prior
knowledge of the environment (as with ours) and opportunistically grounds the command in the map, but
does not use language to modify the map. We performed six experiments with our algorithm, three with
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(a) t = 0 sec (b) t = 15 sec (c) t = 38 sec (d) t = 65 sec

(e) t = 85 sec (f) t = 102 sec (g) t = 120 sec (h) t = 140 sec

Figure 13: The evolution of the planner cost function for the command “go to the kitchen that is down the
hallway”. Red nodes indicate candidate destinations and green nodes indicate previously visited locations.
The normalized cost function is rendered using the colormap: , where blue and red denote
costs of 0 and 1, respectively. The planner (d) initially directs the robot down the wrong hallway, but after
not seeing the hypothesized kitchen, (f) the robot navigates down the correct hallway (h) to the goal.
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Hallway

Lab

Kitchen

Figure 14: A visualization that shows how the semantic map evolves time as the robot follows the command
“go to the kitchen that is down the hallway.” Small circles and large filled-in areas denote sampled and
visited regions, respectively, each colored according to its class type. The robot (left) first samples possible
locations of the kitchen and moves towards them, (middle) then observes the hallway and refines its estimate
using the “down” relation provided by the user. Finally, the robot (right) reaches the actual kitchen and
declares it has finished following the direction.

the known map method, and five with the method that does not use language for environment inference, all
of which were successful (the robot reached the kitchen). Figure 13 visualizes the evolution of the planner’s
cost function for one of the experiments. The cost, which is a function of the semantic map distribution and
the inferred behavior(s), initially suggests that the wheelchair navigate down the wrong hallway (Fig. 13(d)),
but after not observing the kitchen, the map updates and the planner later leads the robot to the correct
goal. Figure 14 shows a visualization of the semantic maps over several time steps for one successful run on
the robot.

Table 4: Evaluation of natural language route direction-following with the wheelchair.

Distance (m) Time (sec)

Algorithm Mean Standard Deviation Mean Standard Deviation

Known Map 13.10 0.67 62.48 16.61
With Language 12.62 0.62 122.14 32.48

Without Language 24.91 13.55 210.35 97.73

Table 4 compares the total distance traveled and execution time for the three methods. Our algorithm
resulted in paths with lengths close to those of the known map, and significantly outperformed the method
that did not use language for mapping. As with the Monte Carlo simulations, our framework required
significantly more time to follow the directions than the known map baseline. Some of this additional time
results from the robot stopping each time it reaches an intermediate goal selected by the policy (in contrast
to the known map baseline, which does not stop until it reaches the goal) at which time the algorithm
updates the semantic map distribution, grounds the instruction to a set of behaviors, evaluates the policy
to identify the next action, and then performs motion planning. While this will inherently result in larger
runtimes compared to the known map setting, we note that a non-negligible fraction of the additional time
(nearly half in some cases) is due to our implementation, which explicitly required the robot to pause for
several seconds before moving on to the next waypoint.

5.2 Instruction Following for Mobile Manipulation

Having evaluated the performance of the proposed model through simulated experiments and in the real
world by using fiducial based perception, we now expand upon our analysis by involving non-fiducial based
perception, which is computationally more expensive and often not as accurate as fiducial-based perception.
To analyze the runtime performance of the proposed framework for mobile manipulation tasks, we imple-
mented the architecture on a Clearpath Husky A200 Unmanned Ground Vehicle fitted with a Universal
Robotics UR5 arm and Robotiq 3-Finger Adaptive Robot Gripper 7(c). Image data for visual perception
was captured using an Intel RealSense RGB-D sensor mounted on the wrist of the UR5 arm. The perception
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(a) indoor environment (b) outdoor environment

(c) indoor map at t = 57 sec (d) outdoor map at t = 177 sec

Figure 15: The mobile manipulation experiments involved placing the arm-equipped Husky in a priori
unknown (a) indoor and (b) outdoor environments with several boxes that contained di↵erent or no objects.
The robot was then given a natural language instruction to retrieve a specific object from a box. Without any
prior knowledge of the environment, the robot initially navigates towards a hypothesized box (rendered as
solid red cubes in the bottom figures). Upon detecting a box, the robot updates the world model distribution
and then explores the nearest observed box (a green wireframe denotes objects that the robot has observed),
which does not contain the object of interest. At this point, the robot either (c) explores the next box
that comes within the robot’s field-of-view (for the indoor experiments), or (d) continues to explore the
environment (for the outdoor experiments) as guided by the maintained world distribution.
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Figure 16: A graph that shows the increase in symbol grounding runtime per particle as a function of an
increase in the number of detected objects in the particle.

pipeline consisted of multiple custom-trained YOLO-V3 (Redmon and Farhadi, 2018) detectors. Specifically,
we used a full YOLO-V3 model trained on the COCO (Lin et al., 2014) dataset and 15 tiny YOLO-V3 models
trained on individual classes from the YCB (Calli et al., 2015) and OpenImages-V4 (Kuznetsova et al., 2018)
datasets. We projected the 2D image-space bounding boxes generated by the YOLO-V3 detectors to the
aligned 3D point clouds in order to obtain metric information about the objects in the robot’s environment.
Associated with each detected object was its semantic label generated by YOLO-V3 detector, a six degree-
of-freedom pose estimate, and a 3D collision geometry represented by an oriented bounding box. The range
of sensing was restricted to 4.5m indoors and 7.0m outdoors to eliminate noisy point cloud data.

Figure 15 illustrates the workspace setup for both indoor and outdoor environments. In both environ-
ments, the robot was initially instructed to “retrieve the ball inside the box”. The indoor experiment followed
with a second command to “pick up the crackers box inside the box”, whereas the outdoor experiment fol-
lowed with “go to the crackers box”. In both of the settings, the box containing the ball was past the sensing
horizon of the robot at the start, while the box containing the crackers box was observable. The workspace
in the indoor environment was set up such that the robot will most likely detect and check the second box
after inspecting the closer box and finding it empty. The larger workspace in the outdoor experiment allowed
us to set up boxes far away from each other so that the robot would need to explore the environment using
the hypothesized distribution to eventually reach the goal location. In order to build accurate models of the
environment, a speed of 0.3m per perception cycle chosen for these experiments. We used 10 particles to
represent the distribution over world models in the indoor experiment, while we used 20 particles for the
outdoor experiment to account for the larger environment.

We developed and deployed a motion planner capable of performing manipulation actions that used
TRAC-IK (Beeson and Ames, 2015) for inverse kinematics. The architecture guided the robot to perform
the most likely action identified through behavior inference. Upon reaching a box, the arm was positioned
to look inside it. If this observation conveyed the absence of the object of interest, the robot would back up,
pan the camera ±30 deg, and navigate towards a new goal selected from the updated distribution. If the
desired object defined by the selected goal was observed in the box, the robot would execute the remaining
activities to complete its inferred action.

We analyzed the runtime of task execution by measuring the individual runtimes of perception and be-
havior inference as outlined in Table 5. Figures 17 and 18 shows the state of the robot while executing the
instruction. The robot took approximately six minutes to execute the first task in the indoor environment,
while requiring approximately ten minutes for the outdoor experiments. Such long task execution runtimes
are undesirable for fluent human-robot collaboration. As observed in Table 5, a large fraction of the task
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(a) Time t = 0 sec (b) Time t = 90 sec

(c) Time t = 320 sec (d) Time t = 370 sec

(e) Time t = 500 sec (f) Time t = 563 sec

Figure 17: Visualization of the state of the robot while executing the instruction “retrieve the ball inside
the box” in the outdoor environment. In (a) we visualize the hypothesized locations of boxes (in red), each
containing a ball, sampled from the world model distribution that our algorithm maintains. The solid green
cube denotes the hypothesized box that is the current goal of the planner. The robot then (b) detects
an actual box and looks inside it to find that it does not contain a ball. As (c) the robot navigates to
a hypothesized box, it (d) detects actual boxes that are found to not contain a ball, while also failing to
confirm the presence of hypothesized boxes sampled from the distribution. The algorithm (e) updates the
world model distribution accordingly, and the planner updates the goal. This continues until (f) the robot
observes a box containing a ball and subsequently retrieves the ball, satisfying the instruction.
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(a) Time t = 0 sec (b) Time t = 110 sec

(c) Time t = 141 sec (d) Time t = 193 sec

(e) Time t = 310 sec (f) Time t = 346 sec

Figure 18: Visualization of the state of the robot while executing the instruction “retrieve the ball inside
the box” in the indoor environment. In (a) we visualize the hypothesized locations of boxes (in red), each
containing a ball, sampled from the world model distribution that our algorithm maintains. The solid
green cube denotes the hypothesized box that is the current goal of the planner. The robot then detects
an actual box (b) and looks inside it to find (c) that it does not contain a ball, but instead contains a
crackers box. The robot (d) eventually detects the second box. The algorithm updates the world model
distribution accordingly, and the planner updates the goal. The robot (e) observes a box containing a ball
and subsequently (f) retrieves the ball, satisfying the instruction.
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Table 5: Perception and symbol grounding runtime analysis for indoor and outdoor trials (three each).

Indoor Outdoor

average behavior inference runtime per particle (seconds) 0.035± 0.01 0.019± 0.002
average perception cycle runtime (seconds) 4.141± 0.11 4.099± 0.060
first task runtime (seconds) 351.2 593.5
second task runtime (seconds) 149.5 20.4
total number of detected objects 24 11
total number of perception cycles during first task 69 127
total number perception cycles during second task 27 3

execution runtime was spent on perception, building a rich model of the robot’s environment such as the
one in Figure 18(f). Such high fidelity world models are computationally expensive to build and are also
unnecessarily detailed for grounding, planning, and executing the instructed task. This raises open ques-
tions regarding how to optimally perceive the robot’s world for collaborative robots which are required to
understand and execute a diverse set of instructions. Furthermore, Figure 16 indicates a positive correlation
between the symbol grounding runtime per particle and the number of objects present in the particle (i.e.,
the fidelity of the world model). This means that maintaining a distribution over highly detailed world
models and reasoning in its context is computationally expensive in terms of both perception and symbol
grounding. We elaborate on this issue and possible ways to improve scalability below.

6 Discussion

As established through the experimental evaluation in simulation and on actual robots, the proposed model
enables natural-language instruction-following in previously unseen or partially observed environments. It
provides a guided and e�cient exploration mechanism that allows faster runtimes for task execution in
previously unseen environments as compared to the baseline of opportunistic exploration. However, we note
that the spatial extent of the environments considered in the experimental evaluation is small compared to
those of typical field and service robotics settings. While we have previously demonstrated the ability to
learn maps of larger, multi-building environments from human-provided descriptions (Walter et al., 2014),
evaluating the proposed framework at this scale remains as future work.

As the experiments demonstrate, maintaining a distribution of highly-detailed world models and reasoning
in its context is computationally expensive in terms of both perception and symbol grounding. Addressing
this scalability challenge, a recent line of work (Patki and Howard, 2018; Patki et al., 2019, 2020) proposes
learning to adapt the robot’s perception pipeline by exploiting implied utterance information to construct
task-relevant world models. These more compact, task-relevant world models a↵ord faster perception and
symbol-grounding runtimes, as compared to a baseline configuration that uses a non-adaptive and flat
perception pipeline. Recent work (Patki et al., 2020) demonstrates approximately a 50% reduction in task-
execution runtimes in both indoor and outdoor experiments, and illustrates the performance gains that
can be achieved by incorporating our proposed adaptive-perception framework. Learning to constrain the
robot’s perception pipeline adaptively shortens the perception runtime by obviating irrelevant detectors.
This reduction in the perception runtime enables our framework to operate more e�ciently, while processing
the same number of observations, and so reduces overall task-execution time. Furthermore, as behavior
inference is performed on each hypothesized world model in the distribution, the e�ciency gains provided by
adaptive perception enables reasoning over a larger number of environment hypotheses in the same amount of
time. This important ability allows maintaining more particles and thus to more e�ciently explore previously
unseen environments. As part of ongoing work, we are investigating the ability to extend our framework
such that it is scalable to larger environments than those considered here.

Another limitation of the current approach is the reliance on fully-annotated data. Densely labeling ex-
amples for both annotation and behavior inference with di↵erent symbolic representations is a nontrivial task
that involves inferring the presence of relationships needed to perform grounding in a space of hypothesized
worlds. Approaches that are amenable to partially-annotated data, e.g., by using the available annotations to
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learn how to automatically label the rest of the dataset, would significantly facilitate integrating annotation-
and behavior-inference and enable robots to learn models for both processes in situ. A human operator
attempting to demonstrate the concept “pick up the cup on the table” would have to group physical objects
“cup” and “table,” along with the spatial relation represented by the phrase “on” for behavior inference,
and also associate the physical relationship between two hypothesized objects with their associated semantic
labels to properly capture this information for annotation inference. Algorithms capable of this remain an
open area of investigation.

Another deficiency of this approach is that the procedures for both annotation and behavior inference
does not express bounds on the space of worlds or language wherein the expressed symbols would remain
valid. Uncertainty in automatic speech-recognition and parsing could influence the quality of annotation
inference, and behavior inference could further be impacted by noise in perception. More e�cient and
e↵ective methods for evaluating confidence in an expressed set of symbols may influence whether the robot
should exploit these annotations or engage in dialogue with a human to confirm that such information should
be added to the environment model.

7 Conclusions

Significant progress in grounded natural-language understanding has enabled robots to interpret a diverse
array of free-form navigation, manipulation, and mobile-manipulation commands. However, most contempo-
rary approaches require a pre-existing, detailed spatial-semantic map of the robot’s environment that repre-
sents the objects or regions that the utterance may reference. Consequently, these methods fail when robots
are deployed in previously unseen or partially-observed environments, particularly when mental models of the
environment di↵er between the human user and robot. This paper describes a learning framework that allows
field and service robots to execute natural-language instructions in previously unseen or partially-observed
environments. The experimental results in simulation and on three di↵erent robotic platforms indicate that
the proposed model facilitates faster task execution in previously unseen environments as compared to a
contemporary language-grounding baseline that does not take advantage of environment information avail-
able in the instruction. The results also show that the method is amenable to tasks that include navigation
and mobile manipulation. Importantly, experimental data also reveal limitations of the approach, including
the challenge of maintaining a distribution over highly-detailed world models and reasoning in its context,
which is computationally expensive in terms of both perception and symbol grounding. This observation
raises interesting, open-ended questions that are the focus on ongoing research, such as how to represent
complex environments e�ciently while also supporting a diverse array of tasks in large-scale environments.
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Nüchter, A., Surmann, H., Lingemann, K., and Hertzberg, J. (2003). Semantic scene analysis fo scanned 3D
indoor environments. In Proceedings of the International Workshop on Vision, Modeling and Visualization
(VMV), pages 215–221.

Oh, J., Howard, T. M., Walter, M., Barber, D., Zhu, M., Park, S., Suppe, A., Navarro-Serment, L., Duvallet,
F., Boularias, A., Romero, O., Vinokrov, J., Keegan, T., Dean, R., Lennon, C., Bodt, B., Childers, M.,
Shi, J., Daniilidis, K., Roy, N., Lebiere, C., Hebert, M., and Stentz, A. (2017). Integrated intelligence for
human-robot teams. In Proceedings of the International Symposium on Experimental Robotics (ISER),
pages 309–322.

Olson, E. (2011). AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 3400–3407.

Olson, E., Leonard, J., and Teller, S. (2006). Fast iterative optimization of pose graphs with poor initial
estimates. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
pages 2262–2269.

Paskin, M. A. (2003). Thin junction tree filters for simultaneous localization and mapping. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1157–1164.

Patki, S., Daniele, A., Walter, M., and Howard, T. (2019). Inferring compact representations for e�cient
natural language understanding of robot instructions. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 6926–6933.

Patki, S., Fahnestock, E., Howard, T. M., and Walter, M. R. (2020). Language-guided semantic mapping
and mobile manipulation in partially observable environments. In Proceedings of the Conference on Robot
Learning (CoRL), pages 1201–1210.

38



Patki, S. and Howard, T. M. (2018). Language-guided adaptive perception for e�cient grounded communi-
cation with robotic manipulators in cluttered environments. In Proceedings of the Annual Meeting of the
Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 151–160.

Paul, R., Arkin, J., Aksaray, D., Roy, N., and Howard, T. M. (2018). E�cient grounding of abstract spatial
concepts for natural language interaction with robot platforms. International Journal of Robotics Research,
37(10):1269–1299.

Paul, R., Arkin, J., Roy, N., and Howard, T. M. (2016). E�cient grounding of abstract spatial concepts for
natural language interaction with robot manipulators. In Proceedings of Robotics: Science and Systems
(RSS).

Pronobis, A. and Jensfelt, P. (2012). Large-scale semantic mapping and reasoning with heterogeneous
modalities. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
pages 3515–3522.

Pronobis, A., Mart́ınez Mozos, O., Caputo, B., and Jensfelt, P. (2010). Multi-modal semantic place classifi-
cation. International Journal of Robotics Research, 29(2–3):298–320.

Ranganathan, A. and Dellaert, F. (2011). Online probabilistic topological mapping. International Journal
of Robotics Research, 30(6):755–771.

Rasouli, A., Lanillos, P., Cheng, G., and Tsotsos, J. K. (2020). Attention-based active visual search for
mobile robots. Autonomous Robots, 44(2):131–146.

Ratli↵, N. D., Bagnell, J. A., and Zinkevich, M. A. (2006). Maximum margin planning. In Proceedings of
the International Conference on Machine Learning (ICML), pages 729–736.

Redmon, J. and Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv:1804.02767.

Roberts, J. M., Du↵, E. S., Corke, P. I., Sikka, P., Winstanley, G. J., and Cunningham, J. (2000). Au-
tonomous control of underground mining vehicles using reactive navigation. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 3790–3795.

Ross, S., Gordon, G. J., and Bagnell, J. A. (2011). A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 627–635.

Roy, D., Hsiao, K.-Y., and Mavridis, N. (2003). Conversational robots: Building blocks for grounding word
meaning. In Proc. HLT-NAACL Workshop on Learning Word Meaning from Non-Linguistic Data, pages
70–77.

Ryu, D., Kang, S., Kim, M., and Song, J.-B. (2004). Multi-modal user interface for teleoperation of
ROBHAZ-DT2 field robot system. In Proceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 168–173.

Sadeghi, F. and Levine, S. (2017). CAD2RL: Real single-image flight without a single real image. In
Proceedings of Robotics: Science and Systems (RSS).

Scheding, S., Dissanayake, G., Nebot, E. M., and Durrant-Whyte, H. (1999). An experiment in autonomous
navigation of an underground mining vehicle. IEEE Transactions on Robotics and Automation, 15(1):85–
95.

Scheding, S., Nebot, E. M., Stevens, M., Durrant-Whyte, H., Roberts, J., Corke, P., Cunningham, J.,
and Cook, B. (1997). Experiments in autonomous underground guidance. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 1898–1903.

She, L. and Chai, J. (2017). Interactive learning of grounded verb semantics towards human-robot commu-
nication. In Proceedings of the Association for Computational Linguistics (ACL), pages 1634–1644.

39



Shridhar, M. and Hsu, D. (2018). Interactive visual grounding of referring expressions for human-robot
interaction. In Proceedings of Robotics: Science and Systems (RSS).

Singh, H., Can, A., Eustice, R., Lerner, S., McPhee, N., and Roman, C. (2004). Seabed AUV o↵ers new
platform for high-resolution imaging. Eos, Transactions American Geophysical Union, 85(31):289–296.

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007). A Hilbert space embedding for distributions. In
Proceedings of the International Conference on Algorithmic Learning Theory (ALT), pages 13–31.

Syed, U., Bowling, M., and Schapire, R. E. (2008). Apprenticeship learning using linear programming. In
Proceedings of the International Conference on Machine Learning (ICML), pages 1032–1039.

Tai, L., Paolo, G., and Liu, M. (2017). Virtual-to-real deep reinforcement learning: Continuous control
of mobile robots for mapless navigation. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 31–36.

Tellex, S., Knepper, R., Li, A., Rus, D., and Roy, N. (2014). Asking for help using inverse semantics. In
Proc. Robotics: Science and Systems (RSS).

Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee, A. G., Teller, S., and Roy, N. (2011). Under-
standing natural language commands for robotic navigation and mobile manipulation. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), pages 1507–1514.

Tellex, S., Thaker, P., Deits, R., Kollar, T., and Roy, N. (2012). Toward information theoretic human-robot
dialog. In Proceedings of Robotics: Science and Systems (RSS).

Thomason, J., Sinapov, J., Mooney, R. J., and Stone, P. (2018). Guiding exploratory behaviors for multi-
modal grounding of linguistic descriptions. In Proceedings of the National Conference on Artificial Intel-
ligence (AAAI), pages 5520–5527.

Thomason, J., Sinapov, J., Svetlik, M., Stone, P., and Mooney, R. J. (2016). Learning multi-modal grounded
linguistic semantics by playing “I spy”. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 3477–3483.

Thomason, J., Zhang, S., Mooney, R. J., and Stone, P. (2015). Learning to interpret natural language
commands through human-robot dialog. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 1923–1929.

Thrun, S., Liu, Y., Koller, D., Ng, A., Ghahramani, Z., and Durrant-Whyte, H. (2004). Simultaneous
localization and mapping with sparse extended information filters. International Journal of Robotics
Research, 23(7–8):693–716.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny,
M., Ho↵mann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C.,
Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P.,
Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., and Mahoney, P. (2006). Stanley: The robot
that won the DARPA Grand Challenge. Journal of Field Robotics, 23(9):661–692.

Torralba, A., Murphy, K. P., Freeman, W. T., and Rubin, M. A. (2003). Context-based vision system for
place and object recognition. In Proceedings of the International Conference on Computer Vision (ICCV),
pages 273–280.

Tucker, M., Aksaray, D., Paul, R., Stein, G. J., and Roy, N. (2017). Learning unknown groundings for natural
language interaction with mobile robots. In International Symposium on Robotics Research (ISRR), pages
317–333.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., Dolan, J., Duggins, D., Galatali,
T., Geyer, C., Gittleman, M., Harbaugh, S., Hebert, M., Howard, T. M., Kolski, S., Kelly, A., Likhachev,
M., McNaughton, M., Miller, N., Peterson, K., Pilnick, B., Rajkumar, R., Rybski, P., Salesky, B., Seo,

40



Y.-W., Singh, S., Snider, J., Stentz, A., Whittaker, W. R., Wolkowicki, Z., Ziglar, J., Bae, H., Brown, T.,
Demitrish, D., Litkouhi, B., Nickolaou, J., Sadekar, V., Zhang, W., Struble, J., Taylor, M., Darms, M.,
and Ferguson, D. (2008). Autonomous driving in urban environments: Boss and the Urban Challenge.
Journal of Field Robotics, 25(8):425–466.

Urmson, C., Ragusa, C., Ray, D., Anhalt, J., Bartz, D., Galatali, T., Gutierrez, A., Johnston, J., Harbaugh,
S., “Yu” Kato, H., Messner, W., Miller, N., Peterson, K., Smith, B., Snider, J., Spiker, S., Ziglar, J.,
“Red” Whittaker, W., Clark, M., Koon, P., Mosher, A., and Struble, J. (2006). A robust approach to
high-speed navigation for unrehearsed desert terrain. Journal of Field Robotics, 23(8):467–508.

Vasudevan, S. and Siegwart, R. (2008). Bayesian space conceptualization and place classification for semantic
maps in mobile robotics. Robotics and Autonomous Systems, 56(6):522–537.

Walter, M. R., Antone, M., Chuangsuwanich, E., Correa, A., Davis, R., Fletcher, L., Frazzoli, E., Friedman,
Y., Glass, J., How, J. P., Jeon, J. H., Karaman, S., Luders, B., Roy, N., Tellex, S., and Teller, S. (2015). A
situationally-aware voice-commandable robotic forklift working alongside people in unstructured outdoor
environments. Journal of Field Robotics, 32(4):590–628.

Walter, M. R., Eustice, R. M., and Leonard, J. J. (2007). Exactly sparse extended information filters for
feature-based SLAM. International Journal of Robotics Research, 26(4):335–359.

Walter, M. R., Hemachandra, S., Homberg, B., Tellex, S., and Teller, S. (2013). Learning semantic maps
from natural language descriptions. In Proceedings of Robotics: Science and Systems (RSS).

Walter, M. R., Hemachandra, S., Homberg, B., Tellex, S., and Teller, S. (2014). A framework for learning
semantic maps from grounded natural language descriptions. International Journal of Robotics Research,
33(9):1167–1190.

Williams, S. B., Pizarro, O. R., Jakuba, M. V., Johnson, C. R., Barrett, N. S., Babcock, R. C., Kendrick,
G. A., Steinberg, P. D., Heyward, A. J., Doherty, P. J., et al. (2012). Monitoring of benthic reference sites:
using an autonomous underwater vehicle. IEEE Robotics & Automation Magazine, 19(1):73–84.

Winograd, T. (1971). Procedures As A Representation for Data in a Computer Program for Understanding
Natural Language. PhD thesis, Massachusetts Institute of Technology.

Yamauchi, B. M. (2004). PackBot: A versatile platform for military robotics. In Proceedings of the Interna-
tional Society for Optics and Photonics (SPIE), Unmanned Ground Vehicle Technology VI, volume 5422,
pages 228–237.

Yoerger, D. R., Jakuba, M., Bradley, A. M., and Bingham, B. (2007). Techniques for deep sea near bottom
survey using an autonomous underwater vehicle. The International Journal of Robotics Research, 26(1):41–
54.

Zender, H., Mart́ınez Mozos, O., Jensfelt, P., Kruij↵, G., and Burgard, W. (2008). Conceptual spatial
representations for indoor mobile robots. Robotics and Autonomous Systems, 56(6):493–502.

Zeng, W., Luo, W., Suo, S., Sadat, A., Yang, B., Casas, S., and Urtasun, R. (2019). End-to-end inter-
pretable neural motion planner. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8660–8669.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., and Farhadi, A. (2017). Target-
driven visual navigation in indoor scenes using deep reinforcement learning. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 3357–3364.

41


	Introduction
	Related Work
	Technical Approach
	Approach Overview
	Natural-Language Understanding
	Semantic Mapping
	The Proposal Distribution
	Updating the metric map based on new edges
	Re-weighting particles and resampling

	Planning Under Uncertainty
	Belief-Space Reasoning using Distribution Embedding
	Imitation Learning Formulation


	Experiments
	Experimental Results
	Instruction Following for Robot Navigation
	Monte Carlo Simulations
	Physical Experiments

	Instruction Following for Mobile Manipulation

	Discussion
	Conclusions
	Acknowledgements

