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Abstract—A robot’s deployment environment often involves
perceptual changes that differ from what it has experienced
during training. Standard practices such as data augmentation
attempt to bridge this gap by augmenting source images in an
effort to extend the support of the training distribution to better
cover what the agent might experience at test time. In many
cases, however, it is impossible to know test-time distribution-
shift a priori, making these schemes infeasible. In this paper,
we introduce a general approach, called Invariance through
Latent Alignment (ILA), that improves the test-time performance
of a visuomotor control policy in deployment environments
with unknown perceptual variations. ILA performs unsupervised
adaptation at deployment-time by matching the distribution
of latent features on the target domain to the agent’s prior
experience, without relying on paired data. Although simple,
we show that this idea leads to surprising improvements on a
variety of challenging adaptation scenarios, including changes
in lighting conditions, the content in the scene, and camera
poses. We present results on calibrated control benchmarks in
simulation—the distractor control suite—and a physical robot
under a sim-to-real setup. Video and code available at: https:
//invariance-through-latent-alignment.github.io

I. INTRODUCTION

Reinforcement learning for control has achieved great
success in a wide variety of challenging sensory-motor control
tasks, including agile drone flight [20, 21, 26], deformable
object manipulation [41], and quadruped locomotion [19, 24,
28, 30]. In comparison to their classical model-predictive
control counterparts, reinforcement learning-based approaches
enables the use of more realistic forward dynamics model
in the form of a physics simulator. Improvements in rigid-
body simulator technologies [27, 38] allows reinforcement
learning algorithms to overcome their prohibitively-high sample
complexity by first training in simulation and then deploying
directly on the physical robot. Differences, however, still exist
between what the controller experiences in the simulator and
in the physical environment in the form of a sim-to-real gap.
In particular, the ability to produce visuomotor control policies
that remain robust when perceptual conditions change during
deployment, remains an open problem.

Consider the illustration in Figure 1. A common approach
to battle domain shift is to expose the agent to a large
variety of data during training with the hope that the training
distribution provides adequate coverage over what the agent will
experience in the wild. When the simulator is extensible, one
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Fig. 1: Data augmentation improves the coverage of the
training distribution at the expense of learning complexity
and performance. Insets: (a, c) augmented training data; (b) the
original input image from the source domain; and (d) the input
image in the target domain. Data augmentation fails to provide
sufficient coverage of the unknown deployment condition, so
the learned controller fails to accomplish the task.

can use domain randomization to generate more diverse training
data [29, 37]. Alternatively, one can use data augmentation
mechanisms to decorate existing data [12, 42]. Both approaches
aim to produce visual features that are invariant to perceptual
changes orthogonal to the task. Such invariance does not come
for free, however. Additional training slows down the wall-clock
speed of the training process, while domain randomization
requires manual tuning [2] and relies on the assumption that the
policy network has sufficient capacity to handle the increased
support of the input distribution. The added complexity can
negatively affect model and policy performance [12, 22].
Further more, hidden beneath is the assumption that one needs
to know roughly what types of perceptual shift would occur
during deployment. Failure can happen when the target domain
is not known a priori and falls out-of-distribution, resulting in
a fumbling robot that is unable to self-correct (see Figure 1).

Different from these prior approaches that produce invariance
by memorizing what is irrelevant to the task during training, we
consider a more challenging, but also more realistic scenario in
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Fig. 2: Latent features of the network experience a covariant
shift in the target domain. Our proposed method, Invariance
through Latent Alignment (ILA), counteracts this domain shift
by projecting the features back to the known distribution of
latent features on the source domain. We formulate this as a
distribution-matching objective in Section IV.

which the specifics of the deployment is not known in advance.
This requires the agent to truly generalize out-of-distribution,
without prior knowledge of the target environment. We further
assume that reward supervision is unavailable, so fine-tuning
via reinforcement learning is out of the question. This might
seem to be an impossible task, but it does implicitly make the
assumption that the same task that the agent was optimized for
during training remains well-defined in the target domain. This
means that the agent has some notion of what it knows despite of
the sudden appearance of many unknowns that are not required
for the task of interest. Without further assumptions or loss
of generality, this out-of-distribution generalization problem
can be formulated as unsupervised policy adaptation between
two MDPs that share the same latent dynamics and reward
structure, but with distinct pixel observations (See Figure 3).

In this paper, we investigate ways to improve generalization
under this challenging scenario. Rather than battling domain
shift by baking perceptual invariance explicitly into the network
during training, we demonstrate a way to produce feature
invariance at the time of deployment by taking advantage of
the fact that the task of interest remains the same, therefore
what the agent experiences internally should remain the same
as well. We collect latent features collected during training
as examples of what the agent knows about the task. On
the target domain (see Figure 2), the new latents are shifted
from these prior distributions. Our goal in unsupervised policy
adaptation is to match the distribution of these latent features
on the target domain with those that appeared during training.
This unsupervised learning objective, which we refer to as
latent alignment, does not require paired image data between
the source and the target, and can be applied to any agent
without imposing specific requirements of how it is trained.
To distinguish our approach from prior works that attempt to
produce generalization by baking invariances into the policy

at training time, we refer to our method as Invariance through
Latent Alignment (ILA).

II. RELATED WORK

A large body of work is dedicated to improving the ability
for neural networks to generalize. These works can largely
be placed under two categories—the first category, including
domain randomization [37], data augmentation [11], invariant
risk minimization [4, 43], and meta-learning [7], all make the
assumption that one has a rough idea of what type of perceptual
change is going to occur during deployment. For example, to
get the best result with data augmentation, one needs to fine-
tune the weights between different augmentation mechanisms
because each produces a different type of invariance [23].
Variations in the camera pose, for instance, is a common
problem in robotics. Yet it can not be fixed by augmenting
images alone [33]. Invariance to the projective geometry
requires randomizing camera extrinsics during rendering [11].

Similarly, meta-learning makes the assumption that one has
access to a meta-distribution of task-environment pairs. This
is an even stronger assumption than those typically made by
supervised learning, which merely requires that training data is
sampled from an i.i.d. that covers the test distribution. In many
cases and especially in reinforcement learning, generalization
comes from exposure to a large amount of diverse data [6].
Meta-learning offers little gain procedural-wise, because a
meta-learning reinforcement learning algorithm is identical to
multi-task training from a task distribution plus fine-tuning that
relies on rewards being available at test time.

The second category of methods, which this proposal is
also a member of, makes no explicit assumptions of what
type of distribution shift occurs in the target domain. These
methods include approaches such as unsupervised domain
adaptation [16, 18], train-on-test [13, 35, 40], and tailoring [1].
These methods all tackle adaptation face-on, as an out-of-
distribution generalization problem. Under this view, what
happens in the target domain can not be known in advance
when training the model. These approaches differentiate the
adaptation phase from the training phase by what types of
information is privileged, i.e., being only available during
training. Examples include ground-truth labels under supervised
learning, segmentation masks for dense predictions in computer
vision, and instrumented rewards during reinforcement learning.
Without these forms of privileged information available at test
time, these approaches cast adaptation as an unsupervised, or
self-supervised, learning process, with the main differences
between methods being the learning objective, optimization
details, and ways that they augment the data. In particular,
test-time adaptation by entropy minimization [40] shows that
fine-tuning just the two parameters in layernorm gives better
performance than fine-tuning the entire network. CycADA [17]
and FCN in-the-wild [16] use a cycle-consistent, adversarial
loss for matching pixel-wise dense features. Some of these
methods [32] produce feature alignment by synthesizing image
pixels, whereas our proposal directly enforces distributional
alignment in a compact latent space using an adversarial
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The red dashed arrow indicates the learned inference network
F , produced as part of the policy during training. During
deployment, the latent features produced by F , ztgt

t (blue dashed
arrow), experience a domain-shift. The reward further becomes
unobservable. Our goal is to make the representation domain-
invariant, such that the policy ⇡(a|otgt) (frozen policy head in
green) can succeed in the target domain.

objective, without reconstructing image patches. This long line
of work derive from classical unsupervised domain adaptation
methods that pre-date adversarial generative techniques. [8, 25]
and [34], for instance, directly minimizes the measure of
Maximum Mean Discrepancy (MMD) to great effect.

III. UNSUPERVISED POLICY ADAPTATION

Unsupervised policy adaptation is a setting that involves two
distinct domains — a source domain and a target domain.
These two domains share the same underlying MDP and
task structure, but has different observation conditions. In the
target domain, the agent only has access to observations o

tgt
t

and its own actions at, but not the corresponding rewards or
the ground-truth state st (see Figure 3). A practical example
is a robot that is trained with images in a clean, simulated
environment that now has to work in-the-wild, in the presence
of visual distractors and changes in the lighting condition or
the mounting pose of the video camera. These variations could
lead to significantly different image observations. As a result
of this shift, deploying an agent trained in the source domain
directly in the target domain (i.e., zero-shot transfer) generally
results in poor performance.

Formally, we consider an infinite horizon Markov deci-
sion process (MDP) [31] M parameterized via the tuple
hS,A,O,R, P, �i, where S and A are the state and action
spaces. P : S⇥A 7! S is the transition function, R : S⇥A 7!
R is the scalar reward, and � is the discount factor. The agent
receives a stream of observations o 2 O. We assume a fully-
observable setting where a single observation carries enough
information to decide an appropriate action. In the source do-
main Msrc (see Figure 3a), we can use reinforcement learning
to produce an optimal policy ⇡ : O⇥A 7! [0, 1] that maximizes
the expected discounted return J = E [

P
1 �

t
R(st, at)]. In

the target domain (see Figure 3b) however, the reward is not
observable therefore we can not rely on reinforcement learning
for fine-tuning. Nevertheless the task structure remains identical
to that of the source domain. We assume that the policy ⇡

consists of an encoder F : O 7! Z, where Z is a compact
latent space, and a policy head ⇡z : Z ⇥A 7! [0, 1] shown as
green arrows. The goal of unsupervised policy adaptation is to
find ways to battle this distribution shift, so that the resulting,
adapted policy can succeed on the task in Mtgt.

IV. INVARIANCE THROUGH LATENT ALIGNMENT

When we ask if the agent can perform in the target domain,
we are effectively making the assumption that the task, and the
underlying MDP has not changed. One way to factorize the
problem is to divide the policy into two modules (see Figure 3a).
A policy head ⇡(a|z) that we keep frozen during the adaptation
process, and an encoder F (z|o) that we adapt. Ideally, the
latent feature z captures what the policy needs to know to
accomplish the task. Hence we can formulate unsupervised
policy adaptation as a distribution-matching objective that
“aligns” the distribution P⇡(ztgt), with the one in the source
domain, P⇡(zsrc) (see Figure 2).

This overall sim-and-adaptation pipeline starts in the source
domain with collecting latent features zsrc into a buffer. The
agent carries these data into the deployment environment. Then
during adaptation, it optimizes two objectives. The first is a
minimax objective that focuses on individual latent features (D
in Figure 4). The second is an cooperative dynamics consistency
objective that consists of both the forward and the inverse
kinematics prediction error (Cinv and Cfwd in Figure 4). The
training procedure partially resembles a generative adversarial
network (GAN) [9] with two key distinctions. First, we do
not reconstruct raw pixel observations but instead directly
match the distribution of the latent features z. This has the
benefit that we do not require a generator that incur additional
space and optimization overhead. Second, we find it helpful to
pretrain the dynamics consistency module at the beginning of
the adaptation process because it reduces the wall-clock time
of the procedure.

We cover details of the procedure below.

A. Collecting Latent Features in The Source Domain
In the source domain we collect latent vectors zsrc

t and actions
at into a buffer

Bsrc = {zsrc
0 , a0; z

src
1 , a1, . . . } where z = F (osrc

t ). (1)

The trajectories, ⌧src = {o0, a0; o1, a1, . . . } are sampled from
Msrc with an exploration policy ⇡ that can be different from
the pretraind policy for the task. In our experiment we found
that using a random policy ⇡̄ is unexpectedly effective, with
the added benefit that the same policy can be used in the target
domain.

B. Dynamics Consistency
To match the joint distribution P (ztgt

t , at, z
tgt
t+1) with those

on the source domain, we introduce a dynamics consistency
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Fig. 4: Training and adaptation phases of invariance through latent alignment. The encoder F takes an observation of target
domain, and learns to fool the discriminator, while the discriminator D predicts whether the input is an encoded target
observation or a latent sample from source buffer. This adversarial training encourages the distribution of encoder outputs to be
similar to the latent embedding sampled from the source buffer. Cfwd and Cinv are the forward and inverse dynamics networks
that guides the encoder adaptation.

Algorithm 1 Populating The Source Buffer
Require: Encoder F , empty buffer Bsrc, random policy ⇡̄

1: for step in 1, . . . , N do . Collect latent features
2: Sample ot, at, ot+1 ⇠ P⇡̄(Msrc)
3: Encode zt, zt+1  F (ot), F (ot+1)
4: Bsrc  Bsrc [ (zt, at, zt+1)

loss which is the sum of the `
2 error in the forward and inverse

dynamics predictions

Ldyn(zt, zt+1, at) = kCfwd(zt, at)� zt+1k2

+ kCinv(zt, zt+1)� atk2.
(2)

Cfwd(zt+1|zt, at) is the forward kinematics model that predicts
the next latent zt+1 given the previous latent zt and at.
Cinv(at|zt, zt+1) is the inverse model that predicts the action
at associated with the transition from zt to zt+1. We found
it was not necessary to scale the two terms separately as it
worked well enough.

We optimize the parameters of Cfwd, Cinv and F in a
cooperative manner as opposed to an adversarial one. Cfwd
and Cinv are optimized using latent transitions sampled from
the source buffer Bsrc

Cfwd, Cinv = argmin
Cfwd,Cinv

Ezt,at,zt+1⇠Bsrc

⇥
Ldyn(z

src
t , z

src
t+1, a

src
t )

⇤
.

To update the encoder F we sample transitions using a random
policy ⇡̄ from the target domain. We freeze the parameters of
the two dynamics model when updating F .

Jdyn = Eot,at,ot+1⇠P⇡̄(Mtgt)

⇥
Ldyn(F (otgt

t ), F (otgt
t+1), a

tgt
t )

⇤
.

(3)
We found that a learning rate of 1e�6 worked sufficiently well
for both, and we did not find it necessary to scale the two loss
terms separately.

Algorithm 2 Invariance through Latent Alignment
Require: Pretrained encoder F , discriminator D, populated buffer

Bsrc, Cfwd, Cinv, random policy ⇡̄
1: for step in 1, . . . Tdyn do . Pretrain dynamics networks
2: Sample zt, at, zt+1 ⇠ Bsrc
3: �Cfwd ,�Cinv  rCfwd,CinvLdyn(zt, zt+1, at)
4: Cfwd, Cinv  Optim.step(Cfwd, Cinv,�Cfwd ,�Cinv)

5: for step in 1, . . . T do . Adaptation main loop
6: Sample zsrc

t , asrc
t , zsrc

t+1 ⇠ Bsrc
7: Sample otgt

t , atgt
t , otgt

t+1 ⇠ P⇡̄(Mtgt)
8: Compute gradients:
9: �D  rD

⇥
D(zsrc

t ) + (1�D(F (otgt
t )))

⇤
. Discriminator

10: �F1  rF

⇥
D(zsrc

t ) + (1�D(F (otgt
t )))

⇤

11: �F2  rFLdyn(F (otgt
t ), F (otgt

t+1), a
tgt
t ) . Dyn. consistency

12: D  Optim.step(D,��D)
13: F  Optim.step(F,�F1 +�F2)

C. Adversarial Loss

In addition to the dynamics consistency loss, we also
introduce an adversarial learning objective (see Figure 4), where
a discriminator D tries to distinguish between embeddings
from the source domain z

src
t and those from the target domain

z
tgt
t . We update the parameters of the encoder such that latent

embeddings on the target domain are indistinguishable from
those of the source domain. Using the earth-moving metric
from [3], we express this distribution-matching objective as

Jadv = Ez⇠Bsrc

⇥
D (zsrc

t ))
⇤
+ EP⇡̄(Mtgt)

⇥
1�D

�
F (otgt

t )
�⇤
. (4)

The encoder tries to minimize this objective while the discrim-
inator acts as an adversary and seeks to maximize it, resulting
in a GAN-like minimax game.

D. Putting Things Together

We adapt our encoder by minimizing a loss that combines
both the adversarial loss Jadv (Eqn. 4) and the dynamics
consistency loss Jdyn (Eqn. 3). Specifically, we solve for the
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Fig. 6: The gain of applying invariance through latent alignment (ILA) to target
domains with various distraction intensities. Dashed lines denote the performance
of the baseline agent in the target environment (i.e., zero-shot transfer), while
solid lines represent the performance gains of the agents with ILA.

parameters of the encoder through the following objective

min
F

h
max
D

Jadv + Jdyn

i
. (5)

We did not find it necessary to add additional scaling factors
to balance the loss terms. Algorithm 1 and 2 summarizes the
whole procedure. We train the dynamics consistency networks
to convergence before running the adaptation loss, to improve
the wall-time.

The proposed approach, invariance through latent alignment,
does not affect the training procedure of the control agent in
the source domain, so it can be applied to any pretrained agent.
This is also an unsupervised adaptation procedure as it does
not require reward supervision at test time, nor does it require
paired source and target images.

V. EXPERIMENTS

We want to understand the impact of test-time adaptation on
an agent’s ability to generalize out-of-distribution. This section
will compare ILA with two state-of-the-art reinforcement
learning baselines that uses data-augmentation: SVEA [14] and
DrQ-v2 [42]. Recall from the introduction that these methods
vie for increased generalization capabilities by expanding the
support of the training distribution. We expect the invariance
produced this way to be less performant than unsupervised
adaptation at test time that only needs to focus on one specific
instance of perceptual variation. In our experiments, we will
also compare against policy adaptation during deployment
(PAD, see [13]), a baseline that, like our method, adapts the
policy without access to the reward at test time.

To further probe the generalization abilities of test-time adap-
tation, we conduct an experiment where we vary the intensity
of environmental distractions. The results show that test-time
adaptaion significantly increases the policy performance during
deployment. We will conclude with some general discussion
and remarks regarding the design tradeoffs involved in test-time
adaptation.

a) Setup: We conduct experiments on nine domains from
the DeepMind Control Suite (DMC, see [36]) and treat it
as the source domain for training the RL agents. We use
the Distracting Control Suite [33] as the target domain.
Distracting control suite adds three types of distractions to

DMC, including image background, random color texture, and
changes to the camera pose. The intensity of these modes of
distraction are calibrated. For details, refer to the accompanying
report (see Stone et al. 33)

b) Modifications to Distracting Control Suite: The default
configuration of distracting control suite changes distractions at
the start of every episode (e.g., different background images are
used at every episode). However, we are interested in measuring
an agent’s ability to perform adaptation across several episodes
on the same target environment. Thus, we modify distracting
control suite to sample a distraction once in the beginning
of learning, and then use the same distraction across all
learning epochs. This also ensures consistent evaluation across
algorithms. In accordance with this change, we also modify
the intensity benchmark from distracting control suite. In
our experiments, intensity measures the deviation between an
environment distraction and the train environment’s default
value. For example, intensity may measure how far the
distracting color is from the default. Finally, we modify the
environments to only apply a single distraction during testing
(rather than all three) in order to better understand the impact of
each type of distraction on overall performance. Figure 5 shows
an example of distractions across intensities on Walker-walk
domain.

Table I presents the results for the different distracting control
suite domains in the presence of background distractions with
an intensity level of 1.0. Specifically, we compare the test-time
performance of SAC, SVEA, and DrQ-v2 in each domain
with the episode rewards that we achieve when using ILA
to adapt the encoder. The baseline algorithms employ image
augmentation, which provides some robustness to variations at
test time. Even then, however, we find that ILA improves the
test-time generalization of all three baseline policies in most
domains, often resulting in significant performance gains. In
cases where ILA does not improve performance, the resulting
reward is comparable to the baseline policy, i.e., ILA does not
result in a performance degradation.

Figure 6 visualizes the performance of the different methods,
averaged over the set of distracting control suite domains,
as a function of the intensity of the distractions. Since the
baseline methods are trained with image augmentation, they



TABLE I: Episode return in the target (test) environments (mean and standard deviation) before (zero-shot) and after (+ILA)
adaptation for SAC, SVEA, and DrQ-v2 with background distraction at an intensity setting of 1.0. The performance of each
baseline in the source (training) environments can be found in the Appendix.

SAC SVEA DrQ-v2
Domain Zero-shot +ILA Zero-shot +ILA Zero-shot +ILA

ball_in_cup-catch 115±50 227±222 490±376 987±27 88±39 386±425

cartpole-balance 434±275 585±295 446±330 627±258 273±107 322±117

cartpole-swingup 182±147 369±243 269±365 612±213 82±35 247±136

cheetah-run 169±65 248±53 317±137 378±55 100±88 393±125

finger-spin 113±162 192±196 391±467 943±54 207±328 769±206

finger-turn_easy 163±99 146±33 278±180 491±343 268±241 914±44

reacher-easy 179±65 381±76 75±77 624±305 58±32 685±211

walker-stand 330±118 364±115 917±138 999±12 630±197 868±151

walker-walk 242±142 291±134 866±45 924±45 326±195 770±140

do exhibit some robustness to distraction. However, we see
this robustness rapidly diminishes as the distraction intensity
increases. In particular, large changes to camera pose or the
image background proved challenging for standard augmenta-
tion procedures. Comparatively, ILA makes it much smoother
and slower degradation of performance. This supports our
hypothesis that adaptation powered by unsupervised learning
can significantly widen the generalization abilities of learning
algorithms.

A. ILA on DeepMind Control Suite
This section studies the impact of test-time adaptation on

the DeepMind control suite. We begin by pretraining soft actor-
critic (SAC) [10], SVEA, and DrQ-v2 in a non-distracting
training-time environment. After training, we evaluate the
learned policies on test environments with distractions of
various intensities. This evaluation is zero-shot, i.e., there is
no additional training in the test environment.

B. Comparisons with PAD
Similar to our approach, PAD pretrains the agent in a

clean environment, and then adapts the agent via unsupervised
objectives without assuming access to the target environment’s
reward function [13]. To evaluate the robustness of PAD to
distractions, we consider distracting control suite with a fixed
distraction intensity of 1.0. Table III compares the performance

(a) Color (b) Background (c) Camera Pose

Fig. 7: Relative improvement (compared to zero-shot) as a
function of adaptation steps when applying ILA to different
baseline policies. As in Figure 6, each point represents the
mean over nine domains and five random seeds. The results
correspond to a distraction intensity value of 1.

as the difference between the episode returns before and
after adaptation along with the episode returns in the clean
environment. It should be noted that PAD requires the policy to
be trained along with an inverse dynamics prediction objective,
whereas ILA does not. We include this additional auxiliary
objective with soft actor-critic specifically for this experiment.

Across all environments, we see that PAD struggles to adapt
to distractions at test time. We suspect this instability is caused
by the large deviations in the latent variable distribution as a
result of changes in the target environment. In particular, we
posit that the signal from PAD’s inverse dynamics head does
not encourage the latent train and test distributions to match,
whereas in ILA, it does.

C. Sim-to-real Transfer

We are interested in the ability of ILA to bridge the gap
between simulated and real world robotics environments. In
the reaching task, the target position is given by a red disc
placed on a table. The agent’s objective is to controls the arm
so that the end-effector reaches this target location. Our goal
is to train a policy in simulation, and then transfer the policy
to a real UR-5 robot at test time. The same as with previous
experiments, the test time agent receives no rewards. In both
simulation and the real world, the policy’s only input is an
image from a camera placed in front of the robot and table.
The action space is a 2D position controller that drives a small
movement (�x, �y) of the robotic gripper. See Figure 8 for the
setup.

We carry out the experiment by first training a policy with
SVEA [14] in simulation. For adaptation, we collect random
trajectories in the real environment and then use ILA to align
the simulated and real world experiences. We evaluated the
success rate of zero-shot and the adapted policies over 20 real
episodes. We consider the episode to be success if the gripper’s
tip overlaps with the target in the front-view image.

Due to the challenging domain shift between simulator
and real world, the zero-shot policy fails to adapt adequately,
repeating the same action of moving the gripper to an edge
of the table ad infinitum, regardless of the given goal location.
This results in a final success rate of 15%. On the same task,



Fig. 8: Simulated and real reach environment. The goal location
is denoted as a red disk that the robot must reach. Using ILA,
we can transfer a policy trained in simulation (left) onto a real
UR-5 robot (right). This adaptation requires no paired data and
no rewards on the deployment environment, instead employing
ILA for unpaired adaptation.

ILA is able to robustly against this domain shift, achieving a
final success rate around 90%.

D. Further Discussion

a) Ablation Studies: In order to better understand the
contribution of the different objectives to test-time general-
ization, we perform a series of ablations in which we omit
either the dynamics consistency or the adversarial objectives. In
these experiments, we use a pretrained DrQ-v2 network for the
algorithm’s base policy, and then perform adaptation across all
distractions with an intensity value of 1.0. The results in Table II
show that the adversarial training is critical to adapt the latent
representation in the target domain. Performing adaptation
using only the dynamics consistency objective, i.e., argminF
Jdyn (Eqn. 3) results in a significant decrease in performance.
We theorize that the dynamics consistency objective helps to
align latent transition manifolds when the latent distributions
in source and target domains are reasonably close. If the latent
distributions significantly differ, however, the input to the
pretrained dynamics networks is largely out-of-distribution,
and thus the gradients from dynamics consistency loss may
negatively affect convergence.

Compared to the adversarial objective, ablating the dynamics
consistency objective has surprisingly little effect on test-
time generalization. It may be that the transition manifold
in latent spaces are preserved despite the distractions, which
then diminishes the net effect of the dynamics consistency
objective.

TABLE II: Ablations with variants of ILA that remove
inverse/forward dynamics, or the adversarial objectives. DrQ-
v2 is used as a pretrained policy. We compute episodic returns
from nine domains and five random seeds, and the results
correspond to an intensity value of 1.

+ILA +ILA
Distraction Zero-shot +ILA w/o dyn. w/o adv.

Background 228±232 602±300 615±289 176±221

Colors 234±245 536±320 534±327 117±96

Camera Pose 345±287 417±284 407±272 208±235

TABLE III: Comparison with PAD

Distraction Zero-shot +PAD +ILA

None 835±230 — —
Background 213±247 279±271 425±292

Colors 230±263 271±300 402±339

Camera Pose 319±265 326±259 412±275

b) Pre-Filling the Replay Buffer: We implicitly make
the assumption that a behavior policy ⇡̄ is available that can
be used to generate trajectory data on both the source and
the target domain with similar state visitation, and transition
probabilities. To achieve good performance with the adapted
policy, such distribution should also cover important states
with higher reward. To our surprise, a simple scheme where
we pre-fill both the source and target buffer using the random
policy works sufficiently well.

VI. CLOSING REMARKS

We introduced invariance through latent alignment, an
unsupervised approach that matches the distribution of feature
vectors in the latent space, to improve the test-time performance
of a learned visuomotor control policy. Empirical results show
that as discrepancies between the training and deployment
environments become more intense, invariance through latent
alignmenthas a large competitive edge over alternatives such
as data augmentation techniques. The problem of test-time
adaptation in visual reinforcement learning using unsupervised
test-time trajectories is relatively new, but has thus far shown
great relevance and promise in robotics [11, 13], where
a sim-to-real pipeline has been at the fore-front of recent
progress [20, 28, 41].

A problem that remains is how to sample trajectories for
adaptation. Technically, the distribution of trajectories and their
latent representation on the source domain depends on the
exploration policy to collect data. There are state transitions
that are only accessible through a performant policy. To our
surprise, simply using the random policy to collect data on both
the source and the target domain largely by-passes this issue
and achieves good performance post-adaptation. Future work
in this area might want to develop better techniques for data
generation at test time, so that the collected trajectory data better
resembles those collected by the agent in the source buffer. One
version towards this direction resembles generative adversarial
imitation learning (GAIL, see [15]). Another open problem is
that the performance does not improve monotonically upon
more unsupervised updates. Finding an improvement scheme
that is provably monotonic would be interesting.

Finally, although the adversarial distribution matching objec-
tive proposed here produce measurable improvements, better
ways to align latent features are still needed. For a recent work
in this direction, we refer the reader to adversarial support
alignment [39].
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Pieter Abbeel, Alexei A Efros, Lerrel Pinto, and Xiaolong
Wang. Self-supervised policy adaptation during deploy-
ment. arXiv preprint arXiv:2007.04309, 2020.

[14] Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing
deep Q-learning with ConvNets and vision transformers
under data augmentation. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2021.

[15] Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. Advances in Neural Information
Processing Systems (NeurIPS), 2016.

[16] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor
Darrell. FCNs in the wild: Pixel-level adversar-
ial and constraint-based adaptation. arXiv preprint
arXiv:1612.02649, 2016.

[17] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei A Efros, and Trevor
Darrell. CyCADA: Cycle-consistent adversarial domain
adaptation. arXiv preprint arXiv:1711.03213, 2017.

[18] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor
Darrell. Cycada: Cycle-consistent adversarial domain
adaptation. In Proceedings of the International Conference
on Machine Learning (ICML), pages 1989–1998, 2018.

[19] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario
Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco
Hutter. Learning agile and dynamic motor skills for
legged robots. Science Robotics, 4(26), January 2019.

[20] Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Alexey
Dosovitskiy, Vladlen Koltun, and Davide Scaramuzza.
Deep drone racing: Learning agile flight in dynamic
environments. In Proceedings of the Conference on Robot
Learning (CoRL), 2018.

[21] Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Matthias
Müller, Vladlen Koltun, and Davide Scaramuzza. Deep
drone acrobatics. In Proceedings of Robotics: Science
and Systems (RSS), July 2020.

[22] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel
Pinto, Pieter Abbeel, and Aravind Srinivas. Reinforce-
ment learning with augmented data. arXiv preprint
arXiv:2004.14990, 2020.

[23] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel
Pinto, Pieter Abbeel, and Aravind Srinivas. Reinforce-
ment learning with augmented data. arXiv preprint
arXiv:2004.14990, 2020.

[24] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen
Koltun, and Marco Hutter. Learning quadrupedal loco-
motion over challenging terrain. Science Robotics, 5(47),

https://iaifi.org/


October 2020.
[25] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael

Jordan. Learning transferable features with deep adap-
tation networks. In Proceedings of the International
Conference on Machine Learning (ICML), 2015.

[26] Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias
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APPENDIX

A. Architectures
This section describes the architectures of encoder F , discriminator D, inverse dynamics Cinv and forward dynamics Cfwd.

Encoder architectures follow the originally presented design choices of each base policy except for DrQ-v2. We take the part of
the original network that produces a latent for the actor, and use it as an encoder F . In all of SAC (of the version used in
[14]), SVEA and PAD, this shared latent is set to have dimension 100. For DrQ-v2, we took the entire network architecture
from SVEA. The discriminator consists of a linear layer with hidden dimension 100 followed by Layer Normalization (LN) [5]
and tanh activation, and a three layer multi-layer perceptron (MLP) with and ReLU activations. Inverse dynamics network Cinv
is five layer MLP and ReLU activations. It takes the concatenated latents as its input. Forward dynamics network Cfwd takes
action and latent, and encode them separately followed by concatenation and further layers. The action is fed it to a linear layer
followed by LN, another linear layer and ReLU with hidden dimension 100. The latent is fed to three layer MLP where the first
activation is LN and others are ReLU. The both encoded inputs are concatenated and fed to 4 layer MLP with ReLU activations
followed by LN and tanh activation. In all layers except for those explicitly mentioned, hidden dimension is set to 1, 024.

B. Hyperparameters
This section details the hyperparameter settings that were used for the experimental evaluation. Table IV lists the

hyperparameters relevant to pretraining the dynamics networks, while Table V provides those relevant to adaptation. For the
base policies, we adopted the hyperparameter settings and architecture choices from the original papers. Details for SAC and
SVEA can be found in Hansen et al. [14], while Hansen et al. [12] provides settings for PAD. The dimension of the latent zt
differs depending on the encoder of the base policy, but all of the encoders in our experiments produce a latent with dimension
100.

TABLE IV: Hyperparameters for dynamics pretraining

Hyperparameter Value

Steps (Tdyn) 100, 000
Batch size 256
Optimizer RMSProp(↵ = 0.99, ✏ = 1.0⇥ 10�8)
Learning rate (forward dynamics) 0.001
Learning rate (inverse dynamics) 0.001

TABLE V: Hyperparameters for adaptation

Hyperparameter Value

Capacity of buffers (Nbuf) 1, 000, 000
Batch size 256
Discriminator updates per step 5
Gradient clipping 0.01
Optimizer RMSProp(↵ = 0.99, ✏ = 1.0⇥ 10�8)
Learning rate (encoder) 1.0⇥ 10�4 (for DrQ-v2)

1.0⇥ 10�5 (otherwise)
Learning rate (discriminator) 1.0⇥ 10�4 (for DrQ-v2)

1.0⇥ 10�5 (otherwise)
Learning rate (inverse dynamics) 1.0⇥ 10�6



C. Performance in original domains
Table VI presents the average reward for the baseline SAC, SVEA, and DrQ-v2 on the non-distracted source domains. The

method labeled SAC+Inv denotes a soft actor-critic agent that is trained using inverse dynamics as an additional auxiliary
objective that is only used in making a comparison against PAD.

TABLE VI: Performance in the source (clean) domains.

Domain SAC SAC+Inv SVEA DrQ-v2

ball_in_cup-catch 452±303 999±7 1007±4 1007±3

cartpole-balance 1022±8 988±26 996±21 969±123

cartpole-swingup 735±167 885±24 892±15 874±21

cheetah-run 309±26 415±59 448±105 897±45

finger-spin 615±63 971±64 1000±37 997±36

finger-turn_easy 138±28 658±141 539±317 945±46

reacher-easy 381±39 723±383 812±293 988±28

walker-stand 438±111 997±6 1006±4 996±31

walker-walk 393±117 915±22 964±34 980±16

D. Ablation Studies
Tables VII, VIII, and IX provide a per-domain ablation summary for background, color, and camera pose distractions,

respectively. As with the results in Table II, we use DrQ-v2 as the pretrained policy and present the mean reward and standard
deviation for five random seeds.

TABLE VII: Ablation with background distraction

+ILA +ILA +ILA +ILA
Domain Zero-shot +ILA w/o inv., fwd. w/o inv. w/o fwd. w/o adv.

walker-walk 326±196 749±133 778±142 777±145 768±146 268±367

walker-stand 623±233 866±153 883±110 859±144 873±129 402±347

cartpole-swingup 82±35 231±128 395±218 288±163 246±152 117±43

ball_in_cup-catch 88±39 394±387 381±416 400±414 383±381 93±42

finger-spin 208±327 783±214 742±190 772±225 769±223 74±160

reacher-easy 98±93 726±149 713±111 732±104 694±169 91±54

cheetah-run 98±90 411±191 397±152 398±147 419±157 12±19

cartpole-balance 271±101 336±126 315±98 367±84 297±121 264±80

finger-turn_easy 261±244 920±41 929±57 899±52 909±74 256±264

TABLE VIII: Ablation with color distraction

+ILA +ILA +ILA +ILA
Domain Zero-shot +ILA w/o inv., fwd. w/o inv. w/o fwd. w/o adv.

walker-walk 80±43 481±313 468±305 495±330 472±319 26±5

walker-stand 278±150 543±231 603±283 571±259 548±268 145±31

cartpole-swingup 152±84 552±377 520±359 507±339 434±395 94±56

ball_in_cup-catch 239±374 812±225 857±182 840±251 843±196 131±46

finger-spin 349±354 612±345 561±376 591±351 603±358 143±172

reacher-easy 138±135 490±416 486±392 486±362 445±405 140±90

cheetah-run 193±188 422±282 416±293 421±277 406±285 4±2

cartpole-balance 481±351 602±366 576±359 593±351 583±349 216±94

finger-turn_easy 194±200 313±290 323±337 297±316 304±323 170±57



TABLE IX: Ablation with camera pose distraction

+ILA +ILA +ILA +ILA
Domain Zero-shot +ILA w/o inv., fwd. w/o inv. w/o fwd. w/o adv.

walker-walk 293±195 375±154 369±168 389±161 366±164 63±71

walker-stand 621±202 704±105 617±155 661±146 679±93 330±252

cartpole-swingup 286±51 234±123 211±122 241±140 281±42 172±132

ball_in_cup-catch 327±227 462±307 429±321 566±314 400±337 199±169

finger-spin 29±25 252±216 222±209 275±194 251±206 32±63

reacher-easy 917±101 933±47 925±60 950±72 940±90 732±159

cheetah-run 55±20 142±57 154±90 141±74 144±61 24±28

cartpole-balance 288±46 307±100 375±83 379±116 380±64 217±47

finger-turn_easy 287±89 346±219 359±122 377±200 421±180 160±97
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