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Abstract

Leveraging big, open data is the next frontier in ecology. The National Ecological
Observatory Network (NEON) is a network of monitoring sites collecting ecologi-
cal data from across the United States. Using a case study approach, we provide
examples of how NEON data can be applied to address a few big questions in
aquatic ecology. First, we examined spatial patterns in stream water chemistry, to
determine whether sites tend to cluster into regions based on geographic proxim-
ity. We found that this was not the case, likely because the hydrologic, geologic,
and anthropogenic factors that drive heterogeneity in stream water chemis-
try vary across smaller spatial scales. Second, we examined temporal vari-
ability in stream water chemistry. We determined that the majority of
catchments are relatively chemostatic (i.e., discharge varies by orders of
magnitude more than concentrations) and that differences between catch-
ments are likely to shift across decades due to changes in network conduc-
tivity. Third, we tested predictions of the River Continuum Concept (RCC)
along a gradient from a second-order stream to a seventh-order river. We
found that longitudinal patterns in metabolism, carbon chemistry, and
macroinvertebrate community composition generally follow the patterns
predicted by the RCC. NEON is only in its third year of full operations, with
a planned 30-year life. The studies presented here show the utility of NEON
data, while only using a subset of the many data products that NEON pro-
duces. The massive amounts and types of data NEON generates, in conjunc-
tion with other national-scale datasets, will allow the research community
to better understand how aquatic ecosystems function and respond to
drivers of long-term change.
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INTRODUCTION

Using big, open datasets is the next frontier in ecology
(Durden et al, 2017; Farley et al, 2018; Hampton
et al., 2013). In addition to enabling more equitable access
to information (Soranno et al., 2015), these datasets can be
used to answer fundamental ecological questions at large
spatial and temporal scales. Large-scale questions often
require methods such as meta-analyses and machine-
learning approaches that utilize large datasets, typically
more data than can be collected by an individual researcher.

The National Ecological Observatory Network (NEON)
is a continental-scale network of 81 monitoring sites, includ-
ing 24 wadeable streams, 3 rivers, and 7 lakes located
throughout the contiguous United States, Alaska, and
Puerto Rico (Goodman et al., 2015; McDowell, 2015). Sites
are instrumented with an array of automated sensors to col-
lect high-frequency meteorological, hydrological, and bio-
geochemical data (Hensley et al., 2021). Trained field
ecologists perform manual sampling of riparian and benthic
habitats, phytoplankton, macroinvertebrates, and fish. Data
collection is standardized, allowing long-term within-site
comparison over the 30-year life of the project, and cross-site
comparisons at continental scales (Goodman et al., 2015;
Parker & press, in review).

While terrestrial ecologists have been quick to embrace
NEON, the use of NEON aquatic data has lagged behind,
with only a handful of aquatic publications existing to
date. The amount of data that will be generated by NEON
is unprecedented, and truly harnessing its potential will
take decades of work and hopefully result in hundreds of
research studies that create and test innovative ecological
models, as well as aid in the managing and protecting of
aquatic ecosystems. Below, we highlight ways in which
NEON data could be used to address important questions
in aquatic ecology and provide case studies to demonstrate
these uses. These case studies are intended to be brief
examples, using only the first few years of data or a subset
of sites.

CASE STUDIES

Identifying spatial patterns in stream
water chemistry

Researchers can take a variety of approaches to evaluat-
ing large datasets to identify important trends that drive
ecological structure and function or inform resource
management. Regional- or national-scale studies have
utilized multivariate analyses, specifically principal com-
ponent analysis (PCA) and hierarchical cluster analysis
(HCA), to identify relationships and evaluate large water

quality datasets (Ayeni & Soneye, 2013; Mishra, 2010;
Zeinalzadeh & Rezaei, 2017). These studies found that
the most common factors affecting stream surface water
quality are the waterbody flow regime, catchment charac-
teristics, and anthropogenic influences. Regardless of geo-
graphic location, studies were often able to discern the
influence of agricultural land use (nonpoint source nutri-
ents) versus sewage versus physicochemical variability on
surface waters (Ayeni & Soneye, 2013; Mishra, 2010;
Simeonov et al., 2003; Singh et al., 2020). In less populated
areas with less agricultural land use, the influence of geo-
logic factors (weathering and soil leaching) more strongly
affected surface water quality (Ramos et al., 2016; Simeonov
et al., 2003).

Although subtle changes in water chemistry (i.e., nutri-
ents, pH, ions, and organic carbon concentration) are not
often drivers of biological community composition,
extremes or dramatic changes can impact biological activ-
ity and alter ecosystem functioning. For this reason, we
chose to describe patterns in surface water chemistry at
lotic NEON sites using a multivariate cluster analysis and
examine the similarities or differences across the NEON
Domains. Unlike other regional work in the published litera-
ture, NEON site selection was not intended to create repli-
cates within ecoclimatic regions (i.e., regional Domains;
Figure 1) of the United States, but rather to maximize the
diversity of stream characteristics that likely influence stream
processing, including stream size, geomorphology, and geol-
ogy (Schimel et al., 2007). Thus, we did not necessarily expect
to see similarities in water chemistry among sites close to
each other geographically (i.e., spatial autocorrelation).

This analysis used the chemical properties of surface
water (NEON, 2021a) data product collected from the
24 stream and 3 river sites in the NEON network to per-
form a PCA followed by HCA to group NEON sites based
on 16 water chemistry parameters (Appendix S1:
Figure S1, Tables S1 and S2). The six groups we identified
through HCA (Figure 1) capture similarities in water
chemistry between sites. Code for analyses completed in
this case study and the following two studies is publicly
available on GitHub (King et al., 2021).

Group 1 (CARI, COMO, HOPB, MAYF, and OKSR)
had high concentrations of dissolved organic carbon
(DOC) and transition metals and average or low values of
anions, cations, and nutrients (Table 1). Both of the
streams in Alaska are in Group 1, along with a first-order,
high-elevation stream in Colorado, a second-order stream
in Alabama, and a second-order stream in Massachusetts.
Group 2 (LECO, MART, MCRA, and TECR) had low or
average water chemistry concentrations of all constituents
(Table 1). Group 2 streams include the two streams in the
Pacific Northwest, a high gradient, second-order stream in
Tennessee, and a first-order stream in the Sierra Nevada.
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FIGURE 1 Map of NEON Domains (D01-D19). D20 is not shown because it does not contain any aquatic sites. Stream and river sites

are indicated by colored symbols according to group affiliation as identified using hierarchical cluster analysis (HCA).

Groups 3 and 4 had average concentrations of most
cations and anions. Group 3 (BIGC, BLDE, CUPE, GUIL,
POSE, WALK, and WLOU) had higher-than-average sili-
cate and lower-than-average ammonium concentrations
(Table 1). With seven sites, Group 3 had the largest num-
ber of sites that grouped together and covered a wide lati-
tudinal gradient from the two tropical sites in Puerto
Rico to a high-elevation site in the Rocky Mountains,
Colorado. Group 4 was composed of the three large rivers
(BLWA, TOMB, and FLNT) and had high relative ammo-
nium concentrations (Table 1).

Groups 5 and 6 both had high concentrations of many
cations and anions. However, Group 5 (BLUE, KING,
LEWI, MCDI, and REDB) had low iron concentrations,
while Group 6 (ARIK, PRIN, and SYCA) had high DOC,
manganese, and silica. The geographic distribution of
HCA groups 1-6 indicates that, while a single pair of sites
in four different groups were located close to one another,
in general, sites assigned to the same HCA group were not
in the same NEON Domain (Figure 1).

These patterns demonstrate that the NEON sites reflect
similar water chemistry drivers as previous studies and cover
a broad range of conditions within the United States making
them well suited for cross-site comparison studies. The
regional-scale ecoclimatic characteristics used to delineate

NEON Domains, which included nine climatic variables
(Hargrove & Hoffman, 2004; Keller et al., 2008), were ineffec-
tive at explaining similarities in water chemistry between
groups.

Future research could test the differences in abiotic
and biotic drivers across clusters. We hypothesize that
local variables may be influencing the differences in
water chemistry across groups, so linking NEON sites to
other datasets such as soil structure, chemical weathering
of bedrock, and shallow groundwater hydrology and
chemistry will help predict differences in surface water
chemistry behavior between groups. Anthropogenic
impacts can also be further assessed. While the majority
of NEON sites would traditionally be considered lower
impact, that is not to say they are all unimpacted. LEWI,
for example, receives wastewater effluent, while ARIK
experiences very high irrigation withdrawals, explaining
marked outliers in NO, + NO; concentrations and
water yield, respectively. In addition, internal biological
processing can be examined as a driver. For example,
identifying the DOC sources, both autochthonous and
allochthonous, and linking these to NEON periphyton
and phytoplankton data, could improve global estimates
of greenhouse gas emissions through its control of micro-
bial respiration rates. Regardless of the focus, increased
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TABLE 1

Surface water hierarchical clustering results showing which NEON sites grouped together, the relative principal component

analysis (PCA) component loadings for each group, and which variables grouped together

Component and variables Group 1 Group 2
Component 1 Low Low
Component 2 High Med
Component 3 Med Med
Component 1 variables
DIC = =
Ca2+ _ _
M g2+ _ _
pH - -
Na* ND ND
K+ = =
SO~ ND -
Cl™ ND ND
E- = ND
TDP = ND
Component 2 variables
DOC + -
Fe’* + ND
Mn** + ND
Component 3 variables
NH," ND ND
NO;*~ + NO,~ ND ND
it - ND

Group 3 Group 4 Group 5 Group 6
Med Med High High
Low High Med Med
Med Med Med High
ND ND I +
ND ND + +
ND ND I ND
ND ND + ND
ND ND ND I
ND ND ND +
ND ND I ND
ND ND ND +
ND ND I +
ND ND ND ND
ND ND ND +
ND ND — ND
ND ND ND +

- + ND ND
ND ND ND ND
+ ND ND +

Note: Signs indicate whether the group mean was larger (+) or smaller (—) than the overall mean for a given variable. Dissolved inorganic carbon (DIC)
through total dissolved phosphorus (TDP) are associated with Component 1, DOC through Mn*" are associated with Component 2, and NH, " through Si** are
associated with Component 3. Variables with an ND indicate no significant difference in group mean versus overall mean. Differences between overall means
and group means denoted by a plus or minus sign were statistically significant at p < 0.001. Group 1 sites are CARI, COMO, HOPB, MAYF, and OKSR; Group
2 sites are LECO, MART, MCRA, and TECR; Group 3 sites are BIGC, BLDE, CUPE, GUIL, POSE, WALK, and WLOU; Group 4 sites are BLWA, TOMB, and
FLNT; Group 5 sites are BLUE, KING, LEWI, MCDI, and REDB; and Group 6 sites are ARIK, PRIN, and SYCA.

Abbreviations: DOC, dissolved organic carbon; Med, medium.

collaboration between scientists within the broader com-
munity will strengthen the creative use of products
resulting from NEON data collection in combination
with other data products across the United States.

In summary, the NEON clustering of water chemistry
across the observatory reflects geologic, hydrologic, and
anthropogenic controls. Interestingly, the spatial distribu-
tion of clustered sites does not align with the NEON
Domains for many locations, indicating that a further
area of research may be to determine a set of variables
that define aquatic ecoregions that can be used for scal-
ing NEON data from site level to the continental scale.
NEON alone does not cover extensive gradients of geol-
ogy or land use; however, our case study showed consis-
tency with other studies. With integration of other
monitoring data, the NEON aquatic sites will contribute

to future efforts to parameterize global climate models
and improve our ability to understand and manage
ecosystems.

Controls on temporal variability in stream
chemistry

Many of the spatial patterns in stream water chemistry
and their drivers are from a “snapshot” in time, with less
known about how the patterns or their drivers might
change over long time periods across different regions.
Abbott et al. (2018) found stable spatial patterns across
headwater catchments over 12 years, and similarly,
Dupas et al. (2019) found temporal synchronicity across
regions over a 6-year time series. These spatial patterns
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are often remarkably stable through time (Abbott
et al., 2018), likely a consequence of low temporal vari-
ability within sites (i.e., relative chemostatic behavior;
Godsey et al., 2009). However, over longer time periods
(30+ years), the effects of a changing climate may vary
across different regions. For example, changes in precipi-
tation patterns (flooding or drought) may make hydrol-
ogy the dominant driver of stream chemistry in some
regions, but not have an effect in others.

Understanding the drivers of temporal variability in
stream chemistry allows managers to predict seasonal
changes in water quality and, in response, alter treatment
plans or establish alternative sources for irrigation and
drinking water if quality becomes low or aquatic biologi-
cal communities are stressed. In addition, if changes in
water quality persist over decades, community composi-
tion and rates of organic matter production and con-
sumption may be fundamentally altered (new stable
state), thereby impacting dissolved material transport
rates to recipient systems.

While continental-scale gradients in temperature
have been shown to affect rates of stream nutrient
processing and export (Schaefer & Alber, 2007), climatic
effects on conservative solute concentrations are less
clear (White & Blum, 1995). NEON will provide a 30-year
dataset to allow researchers to test the effects of climate
on water chemistry through time across a broad spatial
extent. These data will be essential in answering ques-
tions on long-term chemical stability in streams, includ-
ing how will decadal-scale changes in precipitation
patterns influence the relative importance of hydrology in
controlling stream chemistry?

As a first approach to evaluating drivers of temporal
patterns in stream chemistry, we examined whether
concentration—discharge (C-Q) relationships within sites
might vary across the HCA groups identified in the first
case study. C-Q relationships have been discussed exten-
sively in the literature (Godsey et al., 2009; Moatar
et al., 2017), and climatic variation and landscape hetero-
geneity have been found to produce contrasting C-Q pat-
terns across catchments (Godsey et al., 2009; Herndon
et al., 2015). We predicted that C-Q relationships within
sites would be stable across the 3-year time period of our
data. NEON sites would not be expected to exhibit strict
temporal synchronicity described in Dupas et al. (2019),
because sites on opposite sides of the country do not
share wet and dry seasons and individual storm events
are completely independent at that spatial scale. We used
NEON water chemistry data (as described in case study
1) from wadeable stream sites and corresponding discrete
measures of discharge (NEON, 2021b) for the period
2017-2019. Because C-Q relationships generally follow a
power function, data were log-transformed and fit with
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FIGURE 2 Examples of C-Q relationships. Major cations such

as Na* often showed a dilution response. Note data were log-
transformed. There is no regression shown for the CUPE site as the
C-Q results were not significant at p < 0.05.

simple linear regressions using the glm() function in R,
testing first that the assumptions of normality were met.

As a second approach to evaluating watershed hydrology
and surface water chemistry, we examined temporal variabil-
ity in water chemistry parameters at each site by calculating
the coefficient of variation of the entire 3 years of water
chemistry data for each site for each analyte, then generated
a linear regression (SigmaPlot v.14.0) with our calculated
water yield using 27 aquatic NEON sites. Assumptions of
normality were confirmed using kurtosis, skewness, and the
Shapiro-Wilk test. Annual water yield was used as a surro-
gate measure of the connectivity of the mainstem with its
tributary network, with higher water yield indicating a more
frequent and expansive connection with the terrestrial soils
through tributaries. This precipitation-water yield relation-
ship is a function of catchment geology, vegetation, and
channel morphology (Prancevic & Kirchner, 2019; Tucker &
Slingerland, 1997; Ward et al., 2018). We used a simple water
yield calculation, where we first averaged all discharge values
(Qavg) through the end of the water year 2019 collected using
continuous Q measurements (NEON, 2021c). From this
value, we calculated a normalized discharge (qavg) by divid-
ing Qavg by the area of the watershed (Aws). Normalized dis-
charge was then divided by average annual precipitation
(Pavg) to provide a unitless value termed water yield.

Using our first approach to explore temporal dynamics,
we found individual C-Q relationships varied significantly
across solutes and sites (Appendix S1: Table S3). Discharge
was an extremely strong predictor of surface water chemis-
try for some regressions, and nearly not at all for others (R>
values ranged from 0.99 to 0.00). Across solutes, conserva-
tive cations such as Na™ (Figure 2), Ca®", and Mg”", as well
as DIC, were the most likely to vary with discharge,
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exhibiting a dilution response (i.e., negative slope) in
roughly half to two thirds of the sites and chemostasis
(i.e., slope not significantly different from 0) in the remain-
der. The notable exception was enrichment (i.e., positive
response) of Na™ in the two Southern Plains sites, PRIN
and BLUE (Appendix S1: Table S3). Very few solutes con-
sistently exhibited a significant positive slope indicative of
an enrichment response; DOC enrichment was the most
common, occurring in slightly more than half of the sites,
while NO; + NO, enrichment occurred in about a third.
The response of SO, was the most varied; it was the only
solute to exhibit statistically significant dilution in at least
five sites and enrichment in at least five others.

Statistically significant slopes never reached —1, which
would be indicative of a “pure dilution” response with a
fixed mass flux of solute being diluted by variable volumes
of water (Godsey et al., 2009). Indeed, slopes were rarely
outside the range of —0.3 to 0.3, indicating that while
modest dilution or enrichment was occurring, concentra-
tions were still remarkably stable. Overall, our C-Q results
reinforced the relative chemostatic nature of watersheds
(Godsey et al., 2009). Even in cases where C-Q slopes were
statistically nonzero (suggesting an enrichment or dilution
response), within-site variation in C rarely exceeded more
than an order of magnitude, despite Q variation nearly
always exceeding several orders of magnitude. This tempo-
ral stability across catchments reflects findings elsewhere
(e.g., Abbott et al., 2018; Dupas et al., 2019).

As a second approach to identifying controls on tempo-
ral variability, our calculations of water yield were corre-
lated with variability in water chemistry parameters across
NEON sites (measured as coefficient of variation) for just a
subset of conservative ions, suggesting increasing annual
water yield resulted in larger fluctuations in some conser-
vative ions in the surface waters (Figure 3). But while
increased water yield created more variability for specific
compounds, higher variability was not associated with a
tighter coupling between water chemistry concentrations
and Q. In fact, five of the six sites with the highest number
of statistically significant C-Q relationships had intermedi-
ate annual water yield below the median value, falling in
the 0.2-0.4 range.

Using the C-Q and water yield relationships described
above, we can begin considering decadal-scale changes in
temporal variability in stream chemistry at NEON sites
resulting from continued climate change. Watersheds
experiencing more intense and frequent rain events due to
atmospheric warming are predicted to see an increase in
the areal extent of the watershed actively contributing to
overland runoff and stream transport (termed network
connectivity), while network connectivity will likely
shrink in areas experiencing drought (Slater et al., 2019;
Tucker & Slingerland, 1997). Increases in network
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FIGURE 3 Relationship between the coefficient of variation
and the catchment water yield at 27 aquatic NEON sites using all
available measurements of surface water chloride (dark circles) and
potassium (open circles)

connectivity create periods of low stream ion concentra-
tions due to dilution during flooding, followed by shortened
interflood periods where groundwater chemistry and in-
stream processing dominate surface water quality, which
results in frequent alternation in source areas feeding the
surface waters (Covino, 2017; Zimmer & McGlynn, 2018).
This frequent switching between sources could lead to
increased variability in stream chemistry throughout the
year, a pattern we already documented across the NEON
stream sites for specific ions, but not, yet, through time at a
single site (Figure 3).

Increased variability in source water chemistry due to
increasing frequency and intensity of flooding (represented
as a shift from the dotted line to the solid black line in
Figure 4) may erode the significant C-Q relationships
currently found and create chemostatic stream chemistry
behavior for most ions. We also hypothesize that streams
experiencing drought will interact less frequently with the
terrestrial portion of the watershed as network connectivity
declines, increasing surface water chemistry through evapo-
rative concentration and lowering temporal variability in
conservative ions (shift from dotted line to dashed line in
Figure 4). This decreased variability would also create
chemostatic behavior in C-Q relationships. Sites in PCA
groups 5 and 6 (Figure 1) are predicted to follow this drying
trend, and larger, temporally complete datasets such as those
created by NEON will test these hypotheses in the future.

Concentrations of bioreactive elements at NEON
sites, in contrast to conservative ions, did not fluctuate
predictably with discharge at most sites, suggesting in-
stream dynamics will continue to control N and P supply
at NEON sites regardless of the disturbance regime,
assuming anthropogenic sources do not increase. The
exception was a positive C-Q relationship for DOC; thus,
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(left-hand y-axis) and annual water yield (right-hand y-axis) to the
variability in stream chemistry and coupling of C-Q. High
variability in conservative ion concentrations is predicted for
streams with high water yield and network connectivity (solid line),
and streams with very little network connectivity or water yield
(dashed line) are predicted to have low variability in conservative
ion concentrations. Intermediate network connectivity and water
yield (dotted line) are more likely to maintain predictable C-Q
relationships.

we predict as network connectivity declines due to
drought, so will the supply of allochthonous carbon to
the stream. Not only could drought lower DOC delivery
to the stream, it could lower the average chemical com-
plexity of the pool of organic compounds. Alternatively,
in streams experiencing increased flooding, a larger per-
centage of DOC will be allochthonous in origin, which
would influence rates of decomposition and possibly
lower light penetration through the water column due to
adsorption by DOC (Harms et al., 2021; Zimmer &
McGlynn, 2018).

These changes in temporal patterns of hydrology and
the availability of conservative and bioreactive ions will ulti-
mately affect stream biological communities. For example,
in watersheds experiencing drought, an increase in water
conductivity, particularly in shrinking pools of surface
water, creates an environment selective for hardier, slower-
growing species of algae able to cope with these stressors
(Larned, 2010; Ledger et al., 2008; Rolls et al., 2018). In fact,
under drought conditions, high ionic concentrations in sur-
face waters coupled with decreased temporal variability in
chemistry could result in permanent changes in periphyton
community composition, encouraging dominance by low-
flow adapted species. Alternatively, streams with increased
flooding, lower ion concentrations, and more variable chem-
istry throughout the year would create ideal conditions for
resilient periphyton species, such as diatoms (Grimm &
Fisher, 1989; Lake, 2000; Schneck et al., 2017). Overall, as
NEON datasets stretch into the future, our conceptual
models linking climate drivers to temporal variability in

stream chemistry will improve, sharpening our ability to
predict seasonal changes in water quality and shifts in biotic
community composition. In turn, managers will be able to
develop withdrawal schedules that protect stream resources
and avoid the extraction of water for human use when sur-
face water chemistry is unsuitable.

Patterns and processes along a river
network: Assessing the River Continuum
Concept

It is somewhat remarkable that after 40 years and thousands
of citations (Barmuta & Lake, 1982; Doretto et al., 2020), the
River Continuum Concept (RCC) can simultaneously
remain so foundational to the field of lotic ecology, yet so fre-
quently be called into question (Doretto et al., 2020). First
formalized by Vannote et al. (1980), the RCC conceptualizes
a river network as a continuous gradient of physical charac-
teristics from headwaters to mouth, which produces associ-
ated chemical and biological adjustments in response. From
the beginning, empirical evidence tended to support the
basic predictions of the RCC (Bott et al., 1985; Bruns &
Minshall, 1985; Culp & Davies, 1982), yet numerous excep-
tions can be found (Perry & Schaeffer, 1987; Statzner &
Higler, 1985; Winterbourn et al., 1981). Several alternatives
to the RCC have been proposed, foremost among them being
the Serial Discontinuity Concept (Ward & Stanford, 1983),
which envisions a sequence of discrete shifts where the
smooth gradients of the RCC are continually reset. Though
originally focused on dams (Ward & Stanford, 1983), tribu-
tary confluences have also been recognized as potential
discontinuities (Minshall et al., 1983). It is worth noting
this potential resetting of the continuum was explicitly
acknowledged within the original RCC framework
(Vannote et al., 1980).

The NEON Ozarks Domain (DO08) in the southeastern
United States contains three sites along a river network,
explicitly chosen to be studied within the context of the
RCC. These sites are Mayfield Creek (MAYF), a second-
order stream, Black Warrior River (BLWA), a sixth-order
river, and Tombigbee River (TOMB), a seventh-order river.
The latter two are part of one of the most economically
important navigable waterways in the southeastern
United States and are impounded along nearly their entire
length by a series of locks and dams. These data can be
used to test several predictions of the RCC. First, longitudi-
nal gradients in benthic light availability produce com-
mensurate patterns in rates of stream metabolism. Second,
as stream order increases, labile carbon availability
increases with a gradual shift from allochthonous to
autochthonous forms. Third, the benthic community will
organize itself to best utilize the available forms of carbon.
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Using dissolved oxygen (DO) from the NEON Water
Quality data product (NEON, 2021d) for a period of rela-
tively stable flow in August 2019, we calculated rates of
gross primary production (GPP) and ecosystem respira-
tion for each site using the streamMetabolizer model
(Appling et al., 2018). The results tend to follow the pre-
dictions of the RCC (Figure 5), with sunlight-driven GPP
being low in the narrow, shaded headwater streams,
peaking in the wider mid-order rivers, and then perhaps
beginning to decline in the largest order rivers due to
greater water column light attenuation (NEON Secchi
depth measurements shown in Table 2).

Water chemistry data (NEON, 2021a) showed a signif-
icant accumulation of total organic carbon (TOC) with
downstream distance (Table 2). Notably, in the context of
the RCC, it is primarily in the dissolved form (DOC).
There was not a substantial accumulation of particulate
carbon (TPC), either measured or inferred from the bal-
ance between TOC and DOC, suggesting this material is
being utilized by the aquatic community. Specific ultravi-
olet absorbance (SUVA) at 254 and 280 nm tended to
decline with downstream distance, suggesting decreasing
aromaticity. This is consistent with the RCC prediction of

BLWA TOMB
14
MAYF
h'e
w
o
o 014
o Proposed RCC
Trendline
0.01 T T T T T T T ]
1 2 3 4 5 6 7 8

Stream Order

FIGURE 5 Ratio of gross primary production (GPP) to
ecosystem respiration (ER) from August 2019 for NEON D08 sites
ordinated by Strahler stream order. Boxes show interquartile range,
while whiskers show 10th and 90th percentiles. Dashed line shows
hypothetical River Continuum Concept (RCC) trend (Vannote

et al., 1980).

TABLE 2

a transition from allochthonous versus autochthonous
sources of carbon. Of note, the MAYF SUVA280 appears
especially high, potentially the result of iron absorption;
MAYF has by far the highest Fe*" of any NEON site.

Macroinvertebrate sampling (NEON, 2021e) shows
that in all three sites, Diptera was the most predominant
order of invertebrates, averaging around 70% of individ-
uals across surveys. Trichoptera (caddisflies) were also
relatively equally abundant in all three sites (Figure 6).
However, Plecoptera (stoneflies), which were the second
most abundant order in MAYF, were absent from BLWA
and TOMB where Tubificida (worms) were the next most
abundant order. This transition from shredders to filter
feeders is also consistent with RCC predictions of ecosys-
tem structure.

While this preliminary analysis suggests patterns of
water chemistry, community composition, and ecosystem
functioning along the NEON DOS sites are consistent with
predictions of the RCC, the nature of at-a-point sampling
makes it difficult to identify whether changes occur dis-
cretely or along a continuum (Ensign et al., 2017; Hensley
et al., 2020). It is worth noting that the BLWA and TOMB
sites are located 70 and 140 km downstream of dams, dis-
tances potentially sufficient for any effects to have largely
dissipated (Ellis & Jones, 2013; Ward & Stanford, 1983).

100 1
< 90 A
0
S 80 -
9
=
2 70 -
60 -
MAYF BLWA TOMB
mE Diptera H Tricoptera E Plecoptera
O Trombidiformes O Coleoptera m Ephemeroptera
O Tubificida O Tanaidacea B Amhpipoda
FIGURE 6 Distribution of macroinvertebrate orders across

NEON D08 sites. The y-axis scale begins at 60% to allow
visualization of groups with a smaller overall contribution to
community composition (~70% of individuals at all three sites were
classified as Diptera).

Summary of carbon chemistry and optical properties of NEON D08 stream and river sites (means + SD)

NEON site ID TOC (mgL™') TPC(mgL™') DOC (mgL ') SUVA,5 (Lmg 'm™') SUVA,5 (Lmg 'm ") Secchi (m)

MAYF 2.37 £ 0.82 0.27 + 0.04 2.16 + 0.67
BLWA 3.20 £+ 0.47 0.29 + 0.04 3.00 £+ 0.41
TOMB 5.02 £0.93 0.30 &+ 0.04 4.70 £ 0.87

5.03 £ 1.74 3.73 £ 1.42 -
2.90 + 0.60 1.96 £ 0.52 0.70 + 0.24
3.88 £ 0.80 2.67 £ 0.72 0.46 + 0.20

Note: Sites are listed in order from headwater (MAYF) to furthest downstream (TOMB). MAYF has no measurable Secchi depth as it is shallow enough for

light to reach the bottom.

Abbreviations: TOC, total organic chemistry; TPC, total particulate carbon; DOC, dissolved organic carbon; SUVA, specific ultraviolet absorbance; MAYF,

Mayfield Creek; BLWA, Black Warrior River; TOMB, Tombigbee River.
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However, both are also only 15 km upstream of other
dams. While the most focus has been on downstream
impacts, it is quite likely that ecological impacts of dams
extend upstream as well, especially given stage and dis-
charge at these locations are controlled by the downstream
dams. There is also a large, effluent-discharging paper mill
located between the sites, which may act as a discontinuity
and potentially explain some of the increase in SUVA at
TOMB. Determining whether effects of discontinuities are
permanent or transient and how far upstream and down-
stream they propagate is a potential avenue of further
research.

Another consideration for future research is the role of
discharge variation on the continuum, most notably flood
pulses (Junk et al., 1989), something this preliminary analy-
sis did not examine. The attenuation of light due to elevated
turbidity during higher flows can reduce GPP (Hall Jr
et al., 2015; Uehlinger, 2000), in effect shifting larger rivers
to levels more common for small, shaded streams (Young &
Huryn, 1996). High flows can also deliver large pulses of
allochthonous carbon and substantially disturb the biologi-
cal community (Dodds et al., 1996; Fisher et al., 1982).
These are temporal dynamics that NEON datasets are
designed to capture, in these D08 sites along a network, but
also at continental scales across the entire observatory.

FUTURE DIRECTIONS

The case studies presented in this paper relied primarily on
observational sampling (e.g., discrete grab samples of water
chemistry or collection of invertebrates). NEON also collects
data using an array of in situ sensors (Hensley et al., 2021).
These high-frequency data, with sampling intervals on the
order of seconds to minutes, will provide insight into pro-
cesses varying over commensurate timescales (Kirchner
et al., 2004; Rode et al., 2016). Examples include stream
metabolism (Bernhardt et al., 2018), coupled nutrient assim-
ilation (Heffernan & Cohen, 2010), and storm event C-Q
hysteresis (Evans & Davies, 1998). Integration of instrument
and observational sampling will allow us to better under-
stand how short-term processes such as metabolism and
nutrient cycling affect larger patterns such as community
structure.

Another underutilized source of data is specimens,
which NEON collects and maintains as part of their sam-
pling protocol. Whole animal and plant specimens, tissues,
and excess BioRepository samples enable researchers to
investigate chemical composition, zoonosis (Lister et al.,
2011), and phenotypic expression (Card et al, 2021)
response to climate change impacts (Schmitt et al., 2019).
These preserved archived samples and analyses could be
useful in answering fundamental ecological questions about

range expansion and contraction, the emergence of new dis-
eases, speciation, and adaptation (Bi et al., 2013; Stuart
et al., 2021).

The design of NEON also facilitates the integration of
the aquatic data presented here with other types of data
such as atmospheric and terrestrial data. The same type of
sensors is deployed with comparable configurations at
aquatic and terrestrial sites (for a list of shared and com-
plementary data products, see information on the NEON
website). About two thirds of aquatic sites are within sev-
eral kilometers of a terrestrial site, and some terrestrial
sites are within aquatic watersheds, which will allow trac-
ing the fate and transport of carbon, nutrients, and green-
house gasses across ecosystems. The majority of the
NEON study sites are relatively unimpacted (2 of 24 sites
have watersheds with >10% high impact land use); thus,
linking NEON terrestrial and aquatic sites can elucidate
future changes in aquatic ecosystem structure and func-
tion as the surrounding landscape changes in response to
invasive species, land use, and climate change. Groundwa-
ter also functions as a link between terrestrial and aquatic
systems. The hydrologic and chemical data produced from
the groundwater wells at most NEON aquatic sites could
further support determining terrestrial and aquatic link-
ages underpinning long-term ecological change.

Finally, NEON also collects airborne remote sensing
data from all of its sites as part of its Aerial Observation
Platform (AOP). This includes LIDAR, an imaging spec-
trometer, and high-resolution digital imagery. From a sci-
entific perspective, these data may be useful in linking
catchment characteristics (e.g., topography, long-term
changes in vegetative cover) with hydrologic response
and biogeochemical processing. From a methodological
perspective, the intensive “on-the-ground” sampling will
be exceedingly useful in ground-truthing remote sensing
measurements. This applies not only to the NEON AOP
program but potentially also in calibrating/validating
other airborne and satellite-based remote sensing plat-
forms, which periodically pass over NEON sites.

At present, NEON is only in its third year of opera-
tions, with a planned 30-year life. The studies highlighted
here use a fraction of the data NEON is expected to gen-
erate. They are presented as a starting point, not an end-
ing point. Future work should reexamine and expound
upon the analyses presented here, incorporating not only
more years of data, but integrating with other types of
data. Many NEON sites are also located within or in close
proximity to other research sites (e.g., LTER, CZO, and
universities). Linking NEON data with historic and/or
contemporaneous data from these other entities, which
also provide large, open datasets, ‘“networking-of-
networks,” has the potential to provide an even deeper
understanding of important questions in aquatic ecology,
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at spatial scales ranging from watershed to continents,
and temporal scales ranging from minutes to decades.
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