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1. Introduction

One of the main themes in the representation theory of finite groups is to relate
global and local invariants. For example, for a prime p, Brauer’s Problem 12 asks what
can be said about the Sylow p-subgroups of G from the makeup of the set of irreducible
characters Irr(G). More generally, the problem of determining structural properties of
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a defect group of a p-block B of G based on the set Irr(B) of irreducible characters
of B has been an important topic of study in the area. The proof of one direction of
the Brauer Height Zero Conjecture in [21] and the recent proof for principal blocks
[26] have been major breakthroughs in this line of investigation. Other recent results
studying the p-structural properties of the defect groups in terms of properties of the
irreducible characters in the block can be found in [6], [12] and [33]. The present paper
is a contribution to this lively area of research.

Let B be a Brauer p-block of a finite group G, with defect group D. We write cd(B) =
{x(1) | x € Irr(B)} for the set of the degrees of the complex irreducible characters in B
and dI(D) for the derived length of the solvable group D. This article’s main motivation
is the following question, recently appeared in [28].

Question A (Navarro). Is it true that d1(D) < |cd(B)|?

Question A has a positive answer if |cd(B)| = 1. In fact, a theorem of Okuyama and
Tsushima [37] shows that in this case the defect group D is abelian. Similarly, Navarro’s
prediction is confirmed whenever D is normal in G by [41, Theorem 8] and whenever the
block B is nilpotent by [2, Theorem 1.2]. On the other hand, at the time of this writing,
the case where |cd(B)| = 2 remains an open problem, although it would follow from
an affirmative answer to the Brauer Height Zero Conjecture, along with a conjecture of
Malle and Navarro [25]. Specializing the question to the principal block B = By(G), it
was recently shown by the second author in [28] that it is true that if |cd(Bo(G))| = 2
then the Sylow p-subgroups of G have derived length at most 2. In this article we extend
the above mentioned result by proving that the following holds.

Theorem B. Let p be a prime, let G be a finite group with Sylow p-subgroup P, and let
By(G) be the principal p-block of G. If |cd(Bo(G))| < 3, then dI(P) < |cd(By(G))].

Using the main result of [27], the following is an immediate corollary.

Corollary C. Let p be a prime, let G be a finite group with Sylow p-subgroup P, and let
Bo(Q) be the principal p-block of G. If dI(P) < 4 then dI(P) < |cd(Bo(Q))|. In particular,
Question A has a positive answer for By(G) if |G|, < p*'.

As mentioned before, Theorem B extends the results of [28] by confirming Question A
for principal blocks with at most three distinct character degrees. The strategy we use
to prove this statement is to reduce it to a few technical statements about the principal
blocks of nonabelian simple groups (see Section 2). Checking these statements led us to
the discovery of some interesting features of several important classes of finite groups.
For instance, we show that Question A holds for symmetric and alternating groups, as
well as for general linear groups in defining characteristic (respectively denoted by &,
A, and GL,(q)) as a consequence of the following stronger statement.
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Theorem D. Let p be a prime and let B be a p-block of &, 2,, or GL,,(q) with q¢ a power
of p. Let D be a defect group of B. Then dl(D) < |ht(B)].

Here ht(B) denotes the set of heights of the irreducible characters in B.

We care to remark that it is not possible in general to bound the derived length of the
defect groups by the number of distinct heights in the corresponding block. In fact, in
Section 5 we construct a solvable group that does not satisfy the conclusion of Theorem D.
It is worth pointing out that this construction also provides a counterexample to the main
conjecture of the recent article [7].
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2. Reduction to simple groups
2.1. Auziliary lemmas

Lemma 2.1. Let G be a finite group, N < G, and 0 € Irr(Bo(N)). Assume 0 extends to
X € Irr(Bo(Q)). Then {ux | pn € Irr(Bo(G/N))} C Irr(G|0) N Irr(Bo (G)).

Proof. By Gallagher’s correspondence, Irr(G|6) = {ux | p € Irr(G/N)}. We have x =
lg/nx and then by [42, Lemma 2.4], if p € Irr(Bo(G/N)) then px € Irr(Bo(G)). O

Lemma 2.2. Let G be a finite group and let S1 X ---x S; < G, where the S;’s are subgroups
permuted by G. Let S = Sy. Assume there exists o € Irr(Ng(S)/Ca(S)) in the principal
block and such that S is not contained in ker(a). Then a© € Irr(By(G)).

Proof. Write H = Ng(S) and C = Cg(S). Let n € Irr(S) be under a.. Now let ¢ =
nxlg, x---x1g, €Irr(Sy x---xS;). Notice that Gy, = H,,. Since Sy - - -5y C C C ker(a)
we have that a € Trr(H|y). Hence a® € Trr(G) by Clifford’s theorem. Now by [30,
Corollary 6.2], Bo(H ) is defined and contains o, and by Brauer’s Third Main Theorem
[30, Theorem 6.7], Bo(H)® = By(G) so we are done. 0O

Lemma 2.3. Let G be a finite group and let S1 X -+ - X Sy<a G, where the S;’s are subgroups
permuted transitively by G. Let S = S1, S; = 5% and o € Irr(S). If o is Ng/(S)-invariant
then n = o™ X --- x &®t is G-invariant.
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Proof. Let s € S,z € G and H = Ng(5). Notice that G = U§:1 Hz; is a disjoint union,
so 7! = hx; for some j € {1,...,¢} and some h € H. Then

W (s) = (s ) = (") = 0% () [T " (1),
i#]
Now s" € S and then % (s"®i) = a(s"). Since a is H-invariant we have
0 (s) = a(s") [[ o™ (1) = a(s) [T o™ (1) = n(s),
i#j i#1

() =nls). -
Now n*(s%) = 0% (s) = n(s) = n" (s) = n(s*) applying the equality from the
previous paragraph twice. In particular, for any y € S;, n%(y) = n(y).
Let s; € S; and notice that

Mons) _ Thinls)
ITies (H#i 0‘“(1)) a(l)t-t

n(sy---se) =

then if x € G we have

R N | R TC 0 B ()
(s = (sl st ) = S = SRS

which equals 7(sy - - - 8¢), so we are done. O

Lemma 2.4. Let G be a finite group and let N = S1 X -+ X Sy < G, where the S;’s are
subgroups transitively permuted by G by conjugation. Let S = Si. Assume that there
exists a € Trr(By(S)) with (1) not divisible by p, Z(S) C ker(a) and such that «
extends to & € Trr(By(Ng(S)/Cq(S))). Then the tensor induced character &®C is in
the principal block of G.

Proof. Write H = N¢(S). Let {x1,...,2:} be a transversal for H in G such that S =
S; and notice that Ng(S;) = H?. Also, write a; = o” € Irr(S;). By Lemma 2.3,
a1 X -+ X oy is G-invariant. Let M = ﬂle H* « G. Since By(H) covers By(M) then
Gy € Irr(Bo(M)). As in the proof of [32, Corollary 10.5], the tensor induced character
X = @®% extends a; x -+ x a; € Irr(By(N)). Also, by [32, Lemma 10.4] we have that
forg e M,

x(g) = H &% (g),

s0 xar = [['—, &% € Trr(M). Moreover, 4% (1) = a(1) is not divisible by p, so xa/ is in
the principal block of M by [35, Lemma 3.5].
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Now let @ € Syl,(M). We have that QN.S; € Syl,(S;). Then Cg(Q) € Ca(QNS;) C
H?% and then Cg(Q) C n§=1 H® = M. By [35, Lemma 3.1] Bo(M)% is defined and
is the unique block of G covering By(M). Now by Brauer’s Third Main Theorem [30,
Theorem 6.7], Bo(M)® = By(G) and we conclude that y € Irr(By(G)), as desired. O

Lemma 2.5. Let G be a finite group and assume Cg(0,(G)) € O,(G). Then G has a
unique p-block.

Proof. Let P = O,(G). Let b be the unique block of P. Since Ce(P)P C P, by [30,
Theorem 4.14] b is defined. By [30, Theorem 4.8], P is contained in every defect group
of every block of G. Applying the second part of [30, Theorem 4.14], we conclude that
b is the unique block of G. O

2.2. Necessary results on simple groups

We shall need the following results on simple groups.

Lemma 2.6. Let S = PSLy(3%) for k > 3 and let p = 3. Then for any S < T < Aut(S)
there is a charactery € Irr(Bo(T')) such thatys = aa for some a € Irr(By(S)), a € {1,2}
and a(1) > 13 is not divisible by 3.

Proof. This can be found in the proof of [28, Proposition 3.8]. O
The proof of the next three theorems is done in sections 3 and 4.

Theorem 2.7. Letp € {2,3} and let S be a finite nonabelian simple group of order divisible
by p. Let G be an almost simple group with socle S and assume S ¢ {PSLy(3%) | k > 2}
if p = 3. Then there is some « € Irr(Bo(S)) with a(1) > 2 that extends to Irr(By(G))
and some 8 € Irr(Bo(Q)) with B(1) # (1) and S ¢ ker(B).

Theorem 2.8. Let p = 2 and let G be almost simple with socle S. If |ed(Bo(G))| = 3,
then S is PSLa(q) for some q. In particular, in such a case, if K is a perfect central
extension of S, then the Sylow 2-subgroups of K are metabelian.

Theorem 2.9. Let p = 3 and let S be a finite nonabelian simple group of order divisible by
3. Let G be an almost simple group with socle S. If G has nonabelian Sylow 3-subgroups,
then |cd(Bo(G))| > 3.

2.3. The reduction theorem

Next we prove our main result assuming Theorems 2.7, 2.8, and 2.9, whose proofs will
be delayed to sections 3 and 4. For this reduction theorem, we make use of the following
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fact: the unique integral solution for zy = z¥ with z,y > 1 is z = y = 2. Furthermore if
a,x,y are positive integers and a,z > 1 then xy < ax¥.

Theorem 2.10. Let G be a finite group, p a prime and assume cd(By(G)) = {1,m,n}.
Then the Sylow p-subgroups of G have derived length at most 3.

Proof. We proceed by induction on |G/.
Step 1: We may assume p = 2,3, p divides m but not n and that O, (G) = 1.

If p divides n and m then by [19, Corollary 3] we have G/O, (G) is a p-group.
By [30, Theorem 10.20], Irr(By(G)) = Irr(G/O, (G)), so G/O, (G) has 3 character
degrees, and then the result holds by [18, Theorem 12.15]. If p does not divide n and
m then the result follows by the main theorem of [26]. Hence we assume p divides m
but not n. If p > 3 then by the main result of [12] we have G is p-solvable. Again, by
[30, Theorem 10.20], Irr(G/O, (G)) = Irr(By(G)) and then G/O,/ (G) has at most 3
degrees and we are done by [18, Theorem 12.15]. Hence we assume p = 2, 3. Also, using
Irr(By(G/Oy (G))) = Irr(By(G)) (by [30, Theorem 9.9(c)]) and arguing by induction we
may assume O, (G) = 1.

Step 2: G has a nontrivial component K with |K/Z(K)| divisible by p.

Let E(G) be the layer of G. If E(G) = 1 then F*(G) = F(G) = O,(G) and then
Cc(0,(G)) CO,(G) by [1, (31.13)]. Then G has a unique block by Lemma 2.5, and we
are done by [18, Theorem 12.15]. We may assume that E(G) > 1. Let K be a component
of G and let N be the normal closure of K in G. By [22, (6.5.3)], [[,cq K9 < G, so
N = [l,eq K¢. If |[K| is not divisible by p then [N/ is not divisible by p, contradicting
O,/ (G) = 1 from Step 1, so K has order divisible by p. By [1, (33.12)] we have that
K/Z(K) is also divisible by p.

Step 3: If N is the normal closure of K in G then N/Z(N) is a direct product of
isomorphic copies of K/Z(K) and cd(Bo(G/Z(N))) = {1,m,n}.

By [22, (6.5.3)], N is a central product of G-conjugates of K. Write G = G/Z(N).
Then by [22, (1.6.7)], N/JZ(N) = N = [[K9 = K; x --- x K; is a direct product of
nonabelian simple groups K; & K/Z(K), and the K;’s are transitively permuted by G.
We write K; = K. If |cd(Bo(G))| < 3 then by the main result of [28] we have G is

p-solvable, which is impossible, so c¢d(By(G)) = {1,n, m}.
Step 4: If p =3 then K % PSLy(9)

Let H/C = N5(K)/Cg(K). There is a natural isomorphism K = KC/C C H/C
and we view H/C C Aut(K). If K = PSLy(9) and p = 3 then it is easy to check in [10]
that for any K < T < Aut(K) there are two characters a, 8 € Irr(Bo(T)) that do not
contain K in their kernel with a(1) # (1) and both (1) and 3(1) are not divisible by p.
If T = H/C, then by Lemma 2.2 we have that o, 3¢ € Irr(By(G)) and o€(1) = ta(1),
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ﬂé(l) =tf(1), (both p’ or both divisible by p, depending on t). This is a contradiction,
so K can not be isomorphic to PSLy(9).

Step 5: If p =3 and K = PSLy(3%) for k > 3 then we may assume K < G.

Let o,y and a € {1,2} be as in Lemma 2.6. Since K has abelian Sylow 3-subgroups,
we know that there exists 8 € Irr(Bo(H)) with 8(1) # (1) and K ¢ ker(B) by [28,
Theorem 2.2]. Then we can argue as before with Lemma 2.2, and we get that ’yé, Bé €
Irr(By(@)), so tv(1),tB8(1) € cd(By(G)). Then necessarily n = 7% (1) = ty(1) = taa(1),
and m = t3(1). Also by [28, Lemma 4.4] there exists some 1 < e < a® < 2 not divisible
by 3 such that n = ea(1)*. Thus taa(1) = ea(1)!. It is easy to see that the above equality
has no integral solutions verifying «(1) > 13 and ¢ > 1.

Step 6: In the remaining cases, we may also assume K < G.

Assume by way of contradiction that ¢ > 1. Let a € Irr(Bo(K)) with a(1) > 2, and
B € Trr(By(H/C)) be as in Theorem 2.7. Let & € Irr(By(H /C)) be an extension of a.. By
Lemma 2.2, 4%, 89 € Irr(Bo(G)). Hence ta(1),t3(1) € cd(Bo(G)). Since a(1) # B(1)
we have that ¢ is not divisible by p (because n is not divisible by p).

If (1) is not divisible by p, then by Lemma 2.4, 4®¢ € Irr(Bo(G)), so
a(1)! € ¢d(By(G)). Since B(1) is necessarily divisible by p, this forces a(1)*
and if ¢ > 1 the only possibility is a(1) = 2 = ¢, a contradiction with «(1) > 2.

We are left with the case that p divides «(1), so 8(1) is p’. By [32, Corollary 10.5]
X = &%C € Irr(G) extends n = a® x --- x a® € Irr(By(N)), where {z1,..., 2} is a
transversal of H in G (recall that 7 is G-invariant by Lemma 2.3). By [30, Theorem

1)

a®%(1
=ta(l)=n

)

9.4] there exists some ¢ € Irr(Bo(G)) over 1. By Gallagher’s theorem, ¢ = uy for
some p € Irr(G/N). Since p divides (1) then p divides 1(1) and (1) = m. Then
(1) = p(1)x(1) = p(1)a(l)t = m = ta(l), but this forces p(1) =1 and «(1) = 2 = ¢,
which contradicts the fact that a(1) > 2. This proves the claim.

Step 7: G/Cq(K) is almost simple with socle KCq(K)/Ca(K) = K/Z(K).

By Steps 5 and 6 any component K of G is normal in G. Write C = Cg(K) and
Z = Z(K). Since K/Z = KC/C < G/C, it suffices to prove that Cg,z(K/Z) = C/Z.
Let vZ € Cq/z(K/Z). We have that for all k € K there exists a unique z € Z such that
k* = kz. Notice that the map k + z; is a homomorphism K — Z. Since K is perfect
and Z is abelian, zx = 1 for all £ € K, so x € C. The reverse inclusion is immediate.

Final Step.

If |cd(Bo(G/C))| > 3 then we are done because Irr(By(G/C)) C Irr(By(G)). Hence
we assume cd(Bo(G/C)) = {1,m,n} (if |cd(Bo(G/C))| < 3 then G/C is p-solvable
by the main result of [28]). Since m is divisible by p, by the main result of [21] the
Sylow p-subgroups of G/C are nonabelian. Then by Theorems 2.8 and 2.9 we have
p = 2 and that the Sylow 2-subgroups of K are metabelian. By Theorem 2.7 there
is some nontrivial n € Irr(By(K)) that extends to 7 € Irr(By(G)). By Lemma 2.1,
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cd(Bo(G/K)) C {1,m/n} and since m/n ¢ cd(By(G)) we have cd(By(G/K)) = {1}. In
particular, if P € Syl,(G) then PK/K is abelian by the main result of [26], and PN K
is metabelian, so dI(P) < 3. O

3. Groups of Lie type

The primary goal of this section is to prove that Theorems 2.7, 2.8, and 2.9 hold
for simple groups of Lie type. However, we begin by recording these statements for the
sporadic groups and certain “small” groups of Lie type.

Proposition 3.1. Theorems 2.7, 2.8, and 2.9 hold if S is a sporadic simple group, >F4(2)’,
or a group of Lie type with exceptional Schur multiplier.

Proof. This can be seen using GAP and the GAP Character Table Library [10]. For the
list of groups of Lie type with exceptional Schur multipliers, see [11, Table 6.1.3]. O

Let ¢ be a power of some prime r. By a simple group of Lie type defined over [F,, we
mean a finite simple group that can be written S = H/Z(H), where H = H is the
set of fixed points of a simple, simply connected algebraic group H under a Frobenius
morphism F' endowing H with an Fj-rational structure.

Let S be the group of inner-diagonal automorphisms of S. Then Aut(S) = S % D,
where D is an appropriate group of graph and field automorphisms. (See [11 Section
2.5].) Further, we may let H < H be a regular embedding as in [4, (5.1)] and H=HF,
such that Z(H) is connected, H < H, and S = H/Z( ).

It is useful to note that the characters of H are partitioned into so-called Lusztig
series indexed by semisimple characters s of an appropriate dual group H*. When s = 1,
the characters in this series are called unipotent characters, and we will often work with
these.

3.1. Some notes on unipotent characters and classical groups

Keeping the notation from before, unipotent characters of H are irreducible on restric-
tion to H and trivial on Z(H ) So, we may consider unipotent characters as characters
of S,S,H, or H. Often, unipotent characters also extend to Aut(S). (See [24, Theorems
2.4 and 2.5].) One such unipotent character, the Steinberg character, has degree |H],.
For X € {S, S, H, fl}, we will denote the Steinberg character of X by Stx.

The explicit list of unipotent characters and their degrees can be found in [5, Section
13.9] for groups of exceptional type. Hence in this section, we primarily focus on the
case of classical groups. The following will be useful for finding a rough lower bound
on the number of character degrees in the principal block in this case. Throughout, we
will use the notation PSL;, (q), € € {£1}, to denote PSL,,(¢) for e = 1 and PSU,(q) for
e = —1, and these are the simple groups of type A,_1(q) and 2A,,_1(q), respectively.
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Similarly, P25, (q) will denote the simple group of type D,,(q) for e = 1 and type ?D,,(q)
for e = —1. For completeness, we recall that P{Qa,11(¢) denotes the simple group of type

B(q).

Proposition 3.2. Let q be a power of some prime r. Let S = PSL;(q) with n > 2,

PSp,,,(q) with n = 2, PQany1(q) with n = 3, or PQS, (q) with n > 4. Then there are

more than ”'H

Aut(S).

umpotent characters of S (and of S) with distinct degrees that extend to

Proof. The unipotent characters of .S or of S are in bijection with partitions of n in the
case of PSL,(¢) and in bijection with certain “symbols” in the other cases. (See, e.g. [5,
Section 13.8] for details.)

Ifs = PSLS( ), consider the characters corresponding to the partitions (n — j,j)
for 1 < j < |%5t]. If S = PSp,,(q) or PQa,y1(g), consider the symbols (")
for 1 < j < |251]. In the case of PQy,(q) and PQy,(g), consider the symbols (ni])
and (j’%fj), respectively, for 1 < j < |2%5+]. Using [40, (21), (22)], the r-part of the
degree of the corresponding unipotent characters is ¢7, except in the case r = 2 and
S = PSp,,,(q) or PQay,11(q), in which case it is ¢/ /2. Taking into account the Steinberg
and trivial characters, this shows that there are strictly more than % + 1 distinct
unipotent character degrees. Further, using [24, Theorems 2.4 and 2.5], we see that each
of these characters extends to Aut(S). (Note that the exception of PSp,(q) when r = 2
and j = 1 does not actually occur in our list here, as | %% ] =0 < 1 in this case.) O
Lemma 3.3. Let S be a simple group of Lie type and let X be a unipotent character of§
that lies in By(S) and extends to Aut(S). Then By(Aut(S)) contains an extension of .

Proof. Recall that Aut(S) = S x D. First, suppose that S # Dy(q), so that the group D
generated by graph and field automorphisms is abelian. (See, e.g. [11, Theorem 2.5.12].)
Since X extends to Aut(S), we have by Gallagher’s theorem that every member of
Irr(Aut(S)) above X is an extension since D is abelian. In particular, using [30, The-
orem 9.4], there exists an extension of X in By(Aut(5)), as stated.

Now suppose for the remainder of the proof that S = D4(q) = PQ{ (). In this case,
D = &3 x D1, where Dy is a cyclic group of field automorphisms and &3 is the symmetric
group on 3 letters, generated by graph automorphisms. Write X for the group such that
X/S = &3 and let Y <X such that Y/S is cyclic of size 3. Since X extends to Aut(S), we
have ¥ extends to three characters ¥, 8%, 5% of Y, where 3 and 6’1 are the characters
of Irr(Y/S) of order 3, using Gallagher’s theorem. Now, since Y/S is abelian, any block
of Y lying above By(S) is of the form By(Y ) ® ~ for some v € Irr(Y/S). In particular,
Bo(Y) either contains all three of ¥, 3%, 37 !¢ or exactly one of these characters. Say
X € Bo(Y).

Note that for every o € Gal(Q(e**/1Y1)/Q), we have X also lies in Bo(Y). Fur-
ther, Y is rational-valued (see [23, Corollary 1.12]). Then since x° = yx, we have
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L’ € {X, 8%, B71X}. So, if Bo(Y) contains just one of the three characters, we know
X% = X. Since f is not rational-valued, y is then the unique character of Y above x that
is rational-valued. Let o € X. Then since X is a-invariant, we see Y* € {¥, 8%, 871X}
But note that Y is also rational-valued, and hence X = x. Then x must be the exten-
sion of x to Y that extends all the way to Aut(S). On the other hand, if By(Y’) contains
all three of {{, 3%, 871X}, we may assume without loss that ¥ is the one that extends
to Aut(9).

In either case, since D/Y is abelian, we know every character of Aut(S) above X is
an extension. In particular, there is an extension of ¥ (and hence of ) to Aut(S) that
lies in By(Aut(S)), again using [30, Theorem 9.4]. O

For p an odd prime and ¢ an integer not divisible by p, we write d,(q) for the order
of ¢ modulo p. In what follows, if p is an odd prime not dividing ¢, we will write e to
denote dp(eq) in the case S = PSL{,(¢) and d,(¢?) in the case S = PSp,,(q), PQ2,+1(q),
or PO, (q).

Corollary 3.4. Let q be a power of some prime. Let S be a simple group such that S =
PSL; (q) with n > 2, PSpy,,(¢) with n > 2, PQapy1(q) with n = 3, or PQS, (q) with
n > 4. Let G be almost simple with socle S and let Bo(G) denote the principal p-block
of G for some prime p.

(i) Ifplgq, let NV := "Tfl
(ii) If p=2 with q odd or p is odd and e = 1, then let N := "TH
(iii) If p is odd, S = PSL{(q), n > 4, and e = 2, then let N := ”T”.

Then Bo(G) contains more than N characters with distinct degrees obtained as extensions
of unipotent characters of S.

Proof. If p | ¢, then BO(§ ) contains all unipotent characters of S aside from the Steinberg
character. (This holds for By(S) by a well-known result of Dagger and Humphreys, see

[3, Theorems 1.18 and 3.3]. For By(S), [4, Remark 6.19] and the proof of [4, Theorem

6.18] again yield that every block of G is of maximal defect or defect zero. Using Brauer’s

first main theorem and the fact that Cx(U) = Z(G)Z(U) for U a Sylow-p-subgroup of
G, see [4, Remark 6.19], it follows that the blocks of maximal defect of G are indexed by

the elements of Irr(Z(G)). Then using Brauer’s third main theorem, Irr(By(G)) consists
of those x € Irr(G|1Z(é)) not of defect zero.)

If p=214gq, then By(S) contains all unipotent characters, using [4, Theorem 21.14].
If p { q is odd, we may use the theory of e-cores and e-cocores in [8,9] to see that

if e = 1, then By(S) contains the Steinberg character along with all of the unipotent
characters constructed in Proposition 3.2, except possibly in the case of type B, or C,

when p | (¢ + 1). In the latter case, either the character corresponding to the symbol
0,7

(j ’"Bj +1) in Proposition 3.2 or the character corresponding to the symbol (nfj +1) lies in
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By (S), and the latter still satisfies that x(1), = ¢’ and x extends to Aut(S). In the case
of (3), using [8], we see By(S) contains at least the unipotent characters constructed in
Proposition 3.2 such that j is even, along with the trivial and Steinberg character. But,
Bo(g) also contains the unipotent character corresponding to the partition (n —2,1,1),
which has ¢3 as the r-part of the degree, which is different than that of the previously
stated characters for n > 4. This gives more than "T_l +2= ”T” unipotent characters
in By(S) that extend to Aut(S) if n > 4.

Hence in each case, Bo(g ) contains more than N characters with distinct degree that
extend to Aut(S), and hence to Bo(Aut(S)) by Lemma 3.3. Then this yields N characters

of distinct degree in By(G) by restriction. O

We remark that when p € {2,3}, we have either (i) or (ii) of Corollary 3.4 applies in
the symplectic and orthogonal cases.

3.2. Non-defining characteristic

Lemma 3.5. Let p € {2,3} and let S be a simple group of Lie type defined over Fy, where
p 1 q, such that S is not isomorphic to a group in Proposition 3.1. Then Theorem 2.7
holds for S.

Proof. Let S = H/Z(H) and S = H/Z(H) as above. Recall that the Steinberg character
Stg of S extends to Aut(S). Further, Stz lies in the principal block, since the orders of
g modulo 3 and modulo 4 are in {1,2}, and hence the same argument as in [44, Lemma
3.6] yields that By(S) is the only block of S containing unipotent characters of degree
relatively prime to p. So, let a = Stg be the Steinberg character of S, i.e. the restriction
of Stz to S. Then a extends to By(G) by Lemma 3.3.

Now, « is the only irreducible character of S whose degree is a power of ¢q. Hence,
it suffices to know that there is some member of Irr(By(S)) that is not trivial or the

Steinberg character. This follows, for example, by [43, Theorem C]. O
Proposition 3.6. Theorem 2.8 holds if S is a group of Lie type defined over F, with 21 gq.

Proof. Assume that S is not isomorphic to PSLa(g) nor one of the groups in Proposi-
tion 3.1, and let S < G < Aut(S). Recall that Bo(G) contains 1g and an extension of
Stg, so it suffices to show that there are at least 2 additional character degrees found in
By(GQ).

First, assume that S is the Ree group 2Go(3/). Then there are two odd degrees other
than those of 1g, Stg with multiplicity one, which forces the corresponding characters to
be rational-valued and hence lie in By(S), using [34, Lemma 3.1]. Further, since Out(.5)
is cyclic, we see then that these characters extend to By(G), and we are done.

Hence we may assume that S is not 2G(3/), so the Sylow 2-subgroups of S are
nonabelian. (See [47].) Then by the recently-proven principal block case of Brauer’s



E. Giannelli et al. / Journal of Algebra 594 (2022) 170-193 181

height zero conjecture [26], there is a member of Irr(By(G)) with even degree. On the
other hand, the proof of [43, Proposition 3.4] yields an odd-degree unipotent character
of By(S) \ {1s,Sts} unless S = PSL5(q). By [24, Theorems 2.4 and 2.5] and arguing as
in Lemma 3.3, these unipotent characters extend to By(G), except possibly if S = D,,(q)
or G2(37) and G contains an automorphism of the form 7¢ where 7 is a nontrivial graph
automorphism and ¢ is another (possibly trivial) automorphism. If S = D, (q) with
n > 5, we are done by Corollary 3.4.

If S = Ga(q) with ¢ = 37, then the two odd-degree unipotent characters other than
lg,Sts have degree £q(q* + ¢*> + 1) and fuse under the graph automorphism of order
2 but are invariant under the cyclic group of field automorphisms. Hence in By(G),
the characters lying above these have degree %q(q4 +q¢®>+1)or %q(q4 +¢*>+1). But
using [15], we see By(S) also contains unipotent characters whose degree does not divide
2gq(q‘l +q? 4+ 1), so Bo(G) must contain at least one more distinct degree.

In the case D4(q), there are three unipotent characters of degree ¢'° + ¢® + ¢® and
three of degree ¢® 4+ ¢* 4+ ¢°. The triples fuse under the graph automorphisms but are
invariant under diagonal and field automorphisms, and hence the characters in By(G)
above the two triples cannot be the same degree.

Finally, let S = PSL5(g). In this case, the two characters in the Lusztig series of
H= GL5(q) corresponding to a semisimple element with eigenvalues {—1, —1, 1}, which
have degrees q(q*> + eq + 1) and (¢® + €q + 1), are invariant under D, trivial on Z(ﬁ),
and restrict irreducibly to H. That is, we may view these as characters of S that extend
to S Dy, where S = PGL5(q) and Dy is the cyclic subgroup of D of index 2 consisting
of field automorphisms. These characters further lie in By(S), using [4, Theorem 21.14].
Then the characters of By(G) above these two characters will have degrees ¢1 € {q(¢® +
q+1),2q(¢> +q+ 1)} and co € {(¢®> + ¢+ 1),2(¢> + ¢+ 1)}, and hence are distinct. O

Proposition 3.7. Theorem 2.9 holds if S is a group of Lie type defined over F, with 31 q.

Proof. Assume that S is not isomorphic to one of the groups in Proposition 3.1 and let
S QG < Aut(S). As before, it suffices to find two distinct degrees in By(G) apart from
those of the extensions of 1g and Stg. If S is an exceptional group of Lie type (including
those of Suzuki, Ree, and 3D4(q) type), then [43, Table 2] exhibits at least two additional
unipotent characters in Bo(S) with distinct degrees that extend to Aut(S), and we are
done using Lemma 3.3. Then by applying Corollary 3.4, we may assume that S is one
of the classical groups listed there with n < 4. But using [43, Tables 4-6], we are again
done unless S = PSL{(q) with ¢ € {£1} such that e¢ = 1 (mod 3); S = PSLx(q);
S =PSL5(q), S = Ba(2%), or S = Dy(q).

If S = B2(2%), then similar to the proof of [43, Proposition 3.9], there exist unipotent
characters of degree 2(¢? +1) and %(q + €)?, where € € {£1} is such that p | (¢ — €), in
Bo(S) and By(S), and the latter extends to Aut(S). Then we are done using Lemma 3.3.
Similarly, the unipotent characters listed there for D4(q) work here, as they again extend

to Aut(9).
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Now, consider S = PSL{(¢q) with € € {£1} and such that eg = 1 (mod 3). Then there
is a unique unipotent block of S (and of S ), namely the principal block. Since there are
five unipotent characters of distinct degree, and they all extend to Aut(.S), we are done
in this case. Similarly, if S = PSL5(q) with e¢g = 1 (mod 3), then there are 3 unipotent
characters of distinct degrees, which all must lie in By(S) and extend to Aut(S). From
here, it suffices to note that the degree (¢+€)(g*>+eq+1) of the third nontrivial character
in Irrs/ (Bp(S)) described in [43, Proposition 3.11] does not divide the degree of any of
the three unipotent characters.

Finally, assume that S = PSL3(q) with 3 | (¢ +¢) or S = PSLa(q). Then a Sylow 3-
subgroup of S is cyclic, so our assumption that the Sylow 3-subgroups of GG are nonabelian
forces 3 to divide the index |G : S| and G to contain some field automorphism of order 3.
In particular, if r is the prime dividing ¢, we may then write g2 = r3'® for some integers
b>1anda>1.

Consider semisimple elements s1, s, of H* 2 GLE () (where n € {2, 3} is the appropri-
ate value) with eigenvalues {01,0; '} and {d2,5, '}, respectively (and with an additional
eigenvalue of 1 in the case n = 3), where §; € quz, 01 has order (r® — 1)3 and dy has
order (q? — 1)3. Then for i = 1,2, the corresponding so-called semisimple character xs,
of H = GL;, (q) lies in Irr(Bo(H)) by [14, Corollary 3.4] and has degree relatively prime
to 3. Further, we see s, is trivial on the centre and restricts irreducibly to S, using
[45, Proposition 2.6] and [44, Lemma 1.4], since s; € SL; (q), PGL5(¢) = PSL§(¢) in
this case, and Z(GL2(q)) is not divisible by 3, so s;z cannot be conjugate to s; for any
1 # z € Z(GLy(q)). Note that for o € D, x5, = xse, using [36, Corollary 2.5]. (Here
since H* = H = GLE (¢), we abuse notation and let a* = « in the notation of [36].)

Now, note that the order of dy is strictly larger than (r3b71“ — 1)3, and hence

6;3b e # 1. Recalling that semisimple classes of GL¢ (¢q) are determined by their
eigenvalues, we have sy cannot be conjugate to s§ for o a field automorphism of order
3, and therefore y;, is not fixed by «. In particular, a character in By(G) above xs,
must have degree divisible by 3. On the other hand, every field automorphism of order
a power of 3 sends s; to a conjugate of itself, and hence x,, is fixed by all such field
automorphisms. Let G3 < G where G5/ is a Sylow 3-subgroup of G/S. Note that G3/S
must be generated by field automorphisms, and hence is cyclic, so we see x,, extends to
By(G3), and therefore there is a character in By(G) above xg, that is still of 3’-degree.
Then this character cannot have the same degree as the one discussed above lying above
Xsq, and we are done. O

3.83. Defining characteristic

Proposition 3.8. Let p € {2,3}. Theorems 2.7, 2.8, and 2.9 hold if S is a group of Lie
type defined over IF, with g a power of p.

Proof. We may assume that S is not isomorphic to a group in Proposition 3.1. Recall
that, from [3, Theorem 3.3], we have Irr(By(S)) = Irr(S) \ {Sts}.
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If S is one of the groups considered in Corollary 3.4 with n > 7, we are done. For
the exceptional groups G2(Q)a 2G2(q)7 3D4(Q)7 F4(q)a 2F4(Q)7 E6(Q)a 2E6(Q)a E7(Q)7 or
Es(q) or the remaining classical groups other than {PSLa(q), PSL5(q), PSp,(q)}, we see
from the explicit list of unipotent character degrees (using CHEVIE or [5, Sections
13.8, 13.9]) and again using [24, Theorems 2.4 and 2.5] that there are still at least
4 unipotent characters with distinct degrees aside from Stg that extend to Aut(S5),
and we are again done in these cases using Lemma 3.3. We are left with the cases
S € {PSLz(q), PSL5(q), PSp4(q), *B2(q)}-

If S = PSL5(q), there are two unipotent characters in Irr(Bo(S)) (namely the trivial
character and a character of degree ¢(g+¢)), and as before these extend to Bo(G). Hence
we aim to show there are at least two additional distinct degrees in Irr(By(G)). There
are characters 1, x2 of degree ¢+ eq+ 1 and ¢(q + eq + 1) that restrict irreducibly from
characters Y1, Y2 of S = PGL5(¢) and have the same inertia group in Aut(S). (These
characters correspond to a Lusztig series in H= GL5(q) indexed by a semisimple element
in H* = GLS(q) with eigenvalues {¢,¢,¢ ™2} where ¢ € Cy_ < ]qu2 has order different

from 3.) Let Fy be a generating field automorphism of S, so that Aut(S) = S{(r, Fy) with
7 a graph automorphism of order 2 incase e =land T =1ife=-1.If 1 # 7 € G,
then there are characters in By(S(Fy) N G) above x1, x2 with degrees a(q 4 eq + 1) and
aq(q + eq + 1) with a some divisor of |Fp|, and hence we see the characters above these
in By(G) will have different degrees. Similarly, if G does not contain a non-trivial graph
automorphism, then GS / S is cyclic, and there are again characters of distinct degrees
a(q+ eq+ 1) and ag(q + eq + 1) in By(G) with a some divisor of |GS/S|, and we are
done.

If S = PSp,(q), the unipotent characters with degree 1, £¢(q — 1)?, and 3¢(q+ 1) in
Irr(By(S)) extend to Bo(G) as before. The two unipotent characters of degree 2¢(q?+1)
fuse under the exceptional graph automorphism if p = 2 and extend to Aut(S) if p = 3.
In either case, since the other character degrees discussed are not divisible by ¢ + 1, we
see By(G) must contain at least 4 distinct degrees.

If S =?By(q), note that p = 2 and ¢ = 2?™*! for some m. Further, note that G/.S is
cyclic, of odd order dividing 2m + 1. Then since there are two characters of S of degree
2m(22m+1 _ 1), they must extend to By(G). Let x; be one of these characters. There is
also a character xs of degree divisible by ¢ + 1 in By(G), above a character of degree
q®>+1 of S. Then certainly x1(1) # x2(1). Further, by considering the possible orbit sizes
of G acting on the characters of degree ¢> 4+ 1 and of degree (¢ — 2™+ +1)(q— 1), we see
that there must be a character y3 of Bo(G) of degree divisible by (¢ — 2™+ +1)(q¢ — 1)
and such that none of x3(1), x2(1), or x1(1) are the same. Taking into account the trivial
character, this yields at least 4 character degrees in By(G).

Finally, let S = PSLa(q). It remains to prove Theorem 2.7 for p = 2 and Theorem 2.9
for p = 3. Recall that Aut(S) = S x (F,) where S = PGLy(q) and Fy is a generating
field automorphism.

First let S = PSLa(q) = SLa(gq) with ¢ a power of 2. Let s € GLa(g) be semisimple
with eigenvalues {a,a~'}, where a € quz has order 3. Then the corresponding semisimple
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character x; of GLy(q) is invariant under the field automorphisms, using [36, Corollary
2.5], since the generating field automorphism Fy acts by interchanging the eigenvalues
of s and hence s is conjugate to s. Further, since s cannot be conjugate to sz for
any 1 # z € Z(GL2(q)), we see x; restricts irreducibly to SLa(q) = PSLa(q) using [45,
Proposition 2.6] and [44, Lemma 1.4]. So, we have x, extends to Aut(S) and o := (xs)s
has an extension in By(@) since G/(G N S) is cyclic. Further, a(1) = ¢ — 5 for some
n € {£1}. Then choosing S to lie above any of the characters of S of degree ¢ + n, we
are done in this case.

Now suppose p = 3, and we aim to prove Theorem 2.9 for S = PSLy(q). If 3¢1|G : S|,
then a Sylow 3-subgroup of G is abelian. Hence we assume that 3 | |G/S| and that the
Sylow 3-subgroups of G are nonabelian. Then by the principal block version of Brauer’s
height-zero conjecture [26], we see that there must be characters of By(G) of degree
divisible by 3. Let x1 be one such character. Let ¢ = n (mod 4) with n € {£1}. Then
the two characters of degree %(q + n) are invariant under field automorphisms and fuse
in S. Further, the character of S lying above these two characters is invariant under
field automorphisms. Hence By(G) has a character x2 of degree (¢ + n) or 1(q + n).
The remaining nontrivial characters of By(S) have degrees ¢ + 1 and g — 1. Let G5 be
the subgroup of G such that G3/S € Syls(G/S). Since 3 does not divide the number
of characters of degree ¢ — n of S, we see that at least one character, say y, of degree
g — n must be invariant under Gs. Further, note that G3/S is cyclic, so any character
in By(G3) above y must be an extension. In particular, any character x3 € Irr(By(G))
above x in Bo(G) will have degree prime to 3. Since y3 has degree prime to 3 and divisible
by ¢ —n, we see that 1g, x1, X2, and x3 have distinct degrees, as desired. O

4. Symmetric and alternating groups

The aim of this section is to give a positive answer to Question A in the cases of
symmetric and alternating groups (respectively denoted by &, and 2,). As already
mentioned in the introduction, we can do slightly more. Given a p-block B of a finite
group G and x € Irr(B) we let h,(x) denote the p-height of x in B. Moreover, we let

ht(B) = {h,(x) | x € Irr(B)}.

Theorem 4.1. Let p be a prime and let B be a p-block of &, or U,,. Let D be a defect
group of B. Then dl(D) < |ht(B)|.

As consequences of Theorem 4.1 above, we will show that simple alternating groups
satisfy Theorems 2.7, 2.8, and 2.9

4.1. Notation and preliminaries

Irreducible complex characters of the symmetric group &,, are canonically labelled by
partitions of n. In particular, given A a partition of n (sometimes written |A| = n) we
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denote by x* the corresponding element of Irr(&,,). We start by recalling very briefly
some useful facts on p-blocks of symmetric groups. We refer the reader to [20] or [38]
for a complete description of this theory. Let B be a p-block of &,,. Then B is uniquely
determined by a p-core partition . More precisely two irreducible characters x* and y*
lie in the same p-block if and only if A and p have equal p-core. In particular, they belong
to the block B if and only if they have p-core equal to . The integer w = (n — |v|)/p
is called the p-weight of B. It is customary in this case to denote B by B(y,w). If
w=ay+ap+--+app*!
of the following form:

is the p-adic expansion of w, then a defect group D of B is

D= (Pp)xa1 X (sz)xaz X oee X (Ppk)xak,

where P, denotes a Sylow p-subgroup of &,,. In particular, we observe that D is (iso-
morphic to) a Sylow p-subgroup of &,,y,.

Lemma 4.2. Let D = (P,)** x (Py2)*% x -+ x (Py)**. Then dl(D) = k.

Proof. Let G’ denote the derived subgroup of G. It is easy to show that (G x H)' =
G' x H'. Since P, = (), is a cyclic group of order p and since Py = (Pp-1) 1 Cp, we
have that (P,x)" is a proper subgroup of (P,-1)*P. Hence dl(P,r) < dl(Pyr-1) + 1. On
the other hand, (P,x)’ contains the subgroup {(z,z7*,1,...,1) | 2 € Pp-1} = Pp-1.

Therefore dl(P,r) > dl(Pys-1) + 1. Thus dl(P,+) = k and the statement follows. O
4.2. Combinatorics and representations of &,

To prove Theorem 4.1 we will rely on Olsson’s theory of p-core towers. We use this
section to recall these beautiful combinatorial objects and we refer the interested reader
to [38] for a more detailed account. Throughout this section, given two non-negative
integers x,y we denote by [z,z+y] theset {ne N |z <n <z +y}.

Let p be a prime number and let A be a partition of n € N. We denote by ¢,(X) the
p-core of A and by ¢,(\) = (A XD AP~ the p-quotient of A\. With this notation
in mind, we say that A(Y) is the i-th partition appearing in the p-quotient gp(A) of A.

For any sequence (iy, iz, ... ,i;) € [0,p — 1]** we inductively define A(?-¥2:%) ags the
ix-th partition appearing in the p-quotient of A(1:+~%-1) Moreover, for i € [0,p—1] we
let Ay = cp()\(i)) be the p-core of the i-th partition appearing in the p-quotient of A.
For any sequence (iy,is,...,ix) € [0,p — 1]** we let it yiay i) = cp(A(il’”’""ik)).

We denote by T'(X\) the p-core tower of A (see [38, Section 6]). In particular we find
convenient to think of the p-core tower as a sequence T'(A) = (Tj()))32,, where the
k-th layer (or row) Ty()\) is the sequence of p* p-core partitions defined as follows:
To(A) = (¢p(N)), and for k > 1,

Tie(N) = (A0,.0)s -+ 5 M(insizsoonsin)s - - s Ap—1,0p—1)) > for 0 <idg, ... ip <p—1.
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Here the indeces are lexicographically ordered. We denote by |T;(\)| the sum of the
sizes of the p-cores in the k-th layer of T'(\). We have that [A| = >, |T; (A)|p?. Moreover,
every partition A\ of n is uniquely determined by its p-core tower. This follows by repeated
applications of [38, Proposition 3.7].

In [39] the following fundamental result is proved.

Theorem 4.3. Let p be a prime number and let X be a partition of n € N. Let B = B(y,w)
be the p-block of x*. Suppose that wp = 25:1 a;p’ is the p-adic expansion of wp. Then

|_a] /(p—1).

H'Mw

4.8. Proof of Theorem /.1

Let n be a natural number, let B = B(~, w) be a p-block of &,, and let wp = Z?Zl a;p’
be the p-adic expansion of wp, where aj # 0. This notation will be kept throughout the
section.

Definition 4.4. Given a prime p and an integer a € [1, p—1], we denote by =, the partition
(p,1%). Tt is easy to observe that v, is a p-core partition of p + a.

We are now ready to introduce the main combinatorial objects of this section. In order
to do this we mention that the empty partition will usually be denoted by @ or by (0)
depending on our convenience.

Definition 4.5. Let Ao, A1, ..., Ax_1 be the partitions of n defined as follows. We let A\g be
the partition such that Tp(Ag) = () and for all i € [1, k] we let T;(N\o) = ((@:),0,...,0).

For every j € [1,k —1] we recursively define A; by modifying layers k—j and k—j+1
of the p-core tower corresponding to A;_;. More precisely, we let A; be the partition
corresponding to the following p-core tower: Tp(A;) = (), Ti(A;) = Ti(A\j—1) for all
i¢{k—j,k—j+1}, and

- {(%7(2) Lo 0) if Ty (A1) = ((a),0,...,0), Jacl,p—1]
k— J(/\ )= .

(( - 1) (1)30, ,Q)) if Tk*j(Ajfl) = ((2)7 30)7
and

((a—1),0,...,0) if Ty jr1(Aj=1) = ((a),0,...,0), Jae[l,p—1]
T _ ('th*la@v . 70) if Tk*]+1()‘j*1) = (’70«7@7 a@) Jae [2 p— 1]

k—j+1 () = .
((pfl)a(l)vma ,@) if Tk—]-‘rl(/\j—l) = (7176)7"'7@)7
((p - 1)’ 07 7®) if Tk—j+1(/\j—1) = ((p - 1)v (1)’ (07 7®)
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We will now verify that for every j € [0,k — 1] the partition \; is well-defined and
labels a character lying in B = B(vy,w). Afterwards we will show that hy,(X;) = hp(A;)
if and only if ¢ = j. This will allow us to conclude that d1(D) < |ht(B)|.

Lemma 4.6. Given j € [0,k — 1] we have that \; is well-defined and labels a character
lying in B = B(y,w).

Proof. We proceed by induction on j € [0,k — 1]. The base case is immediate. The
partition Ag is well defined, v = Tp(Ag) is the p-core of A\g and Ag is a partition of n since

k k
Dol =Y ITi(Ao) P’ = ap’ =n.
1=0 =0

Let now j € [1,k — 1]. Let us start by showing that the definition of its p-core tower is
consistent. In order to do this we need to show that each row T;()\;) is well-defined. If
i ¢ {k—j,k—j+1} then no problems arise, as T;(\;) = T;(\j_1). Fori € {k—j, k—j+1},
we need to verify that

Tk*j()‘jfl) € {((a)7®7 i ,@) | a€l0,p—1]},

and that

Tk_j+1(/\j_1) S {((a),@, .. .,@)7 (711,@,. . .,@), ((p — 1), (1),@, . ,@) | a € [1,p — 1}}

Both statements are verified again by induction (on j — 1). They are clearly satisfied by
Ao, and for j—1 > 1 they remain true by direct verification (using the recursive definition
of the partitions Ao, ..., Ay—1 given in Definition 4.5). Now, we want to show that \; is
a partition of n for all j € [0,k —1]. The base case j = 0 has been already verified above.
Let j > 1 and let us suppose that [A;_1| = n. Then we observe that T;(\;) = T;(\j_1),
for all i € [0, k]~ {k—j,k—j+1}. Moreover, we have that |T_;(\;)| = |Tk—;(Aj—1)|+Pp
and that |Tp—j+1(A;)] = |Tk—j+1(Aj—1)| — 1. It follows that

k k
N =D 1Tl =Y TP +p- "7 =1 p T =\ =
=0 =0

Since ¢,();) = To(A;) = v, we deduce that x* € Irr(B), for all j € [0,k —1]. O

We conclude by showing that the irreducible characters labelled by the partitions
Ao, - .-, Ag,—1 have distinct character degrees. In the following statement we keep the
notation introduced in Definition 4.5.

Proposition 4.7. Let j € [0,k — 1]. Then h,(xV) = j.
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Proof. To simplify the notation, given a partition p we will denote by h,(u) the integer
hp(x*). We also recall that w denotes the p-weight of the block B(v,w) and that wp has
p-adic expansion given by

k
wp = Z a;p'.
i=1

We proceed by induction on j € [0,k — 1]. Using Theorem 4.3 we see that

k

hp(Xo) = (D ITi(Mo)| —ai) /(p — 1) = 0.

i=1

The second equality follows from the definition of Ag having |T;(A\g)| = a; for all i > 1. Let
now j > 1 and let us assume that h,(\;_1) = j — 1. As already explained in the proof of
Lemma 4.6 we have that T;(\;) = T;(A\j_1), for all i € [0, k]~ {k—j, k—j+1}. Moreover,
we have that [Ty ;(A;)| = |Tk—;(Aj—1)| +p and that [T ;11 ()] = [Th—jr1(Nj—1)| — 1.
Using Theorem 4.3, it follows that

k k
(p—Dhp(N) = (D ITi)—ai) = (DIl —ai) +p—1 = (p—=1hyp(Aj 1) +p—1.

=1 i=1

Using the inductive hypothesis we get hy,(\;) = hpy(Nj—1) +1=(G—-1)+1=j. O

We are now ready to prove Theorem 4.1 and, as a consequence, to verify Theorems 2.7,
2.8, and 2.9 for alternating groups 2A,,. We recall that, given a partition A of n, the restric-
tion (x*)a,, is irreducible whenever ) is not equal to its conjugate partition \’. Moreover,
if x* € Irr(By(6,,)) then every irreducible constituent of (x*)g, lies in Trr(Bo(y)).

Corollary 4.8. Let G € {&,,,,} and let B be a p-block of G with defect group D. Then
dl(D) < |ht(B)].

Proof. If n < 4 the statement holds by direct verification. Hence, let us assume that
n > 5. We first deal with the case where G = &,,. Let B = B(y, w) for some p-core y and
some integer w such that n = |y|+wp. Let wp = Zle a;p* be its p-adic expansion. Then
by Lemma 4.2 we have that d1(D) = k. From the discussion started in Definition 4.5 and
ended with Proposition 4.7 we know that the p-block B admits k irreducible characters
whose p-heights are pairwise distinct. It follows that |ht(B)| > k = d1(D), as desired.
Let now G = 2,. Let B be a p-block of 2, covered by the p-block B of &,,. Let
v and w be such that B = B(y,w) and let wp = Zle a;p’ be its p-adic expansion.
Let Ao, A1, ..., Ak—1 be the partitions of n described in Definition 4.5. Let @ be a defect
group of B and D a defect group of B chosen so that Q < D (if p # 2 then Q = D).
Since n > 5 [38, Proposition 3.5] shows that (X\;)’ # A, for all 4,5 € [0,k — 1]. It follows
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that {h,((x*)a,,) | i € [0,k — 1]} is a subset of size k of ht(B). We conclude that
di(Q) < dI(D) =k < |ht(B)]. DO

Corollary 4.9. Theorem 2.7 holds for alternating groups ,,, for n = 5.

Proof. Let p € {2,3} and n be a natural number. The cases n < 7 for p = 2 and
n < 26 for p = 3 can be easily checked in GAP. Let us now suppose to be in one of the
remaining cases. Let k € N be such that p* < n < pFt!. Let B = By(&,,). Since k > 3,
recycling the notation introduced in Definition 4.5 setting v = ¢,((n)), it follows that
A1 and Ay are well-defined partitions of n, labelling irreducible characters lying in B.
Using [38, Proposition 3.5] we observe that (\;)’ # \;, for all ¢ € {1,2}. It follows that
a = (x*?)q, € Irr(Bo(A,)) and a(1) > 2 because p? divides a(1) by Proposition 4.7.
Similarly 3 := x* € Irr(B). By Proposition 4.7 we know that p divides 3(1) and that
p? does not. It follows that 2L, is not a subgroup of Ker(3) and that «(1) # 8(1). O

Corollary 4.10. Theorems 2.8 and 2.9 hold for alternating groups U, for n > 5.

Proof. We start with Theorem 2.8. Let B be the principal 2-block of &,,. If 5 < n < 15
the statement can be checked in GAP. Let us now assume that n > 16. Setting v =
¢p((n)) we have that the partitions Ao, A1, A2 and Az are well defined partitions of n
and label irreducible characters of &,, lying in B. By [38, Proposition 3.5] we know that
(\i)" # \; for all 0 <4 < 3. It follows that {(x*)a, | 0 < i < 3} is a subset of size 4 of
Irr(Bo(An))-

To conclude we now verify Theorem 2.9. Clearly n > 9 as a Sylow 3-subgroup of 2, is
nonabelian. In this case we consider A = (n), u = (n —3,13) and n = (n — 3, 3). Clearly
O, s (XHat, > (XMar, € Trr(Bo(2A,,)) and have pairwise distinct character degrees. O

Remark 4.11. We conclude by mentioning that Theorem 4.1 was already known to hold
in the case of symmetric groups for primes p > 5 [29]. Moreto’s proof relies on the
important result of Granville and Ono [13], showing that for every natural number n
there exists a p-core partition of size n, provided that p is at least 5. Our proof does not
use this fact; it is uniform for all prime numbers and allows us to deduce the needed
results on alternating groups.

5. More on Question A

In this section, we discuss certain cases of Question A and related questions. We
denote by ht(B) the set of heights of characters in a block B.

5.1. Blocks of the general linear group in defining characteristic

Using results of A. Moretd, we show that Question A holds for blocks of the general
linear group in defining characteristic.
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Lemma 5.1. If B is a p-block of positive defect of GL,,(q), where q is a power of p, then
|ht(B)| = n—1.

Proof. This is [29, Lemma 3.1]. O

Lemma 5.2. The Sylow p-subgroups of GL,(q), where q is a power of p, have nilpotency
class n — 1.

Proof. This is [16, Satz II1.16.3]. O

Corollary 5.3. Question A has an affirmative answer for the blocks of GL,(q) in defining
characteristic.

Proof. The result follows from Lemmas

5.1 and 5.2 using that the derived length is
bounded by the nilpotency class and |ht(B)|

<led(B)]. O

Corollary 5.4. Let N < GL,(q) for a power q of a prime p, and assume |GL,(q) : N| is
not divisible by p. Then Question A has an affirmative answer for the p-blocks of N. In
particular, Question A holds for the blocks of SL,(q) in the defining characteristic.

Proof. Let b be a block of N and let B be a block of GL,,(¢) covering b. By [30, Theorem
9.26], the defect groups of B are defect groups of b. Let ¢ € Irr(b) and let x € Irr(B) be
over ¢ (see [30, Theorem 9.4]). It follows from [32, Theorem 5.12] that (1), = x(1),
so we see that ht(B) = ht(b), so this result follows from the argument of the proof of
Corollary 5.3. O

5.2. Checking GAP libraries

Let p be a prime and let D be a p-group of size p*. Since groups of order p? are
abelian, it is easy to see that dl(D) < % Using this bound, we have checked in
[10] that Question A holds for all sporadic groups. Furthermore, Question A has been
checked for all perfect groups and the primitive groups of degree up to 1500 and size up
to 10%. Whenever the bound above does not work, in most cases it suffices to check that
lcd(B)| < dI(P) for a Sylow p-subgroup P, since dl(D) < dl(P) for any defect group D.
Otherwise, the fact that if D is a defect group of some block, then D = O,(N¢(D))
(see [30, Corollary 4.18]) helps locating possible defect groups of a block if the defect is
known.

As suggested by the referee, the bound on dl(D) can be improved using the main
results of [27] and [46] (in the latter case, when p > 5).
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5.3. Related questions

If D is a p-group, Taketa’s Theorem [18, Theorem 5.12] states that |cd(D)| > dl(D),
so questions regarding the derived length of D are closely related to its set of character
degrees. The following conjecture was recently asked in [7].

Conjecture 5.5 (Feng—Liu—-Zhang). Let B be a p-block of a finite group G with defect
group D. Let p® be the maximal element in cd(D) and let b be the maximal height of the
characters in B. Then a < b.

Using [10] notation, let G = SmallGroup(729, 122). Let A = Aut(G) and Q €
Syli5(A). Let D € Syl3(N4(Q)) and R = (D, Q) < A. We consider the semidirect prod-
uct H = Gx R. Then H is a solvable group of size 28431 = 37-13, with Og/(H) = 1. Then
Irr(H) = Irr(Bo(H)) and cd(H) = cd(Bo(H)) = {1,3,13,39}. However if P € Syl,(H)
we have c¢d(P) = {1,3,9}, so H is a counterexample to Conjecture 5.5. This example
appeared in [17, Example 6.1]. It belongs to a larger family of examples constructed by
I. M. Isaacs in an unpublished note regarding a similar question. In fact, this provides
a counterexample to Conjecture 5.5 for all odd primes, as asked by G. Malle after G.
Navarro found the counterexample SmallGroup(192,955) for p = 2.

In Corollaries 5.3 and 5.4, as well as in the proof of Theorem 4.1, we have used the
bound dl(D) < |ht(B)| taking advantage of the fact that |ht(B)| < |cd(B)]. It is a
natural question to ask if we can improve the bound in Question A by dl(D) < |ht(B)]
in general. However this bound does not hold even in solvable groups; the group H
constructed above is a counterexample, as its Sylow 3-subgroups have derived length 3.
We mention that for p = 2, the group PerfectGroup(17280,1) is a counterexample for
this bound. No solvable counterexamples have been found for p = 2.

Finally, we would like to remark that if GG is solvable and B is the principal block,
then an affirmative answer to Question A would follow from assuming the Isaacs—Seitz
conjecture (see [31, (8.2)]).
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