
Journal of Algebra 594 (2022) 170–193
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Character degrees in blocks and defect groups ✩

Eugenio Giannelli a, J. Miquel Martínez b,∗, A.A. Schaeffer Fry c

a Dipartimento di Matematica e Informatica U. Dini, Viale Morgagni 67/a, 
Firenze, Italy
b Departament de Matemàtiques, Universitat de València, 46100 Burjassot, 
València, Spain
c Department of Mathematics and Statistics, Metropolitan State University of 
Denver, Denver, CO 80217, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 October 2021
Available online 13 December 2021
Communicated by Gunter Malle

Keywords:
Character degrees
Defect groups
Derived length

A recent question of Gabriel Navarro asks whether it is true 
that the derived length of a defect group is less than or equal 
to the number of degrees of irreducible characters in a block. 
In this article, we bring new evidence towards the validity of 
this statement.
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1. Introduction

One of the main themes in the representation theory of finite groups is to relate 
global and local invariants. For example, for a prime p, Brauer’s Problem 12 asks what 
can be said about the Sylow p-subgroups of G from the makeup of the set of irreducible 
characters Irr(G). More generally, the problem of determining structural properties of 
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a defect group of a p-block B of G based on the set Irr(B) of irreducible characters 
of B has been an important topic of study in the area. The proof of one direction of 
the Brauer Height Zero Conjecture in [21] and the recent proof for principal blocks 
[26] have been major breakthroughs in this line of investigation. Other recent results 
studying the p-structural properties of the defect groups in terms of properties of the 
irreducible characters in the block can be found in [6], [12] and [33]. The present paper 
is a contribution to this lively area of research.

Let B be a Brauer p-block of a finite group G, with defect group D. We write cd(B) =
{χ(1) | χ ∈ Irr(B)} for the set of the degrees of the complex irreducible characters in B
and dl(D) for the derived length of the solvable group D. This article’s main motivation 
is the following question, recently appeared in [28].

Question A (Navarro). Is it true that dl(D) � |cd(B)|?

Question A has a positive answer if |cd(B)| = 1. In fact, a theorem of Okuyama and 
Tsushima [37] shows that in this case the defect group D is abelian. Similarly, Navarro’s 
prediction is confirmed whenever D is normal in G by [41, Theorem 8] and whenever the 
block B is nilpotent by [2, Theorem 1.2]. On the other hand, at the time of this writing, 
the case where |cd(B)| = 2 remains an open problem, although it would follow from 
an affirmative answer to the Brauer Height Zero Conjecture, along with a conjecture of 
Malle and Navarro [25]. Specializing the question to the principal block B = B0(G), it 
was recently shown by the second author in [28] that it is true that if |cd(B0(G))| = 2
then the Sylow p-subgroups of G have derived length at most 2. In this article we extend 
the above mentioned result by proving that the following holds.

Theorem B. Let p be a prime, let G be a finite group with Sylow p-subgroup P , and let 
B0(G) be the principal p-block of G. If |cd(B0(G))| � 3, then dl(P ) � |cd(B0(G))|.

Using the main result of [27], the following is an immediate corollary.

Corollary C. Let p be a prime, let G be a finite group with Sylow p-subgroup P , and let 
B0(G) be the principal p-block of G. If dl(P ) � 4 then dl(P ) � |cd(B0(G))|. In particular, 
Question A has a positive answer for B0(G) if |G|p � p21.

As mentioned before, Theorem B extends the results of [28] by confirming Question A
for principal blocks with at most three distinct character degrees. The strategy we use 
to prove this statement is to reduce it to a few technical statements about the principal 
blocks of nonabelian simple groups (see Section 2). Checking these statements led us to 
the discovery of some interesting features of several important classes of finite groups. 
For instance, we show that Question A holds for symmetric and alternating groups, as 
well as for general linear groups in defining characteristic (respectively denoted by Sn, 
An and GLn(q)) as a consequence of the following stronger statement.
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Theorem D. Let p be a prime and let B be a p-block of Sn, An or GLn(q) with q a power 
of p. Let D be a defect group of B. Then dl(D) � |ht(B)|.

Here ht(B) denotes the set of heights of the irreducible characters in B.
We care to remark that it is not possible in general to bound the derived length of the 

defect groups by the number of distinct heights in the corresponding block. In fact, in 
Section 5 we construct a solvable group that does not satisfy the conclusion of Theorem D. 
It is worth pointing out that this construction also provides a counterexample to the main 
conjecture of the recent article [7].
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2. Reduction to simple groups

2.1. Auxiliary lemmas

Lemma 2.1. Let G be a finite group, N � G, and θ ∈ Irr(B0(N)). Assume θ extends to 
χ ∈ Irr(B0(G)). Then {μχ | μ ∈ Irr(B0(G/N))} ⊆ Irr(G|θ) ∩ Irr(B0(G)).

Proof. By Gallagher’s correspondence, Irr(G|θ) = {μχ | μ ∈ Irr(G/N)}. We have χ =
1G/N χ and then by [42, Lemma 2.4], if μ ∈ Irr(B0(G/N)) then μχ ∈ Irr(B0(G)). �
Lemma 2.2. Let G be a finite group and let S1 ×· · ·×St � G, where the Si’s are subgroups 
permuted by G. Let S = S1. Assume there exists α ∈ Irr(NG(S)/CG(S)) in the principal 
block and such that S is not contained in ker(α). Then αG ∈ Irr(B0(G)).

Proof. Write H = NG(S) and C = CG(S). Let η ∈ Irr(S) be under α. Now let ψ =
η×1S2 ×· · ·×1St

∈ Irr(S1 ×· · ·×St). Notice that Gψ = Hη. Since S2 · · · St ⊆ C ⊆ ker(α)
we have that α ∈ Irr(H|ψ). Hence αG ∈ Irr(G) by Clifford’s theorem. Now by [30, 
Corollary 6.2], B0(H)G is defined and contains αG, and by Brauer’s Third Main Theorem 
[30, Theorem 6.7], B0(H)G = B0(G) so we are done. �
Lemma 2.3. Let G be a finite group and let S1 ×· · ·×St � G, where the Si’s are subgroups 
permuted transitively by G. Let S = S1, Si = Sxi and α ∈ Irr(S). If α is NG(S)-invariant 
then η = αx1 × · · · × αxt is G-invariant.
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Proof. Let s ∈ S, x ∈ G and H = NG(S). Notice that G =
⋃t

j=1 Hxj is a disjoint union, 
so x−1 = hxj for some j ∈ {1, . . . , t} and some h ∈ H. Then

ηx(s) = η(sx−1
) = η(shxj ) = αxj (shxj )

∏
i�=j

αxi(1).

Now sh ∈ S and then αxj (shxj ) = α(sh). Since α is H-invariant we have

ηx(s) = α(sh)
∏
i�=j

αxi(1) = α(s)
∏
i�=1

αxi(1) = η(s),

so ηx(s) = η(s).
Now ηx(sxj ) = ηxx−1

j (s) = η(s) = ηx−1
j (s) = η(sxj ) applying the equality from the 

previous paragraph twice. In particular, for any y ∈ Si, ηx(y) = η(y).
Let si ∈ Si and notice that

η(s1 · · · st) =
∏t

i=1 η(si)∏t
i=1

(∏
j �=i αxi(1)

) =
∏t

i=1 η(si)
α(1)t2−t

then if x ∈ G we have

ηx(s1 · · · st) = η(sx−1

1 · · · sx−1

t ) =
∏t

i=1 η(sx−1

i )
α(1)t2−t

=
∏t

i=1 η(si)
α(1)t2−t

which equals η(s1 · · · st), so we are done. �
Lemma 2.4. Let G be a finite group and let N = S1 × · · · × St � G, where the Si’s are 
subgroups transitively permuted by G by conjugation. Let S = S1. Assume that there 
exists α ∈ Irr(B0(S)) with α(1) not divisible by p, Z(S) ⊆ ker(α) and such that α

extends to α̂ ∈ Irr(B0(NG(S)/CG(S))). Then the tensor induced character α̂⊗G is in 
the principal block of G.

Proof. Write H = NG(S). Let {x1, . . . , xt} be a transversal for H in G such that Sxi =
Si and notice that NG(Si) = Hxi . Also, write αi = αxi ∈ Irr(Si). By Lemma 2.3, 
α1 × · · · × αt is G-invariant. Let M =

⋂t
i=1 Hxi � G. Since B0(H) covers B0(M) then 

α̂M ∈ Irr(B0(M)). As in the proof of [32, Corollary 10.5], the tensor induced character 
χ = α̂⊗G extends α1 × · · · × αt ∈ Irr(B0(N)). Also, by [32, Lemma 10.4] we have that 
for g ∈ M ,

χ(g) =
t∏

i=1
α̂xi(g),

so χM =
∏t

i=1 α̂xi ∈ Irr(M). Moreover, α̂xi(1) = α(1) is not divisible by p, so χM is in 
the principal block of M by [35, Lemma 3.5].
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Now let Q ∈ Sylp(M). We have that Q ∩ Si ∈ Sylp(Si). Then CG(Q) ⊆ CG(Q ∩ Si) ⊆
Hxi , and then CG(Q) ⊆

⋂t
i=1 Hxi = M . By [35, Lemma 3.1] B0(M)G is defined and 

is the unique block of G covering B0(M). Now by Brauer’s Third Main Theorem [30, 
Theorem 6.7], B0(M)G = B0(G) and we conclude that χ ∈ Irr(B0(G)), as desired. �
Lemma 2.5. Let G be a finite group and assume CG(Op(G)) ⊆ Op(G). Then G has a 
unique p-block.

Proof. Let P = Op(G). Let b be the unique block of P . Since CG(P )P ⊆ P , by [30, 
Theorem 4.14] bG is defined. By [30, Theorem 4.8], P is contained in every defect group 
of every block of G. Applying the second part of [30, Theorem 4.14], we conclude that 
bG is the unique block of G. �
2.2. Necessary results on simple groups

We shall need the following results on simple groups.

Lemma 2.6. Let S = PSL2(3k) for k � 3 and let p = 3. Then for any S � T � Aut(S)
there is a character γ ∈ Irr(B0(T )) such that γS = aα for some α ∈ Irr(B0(S)), a ∈ {1, 2}
and α(1) � 13 is not divisible by 3.

Proof. This can be found in the proof of [28, Proposition 3.8]. �
The proof of the next three theorems is done in sections 3 and 4.

Theorem 2.7. Let p ∈ {2, 3} and let S be a finite nonabelian simple group of order divisible 
by p. Let G be an almost simple group with socle S and assume S /∈ {PSL2(3k) | k � 2}
if p = 3. Then there is some α ∈ Irr(B0(S)) with α(1) > 2 that extends to Irr(B0(G))
and some β ∈ Irr(B0(G)) with β(1) �= α(1) and S � ker(β).

Theorem 2.8. Let p = 2 and let G be almost simple with socle S. If |cd(B0(G))| = 3, 
then S is PSL2(q) for some q. In particular, in such a case, if K is a perfect central 
extension of S, then the Sylow 2-subgroups of K are metabelian.

Theorem 2.9. Let p = 3 and let S be a finite nonabelian simple group of order divisible by 
3. Let G be an almost simple group with socle S. If G has nonabelian Sylow 3-subgroups, 
then |cd(B0(G))| > 3.

2.3. The reduction theorem

Next we prove our main result assuming Theorems 2.7, 2.8, and 2.9, whose proofs will 
be delayed to sections 3 and 4. For this reduction theorem, we make use of the following 
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fact: the unique integral solution for xy = xy with x, y > 1 is x = y = 2. Furthermore if 
a, x, y are positive integers and a, x > 1 then xy < axy.

Theorem 2.10. Let G be a finite group, p a prime and assume cd(B0(G)) = {1, m, n}. 
Then the Sylow p-subgroups of G have derived length at most 3.

Proof. We proceed by induction on |G|.

Step 1: We may assume p = 2, 3, p divides m but not n and that Op′(G) = 1.

If p divides n and m then by [19, Corollary 3] we have G/Op′(G) is a p-group. 
By [30, Theorem 10.20], Irr(B0(G)) = Irr(G/Op′(G)), so G/Op′(G) has 3 character 
degrees, and then the result holds by [18, Theorem 12.15]. If p does not divide n and 
m then the result follows by the main theorem of [26]. Hence we assume p divides m
but not n. If p > 3 then by the main result of [12] we have G is p-solvable. Again, by 
[30, Theorem 10.20], Irr(G/Op′(G)) = Irr(B0(G)) and then G/Op′(G) has at most 3 
degrees and we are done by [18, Theorem 12.15]. Hence we assume p = 2, 3. Also, using 
Irr(B0(G/Op′(G))) = Irr(B0(G)) (by [30, Theorem 9.9(c)]) and arguing by induction we 
may assume Op′(G) = 1.

Step 2: G has a nontrivial component K with |K/Z(K)| divisible by p.

Let E(G) be the layer of G. If E(G) = 1 then F∗(G) = F(G) = Op(G) and then 
CG(Op(G)) ⊆ Op(G) by [1, (31.13)]. Then G has a unique block by Lemma 2.5, and we 
are done by [18, Theorem 12.15]. We may assume that E(G) > 1. Let K be a component 
of G and let N be the normal closure of K in G. By [22, (6.5.3)], 

∏
g∈G Kg � G, so 

N =
∏

g∈G Kg. If |K| is not divisible by p then |N | is not divisible by p, contradicting 
Op′(G) = 1 from Step 1, so K has order divisible by p. By [1, (33.12)] we have that 
K/Z(K) is also divisible by p.

Step 3: If N is the normal closure of K in G then N/Z(N) is a direct product of 
isomorphic copies of K/Z(K) and cd(B0(G/Z(N))) = {1, m, n}.

By [22, (6.5.3)], N is a central product of G-conjugates of K. Write Ḡ = G/Z(N). 
Then by [22, (1.6.7)], N/Z(N) = N̄ =

∏
K̄g = K̄1 × · · · × K̄t is a direct product of 

nonabelian simple groups K̄i
∼= K/Z(K), and the K̄i’s are transitively permuted by Ḡ. 

We write K̄1 = K̄. If |cd(B0(Ḡ))| < 3 then by the main result of [28] we have Ḡ is 
p-solvable, which is impossible, so cd(B0(Ḡ)) = {1, n, m}.

Step 4: If p = 3 then K̄ � PSL2(9)

Let H̄/C̄ = NḠ(K̄)/CḠ(K̄). There is a natural isomorphism K̄ ∼= K̄C̄/C̄ ⊆ H̄/C̄

and we view H̄/C̄ ⊆ Aut(K̄). If K̄ ∼= PSL2(9) and p = 3 then it is easy to check in [10]
that for any K̄ � T̄ � Aut(K̄) there are two characters α, β ∈ Irr(B0(T̄ )) that do not 
contain K̄ in their kernel with α(1) �= β(1) and both α(1) and β(1) are not divisible by p. 
If T̄ = H̄/C̄, then by Lemma 2.2 we have that αḠ, βḠ ∈ Irr(B0(Ḡ)) and αḠ(1) = tα(1), 
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βḠ(1) = tβ(1), (both p′ or both divisible by p, depending on t). This is a contradiction, 
so K̄ can not be isomorphic to PSL2(9).

Step 5: If p = 3 and K̄ ∼= PSL2(3k) for k � 3 then we may assume K̄ � Ḡ.

Let α, γ and a ∈ {1, 2} be as in Lemma 2.6. Since K̄ has abelian Sylow 3-subgroups, 
we know that there exists β ∈ Irr(B0(H̄)) with β(1) �= γ(1) and K̄ � ker(β) by [28, 
Theorem 2.2]. Then we can argue as before with Lemma 2.2, and we get that γḠ, βḠ ∈
Irr(B0(Ḡ)), so tγ(1), tβ(1) ∈ cd(B0(Ḡ)). Then necessarily n = γḠ(1) = tγ(1) = taα(1), 
and m = tβ(1). Also by [28, Lemma 4.4] there exists some 1 � e � at � 2t not divisible 
by 3 such that n = eα(1)t. Thus taα(1) = eα(1)t. It is easy to see that the above equality 
has no integral solutions verifying α(1) � 13 and t > 1.

Step 6: In the remaining cases, we may also assume K̄ � Ḡ.

Assume by way of contradiction that t > 1. Let α ∈ Irr(B0(K̄)) with α(1) > 2, and 
β ∈ Irr(B0(H̄/C̄)) be as in Theorem 2.7. Let α̂ ∈ Irr(B0(H̄/C̄)) be an extension of α. By 
Lemma 2.2, α̂Ḡ, β̂Ḡ ∈ Irr(B0(Ḡ)). Hence tα(1), tβ(1) ∈ cd(B0(G)). Since α(1) �= β(1)
we have that t is not divisible by p (because n is not divisible by p).

If α(1) is not divisible by p, then by Lemma 2.4, α̂⊗Ḡ ∈ Irr(B0(Ḡ)), so α̂⊗Ḡ(1) =
α(1)t ∈ cd(B0(G)). Since β(1) is necessarily divisible by p, this forces α(1)t = tα(1) = n

and if t > 1 the only possibility is α(1) = 2 = t, a contradiction with α(1) > 2.
We are left with the case that p divides α(1), so β(1) is p′. By [32, Corollary 10.5]

χ = α̂⊗Ḡ ∈ Irr(Ḡ) extends η = αx1 × · · · × αxt ∈ Irr(B0(N̄)), where {x1, . . . , xt} is a 
transversal of H̄ in Ḡ (recall that η is G-invariant by Lemma 2.3). By [30, Theorem 
9.4] there exists some ψ ∈ Irr(B0(Ḡ)) over η. By Gallagher’s theorem, ψ = μχ for 
some μ ∈ Irr(Ḡ/N̄). Since p divides α(1) then p divides ψ(1) and ψ(1) = m. Then 
ψ(1) = μ(1)χ(1) = μ(1)α(1)t = m = tα(1), but this forces μ(1) = 1 and α(1) = 2 = t, 
which contradicts the fact that α(1) > 2. This proves the claim.

Step 7: G/CG(K) is almost simple with socle KCG(K)/CG(K) ∼= K/Z(K).

By Steps 5 and 6 any component K of G is normal in G. Write C = CG(K) and 
Z = Z(K). Since K/Z ∼= KC/C � G/C, it suffices to prove that CG/Z(K/Z) = C/Z. 
Let xZ ∈ CG/Z(K/Z). We have that for all k ∈ K there exists a unique zk ∈ Z such that 
kx = kzk. Notice that the map k �→ zk is a homomorphism K → Z. Since K is perfect 
and Z is abelian, zk = 1 for all k ∈ K, so x ∈ C. The reverse inclusion is immediate.

Final Step.

If |cd(B0(G/C))| > 3 then we are done because Irr(B0(G/C)) ⊆ Irr(B0(G)). Hence 
we assume cd(B0(G/C)) = {1, m, n} (if |cd(B0(G/C))| < 3 then G/C is p-solvable 
by the main result of [28]). Since m is divisible by p, by the main result of [21] the 
Sylow p-subgroups of G/C are nonabelian. Then by Theorems 2.8 and 2.9 we have 
p = 2 and that the Sylow 2-subgroups of K are metabelian. By Theorem 2.7 there 
is some nontrivial η ∈ Irr(B0(K)) that extends to η̂ ∈ Irr(B0(G)). By Lemma 2.1, 
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cd(B0(G/K)) ⊆ {1, m/n} and since m/n /∈ cd(B0(G)) we have cd(B0(G/K)) = {1}. In 
particular, if P ∈ Syl2(G) then PK/K is abelian by the main result of [26], and P ∩ K

is metabelian, so dl(P ) � 3. �
3. Groups of Lie type

The primary goal of this section is to prove that Theorems 2.7, 2.8, and 2.9 hold 
for simple groups of Lie type. However, we begin by recording these statements for the 
sporadic groups and certain “small” groups of Lie type.

Proposition 3.1. Theorems 2.7, 2.8, and 2.9 hold if S is a sporadic simple group, 2F4(2)′, 
or a group of Lie type with exceptional Schur multiplier.

Proof. This can be seen using GAP and the GAP Character Table Library [10]. For the 
list of groups of Lie type with exceptional Schur multipliers, see [11, Table 6.1.3]. �

Let q be a power of some prime r. By a simple group of Lie type defined over Fq, we 
mean a finite simple group that can be written S = H/Z(H), where H = HF is the 
set of fixed points of a simple, simply connected algebraic group H under a Frobenius 
morphism F endowing H with an Fq-rational structure.

Let S̃ be the group of inner-diagonal automorphisms of S. Then Aut(S) = S̃ � D, 
where D is an appropriate group of graph and field automorphisms. (See [11, Section 
2.5].) Further, we may let H ↪→ H̃ be a regular embedding as in [4, (5.1)] and H̃ = H̃F , 
such that Z(H̃) is connected, H � H̃, and S̃ = H̃/Z(H̃).

It is useful to note that the characters of H̃ are partitioned into so-called Lusztig 
series indexed by semisimple characters s of an appropriate dual group H̃∗. When s = 1, 
the characters in this series are called unipotent characters, and we will often work with 
these.

3.1. Some notes on unipotent characters and classical groups

Keeping the notation from before, unipotent characters of H̃ are irreducible on restric-
tion to H and trivial on Z(H̃). So, we may consider unipotent characters as characters 
of S, S̃, H, or H̃. Often, unipotent characters also extend to Aut(S). (See [24, Theorems 
2.4 and 2.5].) One such unipotent character, the Steinberg character, has degree |H̃|r. 
For X ∈ {S, S̃, H, H̃}, we will denote the Steinberg character of X by StX .

The explicit list of unipotent characters and their degrees can be found in [5, Section 
13.9] for groups of exceptional type. Hence in this section, we primarily focus on the 
case of classical groups. The following will be useful for finding a rough lower bound 
on the number of character degrees in the principal block in this case. Throughout, we 
will use the notation PSLε

n(q), ε ∈ {±1}, to denote PSLn(q) for ε = 1 and PSUn(q) for 
ε = −1, and these are the simple groups of type An−1(q) and 2An−1(q), respectively. 
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Similarly, PΩε
2n(q) will denote the simple group of type Dn(q) for ε = 1 and type 2Dn(q)

for ε = −1. For completeness, we recall that PΩ2n+1(q) denotes the simple group of type 
Bn(q).

Proposition 3.2. Let q be a power of some prime r. Let S = PSLε
n(q) with n � 2, 

PSp2n(q) with n � 2, PΩ2n+1(q) with n � 3, or PΩε
2n(q) with n � 4. Then there are 

more than n+1
2 unipotent characters of S̃ (and of S) with distinct degrees that extend to 

Aut(S).

Proof. The unipotent characters of S or of S̃ are in bijection with partitions of n in the 
case of PSLε

n(q) and in bijection with certain “symbols” in the other cases. (See, e.g. [5, 
Section 13.8] for details.)

If S = PSLε
n(q), consider the characters corresponding to the partitions (n − j, j)

for 1 � j � 	 n−1
2 
. If S = PSp2n(q) or PΩ2n+1(q), consider the symbols 

(
j,n−j+1

0
)

for 1 � j � 	 n−1
2 
. In the case of PΩ2n(q) and PΩ−

2n(q), consider the symbols 
(

j
n−j

)
and 

(
j,n−j

∅
)
, respectively, for 1 � j � 	 n−1

2 
. Using [40, (21), (22)], the r-part of the 
degree of the corresponding unipotent characters is qj, except in the case r = 2 and 
S = PSp2n(q) or PΩ2n+1(q), in which case it is qj/2. Taking into account the Steinberg 
and trivial characters, this shows that there are strictly more than n−1

2 + 1 distinct 
unipotent character degrees. Further, using [24, Theorems 2.4 and 2.5], we see that each 
of these characters extends to Aut(S). (Note that the exception of PSp4(q) when r = 2
and j = 1 does not actually occur in our list here, as 	n−1

2 
 = 0 < 1 in this case.) �
Lemma 3.3. Let S be a simple group of Lie type and let χ̃ be a unipotent character of S̃
that lies in B0(S̃) and extends to Aut(S). Then B0(Aut(S)) contains an extension of χ̃.

Proof. Recall that Aut(S) = S̃ �D. First, suppose that S �= D4(q), so that the group D
generated by graph and field automorphisms is abelian. (See, e.g. [11, Theorem 2.5.12].) 
Since χ̃ extends to Aut(S), we have by Gallagher’s theorem that every member of 
Irr(Aut(S)) above χ̃ is an extension since D is abelian. In particular, using [30, The-
orem 9.4], there exists an extension of χ̃ in B0(Aut(S)), as stated.

Now suppose for the remainder of the proof that S = D4(q) = PΩ+
8 (q). In this case, 

D ∼= S3×D1, where D1 is a cyclic group of field automorphisms and S3 is the symmetric 
group on 3 letters, generated by graph automorphisms. Write X for the group such that 
X/S̃ ∼= S3 and let Y �X such that Y/S̃ is cyclic of size 3. Since χ̃ extends to Aut(S), we 
have χ̃ extends to three characters χ̂, βχ̂, β−1χ̂ of Y , where β and β−1 are the characters 
of Irr(Y/S̃) of order 3, using Gallagher’s theorem. Now, since Y/S̃ is abelian, any block 
of Y lying above B0(S̃) is of the form B0(Y ) ⊗ γ for some γ ∈ Irr(Y/S̃). In particular, 
B0(Y ) either contains all three of χ̂, βχ̂, β−1χ̂ or exactly one of these characters. Say 
χ̂ ∈ B0(Y ).

Note that for every σ ∈ Gal(Q(e2πi/|Y |)/Q), we have χ̂σ also lies in B0(Y ). Fur-
ther, χ̃ is rational-valued (see [23, Corollary 1.12]). Then since χσ = χ, we have 
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χ̂σ ∈ {χ̂, βχ̂, β−1χ̂}. So, if B0(Y ) contains just one of the three characters, we know 
χ̂σ = χ̂. Since β is not rational-valued, χ̂ is then the unique character of Y above χ̃ that 
is rational-valued. Let α ∈ X. Then since χ̃ is α-invariant, we see χ̂α ∈ {χ̂, βχ̂, β−1χ̂}. 
But note that χ̂α is also rational-valued, and hence χ̂α = χ̂. Then χ̂ must be the exten-
sion of χ to Y that extends all the way to Aut(S). On the other hand, if B0(Y ) contains 
all three of {χ̂, βχ̂, β−1χ̂}, we may assume without loss that χ̂ is the one that extends 
to Aut(S).

In either case, since D/Y is abelian, we know every character of Aut(S) above χ̂ is 
an extension. In particular, there is an extension of χ̂ (and hence of χ̃) to Aut(S) that 
lies in B0(Aut(S)), again using [30, Theorem 9.4]. �

For p an odd prime and q an integer not divisible by p, we write dp(q) for the order 
of q modulo p. In what follows, if p is an odd prime not dividing q, we will write e to 
denote dp(εq) in the case S = PSLε

n(q) and dp(q2) in the case S = PSp2n(q), PΩ2n+1(q), 
or PΩε

2n(q).

Corollary 3.4. Let q be a power of some prime. Let S be a simple group such that S =
PSLε

n(q) with n � 2, PSp2n(q) with n � 2, PΩ2n+1(q) with n � 3, or PΩε
2n(q) with 

n � 4. Let G be almost simple with socle S and let B0(G) denote the principal p-block 
of G for some prime p.

(i) If p | q, let N := n−1
2 .

(ii) If p = 2 with q odd or p is odd and e = 1, then let N := n+1
2 .

(iii) If p is odd, S = PSLε
n(q), n � 4, and e = 2, then let N := n+7

4 .

Then B0(G) contains more than N characters with distinct degrees obtained as extensions 
of unipotent characters of S.

Proof. If p | q, then B0(S̃) contains all unipotent characters of S̃ aside from the Steinberg 
character. (This holds for B0(S) by a well-known result of Dagger and Humphreys, see 
[3, Theorems 1.18 and 3.3]. For B0(S̃), [4, Remark 6.19] and the proof of [4, Theorem 
6.18] again yield that every block of G̃ is of maximal defect or defect zero. Using Brauer’s 
first main theorem and the fact that CG̃(U) = Z(G̃)Z(U) for U a Sylow-p-subgroup of 
G, see [4, Remark 6.19], it follows that the blocks of maximal defect of G̃ are indexed by 
the elements of Irr(Z(G̃)). Then using Brauer’s third main theorem, Irr(B0(G̃)) consists 
of those χ ∈ Irr(G̃|1Z(G̃)) not of defect zero.)

If p = 2 � q, then B0(S̃) contains all unipotent characters, using [4, Theorem 21.14]. 
If p � q is odd, we may use the theory of e-cores and e-cocores in [8,9] to see that 
if e = 1, then B0(S̃) contains the Steinberg character along with all of the unipotent 
characters constructed in Proposition 3.2, except possibly in the case of type Bn or Cn

when p | (q + 1). In the latter case, either the character corresponding to the symbol (
j,n−j+1)

in Proposition 3.2 or the character corresponding to the symbol 
( 0,j

)
lies in 
0 n−j+1
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B0(S̃), and the latter still satisfies that χ(1)r = qj and χ extends to Aut(S). In the case 
of (3), using [8], we see B0(S̃) contains at least the unipotent characters constructed in 
Proposition 3.2 such that j is even, along with the trivial and Steinberg character. But, 
B0(S̃) also contains the unipotent character corresponding to the partition (n − 2, 1, 1), 
which has q3 as the r-part of the degree, which is different than that of the previously 
stated characters for n � 4. This gives more than n−1

4 + 2 = n+7
4 unipotent characters 

in B0(S̃) that extend to Aut(S) if n � 4.
Hence in each case, B0(S̃) contains more than N characters with distinct degree that 

extend to Aut(S), and hence to B0(Aut(S)) by Lemma 3.3. Then this yields N characters 
of distinct degree in B0(G) by restriction. �

We remark that when p ∈ {2, 3}, we have either (i) or (ii) of Corollary 3.4 applies in 
the symplectic and orthogonal cases.

3.2. Non-defining characteristic

Lemma 3.5. Let p ∈ {2, 3} and let S be a simple group of Lie type defined over Fq, where 
p � q, such that S is not isomorphic to a group in Proposition 3.1. Then Theorem 2.7
holds for S.

Proof. Let S = H/Z(H) and S̃ = H̃/Z(H̃) as above. Recall that the Steinberg character 
StS̃ of S̃ extends to Aut(S). Further, StS̃ lies in the principal block, since the orders of 
q modulo 3 and modulo 4 are in {1, 2}, and hence the same argument as in [44, Lemma 
3.6] yields that B0(S̃) is the only block of S̃ containing unipotent characters of degree 
relatively prime to p. So, let α = StS be the Steinberg character of S, i.e. the restriction 
of StS̃ to S. Then α extends to B0(G) by Lemma 3.3.

Now, α is the only irreducible character of S whose degree is a power of q. Hence, 
it suffices to know that there is some member of Irr(B0(S)) that is not trivial or the 
Steinberg character. This follows, for example, by [43, Theorem C]. �
Proposition 3.6. Theorem 2.8 holds if S is a group of Lie type defined over Fq with 2 � q.

Proof. Assume that S is not isomorphic to PSL2(q) nor one of the groups in Proposi-
tion 3.1, and let S � G � Aut(S). Recall that B0(G) contains 1G and an extension of 
StS , so it suffices to show that there are at least 2 additional character degrees found in 
B0(G).

First, assume that S is the Ree group 2G2(3f ). Then there are two odd degrees other 
than those of 1S , StS with multiplicity one, which forces the corresponding characters to 
be rational-valued and hence lie in B0(S), using [34, Lemma 3.1]. Further, since Out(S)
is cyclic, we see then that these characters extend to B0(G), and we are done.

Hence we may assume that S is not 2G2(3f ), so the Sylow 2-subgroups of S are 
nonabelian. (See [47].) Then by the recently-proven principal block case of Brauer’s 
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height zero conjecture [26], there is a member of Irr(B0(G)) with even degree. On the 
other hand, the proof of [43, Proposition 3.4] yields an odd-degree unipotent character 
of B0(S) \ {1S , StS} unless S = PSLε

3(q). By [24, Theorems 2.4 and 2.5] and arguing as 
in Lemma 3.3, these unipotent characters extend to B0(G), except possibly if S = Dn(q)
or G2(3f ) and G contains an automorphism of the form τϕ where τ is a nontrivial graph 
automorphism and ϕ is another (possibly trivial) automorphism. If S = Dn(q) with 
n � 5, we are done by Corollary 3.4.

If S = G2(q) with q = 3f , then the two odd-degree unipotent characters other than 
1S , StS have degree 1

3q(q4 + q2 + 1) and fuse under the graph automorphism of order 
2 but are invariant under the cyclic group of field automorphisms. Hence in B0(G), 
the characters lying above these have degree 2

3q(q4 + q2 + 1) or 1
3q(q4 + q2 + 1). But 

using [15], we see B0(S) also contains unipotent characters whose degree does not divide 
2q
3 (q4 + q2 + 1), so B0(G) must contain at least one more distinct degree.

In the case D4(q), there are three unipotent characters of degree q10 + q8 + q6 and 
three of degree q6 + q4 + q2. The triples fuse under the graph automorphisms but are 
invariant under diagonal and field automorphisms, and hence the characters in B0(G)
above the two triples cannot be the same degree.

Finally, let S = PSLε
3(q). In this case, the two characters in the Lusztig series of 

H̃ = GLε
3(q) corresponding to a semisimple element with eigenvalues {−1, −1, 1}, which 

have degrees q(q2 + εq + 1) and (q2 + εq + 1), are invariant under D, trivial on Z(H̃), 
and restrict irreducibly to H. That is, we may view these as characters of S that extend 
to S̃ �D1, where S̃ = PGLε

3(q) and D1 is the cyclic subgroup of D of index 2 consisting 
of field automorphisms. These characters further lie in B0(S), using [4, Theorem 21.14]. 
Then the characters of B0(G) above these two characters will have degrees c1 ∈ {q(q2 +
q + 1), 2q(q2 + q + 1)} and c2 ∈ {(q2 + q + 1), 2(q2 + q + 1)}, and hence are distinct. �
Proposition 3.7. Theorem 2.9 holds if S is a group of Lie type defined over Fq with 3 � q.

Proof. Assume that S is not isomorphic to one of the groups in Proposition 3.1 and let 
S � G � Aut(S). As before, it suffices to find two distinct degrees in B0(G) apart from 
those of the extensions of 1S and StS . If S is an exceptional group of Lie type (including 
those of Suzuki, Ree, and 3D4(q) type), then [43, Table 2] exhibits at least two additional 
unipotent characters in B0(S̃) with distinct degrees that extend to Aut(S), and we are 
done using Lemma 3.3. Then by applying Corollary 3.4, we may assume that S is one 
of the classical groups listed there with n � 4. But using [43, Tables 4-6], we are again 
done unless S = PSLε

4(q) with ε ∈ {±1} such that εq ≡ 1 (mod 3); S = PSL2(q); 
S = PSLε

3(q), S = B2(2a), or S = D4(q).
If S = B2(2a), then similar to the proof of [43, Proposition 3.9], there exist unipotent 

characters of degree q
2 (q2 + 1) and q

2 (q + ε)2, where ε ∈ {±1} is such that p | (q − ε), in 
B0(S) and B0(S̃), and the latter extends to Aut(S). Then we are done using Lemma 3.3. 
Similarly, the unipotent characters listed there for D4(q) work here, as they again extend 
to Aut(S).
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Now, consider S = PSLε
4(q) with ε ∈ {±1} and such that εq ≡ 1 (mod 3). Then there 

is a unique unipotent block of S (and of S̃), namely the principal block. Since there are 
five unipotent characters of distinct degree, and they all extend to Aut(S), we are done 
in this case. Similarly, if S = PSLε

3(q) with εq ≡ 1 (mod 3), then there are 3 unipotent 
characters of distinct degrees, which all must lie in B0(S) and extend to Aut(S). From 
here, it suffices to note that the degree (q+ε)(q2 +εq+1) of the third nontrivial character 
in Irr3′(B0(S)) described in [43, Proposition 3.11] does not divide the degree of any of 
the three unipotent characters.

Finally, assume that S = PSLε
3(q) with 3 | (q + ε) or S = PSL2(q). Then a Sylow 3-

subgroup of S is cyclic, so our assumption that the Sylow 3-subgroups of G are nonabelian 
forces 3 to divide the index |G : S| and G to contain some field automorphism of order 3. 
In particular, if r is the prime dividing q, we may then write q2 = r3ba for some integers 
b � 1 and a � 1.

Consider semisimple elements s1, s2 of H̃∗ ∼= GLε
n(q) (where n ∈ {2, 3} is the appropri-

ate value) with eigenvalues {δ1, δ−1
1 } and {δ2, δ−1

2 }, respectively (and with an additional 
eigenvalue of 1 in the case n = 3), where δi ∈ F×

q2 , δ1 has order (ra − 1)3 and δ2 has 
order (q2 − 1)3. Then for i = 1, 2, the corresponding so-called semisimple character χsi

of H̃ = GLε
n(q) lies in Irr(B0(H̃)) by [14, Corollary 3.4] and has degree relatively prime 

to 3. Further, we see χsi
is trivial on the centre and restricts irreducibly to S, using 

[45, Proposition 2.6] and [44, Lemma 1.4], since si ∈ SLε
n(q), PGLε

3(q) = PSLε
3(q) in 

this case, and Z(GL2(q)) is not divisible by 3, so siz cannot be conjugate to si for any 
1 �= z ∈ Z(GL2(q)). Note that for α ∈ D, χα

si
= χsα

i
, using [36, Corollary 2.5]. (Here 

since H̃∗ ∼= H̃ = GLε
n(q), we abuse notation and let α∗ = α in the notation of [36].)

Now, note that the order of δ2 is strictly larger than (r3b−1a − 1)3, and hence 

δr3b−1a±1
2 �= 1. Recalling that semisimple classes of GLε

n(q) are determined by their 
eigenvalues, we have s2 cannot be conjugate to sα

2 for α a field automorphism of order 
3, and therefore χs2 is not fixed by α. In particular, a character in B0(G) above χs2

must have degree divisible by 3. On the other hand, every field automorphism of order 
a power of 3 sends s1 to a conjugate of itself, and hence χs1 is fixed by all such field 
automorphisms. Let G3 � G where G3/S is a Sylow 3-subgroup of G/S. Note that G3/S

must be generated by field automorphisms, and hence is cyclic, so we see χs1 extends to 
B0(G3), and therefore there is a character in B0(G) above χs1 that is still of 3′-degree. 
Then this character cannot have the same degree as the one discussed above lying above 
χs2 , and we are done. �
3.3. Defining characteristic

Proposition 3.8. Let p ∈ {2, 3}. Theorems 2.7, 2.8, and 2.9 hold if S is a group of Lie 
type defined over Fq with q a power of p.

Proof. We may assume that S is not isomorphic to a group in Proposition 3.1. Recall 
that, from [3, Theorem 3.3], we have Irr(B0(S)) = Irr(S) \ {StS}.
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If S is one of the groups considered in Corollary 3.4 with n � 7, we are done. For 
the exceptional groups G2(q), 2G2(q), 3D4(q), F4(q), 2F4(q), E6(q), 2E6(q), E7(q), or 
E8(q) or the remaining classical groups other than {PSL2(q), PSLε

3(q), PSp4(q)}, we see 
from the explicit list of unipotent character degrees (using CHEVIE or [5, Sections 
13.8, 13.9]) and again using [24, Theorems 2.4 and 2.5] that there are still at least 
4 unipotent characters with distinct degrees aside from StS that extend to Aut(S), 
and we are again done in these cases using Lemma 3.3. We are left with the cases 
S ∈ {PSL2(q), PSLε

3(q), PSp4(q), 2B2(q)}.
If S = PSLε

3(q), there are two unipotent characters in Irr(B0(S)) (namely the trivial 
character and a character of degree q(q+ε)), and as before these extend to B0(G). Hence 
we aim to show there are at least two additional distinct degrees in Irr(B0(G)). There 
are characters χ1, χ2 of degree q + εq + 1 and q(q + εq + 1) that restrict irreducibly from 
characters χ̃1, χ̃2 of S̃ := PGLε

3(q) and have the same inertia group in Aut(S). (These 
characters correspond to a Lusztig series in H̃ = GLε

3(q) indexed by a semisimple element 
in H̃∗ ∼= GLε

3(q) with eigenvalues {ζ, ζ, ζ−2} where ζ ∈ Cq−ε � F×
q2 has order different 

from 3.) Let F0 be a generating field automorphism of S, so that Aut(S) = S̃〈τ, F0〉 with 
τ a graph automorphism of order 2 in case ε = 1 and τ = 1 if ε = −1. If 1 �= τ ∈ G, 
then there are characters in B0(S̃〈F0〉 ∩ G) above χ1, χ2 with degrees a(q + εq + 1) and 
aq(q + εq + 1) with a some divisor of |F0|, and hence we see the characters above these 
in B0(G) will have different degrees. Similarly, if G does not contain a non-trivial graph 
automorphism, then GS̃/S̃ is cyclic, and there are again characters of distinct degrees 
a(q + εq + 1) and aq(q + εq + 1) in B0(G) with a some divisor of |GS̃/S̃|, and we are 
done.

If S = PSp4(q), the unipotent characters with degree 1, 12q(q − 1)2, and 1
2q(q + 1)2 in 

Irr(B0(S)) extend to B0(G) as before. The two unipotent characters of degree 1
2q(q2 +1)

fuse under the exceptional graph automorphism if p = 2 and extend to Aut(S) if p = 3. 
In either case, since the other character degrees discussed are not divisible by q2 + 1, we 
see B0(G) must contain at least 4 distinct degrees.

If S = 2B2(q), note that p = 2 and q = 22m+1 for some m. Further, note that G/S is 
cyclic, of odd order dividing 2m + 1. Then since there are two characters of S of degree 
2m(22m+1 − 1), they must extend to B0(G). Let χ1 be one of these characters. There is 
also a character χ2 of degree divisible by q2 + 1 in B0(G), above a character of degree 
q2 +1 of S. Then certainly χ1(1) �= χ2(1). Further, by considering the possible orbit sizes 
of G acting on the characters of degree q2 + 1 and of degree (q − 2m+1 + 1)(q − 1), we see 
that there must be a character χ3 of B0(G) of degree divisible by (q − 2m+1 + 1)(q − 1)
and such that none of χ3(1), χ2(1), or χ1(1) are the same. Taking into account the trivial 
character, this yields at least 4 character degrees in B0(G).

Finally, let S = PSL2(q). It remains to prove Theorem 2.7 for p = 2 and Theorem 2.9
for p = 3. Recall that Aut(S) = S̃ � 〈F0〉 where S̃ = PGL2(q) and F0 is a generating 
field automorphism.

First let S = PSL2(q) = SL2(q) with q a power of 2. Let s ∈ GL2(q) be semisimple 
with eigenvalues {a, a−1}, where a ∈ F×

2 has order 3. Then the corresponding semisimple 
q
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character χs of GL2(q) is invariant under the field automorphisms, using [36, Corollary 
2.5], since the generating field automorphism F0 acts by interchanging the eigenvalues 
of s and hence sF0 is conjugate to s. Further, since s cannot be conjugate to sz for 
any 1 �= z ∈ Z(GL2(q)), we see χs restricts irreducibly to SL2(q) = PSL2(q) using [45, 
Proposition 2.6] and [44, Lemma 1.4]. So, we have χs extends to Aut(S) and α := (χs)S

has an extension in B0(G) since G/(G ∩ S̃) is cyclic. Further, α(1) = q − η for some 
η ∈ {±1}. Then choosing β to lie above any of the characters of S of degree q + η, we 
are done in this case.

Now suppose p = 3, and we aim to prove Theorem 2.9 for S = PSL2(q). If 3 � |G : S|, 
then a Sylow 3-subgroup of G is abelian. Hence we assume that 3 | |G/S| and that the 
Sylow 3-subgroups of G are nonabelian. Then by the principal block version of Brauer’s 
height-zero conjecture [26], we see that there must be characters of B0(G) of degree 
divisible by 3. Let χ1 be one such character. Let q ≡ η (mod 4) with η ∈ {±1}. Then 
the two characters of degree 1

2 (q + η) are invariant under field automorphisms and fuse 
in S̃. Further, the character of S̃ lying above these two characters is invariant under 
field automorphisms. Hence B0(G) has a character χ2 of degree (q + η) or 1

2 (q + η). 
The remaining nontrivial characters of B0(S) have degrees q + η and q − η. Let G3 be 
the subgroup of G such that G3/S ∈ Syl3(G/S). Since 3 does not divide the number 
of characters of degree q − η of S, we see that at least one character, say χ, of degree 
q − η must be invariant under G3. Further, note that G3/S is cyclic, so any character 
in B0(G3) above χ must be an extension. In particular, any character χ3 ∈ Irr(B0(G))
above χ in B0(G) will have degree prime to 3. Since χ3 has degree prime to 3 and divisible 
by q − η, we see that 1G, χ1, χ2, and χ3 have distinct degrees, as desired. �
4. Symmetric and alternating groups

The aim of this section is to give a positive answer to Question A in the cases of 
symmetric and alternating groups (respectively denoted by Sn and An). As already 
mentioned in the introduction, we can do slightly more. Given a p-block B of a finite 
group G and χ ∈ Irr(B) we let hp(χ) denote the p-height of χ in B. Moreover, we let 
ht(B) = {hp(χ) | χ ∈ Irr(B)}.

Theorem 4.1. Let p be a prime and let B be a p-block of Sn or An. Let D be a defect 
group of B. Then dl(D) � |ht(B)|.

As consequences of Theorem 4.1 above, we will show that simple alternating groups 
satisfy Theorems 2.7, 2.8, and 2.9

4.1. Notation and preliminaries

Irreducible complex characters of the symmetric group Sn are canonically labelled by 
partitions of n. In particular, given λ a partition of n (sometimes written |λ| = n) we 
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denote by χλ the corresponding element of Irr(Sn). We start by recalling very briefly 
some useful facts on p-blocks of symmetric groups. We refer the reader to [20] or [38]
for a complete description of this theory. Let B be a p-block of Sn. Then B is uniquely 
determined by a p-core partition γ. More precisely two irreducible characters χλ and χμ

lie in the same p-block if and only if λ and μ have equal p-core. In particular, they belong 
to the block B if and only if they have p-core equal to γ. The integer w = (n − |γ|)/p

is called the p-weight of B. It is customary in this case to denote B by B(γ, w). If 
w = a1 + a2p + · · · + akpk−1 is the p-adic expansion of w, then a defect group D of B is 
of the following form:

D ∼= (Pp)×a1 × (Pp2)×a2 × · · · × (Ppk )×ak ,

where Pm denotes a Sylow p-subgroup of Sm. In particular, we observe that D is (iso-
morphic to) a Sylow p-subgroup of Swp.

Lemma 4.2. Let D = (Pp)×a1 × (Pp2)×a2 × · · · × (Ppk )×ak . Then dl(D) = k.

Proof. Let G′ denote the derived subgroup of G. It is easy to show that (G × H)′ =
G′ × H ′. Since Pp

∼= Cp is a cyclic group of order p and since Ppk
∼= (Ppk−1) � Cp, we 

have that (Ppk)′ is a proper subgroup of (Ppk−1)×p. Hence dl(Ppk ) � dl(Ppk−1) + 1. On 
the other hand, (Ppk)′ contains the subgroup {(x, x−1, 1, . . . , 1) | x ∈ Ppk−1} ∼= Ppk−1 . 
Therefore dl(Ppk ) � dl(Ppk−1) + 1. Thus dl(Ppk ) = k and the statement follows. �
4.2. Combinatorics and representations of Sn

To prove Theorem 4.1 we will rely on Olsson’s theory of p-core towers. We use this 
section to recall these beautiful combinatorial objects and we refer the interested reader 
to [38] for a more detailed account. Throughout this section, given two non-negative 
integers x, y we denote by [x, x + y] the set {n ∈ N | x � n � x + y}.

Let p be a prime number and let λ be a partition of n ∈ N. We denote by cp(λ) the 
p-core of λ and by qp(λ) = (λ(0), λ(1), . . . , λ(p−1)) the p-quotient of λ. With this notation 
in mind, we say that λ(i) is the i-th partition appearing in the p-quotient qp(λ) of λ.

For any sequence (i1, i2, . . . , ik) ∈ [0, p − 1]×k we inductively define λ(i1,i2,...,ik) as the 
ik-th partition appearing in the p-quotient of λ(i1,...,ik−1). Moreover, for i ∈ [0, p − 1] we 
let λ(i) := cp(λ(i)) be the p-core of the i-th partition appearing in the p-quotient of λ. 
For any sequence (i1, i2, . . . , ik) ∈ [0, p − 1]×k we let λ(i1,i2,...,ik) = cp(λ(i1,i2,...,ik)).

We denote by T (λ) the p-core tower of λ (see [38, Section 6]). In particular we find 
convenient to think of the p-core tower as a sequence T (λ) = (Tj(λ))∞

j=0, where the 
k-th layer (or row) Tk(λ) is the sequence of pk p-core partitions defined as follows: 
T0(λ) = (cp(λ)), and for k � 1,

Tk(λ) =
(
λ(0,...,0), . . . , λ(i1,i2,...,ik), . . . , λ(p−1,...,p−1)

)
, for 0 � i1, . . . , ik � p − 1.
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Here the indeces are lexicographically ordered. We denote by |Tk(λ)| the sum of the 
sizes of the p-cores in the k-th layer of T (λ). We have that |λ| =

∑
j |Tj(λ)|pj . Moreover, 

every partition λ of n is uniquely determined by its p-core tower. This follows by repeated 
applications of [38, Proposition 3.7].

In [39] the following fundamental result is proved.

Theorem 4.3. Let p be a prime number and let λ be a partition of n ∈ N. Let B = B(γ, w)
be the p-block of χλ. Suppose that wp =

∑k
j=1 ajpj is the p-adic expansion of wp. Then

hp(χλ) =
( k∑

j=1
|Tj(λ)| − aj

)
/(p − 1).

4.3. Proof of Theorem 4.1

Let n be a natural number, let B = B(γ, w) be a p-block of Sn and let wp =
∑k

j=1 ajpj

be the p-adic expansion of wp, where ak �= 0. This notation will be kept throughout the 
section.

Definition 4.4. Given a prime p and an integer a ∈ [1, p −1], we denote by γa the partition 
(p, 1a). It is easy to observe that γa is a p-core partition of p + a.

We are now ready to introduce the main combinatorial objects of this section. In order 
to do this we mention that the empty partition will usually be denoted by ∅ or by (0)
depending on our convenience.

Definition 4.5. Let λ0, λ1, . . . , λk−1 be the partitions of n defined as follows. We let λ0 be 
the partition such that T0(λ0) = (γ) and for all i ∈ [1, k] we let Ti(λ0) = ((ai), ∅, . . . , ∅).

For every j ∈ [1, k −1] we recursively define λj by modifying layers k − j and k − j +1
of the p-core tower corresponding to λj−1. More precisely, we let λj be the partition 
corresponding to the following p-core tower: T0(λj) = (γ), Ti(λj) = Ti(λj−1) for all 
i /∈ {k − j, k − j + 1}, and

Tk−j(λj) =
{

(γa, ∅, . . . , ∅) if Tk−j(λj−1) = ((a), ∅, . . . , ∅), ∃ a ∈ [1, p − 1]
((p − 1), (1), ∅, . . . , ∅) if Tk−j(λj−1) = (∅, . . . , ∅),

and

Tk−j+1(λj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
((a − 1), ∅, . . . , ∅) if Tk−j+1(λj−1) = ((a), ∅, . . . , ∅), ∃ a ∈ [1, p − 1]
(γa−1, ∅, . . . , ∅) if Tk−j+1(λj−1) = (γa, ∅, . . . , ∅), ∃ a ∈ [2, p − 1]
((p − 1), (1), ∅, . . . , ∅) if Tk−j+1(λj−1) = (γ1, ∅, . . . , ∅),
((p − 1), ∅, . . . , ∅) if T (λ ) = ((p − 1), (1), ∅, . . . , ∅).
k−j+1 j−1
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We will now verify that for every j ∈ [0, k − 1] the partition λj is well-defined and 
labels a character lying in B = B(γ, w). Afterwards we will show that hp(λj) = hp(λi)
if and only if i = j. This will allow us to conclude that dl(D) � |ht(B)|.

Lemma 4.6. Given j ∈ [0, k − 1] we have that λj is well-defined and labels a character 
lying in B = B(γ, w).

Proof. We proceed by induction on j ∈ [0, k − 1]. The base case is immediate. The 
partition λ0 is well defined, γ = T0(λ0) is the p-core of λ0 and λ0 is a partition of n since

|λ0| =
k∑

i=0
|Ti(λ0)|pi =

k∑
i=0

aip
i = n.

Let now j ∈ [1, k − 1]. Let us start by showing that the definition of its p-core tower is 
consistent. In order to do this we need to show that each row Ti(λj) is well-defined. If 
i /∈ {k−j, k−j+1} then no problems arise, as Ti(λj) = Ti(λj−1). For i ∈ {k−j, k−j+1}, 
we need to verify that

Tk−j(λj−1) ∈ {((a), ∅, . . . , ∅) | a ∈ [0, p − 1]},

and that

Tk−j+1(λj−1) ∈ {((a), ∅, . . . , ∅), (γa, ∅, . . . , ∅), ((p − 1), (1), ∅, . . . , ∅) | a ∈ [1, p − 1]}.

Both statements are verified again by induction (on j − 1). They are clearly satisfied by 
λ0, and for j−1 � 1 they remain true by direct verification (using the recursive definition 
of the partitions λ0, . . . , λk−1 given in Definition 4.5). Now, we want to show that λj is 
a partition of n for all j ∈ [0, k −1]. The base case j = 0 has been already verified above. 
Let j � 1 and let us suppose that |λj−1| = n. Then we observe that Ti(λj) = Ti(λj−1), 
for all i ∈ [0, k] �{k − j, k − j +1}. Moreover, we have that |Tk−j(λj)| = |Tk−j(λj−1)| +p

and that |Tk−j+1(λj)| = |Tk−j+1(λj−1)| − 1. It follows that

|λj | =
k∑

i=0
|Ti(λj)|pi =

k∑
i=0

|Ti(λj−1)|pi + p · pk−j − 1 · pk−j+1 = |λj−1| = n.

Since cp(λj) = T0(λj) = γ, we deduce that χλj ∈ Irr(B), for all j ∈ [0, k − 1]. �
We conclude by showing that the irreducible characters labelled by the partitions 

λ0, . . . , λk−1 have distinct character degrees. In the following statement we keep the 
notation introduced in Definition 4.5.

Proposition 4.7. Let j ∈ [0, k − 1]. Then hp(χλj ) = j.
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Proof. To simplify the notation, given a partition μ we will denote by hp(μ) the integer 
hp(χμ). We also recall that w denotes the p-weight of the block B(γ, w) and that wp has 
p-adic expansion given by

wp =
k∑

i=1
aip

i.

We proceed by induction on j ∈ [0, k − 1]. Using Theorem 4.3 we see that

hp(λ0) =
( k∑

i=1
|Ti(λ0)| − ai

)
/(p − 1) = 0.

The second equality follows from the definition of λ0 having |Ti(λ0)| = ai for all i � 1. Let 
now j � 1 and let us assume that hp(λj−1) = j − 1. As already explained in the proof of 
Lemma 4.6 we have that Ti(λj) = Ti(λj−1), for all i ∈ [0, k] �{k−j, k−j +1}. Moreover, 
we have that |Tk−j(λj)| = |Tk−j(λj−1)| + p and that |Tk−j+1(λj)| = |Tk−j+1(λj−1)| − 1. 
Using Theorem 4.3, it follows that

(p−1)hp(λj) =
( k∑

i=1
|Ti(λj)|−ai

)
=

( k∑
i=1

|Ti(λj−1)|−ai

)
+p−1 = (p−1)hp(λj−1)+p−1.

Using the inductive hypothesis we get hp(λj) = hp(λj−1) + 1 = (j − 1) + 1 = j. �
We are now ready to prove Theorem 4.1 and, as a consequence, to verify Theorems 2.7, 

2.8, and 2.9 for alternating groups An. We recall that, given a partition λ of n, the restric-
tion (χλ)An

is irreducible whenever λ is not equal to its conjugate partition λ′. Moreover, 
if χλ ∈ Irr(B0(Sn)) then every irreducible constituent of (χλ)An

lies in Irr(B0(An)).

Corollary 4.8. Let G ∈ {Sn, An} and let B be a p-block of G with defect group D. Then 
dl(D) � |ht(B)|.

Proof. If n � 4 the statement holds by direct verification. Hence, let us assume that 
n � 5. We first deal with the case where G = Sn. Let B = B(γ, w) for some p-core γ and 
some integer w such that n = |γ| +wp. Let wp =

∑k
i=1 aip

i be its p-adic expansion. Then 
by Lemma 4.2 we have that dl(D) = k. From the discussion started in Definition 4.5 and 
ended with Proposition 4.7 we know that the p-block B admits k irreducible characters 
whose p-heights are pairwise distinct. It follows that |ht(B)| � k = dl(D), as desired.

Let now G = An. Let B be a p-block of An, covered by the p-block B̃ of Sn. Let 
γ and w be such that B̃ = B(γ, w) and let wp =

∑k
i=1 aip

i be its p-adic expansion. 
Let λ0, λ1, . . . , λk−1 be the partitions of n described in Definition 4.5. Let Q be a defect 
group of B and D a defect group of B̃ chosen so that Q � D (if p �= 2 then Q = D). 
Since n � 5 [38, Proposition 3.5] shows that (λi)′ �= λj for all i, j ∈ [0, k − 1]. It follows 
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that {hp((χλi)An
) | i ∈ [0, k − 1]} is a subset of size k of ht(B). We conclude that 

dl(Q) � dl(D) = k � |ht(B)|. �
Corollary 4.9. Theorem 2.7 holds for alternating groups An, for n � 5.

Proof. Let p ∈ {2, 3} and n be a natural number. The cases n � 7 for p = 2 and 
n � 26 for p = 3 can be easily checked in GAP. Let us now suppose to be in one of the 
remaining cases. Let k ∈ N be such that pk � n < pk+1. Let B = B0(Sn). Since k � 3, 
recycling the notation introduced in Definition 4.5 setting γ = cp((n)), it follows that 
λ1 and λ2 are well-defined partitions of n, labelling irreducible characters lying in B. 
Using [38, Proposition 3.5] we observe that (λi)′ �= λi, for all i ∈ {1, 2}. It follows that 
α := (χλ2)An

∈ Irr(B0(An)) and α(1) > 2 because p2 divides α(1) by Proposition 4.7. 
Similarly β := χλ1 ∈ Irr(B). By Proposition 4.7 we know that p divides β(1) and that 
p2 does not. It follows that An is not a subgroup of Ker(β) and that α(1) �= β(1). �
Corollary 4.10. Theorems 2.8 and 2.9 hold for alternating groups An, for n � 5.

Proof. We start with Theorem 2.8. Let B be the principal 2-block of Sn. If 5 � n � 15
the statement can be checked in GAP. Let us now assume that n � 16. Setting γ =
cp((n)) we have that the partitions λ0, λ1, λ2 and λ3 are well defined partitions of n

and label irreducible characters of Sn lying in B. By [38, Proposition 3.5] we know that 
(λi)′ �= λi for all 0 � i � 3. It follows that {(χλi)An

| 0 � i � 3} is a subset of size 4 of 
Irr(B0(An)).

To conclude we now verify Theorem 2.9. Clearly n � 9 as a Sylow 3-subgroup of An is 
nonabelian. In this case we consider λ = (n), μ = (n − 3, 13) and η = (n − 3, 3). Clearly 
(χλ)An

, (χμ)An
, (χη)An

∈ Irr(B0(An)) and have pairwise distinct character degrees. �
Remark 4.11. We conclude by mentioning that Theorem 4.1 was already known to hold 
in the case of symmetric groups for primes p � 5 [29]. Moreto’s proof relies on the 
important result of Granville and Ono [13], showing that for every natural number n
there exists a p-core partition of size n, provided that p is at least 5. Our proof does not 
use this fact; it is uniform for all prime numbers and allows us to deduce the needed 
results on alternating groups.

5. More on Question A

In this section, we discuss certain cases of Question A and related questions. We 
denote by ht(B) the set of heights of characters in a block B.

5.1. Blocks of the general linear group in defining characteristic

Using results of A. Moretó, we show that Question A holds for blocks of the general 
linear group in defining characteristic.
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Lemma 5.1. If B is a p-block of positive defect of GLn(q), where q is a power of p, then 
|ht(B)| � n − 1.

Proof. This is [29, Lemma 3.1]. �
Lemma 5.2. The Sylow p-subgroups of GLn(q), where q is a power of p, have nilpotency 
class n − 1.

Proof. This is [16, Satz III.16.3]. �
Corollary 5.3. Question A has an affirmative answer for the blocks of GLn(q) in defining 
characteristic.

Proof. The result follows from Lemmas 5.1 and 5.2 using that the derived length is 
bounded by the nilpotency class and |ht(B)| � |cd(B)|. �
Corollary 5.4. Let N � GLn(q) for a power q of a prime p, and assume |GLn(q) : N | is 
not divisible by p. Then Question A has an affirmative answer for the p-blocks of N . In 
particular, Question A holds for the blocks of SLn(q) in the defining characteristic.

Proof. Let b be a block of N and let B be a block of GLn(q) covering b. By [30, Theorem 
9.26], the defect groups of B are defect groups of b. Let ψ ∈ Irr(b) and let χ ∈ Irr(B) be 
over ψ (see [30, Theorem 9.4]). It follows from [32, Theorem 5.12] that ψ(1)p = χ(1)p

so we see that ht(B) = ht(b), so this result follows from the argument of the proof of 
Corollary 5.3. �

5.2. Checking GAP libraries

Let p be a prime and let D be a p-group of size pk. Since groups of order p2 are 
abelian, it is easy to see that dl(D) � k+1

2 . Using this bound, we have checked in 
[10] that Question A holds for all sporadic groups. Furthermore, Question A has been 
checked for all perfect groups and the primitive groups of degree up to 1500 and size up 
to 106. Whenever the bound above does not work, in most cases it suffices to check that 
|cd(B)| � dl(P ) for a Sylow p-subgroup P , since dl(D) � dl(P ) for any defect group D. 
Otherwise, the fact that if D is a defect group of some block, then D = Op(NG(D))
(see [30, Corollary 4.18]) helps locating possible defect groups of a block if the defect is 
known.

As suggested by the referee, the bound on dl(D) can be improved using the main 
results of [27] and [46] (in the latter case, when p � 5).
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5.3. Related questions

If D is a p-group, Taketa’s Theorem [18, Theorem 5.12] states that |cd(D)| � dl(D), 
so questions regarding the derived length of D are closely related to its set of character 
degrees. The following conjecture was recently asked in [7].

Conjecture 5.5 (Feng–Liu–Zhang). Let B be a p-block of a finite group G with defect 
group D. Let pa be the maximal element in cd(D) and let b be the maximal height of the 
characters in B. Then a � b.

Using [10] notation, let G = SmallGroup(729, 122). Let A = Aut(G) and Q ∈
Syl13(A). Let D ∈ Syl3(NA(Q)) and R = 〈D, Q〉 � A. We consider the semidirect prod-
uct H = G �R. Then H is a solvable group of size 28431 = 37 ·13, with O3′(H) = 1. Then 
Irr(H) = Irr(B0(H)) and cd(H) = cd(B0(H)) = {1, 3, 13, 39}. However if P ∈ Sylp(H)
we have cd(P ) = {1, 3, 9}, so H is a counterexample to Conjecture 5.5. This example 
appeared in [17, Example 6.1]. It belongs to a larger family of examples constructed by 
I. M. Isaacs in an unpublished note regarding a similar question. In fact, this provides 
a counterexample to Conjecture 5.5 for all odd primes, as asked by G. Malle after G. 
Navarro found the counterexample SmallGroup(192,955) for p = 2.

In Corollaries 5.3 and 5.4, as well as in the proof of Theorem 4.1, we have used the 
bound dl(D) � |ht(B)| taking advantage of the fact that |ht(B)| � |cd(B)|. It is a 
natural question to ask if we can improve the bound in Question A by dl(D) � |ht(B)|
in general. However this bound does not hold even in solvable groups; the group H

constructed above is a counterexample, as its Sylow 3-subgroups have derived length 3. 
We mention that for p = 2, the group PerfectGroup(17280,1) is a counterexample for 
this bound. No solvable counterexamples have been found for p = 2.

Finally, we would like to remark that if G is solvable and B is the principal block, 
then an affirmative answer to Question A would follow from assuming the Isaacs–Seitz 
conjecture (see [31, (8.2)]).
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