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Abstract. In a previous work, the second-named author gave a complete description of
the action of automorphisms on the ordinary irreducible characters of the finite symplectic
groups. We generalise this in two directions. Firstly, using work of the first-named author,
we give a complete description of the action of Galois automorphisms on irreducible
characters. Secondly, we extend both descriptions to cover the case of special orthogonal
groups. As a consequence, we obtain explicit descriptions for the character fields of
symplectic and special orthogonal groups.

1. Introduction

1.1. Given a finite group G, one has natural actions of its automorphism
group Aut(G) and the absolute Galois group Gal(Q/Q) on the set of its ordinary
irreducible characters Irr(G). Many questions in character theory concern these
actions. For instance, determining the character field Q(x) = Q(x(g9) | g € G) of
x € Irr(G) is equivalent to understanding the stabiliser of x in Gal(Q/Q). It is the
purpose of this article to study, in some detail, these actions in the case of finite
symplectic and special orthogonal groups. Our results sharpen, in these cases, the
general statements on character fields obtained by Geck [Gec03] and Tiep—Zalesski
[TZ04] and extend previous results in type A [Tur01], [SFV19].

The need for such precise information regarding these actions has become in-
creasingly more relevant owing to recent developments regarding the McKay—
Navarro Conjecture, sometimes referred to as the Galois-McKay Conjecture. This
conjecture has just been reduced to a problem about quasi-simple groups by
Navarro-Spath—Vallejo [NSV20]. The resulting problem involves understanding
explicitly the actions of automorphisms and Galois automorphisms on irreducible
characters.
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Checking these conditions seems to be extremely complicated, with it already
being a challenge in the case of SLa(g). In the verification of the McKay conjecture
for the prime 2 (recently completed by Malle-Spath [MS16]), special consideration
was needed for the case of symplectic groups (see [Mal08]). It stands to reason that
the same will be true for the McKay—Navarro conjecture. In fact, since the initial
submission of the current paper, the results here have been used in [SF21], [RSF21]
to make significant progress on proving the required conditions from [NSV20] for
quasi-simple groups and the prime 2.

To give our first results, let us fix a pair (G*, F*) dual to (G, F'), where G is a
connected reductive algebraic group and F' is a Frobenius morphism on G yielding
an F,-rational structure. Given any semisimple element s & G*F" we have a
corresponding (rational) Lusztig series £(GY',s) C Irr(GF'). We use Inn(G, F) to
denote the group of inner diagonal automorphisms, defined precisely in 2.4 below,
and Inn(G, F), for the stabiliser of x € Irr(G*") under the natural action.

Theorem A. Assume G = SO(V) is a special orthogonal group defined over F,
with g odd. Let Fp,v : G — G be field and graph automorphisms, respectively,
with v the identity when dlm( ) is odd. Assume s € G*F" s a quasi-isolated
semisimple element, i.e., = 1, and that s is not contained in the centre of
G*F" . Then for any x € 5( GF, ) the following hold:

() Qx) =Q,

(i) x™ = x,

(iii) x” = x if and only if Inn(G, F), = Inn(GF).

1.2. The case when s is central is very well known. In that case, (i) and (ii) also
hold but (iii) does not. When dim(V') is odd or ¢ is even, the group SO(V) has
a trivial, hence connected, centre. In these cases, the statements in Theorem A
are all easy consequences of the unicity of multiplicites in Deligne-Lusztig virtual
characters (see [DM90, Prop. 6.3] or [GM20, Thm.4.4.23]). However, we include
the odd-dimensional case in our analysis as it is little extra effort and some results
used on the way to prove Theorem A may be of independent interest.

Our next main result gives the analogue of (i) of Theorem A in the case of
symplectic groups. The character fields themselves are a little more complicated
in this case, but the behaviour is still uniform across a Lusztig series.

Theorem B. Assume G = Sp(V) is a symplectic group defined over F, with ¢
odd. Assume s € G* is quasi-isolated and x € E(G¥,s). Then Q(x) € Q(,/wp),
where w = (—1)P=1/2 s the unique element of {1} for which p = w (mod 4).
Moreover, the following hold:

(i) if q is a square or s =1, then Q(x) = Q;
(ii) if q is not a square and s # 1, then Q(x) = Q(y/wp). In particular, if
o € Gal(Q/Q), then x° = x if and only if \/wp® = \/wp.

1.3. On the way to Theorem B, we give further details for the action of
the Galois group on the characters in this case. Moreover, in Sections 4 and
14, we describe the action of the specific Galois automorphisms relevant for the
McKay—Navarro conjecture, which will be useful in studying the conjecture for
finite reductive groups. Note that, whilst seemingly only covering special cases,
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Theorems A and B do allow one to completely determine the field of values for all
irreducible characters of G when G = SO(V) or Sp(V). Specifically, we obtain
the following theorem.

Theorem C. Assume G = Sp(V) or SO(V) is defined over Fy with ¢ odd and let
s € G*F" be a semisimple element. Assume s has order d > 0 and let (4 € @X be
a primitive dth root of unity. We let Q, = @gs C Q(Cq) be the subfield fixed by the
subgroup G, < G stabilising the series £(GY',s), which can be described in terms
of conjugacy in G*F* | as in Remark 16.7.

(i) If G =SO(V), then any x € E(GY, s) has character field Q(x) = Qs.
(ii) If G = Sp(V), then any x € E(GF,s) has character field Q(x), where:
e Q(x) = Qs if q is a square or —1 is not an eigenvalue of s;

e Q, € Q(x) = Qs(\/wp) otherwise, where w = (—1)P=1/2,

1.4. We note that, assuming q is sufficiently large, it is theoretically possible to
compute the character values of the characters of symplectic groups using a result
of Waldspurger [Wal04]. However, no such statement is known for the special
orthogonal groups, as the results in [Wal04] concern the (disconnected) orthogonal
group. Our arguments, which are based on Kawanaka’s theory of Generalised
Gelfand—-Graev Characters (GGGCs) and the Howlett—Lehrer parametrisation of
Harish-Chandra series, require no restriction on ¢ and do not require the precise
determination of character values.

We now wish to describe two consequences of our description of the action
of Aut(GF) on Irr(GF) when G = SO(V). For this, let us recall that the
automorphism group Aut(Gf") has a subgroup Aso(G, F) < Aut(GF') generated
by inner, diagonal, field, and graph automorphisms. This group is defined precisely
in 2.4. There is a complement I'(G, F') < Aso(G, F) to the subgroup Inn(G, F') <
Aso(G, F) such that T'(G, F) consists of field and graph automorphisms. We
choose this explicitly in Lemma 7.20. Recalling the notion of a Jordan decomposi-
tion from [DM20, §11.5], we will show the following.

Theorem D. Assume G = SO(V) is a special orthogonal group defined over F,
with ¢ odd and dim(V') even. Moreover, let v: G — G and v* : G* — G* be dual
graph automorphisms.

(i) If s € G+ s v*-fived, then there exists a Jordan decomposition JS :
E(GF5) — E(Cg~(s)F",1) satisfying JG (X)) = JE(x) for all x €
E(GFs).

(ii) Each x € Irr(GF) satisfies the condition Aso(G,F), = Inn(G,F), x
(G, F),.

1.5. The statement in (i) of Theorem D was claimed in the proof of a result
of Aubert-Michel-Rouquier [AMR96, Prop.1.7]. Their result states that the
orthogonal group GO(V') also has a Jordan decomposition when dim(V') is even.
The existence of such a Jordan decomposition has recently been used by Vinroot
in his work on totally orthogonal groups [Vin20], who noticed the arguments in
[AMROY6] are insufficient. We thank him for bringing this issue to our attention.
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The statement in (ii) of Theorem D was shown to hold in the case G = Sp(V)
in [Tay18] and independently, by a completely different argument, in [CS17]. Such
a statement is of interest owing to Spéath’s criterion for the Inductive McKay
Conditions [Spi12]. We also remark that, using the known actions of Aut(G*") on
irreducible characters, Li [Li19, Thm. 5.9] has shown the existence of an equivariant
Jordan decomposition when G = Sp(V'). Similar arguments can be applied to our
results here to establish such a statement when G = SO(V). However, we have
decided not to pursue this.

1.6. Given Theorem C, one might expect that when G = SO(V), there is a
Jordan decomposition that is equivariant with respect to Galois automorphisms, as
in the case of connected centre established in [SV20]. Of course, such a statement
cannot hold in general, as it will not hold when G = Sp(V'). The case of SLa(q) =
Sps(q) already provides a counterexample, as pointed out in [SV20, §5]. Given
our work here, the only issue remaining to prove such a statement for SO(V) is to
determine the rationality of unipotent characters of the (disconnected) orthogonal
group GO(V).

With regards to this, we obtain an important partial result (see Theorem 10.8).
Namely, we prove that cuspidal unipotent characters of GO(V') are rational-valued.
Extending the results of [SF19] to disconnected groups would easily yield the
complete description. We intend to consider this in future work.

1.7. We end with a comment on the automorphism group of G when G =
SO(V) and dim(V) is even. Under certain conditions on g, we have Z(G!) <
OP (GF). When this happens, the group G¥ admits an automorphism that is
not contained in the group Aso(G, F') (see Proposition 2.6). The action of this
automorphism is closely related to the study of central characters. To give a
complete description for the action of Aut(G*") on Irr(GF"), we must also describe
the action of this automorphism. This is dealt with in Section 15.
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Structure of the paper

1.8. In Sections 2 to 4 we give some generalities on automorphisms and Galois
automorphisms, in addition to recalling a few results from the literature to be
used in further sections. In this paper, we use Kawanaka’s GGGCs to translate
the automorphism and Galois actions to questions on unipotent conjugacy classes.
To understand the Galois actions, we study the permutation on conjugacy classes
induced by power maps in Sections 5 and 9. This allows us to conclude, for
instance, that all GGGCs of special orthogonal groups are rational-valued.

To understand the actions of Aut(G¥") and Gal(Q/Q) on irreducible characters
of SO(V), it is necessary to understand such actions on extensions of these charac-
ters to GO(V). In Section 6, we define extensions of GGGCs for disconnected
groups and study the relevant automorphism and Galois actions on these charac-
ters. To show (i) of Theorem D, we need to describe the action of automorphisms
on unipotent characters of certain disconnected groups, which we do in Section 8.

We study the case of quasi-isolated Lusztig series in Sections 10 to 13. This is
broken up by studying individual Harish-Chandra series. We first treat the case
of cuspidal characters of special orthogonal groups in Section 10, which extends
results in [Tay18]. For another approach to the action of Aut(G¥) on cuspidal
characters, see [Mall7]. Hecke algebra techniques and the results of [SF19] are then
used in Sections 12 and 13 to study the members of a Harish-Chandra series, first
in the special orthogonal group case and then in the symplectic group case. The
extra automorphism of SO(V) mentioned in 1.7 is studied in Section 15. Finally,
our reductions to the quasi-isolated case, as well as the proof of Theorems C and
D, are contained in Section 16.

Notation

1.9. For a set X and elements x,y € X, we denote by ¢, , € {0,1} the usual
Kronecker delta. Assume G is a group. If G acts on a set X, then we denote by
G, < G the stabiliser of z € X. We denote by Aut(G) the automorphism group
of G as an abstract group, ignoring any additional structure on G. For any g € G,
we will use ¢y : G — G to denote the inner automorphism defined by t4(z) = 92 =
29 = gzg~! and Inn(G) < Aut(G) to denote the inner automorphism group.

If S C G is a subset of a group G then we denote by (S)mon 0Or (S)gp the
submonoid or subgroup generated by S. We typically denote (S)gr, by (S) if no
extra clarity is needed. Of course, if (S)mon is finite then (S)mon = (S)arp-

Assume S is an arbitrary set. If ¢ : G — H is a group isomorphism, then for
any function f : G — S, respectively f: H — S, welet ?f = fo¢p~ ! : H = S,
respectively f¢ = fo¢: G — S. Taking H = G this defines left and right actions
of Aut(G) on functions G — S. If g € G, then we also let 9f = ‘s f and f9 = f'o.
Throughout, we will usually use right actions, although we will use the left action
when it is notationally convenient.

We fix a prime p and denote by F :Fp an algebraic closure of the finite field
F,. Any algebraic group G, usually denoted in bold, is assumed to be affine and
defined over F. We denote by G° the connected component containing the iden-
tity. For any = € G, we denote by Ag(x) the component group Cq(x)/Cg&(z)
of the centraliser. Note that if x € G°, then Ag-(z) < Ag(x) is a subgroup, since
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Ce(2)=Cgo (). -

We fix a prime ¢ # p and let Q, be an algebraic closure of the f-adic numbers.
We identify Q with a subfield of Q,. If G is a finite group, then Irr(G) is the set of
Q-irreducible characters of G. We denote by 1¢ € Irr(G) the trivial character. If
G is cyclic, we denote by e € Irr(G) the unique character with kernel {z? | z € G}.
For each x € Irr(G), we have the central character wy, : Z(G) — Q, defined by
wy(z) = x(2)/x(1). For a subgroup H < G and characters x € Irr(G) and
¢ € Irr(H), we will write Res% (x) and Ind%(y) for the corresponding restricted
and induced characters, respectively.

Throughout, we let G := Gal(Q/Q) denote the absolute Galois group of Q.
Note that if G is a finite group and x € Irr(G), then x(g) € Q. For any ¢ € Q and
o € G, we let £7 be the image of £ under . We have an action of G on Irr(G) given
by x°(g9) = x(g)°. For each character x of G, we fix a Q,G-module M, affording
x- We then write Endg(x) to denote the endomorphism algebra Endg, . (My).

2. Automorphisms

2.1. For a group G, the group Cpyuq)(Inn(G)) = {¢ € Aut(G) | g7 ¢(g) €
Z(@G) for all g € G} is a normal subgroup of Aut(G) whose elements are referred
to as central automorphisms in the literature. If @ € Hom(G, Z(G)) is a homomor-
phism, then we define 7, : G — G by setting 7,(g) = ¢ - a(g). This is also a
homomorphism. Note that if ¢ € Cay()(Inn(G)) is a central automorphism then
© = 7o with @ € Hom(G, Z(G)) defined by a(g) = g ¢(g).

Clearly there will be homomorphisms « € Hom(G,Z(G)) for which 7, is not
an automorphism. Simply take G = Z(G) and « the inversion map. However,
if 7, is an automorphism then it is clearly central. In other words, the central
automorphisms are precisely those homomorphisms 7, that are automorphisms.
The following easy observation gives a way to check when 7, is an automorphism.

Lemma 2.2. Assume G is a finite group.

(i) Given a homomorphism o € Hom(G,Z(G)), we have 7, is an automor-
phism if and only if Ta|zq) = Idg@) + (alz@)) is an automorphism of
Z(G). Here we consider End(Z(QG)) as an additive abelian group so that
for any ¢,¢ € End(G) we have (¢ + ) (z) = ¢(2)(2) for all z € Z(G).

(i) If x € Irr(Q) and 7o € Cayg(e)(Inn(G)), then x™ = (wy o a)x, where

wy o a € Irr(G) is a linear character, and wyra = w7,

Proof. (i). It suffices to know when 7, is injective. If g € Ker(r,) then a(g) =
gt € Z(Q) so Ker(1,) C Z(G). The statement follows easily from this.

(ii). This is a simple consequence of the fact that x(zg) = wy(z)x(g) for any
z€Z(G)and g€ G. O

Remark 2.3. We will be interested in the case where Z(G) is of order 2. Let
E2?(G) <G be the normal subgroup minimal with respect to the condition that the
quotient G/E?(G) =2 Cy x - - - x (Y is an elementary abelian 2-group. We then have
Hom(G,Z(G)) = Hom(G/E?(G), Z(G)) = G/E*(G) has order 2° for some integer
s > 0. Indeed, viewing G/E?(G) as an Fa-vector space we have this is the dual
space.
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In this case, 7, is an automorphism of G if and only if Z(G) < Ker(«). Hence,
inflating Hom(G/Z(G)E?(G), Z(Q)) gives those o € Hom(G, Z(G)) for which 7, is
an automorphism. Thus, there are 2° such automorphisms if Z(G) < E?(G) and
251 otherwise.

Note that this discussion, together with (ii) of Lemma 2.2, shows that any
Ta € Aut(G) fixes the central character of any x € Irr(G) when |Z(G)| = 2.

2.4. Assume G is an affine algebraic group over F (not necessarily connected).
A bijective homomorphism of algebraic groups ¢ : G — G will be called an
asogeny, and we denote by Aso(G) < Aut(G) the submonoid consisting of all
asogenies.

Of interest to us will be the following subgroups of Aut(G). Firstly, we denote by
Autg(G) < Aut(G) the subgroup consisting of those automorphisms ¢ € Aut(GQ)
for which both ¢ and ¢! are asogenies. We then also define Aut;(G) < Aut(G)
to be the subgroup generated by the asogenies Aso(QG).

For any Frobenius root F : G — G, in the sense of [DM20, Def. 4.2.4], we
have F' € Aso(G). Restricting to G, we obtain a natural monoid homomorphism
Caso()(F) — Aut(GT). The subgroup of Aut(G¥') generated by the image of this
map will be denoted by Aso(G, F). We will denote by Inn(G, F') < Aso(G, F)
the image of Ciyn(g)(F'), which is a subgroup containing Inn(G*). We define
Out(G, F) to be the quotient Aso(G, F)/Inn(GF).

Recall that if G is a finite group, then or (G) <G is the unique normal subgroup
minimal with respect to the condition that the quotient G/OF (G) is a p'-group.
Equivalently, this is the subgroup generated by all p-elements of G. Using the
notation of Lemma 2.2, we define a subgroup

K(G)={p€ Caut(e) (Inn(G)) | LP|0p/(c;) = IdOP’(G)} < Aut(G).

This should be denoted K,(G), but as p is implicit we omit this from the notation.

Remark 2.5. Suppose we are in the setting of Remark 2.3. Then K(G) consists of
those 7, where o is obtained by inflation from Hom(G/Z(G)OP (G)E?(G), Z(G)).

The following is well known to finite group theorists, but we include some details
in the proof as it is difficult to extract this exact statement from the literature.

Proposition 2.6. Assume G is a quasisimple algebraic group with F' : G —
G a Frobenius root. Then the map Cago(c)(F) — Aso(G, F') is surjective and
Aut(GF) = K(GF) x Aso(G, F).

Proof. The subgroup Aut;(G) < Aut(G) is described in [GLS98, Thm. 1.15.7].
Picking a set of Steinberg generators for G, we have a splitting Aut;(G) =
Inn(G) x I'(G), where I'(G) is generated by field and graph automorphisms. In
fact, I'(G) is generated, as a group, by graph automorphisms whose inverse is also
an asogeny and an element 1), which is either a standard Frobenius F}, or ? = F,
is such. In any case, one sees that the submonoid of Aut(G) generated by Aso(G)
and ;! € Aut(G) is the subgroup Aut,(G).

Up to conjugacy, we can assume F' € T'(G), so that Cy s, (g)(F) = Cran(a) (F) x
Cr(g)(F). We have F), € Cpg)(F) and so Aso(G, I') is generated by the image
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of Caso(q)(F) and the image of F; ' in Aut(G¥). However, (F,) < Aut(GF)
is finite, so Cago(q)(F) contains a preimage of the image of Fp’l. This implies
Caso(c)(F) — Aso(G, F) is surjective.

According to [GLS98, 2.5.14(g)], the restriction map

Caso(a)(F) = Aut(07' (GF))

is surjective. Therefore, so is the map Aso(G, F) — Aut(OP' (GF)). We wish to
now show that Aut(G¥) = K(G¥) Aso(G, F). To see this it suffices to show that
Cau(ar)(Inn(G*)) contains the kernel of the natural restriction map Aut(G*) —
Aut(O¥' (GT)).

Assume ¢ € Aut(GT) is such that Plor (gry = ldow (gr)- Then for any g € GF
and z € OP (GF) we have 92 = p(92) = @z so g p(g) € Cgr (0P (GF)). By
the proof of [Bon06, Lem. 6.1], there exist two unipotent elements u,v € G such
that Cq(u) N Ca(v) = Z(G). These are clearly contained in OF (GF), so we
have Cgr (O (GF)) < Z(G) N GF = Z(G)F. Hence Cgr (0P (GF)) = Z(G)F =
Z(GT) so ¢ is a central automorphism.

We now need only show that K(G) N Aso(G, F) is trivial. For this, let 7 :
G — G,q be an adjoint quotient of G and let F : G,q — Gaq be the Frobenius
root such that For = moF. By [GLS98, Thms. 1.15.6, 2.5.14], restriction through
7 defines injective homomorphisms

Caco(@) (F) = Caso(aa) (F) and  Aut(OP (GF)) — Aut(O¥ (GL))).

Suppose an element v € Cpgo(q)(F') restricts to the identity on Opl(GF) and let
7 € Aut(O” (GE))) be the unique automorphism such that 5 o = 7 0. Then 5
is the identity on O (GE,) so 7 € (F) by [GLS98, Lem. 2.5.7]. Therefore v € (F)
so v is the identity on G¥. O

After (ii) of Lemma 2.2, we see that to understand the action of K(G%") on
irreducible characters, it is crucial to have a good understanding of central and
linear characters. For convenience, we recall a few results from the literature
regarding this.

As in [Tay18], we denote by C(G, F) the set of pairs (T,6) consisting of an
F-stable maximal torus T < G and an irreducible character 6 € Irr(TF ). Dually
we denote by S(G, F') the set of all pairs (T, s) consisting of an F-stable maximal
torus T < G and a semisimple element s € T,

Proposition 2.7. Assume G is a connected reductive algebraic group with Frobe-
nius root F : G — G. Let (G*, F*) be dual to (G, F).
(i) For any semisimple element s € G*I" | there exists a unique character
ws € Irr(Z(G)F) such that wg = Resg'(g)p(é') for any pair (T,0) € C(G, F)
corresponding to (T*,s) € S(G*, F*) under duality. Moreover, w,, = w;
for all x € E(GF,s).
(ii) There is a group isomorphism Z(G*)F" — Irr(GF /OP (GT)), denoted by
2+ Z, such that — @72 : E(GY | s) — E(GF, s2) is a bijection.
(iii) We have a well-defined group isomorphism G*F~ JOP (G*F") = Irr(Z(G)F)
given by sOP (G*F") s w,, where s € G*F" is a semisimple element
representing the coset.
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Proof. (i) is [Bon06, 11.1(d)] and (i) is [DM20, Prop.11.4.12, Rem. 11.4.14].
Dualising the arguments in [DM20] gives (iii), see also [NT13, Lem.4.4]. O

Corollary 2.8. Assume s € G*I'" is a semisimple element and o = 7, € K(GF).

Then there exists a central element z € Z(G*)F" such that ws o a = 2 and
E(GT,5)7 = £(GF, s2).

Proof. As w0 a is a linear character with OF' (GF) in its kernel it follows from
(ii) of Proposition 2.7 that w, o a = 2 for some z € Z(G*)¥". If x € £(GF,s)
then w, = w, by (i) of Proposition 2.7 and so x” = (wy © a)x = Zx by (ii) of
Lemma 2.2. This gives us that £(GF,5)7 = £(GF, s2) by (ii) of Proposition 2.7.
(]

3. Galois automorphisms

3.1. Let G be a connected reductive algebraic group and F' : G — G a Fro-
benius endomorphism endowing G with an F,-rational structure. Let T < B be,
respectively, an F-stable maximal torus and Borel subgroup of G. We denote by
W = Ng(T)/T the corrresponding Weyl group with simple reflections S C W
determined by B. Let ® be the root system of G with respect to T and A C &+
the set of simple and positive roots determined by B.

For each subset J C A of simple roots, we have a corresponding standard
parabolic and Levi subgroup L; < P; < G. We denote by Cusp(G, F') the set
of cuspidal pairs (Ly,A) with J C A an F-invariant subset of simple roots and
A € Irr(L¥) a cuspidal character. To each such pair (L, \) € Cusp(G, F'), we have
a corresponding Harish-Chandra series £(G*, L, \). By definition, this is the set
of irreducible constituents of the corresponding Harish-Chandra induced character
RE(N).

Thanks to [Gec93] and [Lus84, Thm. 8.6], we know that any cuspidal character
A € Trr(LT) extends to its inertia group Ngr(L)y. Hence we may fix a so-called
extension map A with respect to L <t Ngr (L), meaning that for each cuspidal
character A € Irr(L%), A()\) is an extension of A to Ngr(L)y. We denote by
W () := Ngr(L)x/L¥ the so-called relative Weyl group. After choosing a square
root /p € Q C @, of p, we have a canonical bijection Irr(W (X)) — E(GF, Ly, A),
see [Car93, Sect. 10.6], which we denote by 7 — RE()\),.

The group W () is a semidirect product R(A) x C'(X) of a Weyl group R(\)
with a root system ®, and the stabilizer C'(A) in W () of a simple system in @y
(see [Car93, Sect. 10.6]). Note that W () in general is not necessarily a reflection
group but R()) is. Given o € G and 7 € Irr(W())), we define n(?) € Trr(W(\7))
as in [SF19, §3.5]. Let wg € W be the longest element with respect to S. For
any w € W we write ind(w) := |[U N U%%|, where U = UF and U < B is the
unipotent radical of B. With this we now recall [SF19, Thm. 3.8], which will be
key to our proofs of Theorems A(i) and B.

Theorem 3.2 (Schaeffer Fry, [SF19, Thm. 3.8]). Assume ¢ € G and (L,\) €
Cusp(G, F) is a cuspidal pair. Let A be an extension map with respect to LY <
Ngr(L). Define

e 0y to be the linear character of W(X) such that A(X)7 = 6o A(N7);
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e 0 , € Irr(W(X)) to be the character such that &) ,(w) = dx o (w) for w €
C(N) and &) ,(w) =1 for w € R(\); and

® Y to be the function on W(X) such that v o ( \/md (wo) /\/md (we),
where w = wiws for wy € R(A) and we € C(A )

Then for any n € Irr(W (X)), we have

(RIC:'(/\)U)G = RI(?()\U)TZ”

wheren’ € Ter(W(A)) = Irr(W (A7) is defined by n' (w) = ’y,\’U(w)ég\’g(w_l)n(”) (w)
for each w € W(A).

On the group W ()

3.3. For each w € W, we fix a representative n,, € Ng(T) such that if
w € WF_ then n,, € Ngr(T). If J C A is an F-stable subset of simple roots, then
we have an isomorphism Nyyr(J) — Ngr(Ly)/LY, given by w — n,L%, where
Nwr(J) = {w € WF | wJ = J}. Given a cuspidal pair (L, \) € Cusp(G, F), the
group W () < Ngr (Ly)/L% can thus be identified with the subgroup Nyyr (J) <
Nwr(J), and hence with a subgroup of W. We will make this identification
implicitly in what follows.

Now assume ¢ : G — G is an F-equivariant regular embedding of G into a group
with connected centre and let us identify G with its image ¢(G). Given J C A, we
have a corresponding F-stable Levi Ly = Ly - Z(G) of G. This is standard with
respect to the maximal torus T = T - Z(G) and Borel B = B - Z(G) of G (see
[DM20, Prop.3.4.10]). If A € Irr(LY) is a cuspidal character, then any character
Ne Irr(i?) covering ) is also cuspidal. Note that the Weyl group W = Né(’i‘)/'f
is naturally isomorphic to W. We let W(X) = Ngr (Lj)x/L%, which is a subgroup
of W(A) by [Bon06, Cor.12.5(c)].

Lemma 3.4. Assume (L,A) € Cusp(G,F) is a cuspidal pair and X € Irr(L)

covers X. Then R(\) = W(X) and there is an injective homomorphism C(\) —
HY(F, Z(G)) where Z(G) = Z(G)/Z°(G).

Proof. Let W(/\) R(X) x C(X) be as in 3.1 with respect to G¥. By a result of
Lusztig, C(A) = {1} (see [Lus84, Thm.8.6]). For the first statement, it suffices
to show that R(A) = R()), where we identify W( X) and W(X). For this, let
T < P < G be an F-stable parabolic subgroup with Levi complement T < M <
P. We assume L C M and M is minimal with this property. As above, we set
M:M-Z(é),soigﬁ.

If Wyr (L) == Npgr(L)/LE is trivial then there is nothing to consider. So
suppose Wi+ (L) is nontrivial, and hence so is Wz (L) := N +(L)/L”. By mini-
mality, Wyr (L) = Wiie (L) is cyclic of order 2. We will assume that Wygr (L) =
Npyr (L)a/LE is nontrivial. Then RM(\) = A + A with A;(1) < A2(1) and
A; € Irr(MF). The unique nontrivial element 1 # w € Wyr (L) is a generator of
R()) if and only if A;(1) # Aa(1).
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As Harish-Chandra induction is compatible with restriction and conjugation,
we have

Respir (RY(V) = RY(Resph (1)
= Y RMeyr = Y XN G

g€LF /(LF)y g€LF /(LF)x

If A1 (1) # A2(1) then these characters cannot be conjugate in MF, so by Clifford’s
Theorem RM(/\) A1+ with \; € Trr(MF) an irreducible character with degree
[LF : (LF)A)Ai(1). Hence, A1 (1) # Aa(1) so R(A) < R(N). -

Conversely, if Wyr (L); = Nyr(L)5 /L is nontrivial, then R%/I()\) =M+
X2 with X; € Irr(MF ). We must have Wyyr (L), is also nontrivial, by [Bon06,
Cor.12.5(c)], so RM(X\) = A1 + A2 as above. We can compare

ResMg (R%N/I(X)) = Resgi(xl +A2)

with the terms in (3.1). If A is a constituent of ResMp (Xi), then >, GeLF (TF)s N

must be also, as LF < M and the restriction is invariant under M

If Ay and A; were both constituents of RebMF()\l), say, then we would have to
have ResMi (X2) = 0, which is impossible. If A;(1) # Xa(1) then ResMi ) =
Y geir @, A 50 Ai(1) = [LF 1 (LF),]x(1) and Ai(1) # Ap(1). This gives
R(\) < R(N).

For the final statement, note that if g € Ngr (L), then N € Irr(f,F) also covers
A. Thus A9 = A where 6 is the inflation of a linear character of LT /LFZ(L)F =
HY(F,Z(G)). This gives a homomorphism W (\) — H(F, Z(G)) with kernel
W) =R(\). O

On the characters vy, and 6o

In the latter parts of this paper, we will need to carefully study the characters 6y o
and 7, introduced in Theorem 3.2. Here we introduce a few general statements
that will be used later on. For the rest of this section, we fix a cuspidal pair
(L, \) € Cusp(G, F) and a Galois automorphism o € G.

Lemma 3.5. Assume (L, \) € Cusp(G, F) and 0 € G. Then v, is a character
of W(X), and is moreover trivial if and only if at least one of the following holds:
® g 1S a square;
o the length l(ws), with respect to (W,S), is even for each ws € C(N); or
e o fizes \/p.
Otherwise, vx,o (W) = (—=1)"w2) - where w = wiwy with wi € R(A\) and wy € C(N).

Proof. By [Car93, §2.9], we have ind(wy) = ¢'(2) with I(w;) as above. Therefore,
7,0 is a character in the case of finite reductive groups. In particular, vy ,(w) =1

when /¢'(%2) is fixed by o and 7, ,(w) = —1 otherwise. O
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3.6. When L = T, the group Ngr(T) is generated by T and the group
(no(£1) | @ € ®) (see [MS16, Lem. 3.2]). Let Ry be the subgroup of the stabilizer
Ngr(T)x of A in Ngr(T) generated by T and (n,(—1) | a« € ®,), so that
Ry\/TF = R()\). Here we use the notation of the Chevalley generators as in
[GLS98, §1.12]. The next lemma concerns the restriction of A(A) to Ry.

Lemma 3.7. Assume that G is simple of simply connected type, not of type A,,
and let X\ € Irr(TF). Then the following hold:

(i) any extension X of A to Ry satisfies that A(x) € {£1} for all x € (ny(—1) |
o€ (I’)\>,'

(i) if A7 = A, then N =2 for any extension P\ of X\ to Ry. In particular,
R(N) <Ker(dx,5)-

Proof. Let A be an extension of A to Ry. By [MS16, Lem.5.1], ®, consists of
those a € @ such that A(h.(t)) = 1 for each ¢t € F,*. In particular, this means
that if a € @, then A(ho(—1)) = 1. But since no(—1)? = ho(—1), it follows that

o~

A(nq(=1)) € {1}, proving (i). For (ii), notice that
N (tz) = N7 (DA (z) = A (DN () = MO () = A(tz),

for tx € Ry with t € TF and z € (no(—1) | a € ®,), since X(x) € {1} and
A=A O

Square roots

3.8. Let p be an odd prime. In light of Lemma 3.5, we will want to study
the action of G on \/p- Let us be more explicit about our choice of /b We fix
an injective group homomorphism j : Q/Z — @X and let 7 : Q — @X be the
composition with the natural quotient map Q — Q/Z. We have ¢ = j(1/4) is an
element such that i2 = —1. We also denote this by v/—1. Letting w = (—1)"%",
there then exists a unique square root /p satisfying \/w,/p = 22;11 (%) »» Where
(%) denotes the Legendre symbol and ¢, := j(%) (see [Bon06, §36]). We set ,/wp :=
Vo

Now, let 0 € G and let k € Z be an integer coprime to p such that £7 = ¢ for
all pth roots of unity ¢ € Q. Then we have

L0 () £ @O o

n=1

4. Galois automorphisms relevant for the McKay—Navarro conjecture

4.1. In this section, we turn our attention to the case of the specific Galois
automorphisms that appear in the context of the McKay—Navarro conjecture, with
the aim of recording several statements that will also likely be useful for future
work with the conjecture for finite reductive groups. Let ¢ be a prime and denote
by H := H, the subgroup of elements o € G such that there is some integer r > 0
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satisfying ¢7 = ¢ for all roots of unity ¢ of order coprime to £. Throughout, we
fix £ and o € ‘H and understand 7 to be this integer corresponding to o.

Assume p # £ is an odd prime. We now discuss the action of H on ,/p in order
to describe the character 7, , in more detail in the case that ¢ € H. Note that

(4;”) = (ﬁ)r(g) Then (3.2) implies /wp® = (ﬁ)rw/wp.

The Case ¢ Odd

4.2. First, suppose that ¢ is odd. Note that if r is even, then ¢" = 1 (mod 4), so
o fixes 4th roots of unity and (ﬁ)r = 1 since (g) € {£1}. If r is odd, then ¢" = ¢
(mod 4). We also remark that when ¢ # p are odd primes, we have

(2) _ (c1)-De-n/a (z)

Together with (3.2) this yields the following.

Lemma 4.3. Assume { # p are both odd and o € H. Let w = (=1)P=1/2 50
p=w (mod 4).

(i) If r is even, then \/p° = \/p and \/wp® = \/wp.
(ii) If r is odd, then \/wp® = (ﬁ)\/bT, so \/p’ = (_1)(;;—1)(@—1)/4(%)\/13 =
BV

We can now apply this is to the setup of 3.1. In particular, we have G¥ is a
finite reductive group defined over F, with ¢ a power of p. Combining Lemmas 3.5
and 4.3, we have the following.

Lemma 4.4. Assume £ # p are both odd and (L,\) € Cusp(G, F) is a cuspidal
pair. Let 0 € H and w = wiwy € W(A) with wy € R(X) and we € C(N).

(i) If q is a square or r is even, then vy, = 1.
(ii) If q is not a square and r is odd, then

l(w2) C\(ws) (£ w2)
Yo (w) = <p> = {( it () ifp=¢=3 (mod4),

l(w2)
/ (ﬁ)

otherwise,
P

where l(ws) is the length of wo in the Weyl group (W,S) of G.

4.5. The particular case that £ | (¢ — 1) has been studied in various contexts
related to (refinements of) the McKay conjecture (see, e.g., [MS16, CSSF21]) due
to the relatively nice nature of height-zero characters in this case. We remark that
if £ is a prime dividing (¢ — 1), we have ¢ = 1 (mod ¥¢) is a square modulo ¢, and
hence either ¢ is a square or p is a square modulo . Then Lemma 4.4 yields the
following.

Corollary 4.6. Assume ¢ and p are odd and £ | (¢ — 1). Then for any cuspidal
pair (L, A\) € Cusp(G, F) and o € H, the character ) » is trivial.
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The case £ = 2

4.7. We now focus on the situation when ¢ = 2 and analyse the character 7, »
in this case. We begin by noting that

(2) _J1  ifp=41 (mod 8),
p) |-1 ifp=+3 (mod38),
so comparing with (3.2) yields the following. wwwwwwwww

Lemma 4.8. Let 0 € H with £ = 2 and let p be an odd prime. Let w =
(-=1)P=Y/2 50 p=w (mod 4).
(i) If p==1 (mod 8), then \/wp® = \/wp.

(ii) If p=£3 (mod 8), then Jwp’ = (—1)"/wp.

In [SF19, Lem. 4.10], the character 7, is described explicitly in the case of a
specific choice of 0. We now record an extension of that statement to all of H.
Lemma 4.9. Assume ¢ =2, p is odd, and (L,\) € Cusp(G, F). Let 0 € H and
w = uwrwe € W(A) with wy € R(A) and wy € C(N).

(i) If =1 (mod 8) then vx,(w) =1.

(ii) If ¢ = —1 (mod 8) then yx o (w) = {1 1)Hw2) Z: z: i _

1 ifi% = (—1)74,
(iii) If ¢ =3 (mod 8) then yx o ( {( ) ;f Z" _ 5_1;7"2—11'.
(iv) If ¢ = —3 (mod 8) then vy ,(w) = (-1 Tl(wz)_

Here l(w2) denotes the length of wy in the Weyl group (W,S) of G.
Proof. This follows from Lemma 3.5 and Lemma 4.8. [

4.10. We conclude with one further remark. When ¢ = 2, the power r defined
by o € H is even if and only if o fixes third roots of unity. Hence in this case,
the action of o on /p and descriptions of 7, , obtained in Lemmas 4.8 and 4.9
can alternatively be described entirely in terms of p (mod 8) and the action of o
on third and fourth roots of unity. The same will be true in Corollary 13.6 below,
where we describe vy ;05 » in the case of Sp(V).

5. Power maps and regular unipotent elements

5.1. In this section, we return to the setup of 3.1, so that G is a connected
reductive algebraic group. We fix an integer k € Z coprime to p. Then the power
map g — ¢* on G induces a permutation of the set of unipotent conjugacy classes
Cluni(G). In fact, this map is known to be the identity. In other words, any
unipotent element is rational. This was shown, for instance, by Tiep—Zalesski
[TZ04, Thm. 4.3], with other proofs given by Lusztig [Lus09a, Prop.2.5(a)] and
Liebeck—Seitz [LS12, Cor. 3].

We now consider the analogous question over the field F,. Let O € Cluni(G)F
be an F-stable unipotent class. Then the power map induces a permutation
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7 Clgr(OF) — Clgr (OF) of the set of GF'-conjugacy classes contained in the
fixed point set OF. If G is simple and simply connected, then [TZ04, Thm.1.7]
describes exactly when every unipotent element of G is rational, which means
71, is the identity for any class O € Clyi(G)F.

Here we wish to describe the actual permutation. Unlike [TZ04], we will focus
just on the case of good characteristic. Note that after [TZ04, Thm. 1.5], we know
this permutation is a product of transpositions. In this section, we consider the
case of regular unipotent elements. This will be used to settle the general case for
symplectic and special orthogonal groups in Section 9. If G = SO(V), then every
unipotent element of G is rational by [TZ04, Thm. 1.9], even strongly rational,
so the main case of interest for us is when G = Sp(V'). However, our argument
below also covers the case of SO(V).

For any x € G we denote by H'(F, Ag(w)) the F-conjugacy classes of Ag(x).
The F-class of gCg(z) € Ag(z) is denoted by [¢Cg(z)]. If Z : G — G is the
Lang map, defined by .Z(g) = g 1F(g), then we have a bijection Clgr(OF) —
H(F, Ag(z)) given by 9z — [Z(g)Cg&(z)], where O is the G-class of x. We leave
the proof of the following to the reader.

Lemma 5.2. Assume O € Clyi(G)¥ is an F-stable unipotent class and u € OF.
If g € G is such that u* = 9u, then we have a commutative diagram

HY(F, Ag(u)) — Clgr(0OF)

! I
HY(F, Ag (1)) —— Clgr(OF)

where T([aCq(u)]) = [g7 aF(9)C&(u)]. Moreover, if there is an F-stable torus
S < G such that Cg(u) = SCg(u) then 7([aCq(u)]) = [a-Z(9)Cq (u)].

5.3. Let X = X(T) and X = X(T) be the character and cocharacter groups
of T with the usual perfect pairing (—, —) : X x X 57 If Zyp) is the localisation
of Z at the prime ideal (p), then we may choose an isomorphism 1 : Z,)/Z — F*.
Wlth respect to this choice, we have a surjective homomorphism of abelian groups

QX — T, as in [Bon05 §3], where QX Q ®7 X is a Q-vector space. If
QX Q ®z X then (—,—) extends naturally to a nondegenerate bilinear form
QX x QX — Q.

For each root a € ¢ we have a corresponding coroot &€ X. Let (Q)CT) C QX’ be
the subspace spanned by @ ={a]|ac <I>} Then we have a set of fundamental
dominant coweights 2 = {&, | & € A} C Q® defined such that (o, J3) = 04.5. By
[Bou02, §1, no. 10] we have a vector

pai=Y Ba=3% Y a€z0CQd.

acA acdt

In Table 1, we describe the image of pa in the fundamental group II:= ZQ/Z&/)
when @ is irreducible. Here we use the notation in the plates of [Bou02]. For the
cases Ga, Fy, Eg, and Eg we have pa is always contained in Z®.
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TABLE 1. Representative of the image of ja in the fundamental group Z()/ 7.

P A2m+e BQere Cn D2m+e E7

b/A 60\3m (m + 6)0\:)1 C\L/Jn (m + 6)(:11 (ZJ7

Proposition 5.4. Assume p is good for G and v € BY is a reqular unipotent
element with O the G-class containing u. If r € Z is such that +(r/(¢—1)+Z) = k
(mod p), then there is an element g € B such that 9u = u* and £ (9)C&(u) =
2Cg (u), where z := ¥(rpa) is contained in Z(G). If T is as in Lemma 5.2, then

7([aCq (w)]) = [azCg (u)].

Proof. Let U < B be the unipotent radical of B. For each a € A, we pick a closed
embedding x, : F — U onto the corresponding root subgroup. Denote by Uge, <<U
the derived subgroup of U and let @ = [],ca Ta(ca)Uder, With ¢, € F, be the
image of u in U/Uge. Clearly a* = [loca Talkca)Uder- It =i(r/(g —1) - pa),
then we have a(t) = k for all & € A. Note that pa is invariant under all graph
automorphisms and

R UNE

Z(t) :a(

Moreover, z € Z(G) because a(z) = 2({o,7pa) + Z) = 1 for any root a € P, as
(a,7pa) = {2, pa) € Z.

It is clear that 'z = @*, so t™'(uF)t € uUge. It is stated in the proof of
[DM20, Prop.12.2.2] that uUyge, is the U-conjugacy class of u (see also [DM20,
Prop. 12.2.5]). Hence, there exists v € U such that t~(u*)t = Yu so u = u*.
As Z(t) € Z(G), we have L(tv) = Z(v).Z(t) € Ce(u), which implies £ (v) €
Cu(u) < Cg&(u) by [DM20, Prop. 12.2.7] because p is good. Hence Cg (u).Z (tv) =
Cg(w)z O

5.5. Let us maintain the assumptions of Proposition 5.4. As was already
used above, the natural map Z(G) — Cg(u) factors through an F-equivariant
isomorphism Z(G) — Ag(u), where Z(G) = Z(G)/Z°(G). This defines a bijec-
tion HY(F, Z(G)) — H'(F, Ag(u)). As Z(G) is abelian, we have H!(F, Z(G)) =
Z(G)/Z(Z(G)). Hence, we have u and u* are G'-conjugate if and only if 2 €
Z(2(G)), where z =7(rpa) is as in Proposition 5.4.

Recavll that QX’ Qé ® QP! where QP+ is the Q-subspace spanned by &+ =

{y € | (x,y) = 0 for all x € ®}. We thus have a natural projection map

QX — Q<I> and we denote by Xy C ZO) the i image of X which contains Z<I> IfG
is semisimple, then X55 = X. The map 7 defines an isomorphism Torp (ZQ/XBS)

Z(G) where Tor,, denotes the p’-torsion subgroup. As 2pA € Z® we see that
22 = 1. The following characterises exactly when z is the identity.

Lemma 5.6. Assume r € Z is such that o(r/(q — 1) + Z) = k (mod p) and let
z=1(rpa). Then z =1 if and only if at least one of the following holds:
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(i) p=

(i) pa € X,
(iii) log ( ) is even,

(iv) k (mod p) is a square in F,.

Proof. Clearly z = 1 if either (i) or (ii) holds. So assume neither of these two
conditions hold. Then z = 1 if and only if 2 | ». As k (mod p) € F,, we have
i(s/(p—1)) =k (mod p) for some 1 < s < p. If a = log,(q), then

T:S.izs(pa_l_’_..._’_p_’_l)'

Hence, as p # 2 we have 2 | r if and only if either a is even or 2 | s. This last
condition is equivalent to k (mod p) € F,, being a square in F,. O

5.7. For an example, suppose G is a simple group of type A,_;. Then Mis a
cyclic group of order n and ﬁG = 7 /)Z'SS is a cyclic group of order m | n, which
we view additively. The Lang map on Z(G) = Z(G) is identified with the map
& :1lg — Ilg given by Z(c) = (¢ — 1)c if F is split and .Z(¢) = —(q+ 1)c if F
is twisted. Identifying Z(Ilg) with Ilg/Ker(.Z), we see easily that |2 (Ilg)| =
m/ ged(m,q £ 1). Hence, if z # 1, in which case 2 | m and p # 2, we have u is
GP-conjugate to u* if and only if |$(ﬁg)| is even.

Given this discussion and the data in Table 1, the other simple groups are easily
dealt with in this way. This seems to simplify the discussion in [TZ04, §5] and the
proof of [TZ04, Thm. 1.7] in the case of good characteristic, especially in the case
of twisted groups. We will need the following, whose proof is easy and left to the
reader. We simply note that when G = SO(V), we have &1 € X = X.

Lemma 5.8. Assume p is good for G and v € G¥' is a regular unipotent element.
If G = GL(V) or SO(V), then u is rational in GI'. If G = Sp(V), then u and u*
are G -conjugate if and only if k (mod p) € F, is a square.

6. A variation of GGGCs for disconnected groups

6.1. In this section, we assume G is a (possibly disconnected) reductive algeb-
raic group with Frobenius endomorphism F : G = G. If u € G°F is a unipotent
element, then one has a corresponding GGGC TI', = FuGOF of the finite group
G°F'. We would like to construct such characters for the group G*. One option
is the induced GGGC IIldGoF( «). However, we would like to consider a different
construction, which instead involves extending I', and then inducing to G

If r = p® with a > 0, then we denote by F, : F — F the map defined by
F.(k) = k". Let Frob;(G) denote the automorphism group of G as an algebraic
group. If r > 1, then let Frob,(G) denote the set of Frobenius endomorphisms
on G endowing G with an F,-structure. We let Frob(G) = [, Froby.(G).
Moreover, Frob(G, F') C Frob(G) denotes those ¢ € Frob(G) commuting with
F, and Frob,(G, F) = Frob(G, F') N Frob,.(G). If o € Frob,(G), then we have a
corresponding Fj.-semilinear endomorphism ¢ : g — g of the Lie algebra g of G°,
which we also denote by o (see [Tay18, 11.2, 11.3]).
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6.2. In what follows, we will freely use the notation and terminology of
[BDT20] particularly that of [BDT20, §6]. In particular, we assume throughout
that G° is proximate and that K = (¢spr, &, Xp) is @ Kawanaka datum with respect
to which our GGGCs will be defined. After [Tayl8, Prop.11.5], we may, and
will, assume that for any o € Frob,(G) with » = p® > 1, the following hold:
Gspr © T = 0 0 Pgpr, and k(o(X),0(Y)) = F.(r(X,Y)).

We fix a unipotent element u € G°F and a corresponding Dynkin cocharacter
A € D, (G°)F (see [BDT20, §4.2]) for the precise definition of D,(G°) C X(G).
Let L = Cg(A) be the centraliser of the cocharacter. Then L° = Cgo(A) is a Levi
subgroup of G°. Recall that for any integer ¢ < 0 we have a closed connected
F-stable unipotent subgroup U(\, i) < G. This group is defined such that the Lie
algebra Lie(U(A, 1)) = @;¢; 9(A, j) is a direct sum of weight spaces with respect
to A (see [BDT20, §3] for more details).

If U(G°) C G° is the closed set of unipotent elements, then we have a function
Nu : U(G®)F — Q, whose restriction to U(X, —2), denoted by 7,.», is a linear
character. This character satisfies *n, x = 7=y ,=x for all z € GF. We have a
corresponding character (, » € Irr(U(), —1)%) defined uniquely by the condition
that

_1nF . _
Indgy "3 (1) = ¢ 8002, 5.

oF

We then have T, = Ind8(>“_1)F(Cu7)\).

6.3. Recall that £ # p is a prime. We denote by CGO‘)ZM the stabiliser of , x
in Cg(\)f. We will assume that S, ) < C(;()\)fu’A is a fixed Sylow (-subgroup.
The group Cg()) normalises U(A, —1), so U(A, —1)F - S, » is a group. In fact, this
group is a semidirect product, since U()\, —1)" is a p-group. Moreover, (,  has a
unique extension ’C\u’)\ € Irr(U(\, —1)F'S,, ») such that O(Zu’)\) = 0(Cy,) by [Isal8,
Thm. 1.5]. Here, if G is a finite group and x € Irr(G) is an irreducible character,
then o(x) denotes the order of the corresponding determinant character. We now
define a character

~ F —~
Lue= IndS(A,A)FSu,A (Cur)-

Note that in the special case G = G°, we have f%g is a summand of I',,, which is
part of the ideas considered in [BDT20]. More generally, we have the following.

Lemma 6.4. For any unipotent element u € G°¥ we have

G" 7 Z
ReSGop(Fuj) = Fgug—l.
gEGF /GOF S,

Moreover, if Caq(u)f < Cq(u)f is a Sylow £-subgroup, then Cg(u)f < G°FS, ».

Proof. The first statement follows from the usual Mackey formula for finite groups,
together with [Tayl8, Prop.11.10]. If z € Cg(u)f then X € D,(G°)F'. By
[BDT20, Lem. 3.6], and a standard application of the Lang—Steinberg Theorem,
there exists h € Cgo(u)f such that A\ = "X\, Therefore, if L = Cg()\) then
g = hr € Cpo(u)f < Lf:‘,,x which implies Cq(u)f" < C&o(u)f - LEM. Using
conjugacy of Sylow subgroups in the quotient Cg(u)f'/Co (u)f gives the second
statement. [
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Remark 6.5. We will be interested in applying this construction in the special
case where G = GO(V) is an orthogonal group and p # 2 is odd. In this case,
G/G® has order 2. If the centraliser Cg(u) of u € G°F is not contained in G°
then G = G°F'Cg(u)f and Lemma 6.4 shows that fu72 is an extension of the
GGGCT,,.

The following extends [Tayl8, Prop.11.10] to give the action of the automor-
phism group on these characters.

Theorem 6.6. Recall our assumption that G° is proximate, p is good for G, and
¢ # p is a prime. For any unipotent element u € G°F' and o € Frob(G, F), we
have Ofu,g = f‘,(u)’g.

Proof. Recall that the restriction of o to G is an automorphism. It is easy
to see that o(U(\,—1)) = U(o - A\, —1), where o - A is as in [Tay18, 11.6], and
we get that “Cu .\ = (o (), 7> by arguing as in [Tayl18, Prop.11.10]. Moreover,
a(Ca(NE, ) =Calo-N){ (.0 a0d there exists an element g € Cg(o-NE
such that ga(Su,A) So(u),or: NOW certainly

Co(u)yo-A

~ ~ F ~
o __go _ G go
Fu,é - FU)E - IndU(U-A,*l)FSU(u)TU.A( Cu7)\)

and gaé\u)\ is an extension of (y(y),0.x- By the unicity of the extension, 9"6“7;\ =

a,(u),gi)\ and the result follows. [

We now want to extend [SFT18, Prop.4.10], which gives the action of G on
GGGCs. Understanding the effect of G on fu seems to be more complicated and
appears to be related to stronger notions of conjugacy, such as being strongly real.
The following, though weaker than the result in [SFT18], will be sufficient for our
purposes.

Proposition 6.7. Recall our assumption that G° is proximate, p is good for G,
and { # p is a prime. Assume o € G is a Galois automorphism and k € Z is
an integer coprime to p such that €7 = &F for all pth roots of umty € e Qe If
u € G°F is a unipotent element and u* is G°F -conjugate to u, then Fu = I‘u ‘-

Proof. Let L = Cg(A). From the proof of [SFT18, Prop.4.10], there exists an
element © € L° such that ¢op(*u) = kspr(u) € g(\,2)reg and “u is GoF-
conjugate to u*. By assumption, 9%u = u for some g € G°F. The natural map
Cre(u)/Cto(u) = Cgo(u)/Cgo (u) is an isomorphism. Hence, a quick application
of the Lang-Steinberg Theorem in the group Cg.(u) implies that, after possibly
replacing by xa with a € Cre(u), we may assume that x € L°F.

Arguing as in [SFT18, Prop.4.10], we see that n = ne,, = *n,. It follows that
Cox = Gux = “Cu,x. Being a Galois conjugate, the character Cox = “Cu has
the same stabiliser as ¢, » in Cg(\)¥". This implies # normalises the stabiliser of
Cux in Cg(N)F, so SIQA = Sy, for some g € CG()‘)EL,A' By the unicity of the

extension, we have C;m)\g — Cur 80

azg _ GF Toxrgy T
w [ = F = IndU(/\’fl)p.Sng (Cu,)\ ) = Fu,[~ D
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7. Classical groups

From now on, we assume that p # 2.

7.1. We fix a finite dimensional F-vector space V, with dim(V) > 1, and let B :
V xV — T be a nondegenerate symmetric or alternating bilinear form. We denote
by GL(V | B), resp., SL(V | B), the subgroup of isometries of B in the general linear
group, resp., special linear group. If B is symmetric, then GO(V) := GL(V | B) is
the orthogonal group and SO(V') := SL(V | B) = GO(V)°® is the special orthogonal
group. If B is alternating, then Sp(V') := GL(V | B) = SL(V | B) is the symplectic
group.

For calculations, it will be convenient to make concrete choices for the form B.
We define a totally ordered set

(7.1)

{I<-++<n=<0<-n=<--=<-1} ifdim(V)=2n+1is odd,
{I<--<n<-n=<---<-1} if dim(V') = 2n is even

and choose a corresponding basis V = (v; | i € Z) C V ordered by <. For any
integer m € Z, let sgn(m) = 1if m > 0 and sgn(m) = —1 if m < 0. Let € € {0,1}
be such that B(v,w) = (=1)*B(w,v) for all v,w € V. Then we assume that
B(vi,v;) = sgn(i) -9, —; foralli,j € Z

Tori and normalisers

7.2. Let G = GL(V | B). Via our choice of basis V, we will interchangeably
describe elements of GL(V) either as linear maps or matrices. We will denote by
T < B < G° the subgroups of diagonal and upper triangular matrices. For ¢ € 7,
we let & : F* — GL(V) be the homomorphism defined such that &;(¢)v; = (%iv;
for any ¢ € F* and j € Z. We have T = Ty x --- x T,,, where T; is the image of
d; : F* — T defined by setting d;(¢) = &;(¢)&_;(¢1).

Denote by &7 the symmetric group on Z. Let W,, < &z be the subgroup
generated by S = {s1,...,8,-1,5n}, where s, = (4,4 + 1)(—i,—i — 1) for 1 < i <
n—1 and s, = (n,—n). The pair (W,,S) is a Coxeter system of type B,. We
define elements

® Ly =(Mm,—Mm)=5m * Sp—18nSn—1-* Sm if 1< m<n,
o Uyp=(m,—m)(n,—n)=5m " Sn—2(SnSn—15nSn—1)Sn—2 " Sm if I<m<n.

The subgroup W, < W, generated by S’ = {s1,...,8n—1,8n8n—15,} is a Coxeter
group of type D,,. We have a further subgroup W) < W), of type B,,_1, generated
by {s1,...,5n_2,Un_1}. When n = 1, we have W/ = W/, is trivial. Let S =
SU {so}, where sop = t;. Assume 0 < a < n and let b = n — a. Then we have
a reflection subgroup W, x W, < W, of type B, x B, with Coxeter generators
S\ {sa}-

7.3. Recall that for any ¢ € Sz, we have a corresponding transformation
po € GL(V) such that p,(v;) = ve(;) for all i € Z. The groups W = Ng(T)/T
and W° = Ngo(T)/T denote the Weyl groups of G and G°. For each s € S, we
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define an element n, € Ng(T) as follows. We let ng, := p,, for any 1 < i <n and

N, = 4 ps, eo(—1) if G =GO(V) and dim(V) is odd,
Ds., if G =GO(V) and dim(V) is even.

The map defined by n,T — s, for s € S, extends to a unique isomorphism W —
W,,. We will implicitly identify W and W,, in this way.

By Matsumoto’s Theorem [GP00, Thm. 1.2.2], we obtain a unique element n,, =
Ng, - Ng, € Na(T), where w = s1---sg, with s; € S, is a reduced expression for
w. For G = GO(V), the map w + n,, is a homomorphism W — Ng(T), i.e.,
the Weyl group lifts. When dim(V) is even and G = GO(V), the group W° is
mapped onto W

Subspace subgroups and conformal groups

7.4. Assume 0 < m < n is an integer and let Z; = {1,...,m,—m,...,—1} and
To=Z\Z;. We have Correspondlng subspaces V; C V spanned by {vr | k € Z;}
and tori S; = erI,;\{O} T}, with ¢ € {0,1}. The decomposition V =V; @V} is an
orthogonal decomposition of V' and we have a corresponding subgroup M; x My <
G, where M; = GL(V; | B). Note that the group L; = S; x M§ is a standard Levi
subgroup of G° with J C A. Identifying W; = Ny, (S;)/S; with a subgroup of
W =W, we have W1 x Wg = W,,, x W,,_,, is the subgroup of type B,, X B,_.
in 7.2. We recall the following well-known result.

Lemma 7.5. Assume L; = S; x M is a standard Levi subgroup as in 7.4 such
that 1 < m < n— 2. Then we have Nwo(J) = W, is a Weyl group of type By,
with generators

{{sl, ce oy Sm—1,Um}  when G = GO(V) and dim(V) is even,

{81,y 8m—1,tm} otherwise.

7.6. Now assume dim(V') is even. In this case, we let G = G-Z(GL(V)) be the
corresponding conformal group and similarly G° = G° - Z(GL(V)). The inclusion
G° - G°is a regular embedding, as in 3.3, and thc group T = T - Z(GL(V))

is a maximal torus of G°. We define a closed embedding z : F* — T by setting
z(() = 51(() “En(0). Writing Z for the image of z, we have T = T x Z. Moreover,

we have MO = Mo Z and 1\/[0 = MG - Z are also isomorphic to conformal groups,
and LJ =S x M° We note that for any 1 < k < n, we have

"2(0) = die(¢TH2(¢) and *z(¢) = di(¢T)dn(¢T)2(Q).

Furthermore, for []""_, d;(¢;) € T and 1 < k < n, we have

" ((ﬁdi(Ci)>Z(C)) di (¢, ¢ (gd Cz)
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Automorphisms and Frobenius endomorphisms

7.7. We want to define an analogue for algebraic groups of the group K(G) <
Aut(G) defined in 2.4. For this, we first consider the central automorphisms of 2.1
in the context of algebraic groups.

Let H be an affine algebraic group. If a € Hom(H,Z(H)) is a homomorphism
of algebraic groups then 7, : H — H defined by 7,(9) = ¢ - a(g) is also a
homomorphism of algebraic groups. Hence Cago(pr)(Inn(H)) consists of those 7,
that are invertible.

Denote by H, C H the set of unipotent elements and define O7 (H) = ((H°),) <
H° to be the subgroup generated by the unipotent elements of H°. We then define
a submonoid

K(H) = {¢ € Casorr) (Inn(H)) | ¢lop 11y = Idow (1)} < Aso(H).

Remark 7.8. The group O (H) is an Aso(H)-stable closed connected subgroup of
H. If H® is reductive then OF (H) = [H°, H°] is the commutator subgroup of H°.

7.9. We now wish to describe the monoids Aso(G) and Aso(G°) where G =
GL(V | B) as above. The description of Aso(G®) is well known and can be found
in [GLS98, Thm. 1.15.7]. We will describe a precise generating set for Aso(G°)
below.

Here we focus on Aso(G) by considering the natural restriction map Aut; (G) —
Auty(G®). Suppose ¢ € Aut1(QG) is in the kernel of this restriction map. Following
the proof of Proposition 2.6 we see that 9z = ¢(9z) = @z for all z € G° and
g € G because G° is normal in G. Hence g '¢(g9) € Cq(G®°). The following
shows that ¢ must be a central automorphism.

Lemma 7.10. We have Ca(G°) = Z(G) and Z(G) < G° if and only if dim(V)

15 even.

Proof. Tt is well known that Z(G) = {£Idy } which implies the second statement
and this yields the first statement when dim(V) is odd because G = G° x Z(G)
in this case. Hence we can assume dim (V') is even and G = GO(V).

As is well known, the natural homomorphism G/G° — Out(G®°) to the outer
automorphism group, given by ¢G° — t4|ge Inn(G®), is injective. This implies
that Ca(G°) = Cge(G°) = Z(G°) = Z(G). O

Remark 7.11. This implies the natural map Inn(G) — Aut(G°) given by ¢y —
tglge is injective. Hence, the normal subgroup {¢; | ¢ € G°} < Inn(G) is
isomorphic to Inn(G°) so we will again denote this, unambiguously, by Inn(G°®).

7.12. If ¢ = p* is a power of p with @ > 1 an integer, then we denote
by Fy; : V — V the unique semi-linear map fixing the basis V and satisfying
Fy(av) = a%v for all @ € F. Precomposing with F}, gives a Frobenius endomorphism
F, : GL(V) — GL(V). We also denote by F, the restriction of this map to any
F,4-stable subgroup.

Assume G = GO(V) and dim(V) is even. We define vy = ¢, € Inn(G)
to be the inner automorphism induced by the representative n, € Ng(T) of
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w = s, € W chosen in 7.3. By Lemma 7.10, we have Inn(G) = Inn(G°) x {y1).
We will also denote the restriction v;|ge € Aso(G®) by 7.

Recall that [G, G] = [G°,G°] = G°. We define 75 = 7, € Aso(G), where a :
G — Z(Q) is the unique nontrivial homomorphism, so that y2(g) = g- a(g) for all
g € G. As dim(V) is even we have Z(G) < G° = Ker(a) so K(G) = (72)mon = Co
is a group. To have a consistent notation we let 73 = 7 be the identity if either
G = Sp(V) or dim(V) is odd. In these cases, we have K(G) = (v2) is trivial.
Now let I'(G) = (Fp)mon X {71) < Aso(G) be the submonoid generated be these
elements. The image of the map I'(G) — Aso(G®°) given by restriction will be
denoted by T'(G°).

Lemma 7.13. If G = GL(V | B) is a classical group then the following hold:

(i) Aso(G°) =Inn(G°) x I'(G°);
(ii) Aso(G) = K(G) x (Inn(G°) x I'(GQ)).

Proof. (i). By [GLS98, Thm.1.15.7] we have Aut;(G°) = Inn(G®°) X ((Fp)grp X
(71)erp) and from this the statement is clear.

(ii). The restriction map Aut;(G) — Auty(G°) is visibly surjective and from
the discussion in 7.9 we see that the kernel consists of central automorphisms.
Hence Auty(G) = K(G)(Inn(G)(Fp)arp) and K(G) N Inn(G)(Fp)grp is trivial
because the restriction map gives an isomorphism Inn(G)(Fp)gp — Auti(G°)
as is easily seen. The statement is an easy consequence of this. [

Remark 7.14. Here the semidirect products are semidirect products of monoids.
Those not familiar with this setup can simply replace Aso(G) with Aut;(G) and
I'(G) by the subgroup generated by I'(G) to have a semidirect product of groups.

Remark 7.15. Note that we have
IK(G)| = [Hom(G/G°Z(G),Z(G))| = |G/G°Z(G)|

and this can be calculated from Lemma 7.10.

7.16. For ¢ = p® with a > 1, we let T'y(G) = Fy(11) C I'(G) and T';(G°) =
Fy(m1) CT(G"®) be the coset defined by F,. We say F' € I'y(G) is split if F' = F,
and twisted if F'= Fyvy,.

It follows from Lemma 7.13 that, up to conjugation by elements of G°, any
Frobenius endomorphism endowing G with an F,-rational structure is contained
in F,I'(G)K(G). To our knowledge, the Frobenius endomorphisms Fy, of G, with
F € T;(G), are not particularly well studied or discussed in the literature.

It seems that the groups G¥ and G2 can be subtly different. For instance,
whilst G is a split extension of G°F = G°F72 this does not seem to always be
the case for G2, Discussing this would lead us too far away from our main goal,
so we will abstain from further discussion of the endomorphisms in I'y(G)~2. For
now we need the following.

Lemma 7.17. If F € T,(G) then Cq (O (GF)) = Z(G).



A. A. SCHAEFFER FRY, J. TAYLOR

Proof. Tt suffices to show that Cq (0P (GF)) < Cqo (O (GF)) - Z(G) because,
as in the proof of Proposition 2.6, the argument in [Bon06, Lem. 6.1] shows that
Cag- (0P (GF)) = Z(G®°) = Z(G). Thus we can assume G = GO(V). If dim(V) is
odd then this is clear as G = G°Z(G).

So suppose dim (V') is even. As in the proof of Lemma 7.10, it is enough to show
that 71 |op (GF) is not inner. However, this follows from the explicit description of

Out(O? (GF)) given in [GLS98, Thm. 2.5.12] (see also the detailed discussion in
[GLS98, §2.7]). Note that when F' = Fy7 is twisted then fyl|opr(Gp) = Fq\opr(GF).
(]

Remark 7.18. An alternative argument is to show that G NG does not contain
all p-elements for which one can use a count due to Steinberg [DM20, Cor. 7.4.6].

7.19. Let us recall our notation Aso(G, F) and Inn(G, F') introduced in 2.4.
The natural map Inn(G, F) — Aut(G°"), given by restriction, is injective because
by Lemma 7.17 Cg(G°F) < Cg(O? (GF)) = Z(GF) by [Bon06, Lem. 6.1]. So we
can identify the image of Ciyn(ge)(F) in Aut(G*) with Inn(G°, F).

Now let F' € I'y(G) and denote by I'(G, F') the image of Cp(g)(F') = I'(G) in
Aut(GF), similarly by I'(G°, F) the image of Cr(ge)(F) = F(G") in Aut(GOF)
under the natural restriction maps. We also denote by K(G, F) < Aut(GF) the
image of Ck(q)(F) = K(G) under this restriction map.

Lemma 7.20. If F € T ((G) then the following hold:
(i) Aso(G°,F) =Inn(G°, F) xT'(G°, F),
(i) Aso(G,F)=K(G, F) x (Inn(G°, F) xT'(G, F)),
(iii) Aut(GF)gor = K(GF) x (Inn(G°, F) x I'(G, F)),
where Aut(GT)gor is the stabiliser of G,

Proof. (i) and (ii) are simple consequences of Lemma 7.13. We prove (iii) by con-
sidering the natural restriction map Aut(G)gor — Aut(G°F). By Lemma 7.17
we see that the kernel of this map is given by central automorphisms. Hence, the
kernel is contained in K(GT"). After (i), (ii), and Proposition 2.6, to show that the
map is surjective it suffices to show that the image of K(G™) is K(G°F).

If G = G° = Sp(V) then G is perfect so K(G) = K(G°F) is trivial.
Hence we can assume that G = GO(V). To obtain the statement, we follow
the discussion in Remark 2.3. Note that E2(GF) = OF (GF) = [GF, G| because
V = G°F /O (GF) has a complement U < GF/OP (GF). Indeed, if dim(V)
is even then we may take U = (n,OF (GF))/0? (GF), where n, € Ngr(T) is
the element of order 2 defined in 7.12, and if dim(V') is odd then we may take
U = Z(GF)0r' (GF)/0F' (GF).

If o € Hom(V, Z(GT)) then inflating we obtain an element of Hom(G*, Z(G1)).
From this it follows that K(G¥") maps onto K(G°") via the restriction map.

The above argument shows that the restriction map Aut(G¥)gor — Aut(G°F)
has a kernel complemented in K(G"). From this we easily obtain a complement
to the kernel in Aut(G¥)gor and (iii) follows. [

Remark 7.21. With some effort, by studying the distribution of involutions across
the cosets of OP (G*") in G, it seems possible to show that G°% is characteristic
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in G¥. In other words, Aut(G*)gor = Aut(G"). However, as we will not need
this here we do not attempt a proof.

Remark 7.22. From the discussion in Remark 2.3 the size of K(G!) may be
expressed as

[K(G")| = [Hom(G" /O (G")Z(G"), 2(G"))| = |G" /O (G")Z(GF)|

which can be calculated explicitly. If G = Sp(V') this is 1 and if dim(V') is odd then
this is 2. If G = GO(V) and dim(V) is even then this is either 2 or 4 depending
on whether Z(GF) < 0P (GF). An explicit criterion for this to occur is given in
Lemma 15.2.

Dual groups and dual automorphisms

7.23. Let us now assume that G = SO(V) is a special orthogonal group. We
let V* C V be the subspace spanned by V \ {vg}, with V as in (7.1). The dual
of G is then the group SL(V* | B*) where B* is the form from 7.1 satisfying
B*(v,w) = (—1)3™V)B*(w,v) for all v,w € V*. In particular, G = G* if dim(V)
is even. Recalling from [Tay18, 5.3] the notion of duality between isogenies, we
have the following.

Lemma 7.24. Assume G = SO(V) is a special orthogonal group and let * :
I'(G) — I'(G*) be the unique monoid isomorphism satisfying Fjy = F), and vy =
1. Then for any o € T'(G), we have o* € T'(G*) is an asogeny dual to o.

8. Action of automorphisms on unipotent characters

From now on, we assume that G is either GL(V | B) or SL(V |
B) and F € T';(G) is a Frobenius endomorphism, with ¢ a
power of p # 2, as in Section 7.

We recall that the set £(GY,1) C Irr(G!) of unipotent characters consists
of those irreducible characters x € Irr(GY) whose restriction to G contains a
unipotent character.

Lemma 8.1. Assume G = GO(V) is an orthogonal group with dim(V') > 5. If
x € E(GF 1) is a unipotent character, then x7 = x for any o € Aut(GT).

Proof. Let x € £(GT,1) be a unipotent character and let ¢; € £(G°F 1) be
an irreducible constituent of the restriction Resgfp (x)- As Z(G)F = Z(G°)F <
G°F, it follows that wy, = wy,, which is trivial by Proposition 2.7(i). Thus if

€ (12)K(GT), then the statement holds by (ii) of Lemma 2.2.

As 7y is inner, it suffices to consider the case where o € Inn(G°, F)(F,). We
have that Resgfp (x) is either irreducible or the sum of two distinct irreducible
constituents. If Resng (x) = ¥1 + o with ¥ # 1y irreducible, then y =
Indgfp (¢1). Tt is well known that 7 = 11, so x° = x in this case. Now consider
the case where Resgfp (x) = 91 is irreducible. Then Indng (¢1) = x + Ox, where
6 is the inflation of the nontrivial character of G¥'/G°F. Since o fixes 6, it suffices
to show that one character lying over ¥ := 1), is fixed by o.
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Denote by S the quotient group OF' (GF)/Z(OP' (GF')), which is a finite simple
group. Recall that the unipotent character v restricts irreducibly to Op'(GF )
and has Z(0OP' (GF)) in its kernel. This follows from [DM20, Prop. 11.3.8] because
0" (GF) is the image of GE under a simply connected covering GbC — G and
Z(0 (GT)) < Z(GT). Let 5 € Trr(S) be the deflation of Resop (GF)W)) to S.
If H < Aut(S) is the stabiliser of 7, then by [Mal08, Thm.2.4] there exists a
character 7j € Irr(H) extending 7. If o : G — Aut(S) is the natural map, then
(a(GT),0) < H. Then inflating the restriction Resf(Gp)(ﬁ) yields a o-invariant

irreducible character of G extending . O

8.2. We record here an elementary observation that will be used in the next
proof and later sections. For i € {1,2}, let G; be a finite group with a subgroup
N; < G; of index two. Let G = G1 X Go and N = N; X Ny and assume we have
a subgroup N < G° < G. For any subgroup H < G, we set H = HN/N, so
G =G xGy=Cyx C2 is a Klein four group and G° < G.

Let x € Irr(G°) be an irreducible character and let x; € Irr(NV;) be such that
x1 ®x2 € Irr(N) is a constituent of the restriction Res§ (y). The group G acts
naturally by conjugation on Irr(N) and

GX1X2 = (Gl))m X (GQ)Xz

If G° is the diagonal embedding of Cy into G then
e cither GXl.Xz
e or GY iy, =land x = md§ (x1 ® x2)-

For the following, we recall also that the group (G/G°)V of linear characters of
G/G* also acts naturally on Irr(G) by tensoring with the inflation.

# 1 and x = Res&. (Y1 ®X2) with X; € Irr(G;) extending x;

Proposition 8.3. Assume G = GO(V) and s € G° is a semisimple element
such that s>=1. We identify Age(s)F with Cge(s)¥/Cg(s)F. Let 41 € Aso(G, F)
be as in 7.12 and assume v1(s) = s. If x € E(Cqo(s)F, 1) is a unipotent character,
then the following hold:

(i) X =x,

(ii) if s # 1 then X\ = x if and only if (Age(s))Y # (Aae(s)F)Y.
Proof. We have V. = Vi & V_1, where V, is the (-eigenspace of s. Moreover,
Cg(s) = GO(V1) x GO(V_1). The quotient Ag(s)f" = Cq(s)F/Cq(s)F is a Klein
four group and Ago(s)f = Cgo(s)F/Cq(s)F is the diagonally embedded sub-

group. Let y1Xx2 € £(Cg(s)F, 1) be an irreducible constituent of ResCG? (); (x)-

By the discussion in 8.2, either x is the restriction of a character of Cg(s)?', which
is Fp-fixed by Lemma 8.1, or is the induction of x1 Xl x2, which is known to be Fj-
fixed. Hence, x is F,-fixed, giving (i). Statement (ii) follows from the description
above. O

9. Power maps and classical groups

9.1. Recall that a partition of an integer IV > 0 is a weakly decreasing sequence
of positive integers p = (u1, 2, . .. ) such that EleN i = N. For any m € N, we
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set () == [{i € N | u; = m}|. If € € {0,1}, we denote by P.(N) the set of all
partitions g of N such that r,,(u) = 0 (mod 2) whenever m = € (mod 2). For
u € P(N), we set

a(p,e) :=={meN|rp(p) #0and m=1+¢€ (mod 2)}|,
51, ) {1 if N is even and 7, () is odd for some m =1+¢€ (mod 2),
[t €) i=

0 otherwise.

Let G = GL(V | B) with N = dim(V) > 0 and € € {0, 1} such that B(v,w) =
(=1)°B(w,v) for all v,w € V. We define ¢(G) € {0,1} so that |G/G°| = 2¢(G),
We have a bijection Pc(N) — Cluni(G), denoted by p — O, such that p gives
the sizes of the Jordan blocks in the Jordan normal form of any u € O, in its
natural action on V. Note that any unipotent class O, € Clun;(G) is contained in
G° but may not be a single G°-conjugacy class. Recall that a unipotent element
u € G° is said to be G°-distinguished if any torus of Cg (u) = C&. (u) is contained
in Z°(G°) = Z°(G). Equivalently Cg (u) is a unipotent group as Z°(G) is trivial
for our chosen G.

Lemma 9.2. Let m : G° — G,q be an adjoint quotient of G°. Then © defines
a bijection Clyni(G°) — Cluni(Gaq) between the sets of unipotent classes. If
u € O, then Ag(u), Age(u), and Ag,,(7(u)) are all elementary abelian 2-

groups whose respective orders are the mazimum of 1 and: 20(e)  20(me)=c(G)
and 2¢(,6)—c(G)—=8(p,e€)

Proof. This follows easily from [LS12, Thm. 3.1], see also [LS12, §3.3.5] and [Car93,
§13.1. O

Lemma 9.3. If u € G is a G°-distinguished unipotent element, then the subset
A C Cg(u) of all semisimple elements is a subgroup and Cg(u) = Cg(u) x A.
Moreover, the group R = Cg(A) is reductive, u € R is regular unipotent, and

A=7(R).

Proof. Let € € {0,1} be such that B(v,w) = (—1)*B(w,v) for all v,w € V. Let
w = (n1,...,nt) € P(N) be a partition such that ny > --- > n; and n; =
14 € (mod 2) for all 1 < ¢ < t. Correspondingly, we can choose an orthogonal
decomposition Vi @ ---@®V; of V such that dim(V;) = n;. We also have a subgroup
R =R; x - x Ry of G where R; = GL(V; | B) and we identify B with its
restriction to V.

Fix a regular unipotent element v € R. Then v € O, is G°-distinguished
and all distinguished unipotent elements arise in this way (see [LS12, Prop. 3.5]).
Recall that R; = GO(V;), not SO(V;), when e = 0. We have Z(R) is an elementary
abelian 2-group and Cg(u) = Cg(u) x Z(R). Indeed, Cg (u) N Z(R) is trivial, as
C%(u) is unipotent and |Z(R)| = 2! = 2949 = |Ag(u)|. Finally, it is clear that
R=Cg(A) and A=7(R). O

9.4. We now assume that v € G°F is any unipotent element. Fix an F-
stable maximal torus S < Cg(u) and consider the subgroup M = Cg(S), which
is necessarily F'-stable. We have an isomorphism

M = GL(U) x - - x GL(Uy) x GL(Vy | B) (9.1)
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for some decompositions V =V, & Vy, asin 7.4, and V; = (U1 & U]) & --- &
(Uq @ U}), where U; and U/ are totally isotropic subspaces. The element u is
MPe°-distinguished, where M° = Cgo(S) is an F-stable Levi subgroup of G°. We
now show that u is regular in a reductive subgroup of G. This idea also appears
in work of Testerman [Tes95, §3].

Proposition 9.5. Assume u € G is a unipotent element and S < Cg(u) is an
F-stable mazimal torus. Let M = Cg(S) and denote by A C Cm(u) the subset
of semisimple elements. Then w is reqular unipotent in the F-stable reductive
subgroup R = Cg(A) and A = Z(R). Moreover, the natural map Z(R) — Ar(u)
is surjective and the natural map Ar(u) — Ag(u) is injective.

Proof. Note that if H = GL(V), then a unipotent element v € H is distinguished
if and only if it is regular. For such an element, Z(H) < Cg(v) gives the subset of
semisimple elements, which is clearly a subgroup. After Lemma 9.3 and (9.1), it
follows immediately that A = Z(R) is a subgroup, R = Cg(A) is reductive, and
u € R is regular.

The natural maps Z(R)/Z°(R) — Ar(u) — Am(u) are isomorphisms, which
follows from Lemma 9.3. Now, as M = Cqg(S) is the centralizer of a torus, a
standard argument shows that the map Ap(u) — Ag(u) is injective, see [Spa85,
1.4]. Hence Agr(u) — Ag(u) is injective. O

Corollary 9.6. If G = GO(V), then any unipotent element u € G°F is rational
in G°F,
Proof. The group R° is a direct product of general linear and special orthogonal

groups. As u € R° is a regular element, it follows from Lemma 5.8 that u and u*
are conjugate in R°F" and hence also in G°¥. [

Corollary 9.7. Assume G = Sp(V) with dim(V) = 2n. We have R = R° is
a direct product of symplectic and general linear groups. If g € R is such that
9u = u¥, then the map T of Lemma 5.2 is given by 7([Cq(u)a]) = [Cq(v)aZL(g)].
In particular, if u € O,, with p € P1(2n), then u is GF'-conjugate to u* if and only
if one of the following hold:

(1) rom(p) is even for all 1 < m < n,

(ii) k& (mod p) € Fy is a square.

Proof. Tt is known that there exists an F-stable torus S < G such that Cg(u) =
SCg (u) (see [BDT20, Prop.9.3]). So the first statement follows from Lemma 5.2.
Deconstructing the isomorphisms in (9.1) and Lemma 9.3 we see that R = R; X
X Ry xRgg1 X+ X Rgqe is a direct product where R; = GL(U;), for 1 < i < d,
and Rg4; =2 Sp(V;), for 1 < i < ¢. In particular, we have dim(V;) > --- > dim(V})
are all even. As these spaces have distinct dimensions, it follows that the subgroups
Riyt1,...,Raqt are F-stable.

We write v = ujug - - - ug4¢ with u; € R; a regular unipotent element. It is
clear that u acts on V as a direct sum of Jordan blocks with sizes

(dim(Uy), dim(Uy), . .., dim(Uy), dim(Uy), dim(V7), . .., dim(V4)).

From this description, we see that Ag(u) is an elementary abelian 2-group of order
2¢, where ¢ > 0 is the number of even numbers occurring an odd number of times
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in p. If (i) holds then t = 0 so Ar(u) is trivial and it follows that v and u* are
conjugate in R by Proposition 5.4.

Now suppose (i) does not hold, or equivalently ¢ > 0. By [Tay13, Lem. 2.2] and
the proof of [Tay13, Prop.2.4] we see that F' acts trivially on Ag(u). Thus the
natural map H!(F, Ar(u)) = H'(F, Ag(u)) is simply identified with the natural
inclusion map Agr(u) — Ag(u). So u and u* are conjugate in G¥" if and only if
they are conjugate in R¥". This happens if and only if (i) holds by Lemma 5.8.
O

10. Cuspidal characters of orthogonal groups

10.1. In this section, we will give analogues of the calculations in [Tay18, §14]
for the special orthogonal groups. For this, we introduce a little notation. We
refer the reader to [Tay18] for more details. For any integers m,d € Ny, we let

AGGm) = {1 ifazqandm¢o,
0 otherwise.
Given integers r,n € Ng and d € {0,1}, we will denote by X} ;= X:{,?j the sets of
symbols defined in [LS85, §1] (see [Tayl8, 13.4]).
For any n, we let TX0 ; C XU ; be the set of symbols [ §™ ] such that
Sty ai > Y1, b For compatibility, we also let X9 | =X |. If e € N, then we
will need the following special symbols

0 1 e—1 e
570
Set = [1 2 e ] € " Xolern).1
1 2 e
Se,O - |:O 1 e — 1:| c TX8270.

Recall we have a bijection X9, — Irr(W,) and an injection TXY ; — Irr(W})),
defined as in [Lus84, 4.5], where W/ < W,, are as in 7.2.

Let G = SO(V) be a special orthogonal group with dim(V) = 2n + § and
5 € {0,1}. We have a regular embedding ¢ : G — G, where G = G - Z(GL(V))
is the corresponding conformal group as in 7.6. We denote by G* a dual group
of G and by t* : G* = G* a surjective homomorphism dual to the embedding.
The dual group G* is as in 7.23. By the classification of quasi-isolated semisimple
elements, a semisimple element s € G* is quasi-isolated if and only if s2 = 1
(see [Bon05, Prop.4.11, Exmp. 4.10]). If VI, (s) is the (£1)-eigenspace for s, then
dim(V}(s)) is even and Cg.(s) = SL(Vy*(s) | B*) x SL(V*,(s) | B*).

Now, if s € G*F" is F*-fixed and § € G*F" is such that *(5) = s, then (*
restricts to a surjective homomorphism Cg, (3)7" — Cg.(s)’". Inflating through

¢* we identify the unipotent characters of these groups. Conjugating s into T*, we
identify the Weyl group W*(s) of Cg. (5) with a subgroup of W*. The following
may be extracted from the work of Lusztig in a way entirely analogous to that of
[Tay18, Lem. 14.3], so we omit the details. Here ng, for ¥ € Irr(GF'), is defined as
in [Tay18, 14.1]
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Lemma 10.2 (Lusztig). Assume G = SO(V) and let dim(V) = 2n + 0 with
§€{0,1}. Let 5 € G*F" be a semisimple element whose image s = 1*(5) € G*F
is quasi-isolated with 2a = dim(Vy*(s)) and 2b = dim(V*,(s)). If X € E(GF,3) is
a cuspidal character, then the following hold:

(i) X is the unique cuspidal character in E(GF,3) and a = e(e +6) and b =
f(f +0), for some nonnegative integers e and f, and either e+ > 2 or
fra=2, B

(ii) X is contained in the family £(GT,3,€) C £(GT,3), where Irr(W*(3) | €)
contains the special character S. s XSy € TX&& X TXgé,

(111) ng = 26+f7A(6,e)7A(5,f).

10.3. Let G,q be the adjoint group of the same type as G, and let 7 : G > Gog
be an adjoint quotient. Then ot : G — Gaq is also an adjoint quotient of G. The
maps mo¢ and 7 define bijections Clyni(G) — Cluni(Gad) < Cluni(G) between the
unipotent classes of these groups (see [Car93, Prop.5.1.1]). Hence we can label
the unipotent classes as in Section 9. Moreover, we have |Ag (u)| = [Ag,, (7(u))|

by Lemma 9.2.
Proposition 10.4. Assume G = SO(V) and s € G*F is a semisimple element
whose image s = 1*(3) € G* is quasi-isolated. If X € E(GF,3) is a cuspidal
1rreducible character and u € (’);f{ is a representative of the wave front set, then we
have ng = |Ag (u)].
Proof. Let dim(V') = 2n+0 with ¢ € {0,1}. We may identify £ = S, s XISy s with
an irreducible character of W*(s). According to [Lus09b, 4.5(a), 6.3(b)], we have
jvwv*(s)(E) = S.5DSy.s € XY 5 with the j-induction defined in [GP00, §5.2] and the
addition of symbols defined as in [LS85] (see [Tay18, 13.6]). If Af ; is the unique
element of X3 5 then we get a symbol Spr(jvwvj(s)(E)) =85 ®Srs DAy ; €X2 5.
From this symbol, we may extract the partition of a unipotent class, as in [GMOO,
§2], which will be exactly the class O;‘?. By symmetry, it suffices to treat the case
where 0 <e< f. Weset k=f—e>0. B

Assume first that § = 1. Then the symbol Spr( ]‘%]: (S)(E)) is exactly the same

as that written in the first case occurring in the proof of [Tay18, Prop. 14.4]. The
unipotent class corresponding to this symbol is parameterised by the partition
A =2u+ 1, where

p=k+2e... k+1kk—1k—1,...,1,1,0,0).

As )\ contains k+ (2e +1) = e+ f + 1 distinct odd numbers, we have ng = 267/ =
|Ag(uw)| by Lemmas 10.2 and 9.2.

Now assume ¢ = 0. We have that Spr( 3%": (E)) is the symbol

(s)

0 1 k—1 k k+1 kte—1
1 4 -+ 3k—-2 3k+2 3k+6 -+ 3k+4e—-2
0 3 3k—3 3k 3k+4 - 3k+4e—4 |’
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The unipotent class corresponding to this symbol is parameterised by the partition
A =2u+ 1, where

p=02k+4e—1,... k+1,kk—1k—1,...,1,1,0,0).

As X contains k 4 2e = e + f distinct odd numbers and at least one odd number
occurs an odd number times, we have ng = 267/ =20.)=20.0) = |A~ (v)|. O

10.5. Recall from 7.12 that we have defined a subgroup I'(G, F) < Aut(GF)
generated by graph, field, and central automorphisms. We denote by 4 (G, F) the
direct product I'(G, F) x G, which acts on Irr(G¥") through the actions of Aut(G*)
and G.

Theorem 10.6. Assume G = SO(V) and s € G*F" is quasi-isolated. Then for
any o € Aso(G, F), we have E(GF,5)7 = E(GF,s). Moreover, any cuspidal
character x € E(GF, s) satisfies (G, F)y = 4(G, F).

Proof. That the series £(GY', s) is o-stable is shown as in [Tay18, Thm. 14.6], but
with the additional consideration of [SFT18, Lem.3.4] in the case that o € G.
Let 5 € G* be a semisimple element such that ¢(3) = s and let ¥ € £(GF,3) be
a character covering y. Recall from Lemma 10.2 that there is a unique cuspidal

. ~F . (N;,F ~ .
character in £(G",35). The constituents of Resgr(X) are the cuspidal characters

in £(GF,s), so Resgi(y) is o-stable. If x extends to éF, then it is the unique
cuspidal character contained in £(G¥', s) so must be 4(G, F)-invariant.

Assume now that y does not extend to GF. Then we must have that dim(V) is
even and Resgi (X) = x1+x2 with x1 # xo distinct irreducible characters. (Recall
that G¥/Z(GF)GF has size 2.) As x € {x1, X2}, we must show that x7 = y;.

Let w € O}. Using Lemma 9.2, and the remarks in 10.3, we can compute
|Ag(u)| and |[Ag(u)|. It follows from the exact sequence in [Tayl3, (2.1)] that
Z(G) embeds in Ag(u). Arguing exactly as in the proof of [Tayl3, Prop.5.4],
we may find two unipotent elements uq,us € O;F such that (I'y,, x;) = 0;;. We
claim that the character Ty, is 4(G, F)-invariant. From this it follows that x; is
4 (G, F)-invariant.

Firstly, we see that I',, is G-invariant by Corollary 9.6 and [SFT18, Prop. 4.10].
The action of Aso(G, F') on Iy, is described by [Tayl8, Prop.11.10]. The same
argument as used in [Tay18, Lem. 13.2] shows that I, is Fj-invariant. We now just
need to show that T, is GO(V)-invariant. By Lemma 9.2, and the description
of O = (9>*~< given in the proof of Proposition 10.4, we have Cqo(yyr(u;) is not
contained in Cgr(u;). As GI" has index 2 in GO(V)¥, we have the G''-class of
u; is GO(V)F-invariant. [0

10.7. Let G = GO(V) be an orthogonal group. We let 4(G, F) = T'(G, F) x
G as above. Recall that a character y € Irr(GF) is said to be cuspidal if the

restriction Resgfp (x) contains a cuspidal irreducible character of G°F. In the
following sections, we will need to have some control over cuspidal characters
of GO(V) to construct certain extensions. Using the characters constructed in
Section 6, we get the following.
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Theorem 10.8. Assume G = GO(V). Let s € G°*I' be a quasi-isolated semi-
simple element. If x € Irr(GF) is a cuspidal character lying over x° € £(G°F, s)
with s* =1, then x is (G, F)-invariant.

Proof. By Proposition 10.6, the character x° is ¥(G°, F)-invariant so extends to
GF'. Hence Y is one such extension. All other extensions are of the form 6y, where
6 is the inflation of an irreducible character of G /G°¥". Hence, it suffices to show
that just one of the two extensions of x° is (G, F)-invariant.

Now, we may find a GGGC T, of G°F, with u € (’);‘CF as in the proof of
Proposition 10.6, such that (I'y,x°) = 1. If Cq(u)f < Cg(u)f is a Sylow 2-
subgroup, then Cg(u)} is not contained in G°F, so by Lemma 6.4 the character
f%g of G extends I',,. It must contain only one of the two possible extensions
of x°. Moreover, arguing as in the proof of Proposition 10.6, it follows from
Theorem 6.6 and Proposition 6.7 that T',, 2 is 4 (G, F')-invariant. Hence, the unique
extension of x° that it contains must also be 4(G, F')-invariant. O

11. Automorphisms and quasi-isolated series

11.1. Recall the notation for cuspidal pairs and Harish-Chandra series from
Section 3. If s € Go*f" is a semisimple element, then we let Cusp,(G°, F) C
Cusp(G®, F') be the set of cuspidal pairs (L, A) such that £(G°F, L, \) C £(G°F, s)
(see [Bon06, Thm.11.10]). Then we have

E(G°F,5) = || £(G°F,L, ),
(L,A\)€Cusp,(G°,F)/WF

where the pairs are taken up to the natural action of W by conjugation. In the
following sections, as in [Tay18, §15], we will study the actions of Aut(G") and
G on the Harish-Chandra series above. The proof of the following is identical to
that of [Tay18, Lem. 15.4].

Lemma 11.2. Let G = GL(V | B). Assume s € G*F" is a semisimple element
with s2 =1 and let (L, \) € Cusp,(G°, F) be a cuspidal pair. Then L = Z°(L) x
Lger and there exists an orthogonal decomposition V.= V1 ®Vy as in 7.4 such that
the following hold:

(i) Laer = MY and Z°(L) = S1 < M3 is a mazimally split torus of MY,
(i) A = MR with A, € Irr(ST), ¢ € EMSF, 50) a cuspidal character, s3 = 1,
and \2 = 1.

11.3. Now assume (L,\) € Cusp,(G°, F) is as in Lemma 11.2. Using the
notation of Section 7, we let 7 = py,p:, € Ngo(T). An argument with Weyl
groups along the lines of that in [Tay18, 15.6] yields that

NGO (L) = (NM<1> (Sl) X M8)<T> < Ng(L) = N]\/[1 (Sl) X Mo.

With this in place, we have the following analogue of [Tay18, 15.6].
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Lemma 11.4. Assume G, s, and (L, ), are as in Lemma 11.2. Then for any
extension A(A) € Irr(Ngor (L)) of A, the following hold:
(i) A(N\) extends to a character of the form A1(A1) X Ao(v0) in Ngr(L)y =
Npr (S1)a, x MY, where Ay(A\1) and Ao(x) are extensions of A1 and ¢ to
Npr (S1)a, and MY, respectively;
(ii)) A(N) is T'(G°, F)-invariant.

Proof. By [Tay18, Lem. 15.7] and its proof, we can assume G = GO(V'). To prove
part (i), it suffices to know that A; and ¢ extend, using 8.2. The group S; has a
I'(G°, F)-stable complement in Nyg, (S1) given by the permutation matrices. As
A1 is linear, it extends trivially to Nygr(S1)s, and this must be I'(G®, F)-invariant.
That 1) has an invariant extension is Theorem 10.8. [

Proof of Theorem A(ii). Let G = SO(V') and assume (L, \) € Cusp, (G, F) is as in
Lemma 11.2. After Lemma 11.4, we see that A has an F)-invariant extension A(A).
Since F), is the identity on W(\), the statement follows using [MS16, Thm. 4.6],
as in [Tayl8, Thm. 15.9]. O

12. Galois automorphisms: quasi-isolated series of SO(V)

12.1. Let G = GL(V | B) and let s € G°*F" be a quasi-isolated semisimple
element. We will adopt the notation and assumptions of Lemma 11.2 throughout
the whole of this section.

We now introduce some further notation to be used in this and the next section.
Slightly abusing notation, we let

W°(A)=Ngor(L)y/L¥ and W(\)=Ngr(L)y/L".
Let A, A1, and Ag be extension maps with respect to L <\Ngor (L), SfQNMf (S1),
and MS¥ < M{" respectively, such that
A = Resy®” (D), (A1 (M) B A0 (1))

Ngor (L)
as in Lemma 11.4. Then we similarly let W (A;) = NMf(Sl))\l/Sf and W°(\) =
NMgp(Sl)Al/Sf. We also have W(X) = W (A1) x ME /MZF, since the cuspidal
character v is invariant under M{". Let W°(\) = R()\) x C()\) and W°(\;) =
R(M\1) x C(\1) be decompositions as in 3.1.

For any o € G, note that A;(AY) and Aj(A1)? are extension of A and that
Ao(1)? and Ag(y)?) are extensions of ¢?. Then Gallagher’s Theorem [Isa06,
Cor. 6.17] implies that there exist linear characters 6y, » € Irr(W (1)) and 6y » €
Irr(M{') such that A;(A1)? = 6, 0A1(A]) and similarly Ag(¥)7 = 6y,0M0(17).
Moreover, for ), such that A(A)7 = 05 ,A(A?) as in Theorem 3.2, we have

5A,o = Res%?;) (5/\1,0 51%«7) .

Further, recall that the characters vy , and 51\’0 of Theorem 3.2 are characters of
C(N).

With this, we have mostly reduced ourselves to the case of principal series
characters and cuspidal characters. The rest of this section is devoted to complet-
ing the proof of Theorem A. We first consider the case of principal series characters.
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Proposition 12.2. Assume G = GO(V), F € T'((G), and X € Irr(TF) is a cha-
racter such that \> = 1. Then each member of £(G°F T, \) is invariant under G.

Proof. Note that in this case, A = A\;. As in 7.2, we have T = Ty X --- x T,,.
Each T; is F-stable, so TF = TY x ... x TE. Acting with W we can assume
that A = 1T1F ~~1T5 5T5+1 "'eTf_l X1 A, for some 0 < a < n, with
An € {lpr,epr}. If I is split, then we will also assume that A, = epr. Let
b=n—a.

We will assume that dim(V) is even, as the statement in the case that dim (V') is
odd follows from a simplified version of the argument. Note that W < W =/,
is the subgroup W/ of type B,,_1, as in 7.2, when F is twisted. In the notation of
7.4, we have W(X) < W1 x Wy is W, x W}, if F' is split and W, x W/, of type
B, x By—_1, if F'is twisted. Moreover, using Lemma 3.4 and 7.6, R(A) < W1 x W,
is the subgroup W, x W} of type D, x Dy if F is split and W, x W/, of type
Do X Bp_1, if F is twisted. In all cases, the group C()) is generated by uy, in the
notation of 7.2, which has order two and even length in W. Then for each o € G,
Lemma 3.5 implies 75, = 1, and we further have Ay (n,,)? = A(1) = 1 for any
extension Ay := A(X) of A to Ngor(T)x. Then Ay(n,,) € {+1} is fixed by o, and
hence 0} , = 1.

It remains to consider the values of characters of W°(\) and its corresponding
Hecke algebra. If F is split, then the sequence of subgroups R(A) < W°(A) < W(})
fits the setup of 8.2. In particular, each irreducible character of W°(\) either
extends to W(A) or is induced from R(\). Moreover, there is a corresponding
sequence of subalgebras of the Hecke algebra, and the same statement must be
true for the representations of these algebras, by [GP00, §10.4.2]. Using this and
the fact that R(\) and W () are products of type B and D groups, it follows that
all irreducible representations of the algebras corresponding to R(A) and W (X)
are defined over Q. This implies that all irreducible representations of the Hecke
algebra Endg(R$(\)) are also defined over Q. When F is twisted, a similar
argument applies. In particular, we have n = 7 = 1(°) for all 5 € Irr(W())) and
all ¢ € G. This completes the proof, using Theorem 3.2. [

Proof of Theorem A(i). Let G = GO(V) and o € G. As in the proof of Proposi-
tion 12.2, we will just treat the case dim(V') even. After Proposition 12.2, it suffices
to prove the statement for all members of a Harish-Chandra series £(G°F L, \)
with (L, \) € Cusp,(G, F') a cuspidal pair such that L # T. Recall the notation
introduced in 12.1. By Theorem 10.8, the character dy , is trivial. Moreover, it
follows from the proof of Proposition 12.2 that dy, , is trivial on C(A1). We let
m = dim(S;). AsL # T, we have 0 < m < n—2. Then we similarly see that dy, »
is trivial on n,, , which generates W (A1)/W® (A1), implying d} , must be trivial.

As in the case of Proposition 12.2, we may arrange that \; = 1Tf - X1pr
err, (- Xerr for some 0 < a < m. Let b = m — a. Identifying Ngor (L)/L¥
with the Coxeter group W,,, as in Lemma 7.5, we have that the group W°(\) is the
subgroup W, x W, of 7.2. Using the notation of 7.6, we let A=\ TZ € Irr(i?)
with @Z € Irr(MSF ) a character covering .

By Lemma 3.4, and the description of the action of u,, in 7.6, we see that
We(A) = R(\) = W, x W] < W°()) is of type B, x Dp. Hence C(N) is generated
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by u,, as in Lemma 7.5. The element u,, has even length in W, so 7, , is trivial
by Lemma 3.5. Finally, as W(\) is a product of type B Weyl groups, we have
n'?) =1 for all n € Irr(W(N)), so the result follows from Theorem 3.2. [

Proof of Theorem A(iil). We may again assume dim(V) is even and F = F, €
I'(G)is s split and 7 = 1 is as in 7.12. Let (L,\) € Cusp(G, F) be a cuspidal pair
and set L = L - Z(G) < G. Suppose A € Irr(LF) covers A. Identifying W( ) with
W(X) < W(A), we have by [Bon06, Thm. 13.9] that

ResSr (RE(V)7) = RE(N),qwon -
w(X)
for any 7j € Irr(W())). Here we extend the map Irr(W (X)) — Irr(GF), given by
n = RE(N),, linearly to all class functions.

Consider first the case where L = T. As above we arrange that A = 1pr X - -]
lrr 5T5+1 - egpr for some 1 < a < n. Note we assume s # +1. Using
the above identity, as well as [MS16, Thm. 4.6], the statement holds in this case.
Note, by Lusztig’s classification this series contains all the characters x € £(GF, s)
satisfying the condition Inn(G, F'),, = Inn(G, F'). Now assume L # T. The graph
automorphism ~v; induces the identity on W(\) so the statement again follows
from [MS16, Thm. 4.6]. O

13. Galois automorphisms: quasi-isolated series of Sp(V))

13.1. In this section, we consider the action of G on quasi-isolated series when
G = Sp(V). Asin 12.1, we need to understand the action of G on principal series
characters and cuspidal characters. The following treats the cuspidal case and
extends [Tay18, Thm. 14.6] to the setting of Galois automorphisms.

Theorem 13.2. Assume G = Sp(V) and s € G*I" s a quasi-isolated semisimple
element. Let o0 € G be a Galois automorphism, let k € Z be an integer coprime to
p such that €7 = €% for all pth roots of unity & € @X, and let w = (—=1)P=D/2_If
x € E(GF|5) is a cuspidal character, then we have x° = x if and only if one of
the following holds:

(i) s =1, so that x is unipotent,

(ii) & (mod p) € Fy is a square.
In particular, we have Q(x) = Q if s = 1 or q is square, and Q(x) = Q(,/wp)
otherwise.

Proof. Unipotent characters of classical groups are rational-valued, so we may
assume s # 1. Assume Of is the wave-front set of x, as in [Tay18, 14.1]. Let
dim(V) = 2n and let u € P1(2n) be the partition parameterising the unipotent
class Oy, under the bijection in 9.1. From the proof of [Tay18, Prop. 14.4], we see
that ro,, () = 1 for some 0 < m < n. Then arguments along the lines of those used
in Proposition 10.6, instead appealing to Corollary 9.7 and [SFT18, Prop. 4.10],
complete the proof of the first statement. The statement about character fields
follows from this, combined with (3.2) and Lemma 5.6, since if s # 1 and ¢ is not
square, x is fixed by o if and only if \/wp is. [
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Remark 13.3. This implies that the Harish-Chandra series in 11.1 can be permuted
nontrivially by the action of G, unlike the case of the action of Aut(G¥).

Lemma 13.4. Assume G = Sp(V). Let A € Irr(TY) be a nontrivial character
such that \2 =1 and let 0 € G. Then

(i) n=n" =0 for every n € Irr(W(N\));
(i) l(wg) is odd for 1 # wy € C(N);
(iii) if ¢ = 1 (mod 4), then any extension of A to Ngr(T)y is fized by o; in
particular, dy o = 0 . is trivial;
(iv) if ¢ = 3 (mod 4), then there is a o-invariant extension of X to Ngr(T)x
if and only if o fizes 4th roots of unity. In particular, 6y , = 51\70 is trivial
if and only if o fizes fourth roots of unity.

Proof. As in the proof of Proposition 12.2, we arrange that A = 1T1F - Xlpr
epr, B X err for some 0 < a < n. Note we have b = n — a > 0 because A
is assumed to be nontrivial. Taking m = a in 7.4, we have W(A\) = W1 x Wy is
a Weyl group of type B, x Bp. This gives (i). Letting A= AR 1gr € Irr('fF),
we see using Lemma 3.4 that R(\) = W(X) = W, x W} and C(\) = (sp), which
proves (ii).

Let ¢ := ng, € Ngr(T)x represent s, € C()), and let £ € T = FX be a
generator of the cyclic group. Since ¢ = d,,(—1) and —1 = £(4=1/2 we see that
for any extension Ay := A(\) of the linear character A to Ngr(T),, we have

Ax(©)® = Ax(e?) = epp (€197D/2) = eqr ()2 = (~1) V2, (13.1)

By combining this with Lemma 3.7, we see that if ¢ =1 (mod 4), then all values
of Ay are in {£1}, giving (iii). On the other hand, if ¢ = 3 (mod 4), then (13.1)
implies A must take primitive fourth roots of unity as values on ¢, proving (iv).
O

13.5. When A € Irr(T¥) is a nontrivial character satisfying A\? = 1, combining
Lemmas 13.4 and 3.5 yields a complete description of vy , and 0y », which can be
viewed as characters of C'(A) 2 Cy. In particular, note that these depend only on
q and o, and we obtain the following.

Corollary 13.6. Assume G = Sp(V'). Letw € {£1} be such that p=w (mod 4).
Let A € TIrr(TY) be a nontrivial character such that \2 = 1 and let 0 € G.
Identifying Irr(C(X)) with {£1}, the following hold:

(1) if q is a square, then vy 05,0 = 1;

(ii) if q is not a square, then yx ;0x,o = o, where o € {£1} is such that,/wp’ =

Q. /wp.

With this in place, we may now give a proof of Theorem B.

Proof of Theorem B. This follows immediately from Theorem 13.2, Lemma 13.4,
and Corollary 13.6, using Theorem 3.2 and Lemma 11.2. [
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14. Galois automorphisms relevant for
the McKay—Navarro conjecture 11

14.1. We now return to the setting of Section 4 and consider those Galois
automorphisms relevant to the McKay—Navarro conjecture in the context of symp-
lectic groups. Such explicit statements will be particularly useful in future work.
As in Section 4, we assume o € H is fixed and r > 0 is the integer such that

¢ = ¢ for all roots of unity ¢ € @X of order coprime to /.

Lemma 14.2. Assume G = Sp(V) and { # p are both odd. Let \ € Irr(TF) be a
nontrivial character such that A2 = 1. Identifying Irr(C(\)) with the group {£1},
we have:

(i) If q is square or r is even, then vy 00 = 1.

(i) If ¢ is not square and v is odd, then vy 0x o, = (%).

In particular, note that if £ | (¢ — 1), then yr,00x6 = 1 unless ¢ = ¢ = 3 (mod 4)
and r is odd, in which case Yx 50,0 = 0o = —1.

Proof. This follows from Lemma 4.3 and Corollary 13.6. O

Lemma 14.3. Assume G = Sp(V) and £ = 2. Let A € Irr(TF) be a nontrivial
character such that N> = 1. Then v ,0x,0 € Irr(C(N)) = {£1} satisfies:

o Ifg==1 (mod 8), then ¥ o0x, = 1.

o If ¢ =13 (mod 8), then yxs0xr, = (—1)".

Proof. This follows from Lemma 4.8 and Corollary 13.6. [

Remark 14.4. We end this section with some useful remarks on specific situations,
which follow from Theorem 13.2; Lemma 13.4, and Lemma 14.2. Let G = Sp(V)
with £ # p and p odd.

(i) For £ | (¢ — 1) odd, every member of £(GF,s) with s # 1 quasi-isolated
is fixed by all of H if and only if at least one of ¢ or ¢ is congruent to 1
modulo 4.

(ii) There has been much recent interest in the particular case that o := o
is the Galois automorphism fixing ¢'-roots of unity and mapping ¢-power
roots of unity to their £ + 1 power, see, e.g., [NT19, RSFV20, NRSFV21].
In this situation, every member of any £(G¥,s) with s?> = 1 is fixed by
o1. Hence, the action of o1 on II‘U/(GF) in this case is determined by
the action on irreducible characters of general linear groups, which is well
understood (see, e.g. [SV20, SFT18]).

15. Automorphisms not lifting to asogenies

15.1. In this section, we assume that G = SO(V). We wish to consider
the action of the group of automorphisms K(G"), defined in Proposition 2.6, on
the irreducible characters Irr(Gf). By [MT11, Prop.24.21], and a theorem of
Steinberg [Ste68, Thm. 12.4], we have GF /0P (GF) = Z(GF) has order 2. Thus,
by Remark 2.3 we have K(GF) is nontrivial only when Z(G¥) < 07 (GF).

The classification of when Z(GF) < OF (GF) is well known and is typically
calculated using a result of Zassenhaus [Zas62, §2, Thm.] on the spinor norm.
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The following slightly more general statement is also well known, but we include
a proof that is in keeping with the theory of algebraic groups.

Lemma 15.2. Assume G = SO(V) and n = |dim(V)/2]. We let € be 1 if F is
split and —1 if F is twisted. Let 0 < a < n be an integer and set b = n — a.
Denote by O C G the G-conjugacy class of s = dgy1(—1)---d,(—=1) so that
dim(V_1(s)) = 2b, where V_1(s) is the (—1)-eigenspace of s.
(i) Ifs € Z(G)F, then s is contained in OP (GF) if and only if ¢" = € (mod 4),
(ii) If s € Z(G)F, then O' = ONOP (GF) is a single OP (GF)-conjugacy class
and it contains s if and only if ¢° = € (mod 4).

Proof. Let m: Ggc — G be a simply connected cover of G. We denote again by F
a Frobenius endomorphism of G, such that Fom = mo F. Let Ty, = 7~ 1(T), an
F-stable maximal torus of T. The image 7(GE) is precisely 07 (GF). If t € GF
then t € O (GF) if and only if 7=1(t) N GE # @. Note that if it is nonempty
then 771(t) N GE = 771(t) because F fixes Ker(n).

First let us note that as the centraliser of a semisimple element contains a
maximal torus, it follows from [DM20, Lem. 11.4.11] that any G*'-conjugacy class
of semisimple elements contained in OP (GF) is a single O (GF)-class. Now,
we claim that at most one GF-class in OF is contained in 0P (GF). Fix 3 €
7~ 1(s) then as F(s) = s we have §71F(3) € Ker(m) < Z(Gg). Recall we have a
homomorphism 75 : Ca(s) — Ker(r) given by vs(x) = [, 3] where # € 7~ 1(x).
This factors through an injective homomorphism Cg(s)/Cg(s) — Ker(w), see
[Bon05, Cor.2.8]. Now assume s’ = 9s € G for some g € G and § € 77 1(s)
then & 1F(3') = 57 1F(5)ys(g~'F(g)). From this the claim follows easily.

Let 75 : Qé — T be a surjective group homomorphism as in 5.3. We use the
notation for roots as in [Bou02], which is consistent with our setup. We may take
§ =sc(3204) € 7 !(s) as a preimage of s, where

o _Jdan + 20t (0= 2 + (b= 2)dp-1 +bd,) dim(V) even,
| Eagr + 28asa + A (b= 2)Fn_z + (b= Dn_1 + L, dim(V) odd.

A straightforward calculation shows that if F' is split then F'(§) = § if and only if
(¢ —1)b/4 € Z. Similarly if F is twisted then F(§) = § if and only if (¢ — 1)b/4 €
% + Z. One readily checks the equivalence of these conditions with those given in
(i) and (ii). O

15.3. Assume now that Z(GF) < 0P (GF). Let s € G*F" be a quasi-isolated
semisimple element. If s € O (G*F") then by (iii) of Proposition 2.7 we have
that w, = 1zgr) is trivial. In particular, by (i) of Proposition 2.7 we have for
any x € £(GF,s) that w, = lygr) is trivial so K(GF), = K(GF) by (ii) of
Lemma 2.2.

Now assume s & OF (G*F") and 1 # z € Z(G*) is the unique nontrivial element,
which is necessarily F*-fixed. The central character w, = w, is nontrivial by (iii)
of Proposition 2.7. It follows from Corollary 2.8 that if sz is not G*/'" -conjugate
to s then no character in £(GF,s) is K(GT')-invariant. It is straightforward to
see that s and sz are not even G*-conjugate unless dim(V') = 4m and Cg. (s) has
type Dy, x D,,. In this case, £(GF,s) is K(G!")-invariant because s and sz are
G*"_conjugate for any z € Z(G*F"), which is easily checked.
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Theorem 15.4. Assume G = SO(V) and dim(V) = 2n is even. If s € G**" is a
quasi-isolated semisimple element and x € E(GY, s) is a cuspidal character then:
(i) s € OP (G*F") except when n = 2m is even, ¢ = 1 (mod 4), and the group
SO(V*1(s))"" is of type Dy (q),
(ii) K(GT), = K(GF) if and only if one of the following holds:
e ¢" = —¢ (mod 4),
o s OF(G*F"),
o dim(V*(s)) = dim(V*(s)).

Proof. (i). By the classification of unipotent characters, a quasisimple group of
type D,, resp., 2Dy, has a cuspidal unipotent character if and only n is an even,
resp., odd, square (see [Lus78, Table II}). This is now a straightforward check using
Lemma 15.2.

(ii). If ¢" = —e (mod 4) then Z(GF) N O (GF) = {1} so K(GF) is trivial.
Assume this is not the case then the argument in 15.3 shows that K(GT), =
K(GF) when s € OP (G*F"). Hence, we can assume s & O (G*F"). Again by the
argument in 15.3 we need only show that K(GY'), = K(G") when dim(Vy*(s)) =
dim(V*, (s)).

Assume 7, € K(GT') is the unique nontrivial element so that « : G — Z(GT)
factors through an isomorphism G¥ /0P (GF) — Z(GF). By Proposition 2.7, we
have w,, o a is nontrivial so is equal to 2 with z € Z(G*F") the unique nontrivial
element. As remarked above £(GY', s) is K(GT)-stable. Now any GGGC is clearly
K(GF)-invariant, as it is nonzero only on p-elements. Hence, the statement follows
as in the proof of Proposition 10.6. [

Remark 15.5. This shows that when ¢ = —1 (mod 4) and s is quasi-isolated we
have all cuspidal characters contained in £(GF',s) are K(G!)-invariant.

15.6. Now, let G = GO(V) with dim(V) even. We next wish to describe
the action of K(G*') on Irr(G*). Toward this end, we begin with an analogue of
Theorem 6.6 for K(G!'). Recall from the proof of Lemma 7.20 that K(G°F) <
Aut(G°F) is the image of K(GT) < Aut(G!) under the natural restriction map
Aut(GF) — Aut(Ge°F).

Note that since OF (GF) = OF (G°F) and Z(GF) = Z(G°F), we may identify
K(G°%) with a subgroup of K(G*). We keep the notation of 6.2 and 6.3.

Proposition 15.7. Let G = GO(V) with dim(V') even. Then for any unipotent
element u € G°F', we have Ty, 5 is fired by K(GT).

Proof. Let 7 € K(G'') be nontrivial. Since U(), —1)% is comprised of p-elements
and the Sylow 2-subgroup S, of Cg(N){, | contains Z(G"), we see that the
subgroup U(A, —1) - S, y is preserved by 7. Further, ZZ/\ is an extension of ¢, x
satisfying O(A;—’)\) = O(Eu)\) = 0(Cy,r). Hence EZ)\ = E%,\ by the uniqueness of this
property. Then we have

~

AT GF >r G* =
Fu,2 = IndU(A,fl)FSu,A(Cu,)\) = IndU(,\,q)Fsu‘A(Cu,A) = T2,

as claimed. O



A. A. SCHAEFFER FRY, J. TAYLOR

Theorem 15.8. Let G = GO(V) with dim(V) even, let s € G*" be a quasi-
isolated semisimple element, and let x € E(GOF,S) be cuspidal such that x is
K(G°F)-invariant. Then x extends to a K(GF)-invariant cuspidal character in
Irr(GF).
Proof. This follows from Proposition 15.7, using the same argument as in Theorem
10.6. O

15.9. We next consider the action of K(G°¥) on pairs (L, \) € Cusp,(G°, F)
for s quasi-isolated. Note that since Z(G°)F < L¥, the group L¥ is stabilised
by K(G°F). Furthermore, recall that using Corollary 2.8, £(G°F,s) is fixed by
K(G°F) if and only if s € OP (GF) or dim(Vi(s)) = dim(V_;(s)). Hence, we
wish to determine when the series £(G°, L, \) C £(G°F, s) are also preserved in
this situation. We keep the notation of Section 11. In particular, My, Mj, and
A= A X|¢ are as in Lemma 11.2.

Theorem 15.10. Let G = GO(V) with dim(V') even, and let s € G be a
quasi-isolated semisimple element such that £(G°F,s) is preserved by K(G°).
Let (L, A\) € Cusp,(G®°, F). Then
(i) Ife=1 or L # T, the character X is invariant under K(G°) if and only
if s € OP (GF).
(ii) If e = —1 and L = T, the character X is invariant under K(G°F) if and
only if at least one of the following holds
e s O (GF) or
e ¢=1 (mod 4) and X is trivial on TE.
(iii) Every character of £(G°F, L, \) is fized by K(G°Y) if and only if X is fived
by K(G°F).
Proof. Keep the notation of Section 12, so A = Ay X]¢, with A; as in the proof of
Proposition 12.2 or Theorem A(i), depending on whether L = T or L # T. Let
o € K(G°") be nontrivial.

We begin by showing the “only if” direction of (i) and (ii). For this, assume
s & OP (G*I") and that dim(Vi(s)) = dim(V_1(s)). Write 2b = dim(V4(s)) =
dim(V_(s)) and let s = sy50 with s; € M. For i € {0,1}, write 2a; :=
dim(V; (s;)) and 2b; := dim(V_1(s;)). Note that by Lemma 15.2, we have ¢* = —¢
(mod 4).

We claim that for each gy € M8F, there is g1 € ST such that g;go is not in
0P (GF). Note that we would otherwise have S C OP' (GF). If ¢ = —1 (mod 4),
Theorem 15.4 yields that sy € Op,(MSF*), so our assumption s ¢ O (G*f")
implies that s; & Op/(G*F*). Viewing s; instead as an element of G = G*F*,
we therefore see SF ¢ OF (GF). Similarly, if ¢ = 1 (mod 4), then ¢ = —1 and
by Lemma 15.2, the element d,,(—1), for example, is an element of SI but not
OP' (GF). This proves the claim.

First, assume T # L and recall that A\; may be chosen to be trivial on TI for
1<i<a; and err for a; + 1 <7 < m. Write z, 29, and z; for the generators of
Z(GF), Z(M}), and Z(MT"), respectively. Let go € M3 such that (go) # 0,
and let g; € ST such that g = g1go € LY is not a member of O”/(GF). Then

A7 (9) = Agz) = ¥(g0z0) A1 (9121) = A(g)ws, (20)(=1) 107D/,
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Using Lemma 15.2, we see

(—1)bola=1)/2 ife=1,
Wsg (ZO) - (_1)b0(Q*1)/2+1 if e=—1.

Indeed, by Lemma 15.2, we have that ws, is trivial on zy if and only if ¢% = €
mod 4), and we know ws,(29) = —1 otherwise. So, considering the options of ¢
mod 4) and the parities of by, we arrive at this statement.) Then since ¢ # €
mod 4) and A(g) # 0, we have A7 (g) # A(g).

In the case T = L, we take A = A\, m =n, a9 = by =0, and ay = by = b. If
€ = 1, X is therefore of the form above. If e = —1, the restriction of A to T may
be elther trivial or exr. Let g € TF such that g € or (GF). Since A is linear, we
know A(g) # 0, and we have

Py

o Ag)(—=1)la-D=1)/2 if e=—1 and A|pr is trivial,
A(g) = AMgz) = {)\(g)(_1)(q—1)(b—1)/2+(q—6)/2 otherwise. !
If e = 1 or X is nontrivial on TZ we therefore have A% # \, since ¢” # ¢ (mod 4).
This completes the “only if” direction of (i). If ¢ = —1 and \ is trivial on TE, we
have A2 = X\ if and only if ¢ =1 (mod 4) or b is odd, giving (ii).

We now show the “if” direction of (iii). That is, we claim that if A7 = X, then
x° = x for each y € £(G°F, L, )). Recall that x may be written xy = REO (A)y for
some 7 € Irr(W°(X)), as in 3.1. Let A be an extension map with respect to L' <
Ngor (L), and let 6y, € Irr(WW°(A)) be such that A(N)7 = dy ,A(N) = dx o A(N).
Recall that we may write A(\) = Resgz;(l(})‘;k (A1 (A1) B Ag(%))) as in Lemma 11.4.
Now, calculations exactly as those above for A yield that Aj(A;) X Ag(v)) is fixed
by o as well, so dy, = 1. Then by [MS16, Theorem 4.6], we have (RE(\),)” =
RI(J;(/\U)n“é;L = RE(N),-. But note that n° = n for all n € Irr(W°(\)), since
Z(G°F) < LF, completing the claim.

Recall that by Proposition 2.7, every x € £(G°F,s) is fixed by K(G°F) if
s € OP (GF). Hence to complete the proof, it now suffices to show that (L, \)
and (L, \)? define distinct Harish-Chandra series when A # A?. Note that (L A)
is moved by o if and only if A is. We claim (L, \?) # (L, \)* for any w € W°F.
Otherwise, we have w € Ngor (L) and wo ™! fixes A. But from the structure of
Ngor (L ) and A, we see the action of w on A\; does not affect the number of 4 such

that Res )\1 is of the form Err. Considering the calculations above, we see that

AWe T = )\ is therefore impossible if A7 # . Tt follows that the series £(G°F L, \)
is preserved by o if and only if A is fixed by . O

16. Reductions to the quasi-isolated case

16.1. The following discussion, aimed at clarifying the equivariance statement
of [Tay18, Thm.9.5], applies to any connected reductive algebraic group with no
restriction on p. We also take this opportunity to upgrade this discussion to
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incorporate the action of the Galois group G. However, we first need to define a
dual action of the Galois group on semisimple elements of G*.
Recall that we fixed an isomorphism ¢ : Z(,)/Z — F* in 5.3 and an injective

homomorphism 5 : Q/Z — @X in 3.8. The composition k = 7027}

is an injective
group homomorphism F* — @X. The image k(F*) < @X is simply the group of
all roots of unity whose order is coprime to p. This is preserved by the action of
G on Q, so identifying F* with its image under  yields an automorphic action of
G on F*.

16.2. Let X* be the cocharacter group of the torus T*. Recall that we have a
group isomorphism F* ®z X* — T*, as in 5.3, that on simple tensors is given by k®
~v +— (k). Under this isomorphism, the action of G on F* defines an automorphic
action G on T*. We denote the resulting homomorphism G — Aut(T*) by o — o*
and say o* is dual to 0. To be specific, assume s € T* is an element of order d > 0
and let (4 = j(é) be a primitive dth root of unity. If o € G, then o({y) = ¢ for
some integer k € Z coprime to d and we have o*(s) = s*.

We will freely use the notation of [Tay18], in particular that of [Tay18, §8], but
we maintain our preference here for right over left actions. Moreover, the reference
tori (T, Tf) of [Tay18] will simply be denoted by (T, T*) to be in keeping with
our notation here. Now fix a semisimple element s € T* with T\« (s, F*) # &
and a coset a € Aw= (s, F*) = W*°(s) \ Tw+ (s, F’*). After possibly replacing s
with a W*-conjugate, we will assume that the Levi cover of Cg-(s), defined as in
[Tay18, Def. 8.11], is standard of the form L} for some subset I C A.

Let X™* be the character group of T* and set RX* = R ®z X. Given a vector
v € RX*, we denote by [v] = {kv | 0 < k € R} the positive half-line spanned by v.
Now let Aso™(G, F) < Aso(G, F) be the subgroup stabilising the pair (T,B). If
o* € Aso(G*, F*) is dual to o € Aso™ (G, F'), then o* defines an automorphism of
W* and a permutation of the set of half-lines [A*] of the simple roots. To have a
uniform notation, we assume that if ¢ € G, then the dual ¢* induces the identity
on W* and [A*]. We use the same conventions for o itself.

16.3. We set & (G, F) = Aso(G,F) x G and &/*(G, F) = Aso* (G, F) x G.
To each pair (s,a), with s € T* an element such that Tw«(s, F*) # @ and a €
Aw (s, F*) a coset, we define a corresponding rational Lusztig series & (GF, s, a)
as in [Tay18, 8.5]. By the Lang—Steinberg Theorem there exists an element g € G*
such that g1 F*(g) € Tg«(s, F*) maps onto a* € Aw- (s, F*). Letting t = 9s €
G*I" we have £(GF,t) = &(GT, s,a) (see [Tayl8, Lem. 8.6]).

Under this identification, it is easy to translate statements about £(G*',t) into
statements about £(GT,s,a). For instance, let us denote by &*(G,F)s, <
2/*(G, F) the subgroup stabilising the series &(G*', s,a). If 0 € &*(G, F), then
E(GT 5,a)7 = &(GF,0%(s),0%(a)). Note that 0*(a) = aif 0 € G. If 0 €
Aso(G, F) then this follows by translating [Tay18, Prop.7.2] and if o € G then
this follows by translating [SFT18, Lem. 3.4].

It follows from this that if ¢ € &*(G, F')s,, then there exists an element z* €
W* such that

(s,0) = (*0*(s), 2" 0" (@) F* (a* 7))

and a unique element y* € W7 such that [y*z*o*(I*)] = [[*], where [I*] denotes



GALOIS AUTOMORPHISMS AND CLASSICAL GROUPS

the set of positive half-lines as in 16.2. We set z; = y*z*. The choice of 2* above
is unique up to multiplying by an element of W* (s) < W Therefore, the element
2} is uniquely determined by o.

The coset W¥a contains a unique element wi € Tw+(I*, F*), and this element
is fixed in the sense that zXo* (w7)F*(2571) = w}. Dually, we have 0= 1(2,(I)) = I
and 2, F(oc7Y(w1)2,) = F(wy). As in [Tay18, Prop 9.2], there exists an element
Ny € N(;(TO) representing z, such that n; ! F(o~ (nwl)ng) = F(ny, ). The choice
for n, is unique up to multiplication by an element of TF"1.

As Aso(G, F) = Inn(GF) Aso*(G, F) the map Aso*(G,F) — Out(G, F) is
surjective. We set O(G, F) = o/ (G, F)/Inn(GF) = Out(G, F) x G. A straight-
forward calculation shows that the map o +— on, gives a well-defined group
homomorphism O(G, F),, — O(L;, Fw), where 0(G,F),, < O(G,F) is the
subgroup preserving the series £ (G, s,a). The following makes [Tay18, Thm. 9.5]
more precise.

Theorem 16.4. Let a; = aw} ' € Aw: (s, wiF™*).  Then we have a bijection
(—1)5(“’1)R?:'w1 : EO(wal,s,al) — E(GT, s,a) which is O(G, F)s q-equivariant
with respect to the homomorphism O(G,F)s, — ﬁ’(LI,le) defined above. In
particular, R, ()7 =Rf,, (47"7) for any Y €E(LE™  s,a1) and o € o/ (G, F).

Proof. In the case of Galois automorphisms, we use [DM20, Cor. 8.1.6, Prop. 9.1.6]
to conclude that Rﬁwl is G-equivariant. We can now argue as in [Tay18, Thm. 9.5].
O

Proofs of Theorems C and D

16.5. We now consider the above discussion in the context of G = SL(V | B). Up
to W*-conjugacy, we can assume that s = s159 € T* where, for some 1 < m < n,
we have s; = d1(&1) -+ dn(&n) and so = dps1(Ems1) - - dn (&) with €2 # 1 for
alllgigmgnandff:lforallm<i<n. We let M7 x M{ be a
group determined by the integer m, as in 7.4. Then the Levi cover of Cg=+(s) is a
standard Levi subgroup L} with I = J; U Jy € A with these subsets defined such
that L = Cmz(s) - T* and LY, = Mg° - T*.

It is clear that we have a bijection Ty (s1, F*) x Twy; (so, F*) — Tw- (s, F™),
and in this way we get a bijection Awy; (so, F*) — Aw- (s, F™*). We have a unique
decomposition wi = vivy with v} € Tw: (si, F*) and we get a corresponding coset
b; € Aw: (si, F'*) containing v}. It is easy to see that v} is the unique element of
the coset'W}iU;-‘ contained in Tyy: (J;, F™*). As in the proof of [Tay18, Thm. 16.2],
we have a tensor product decomposition

50(wa17s,a1) So( 81»51).50( 0, 50,bo). (16.1)

16.6. To use Theorem 16.4, we need to describe the image of the homomorphism
O(G,F)s,q — O(Ly, Fwy), which we do now. For any o € &*(G, F),, we have
0*(s9) = so. Hence, it is clear that the element 2} defined in 16.3 is contained in
the subgroup W7. Thus the element n, may be chosen inside the group Ny, (S1),
where S; < M is the maximal torus defined in 7.4. If G = SO(V), then the Weyl
group lifts in G and we may, in fact, choose n, = n,_ . If G = Sp(V) then this is
not necessarily the case.
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If t € G*F" is a semisimple element, then there exists ¢ € G* and s € T*
such that ¢t = 9s. If g7 F*(g) € T+ (s, F*) maps onto a* € Aw- (s, F*), then
E(GTt) = E(GT, s,a) (see [Tayl8, Lem. 8.6]).

Using the identification between the sets £ (G¥,s,a) and £(GF,t) described
in [Tayl8, Lem. 8.6], it is easy to translate the statements of Theorems C and D
into corresponding statements in the language used above. It is these translated
statements that we prove below. We leave the translation to the reader.

Proof of Theorem C. One calculates easily using 16.6 that the image of G5, :=
GNO(G, F)s,, inside O(Ly, Fwy) is contained in the subgroup &(Ly,, Fv1)s, b, <
O(Ly, Fwy). Theorem 16.4 implies that if x € & (GT,s,a), then x = £R; 4, (¥)
for a unique ¥ = ¥ XYy € EO(wal,s,al). The equivariance of this bijection
implies that we need only calculate the stabiliser of ¢ under the image of G, ,. The
group L, is a direct product of general linear groups so a unicity of multiplicities
argument shows that v, is O(Ly,, F'v1)s, p,-invariant (see [SFT18, Prop. 3.10] for
instance). It follows that (Gsa)y = (Gs,a)w 50 Q(x) = Qs(¢0). The statement
now follows from Theorems A and B, together with the fact that the fields Qs and

Q1) C Q(j(%)) are linearly disjoint since p and d are coprime. [

Remark 16.7. Let Cly(G*F") be the set of semisimple conjugacy classes of G*"
We define an action of G on Clg(G*F™) by setting o*([9s]) = [90*(s)], where s € T*
and g € G* are such that 9s € G*¥". One easily checks this is well-defined, given
the action 0*(s) via power maps as in 16.2. The stabiliser G; < G of £(GF, s) is
then the stabiliser of the class [s] € Cly(G*F") under this action.

Proof of Theorem D. (i) If so=1, equivalently s=s;, then the series £ (G, s,a)
is not ~-invariant because the W*-orbit of s is not y*-stable, so we can assume
that sg # 1. In this case, we have v*(s) = s. The set Aw-=(s, F’*) has size 2 so
clearly 7*(a) = a as v* fixes the coset W*°(s) € Aw- (s, F*).

The following argument can be extrapolated from [Lus84, §6.21] (see also
[DM90]). We defer to [Lus84, DM90] for the details. The coset a; = aw} ™' con-
tains a unique element of minimal length, which we denote by wj € a;. The
element w}; = w}, wi € a is then the corresponding minimal length element in a.

We pick a Jordan decomposition JEz-F1 Eo(LE™ s,a) — Eo(Curs (s)wzllw7 1)
so that

Ca*(s) ,w;l wi F*

T (R () = (<)) R, (1)
for all * € W73°(s). We adorn the superscripts here with the relevant Frobenius
endomorphisms for the given group. For the definition of the Deligne-Lusztig
character in the disconnected group Cg«(s) we refer to [DM90, Prop. 1.3]. There
is then a unique bijection J& : &(GF, s,a) — Eo(Ca-(s)waf" 1) satisfying the
property
Jont = (C)D IS o RET).

We claim this a Jordan decomposition. Firstly, by transitivity of induction, we
have

REE (LA () = BEE, () = REL(5)

T \Tlzrw} Trw) wy Trwy
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for any x* € W7°(s) = W*°(s). This implies that

JEF(RE s (5)) = (=)D Tl (RELE (5)) = (1)) RO 00 (1),
That the signs agree is shown in [Lus84]. This shows the bijection is a Jordan
decomposition.

After 16.6, we see that the image of v in &(L;, Fw;) is the restriction of 7 to
L;. Using the tensor product decomposition, it suffices to prove the statement in
the case s = sg. But now the statement follows from Proposition 8.3 and (iii) of
Theorem A.

(ii) Note that Aso™(G,F)s, = D(G,T,F) - I'(G, F); 4, where I'(G, F)s, <
I'(G, F) is the stabiliser of the series £ (G, s,a) and D(G, T, F) = {14|gr | g€ T
and g1 F(g) e Ca(GF)=Z(G)F'}. After 16.6, we see that the image of ['(G, F)s 4
is contained in the subgroup Out(Ly,, Fv1) x T'(L,, Fvg) < Out(Ly, Fwy).

As Z(Ly) is connected, Out(Ly, Fv;) contains no diagonal automorphisms.
Hence, the image of D(G, T, F) is contained in the image of D(L,, So, Fvg) in
the group Out(Ly,, Fvg), where Sg < L, is the maximal torus defined in 7.4. The
statement now follows from the equivariance of the bijection in Theorem 16.4 and
Theorem A. [

16.8. We note that the proof of (ii) of Theorem D given above also applies in
the case G = Sp(V), clarifying somewhat the proof in [Tayl8, Thm.16.2]. Now,
we end with a discussion of the real-valued characters for these groups.

Corollary 16.9. Keep the hypothesis of Theorem C.
(i) If G = SO(V), then x € E(GF,s) is real-valued if and only if s is G
conjugate to s™1. X
(i) If G = Sp(V), then x € E(GF,s) is real-valued if and only if s is G** -
conjugate to s~* and either —1 is not an eigenvalue of s or ¢ =1 (mod 4).

Proof. Let us continue the notation used in the proof of Theorem C above. We
have x € & (G, s,a) is real if and only if Q(1y) and Q, are both real. But note
that Qs is real if and only if the element of Gal(Q((s)/Q) mapping (4 to Q;l is
a member of Gs ,, and hence (s, a) is in the same W*-orbit as (s~!,a). Applying
Remark 16.7 completes the proof. [J
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