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Abstract

We characterize the well known self-similar Blasius profiles, [u, v], as down-
stream attractors to solutions [u, v] to the 2D, stationary Prandtl system. It was
established in Serrin (Proc R Soc Lond A 299:491-507, 1967) using maximum
principle techniques that ||u — i|| LyE = 0 as x — oo. In the case of localized data
near Blasius, this paper provides an energy based proof of asymptotic stability.
Central to our analysis is a new weighted “quotient estimate” which couples with
a higher order, nonlinear energy cascade. Similar quotient estimates have played
a crucial role in establishing the validity of the inviscid Prandtl layer expansion
in Guo and Iyer (Validity of steady Prandtl layer expansions. arXiv:1805.05891
2018).

1. Introduction

The 2D, stationary, homogeneous Prandtl equations are given by
umy +vuy —uyy =0, uy+v, =0, (x,y) e Ry xR, (D)

The system is typically supplemented with initial data at {x = 0} and boundary
data at {y = 0}, and y 1 oo:

ulx=0 = uo(y), [u,vlly=0 =20, ulypoo = ug(x). ()

For simplicity, we will take ug(x) = 1, but any constant will also work. The x
direction is considered a time-like direction, while the y-direction is considered a
space-like direction, and the Equation (1) is considered as an evolution in the x
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variable. Correspondingly, u(y) is called the “initial data” and as a general matter
of terminology, in this paper the words “global” and “local” refer to the x-direction.
The following is a classical result due to Oleinik (see [5], P. 21, Theorem 2.1.1):

Theorem 1. [5] Assume that

up(y) > Ofory > 0,

up(0) > 0,

up € C*(y =2 0),

ug(y) ~ y2 neary =0,

lug(y) — 1| and Bly‘uo(y) decay exponentially for k > 1.

Then there exists a global solution, [u, v] to (1) satisfying, for some yog, m > 0,

Sup Sup |M,U,My, uyy,ux| S 15 (3)
X ye(0,y0)
uy(x,0) > 0andu > 0. @)

Given the global existence of a solution to (1), the next point is to describe more
precisely the asymptotics of the evolution as x — oo. In order to do this, let us
introduce the self-similar Blasius solutions:

_ Y
[, 51 = [ £/, J—{nf = f] wheren = —=—. )
where f satisfies
ff”+f’”=of f/(O) =0, f/(oo)z 1, @ m 1. (6)

Here, xo > 0 is a free parameter. The following hold:

0<f' <1, f'"m=0, f"©0) >0, f"(n <0 )
We now recall the following result of Serrin:

Theorem 2. [6] Let u be a solution to (1), (2) such that dyuo(y) is continuous. Then
the following asymptotics hold:

||u—ﬁ||L;c—>0asx—>oo. ®)

First, let us mention that the results in [6] are more general than the theorem
stated above in the sense that ug (x) in (2) is allowed to have polynomial growth
in x, whereas in the present paper we are only concerned with constant u g (which
corresponds to shear flow).

The purpose of the present work is to provide a new interpretation of [6] un-
der the assumption of small, localized perturbations of the Blasius profile. More
specifically, the point is to introduce energy methods as opposed to the maximum
principle methods used in [6], which are more robust and have a hope of finding
application to other realms, particularly in the study of the inviscid limit.
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1.1. Asymptotic Stability and Change of Coordinates

When studying the asymptotic stablity of i, we need an appropriate notion of
the difference between the two functions, u, i, which, in our case, does not coincide
with pointwise subtraction u(x, y) — u(x, y), but rather is a version of modulated
subtraction. To define what we mean, we first introduce a change of coordinates
called the von-Mise coordinate system (also used in [6]).

First, we introduce the stream function, v, associated to u, a solution to the
system (1):

¥ = /0 u(x,y')dy'. ©9)

A classical idea ([5]) is to write the Prandtl system, (1) in the variables (x, ¥):
y (W?) — udyy W?) = 0.
Define the difference unknown:

ep(x, ¥) 1= u*(x, ¥) — > (x, ¥). (10)

Above, the parameter ¢ is introduced based on the size of the initial data (this is
made clear in the statement of Theorem 3, but for now, one can ignore it as it is just
a rescaling).

The stream function ¥ is considered an independent variable, which takes values
in R In order to recover the value of the quantity u appearing in the diffusive term
of (13), one uses the relation (9) (which is invertible). Similarly, in order to recover
the value of u, one again uses the relation, but this time (9) with the u replaced
with u. Hence, the difference shown in (10), which we shall adopt as our notion
of difference, means in the original coordinate system, that we compare « and u at
different values of y determined nonlinearly:

u?(x, y1) — ii>(x, y2), where /

Y1 y2 B
A u(x,y)dyzf0 u(x, y)dy.

Theorem 3. Fix any 0 < ¢ < 1 and Ky > 1 relative only to universal constants.
Assume the function ¢o({) satisfies

8,0 () (V)"0 < 1 for 0 <1 <2K. (1)

Assume also standard parabolic compatibility conditions up to order Ko on the
data ¢g (these are described in Definition 7). Define the difference, ¢, according
to (10). Then there exists a unique solution, [u, v], to the Prandtl equations, (1),
so that ¢, as defined by (10), realizes as initial data ¢|x—1 = ¢o, and this ¢ exists
globally in the space X (defined precisely in (15)) and satisfies the global estimate

l¢llx = Ci¢ollx;,) 12)

for a constant depending on the norm of the initial data (see (26) for a precise
definition of the norm X;,).



954 S. IYER

Remark 4. The parameter ¢, fixed as a hypothesis in the theorem, has entered in
the definition of ¢ from (10), when coupled with the prescription of order 1 initial
data, (11). Thus, prescribing that ¢ is order 1 through (11) has the effect of fixing
u? — 12 to be size ¢ (small) initially.

Remark 5. An inspection of the norm X, defined in (15), shows that this norm
encodes global decay information for ¢, and this is the precise sense in which u
converges to u. In fact, enhanced decay as compared to what is encoded in || - || x
is available due to our Nash-type argument provided in (132), but we do not state
this as part of the main theorem.

Note that we require the small k9 > 0 in (12) to avoid logarithmic singularities
at x = oo. The fundamental difficulties in establishing (12) are that the equation
we analyze, shown below in (20), is degenerate at the top (diffusive) order, and
quasilinear.

One of the motivations for establishing quantitive estimates of the type (12) is
due to recent advances in the validity theory for steady Navier—Stokes flows, for
instance the works of [2,3]. In particular, using the estimates (12) we can generalize
the class of data treated by [2].

Corollary 6. Consider initial data, uo(y), that is a small perturbation of Blasius
in the sense of Theorem 3. Then for xo > 1, we may take [u(xg, -), v(xo, -)] as the
{x = 0} data in Theorem 1 of [2].

Proof. This follows immediately upon applying the estimates (12) above in the
proof of Lemma 9 of [2]. O

A second motivation for this work is that in order to prove the global validity
of steady Prandtl expansions, a work currently underway, one needs a precise un-
derstanding of the decay mechanism in the Prandtl equations, which is established
in the present work.

Let us also point the reader towards the related work of [1], which studies the
formation of singularities (in this context called “separation”) for the inhomoge-
neous version of (1) (with adverse pressure gradient).

1.2. Main Objects

It is shown in [6], Equation (12), that ¢ satisfies the equation

be—ubyy +Ap =0, A=—2—20
u(u +u) (13)

Oli=1 = Po(¥), Ply=0=0, @lyrcc =0.
First, note that we have introduced the parameter ¢ in the definition of ¢, (10).

This is due to the fact that the perturbation, uy — g is initially small (precisely,
(11)), and thus it is convenient to rescale to order one quantities according to (20).
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Recall the self-similar variable n as defined in (5). For simplicity, we will set
the parameter xo = 1. We define a new self-similar variable, which reflects the
diffusive scaling in (13) via

=Y
It is instructive to compare the variables &, v with the self-similar variable n = \/L;

It is well known (for instance from the result of Oleinik, Theorem 1) that both u
and u behave like 7 in the region where n < 1. More precisely, there exist universal
constants Cp, C1 such that

Con=<u, u<Cp for 0<n<1l. (14)

For the purpose of easing notation, we will denote (14) by u ~ n and u ~ 5 for
0 < n < 1. In order to compare ¥ with 1, we thus use (9) via

y y 1 y
1/f=1/f(x,y)=/ u(x,y’)dy’~/ n’dy’=—/ y'dy'
0 0 vx Jo

() e

and we thus obtain the relation

\/§~n for n <1.

The basic object of study throughout the paper will be ¢, which satisfies the
Equation (13), in the variables (x, 1) and correspondingly the self-similar variable
£.

Let us now give a brief review of the properties of # and u. First, as we have
already mentioned, Oleinik’s global existence result, Theorem 1, gives that u ~ 7
near n < 1. Regarding i, the main properties are summarized in (6). Of particular
note is the concavity of i, guaranteed by f” < 0. In particular this implies that
A > 01in (13).

We will now introduce the norms in which we measure the solution ¢. First,
we simplify notation throughout the paper by putting ¢ := 3%¢. Let I C (0, 00)
be an interval of x. Then we define

Ko
Iellxay =Y _ lllxcn- (15)
k=0
()2~
9lxcry = sup | |o© =] 4 ® (ke
xel Ly u sz

1,

Dt O

" H¢$—1)(x>k—l—wk

2
L2 *
v 12
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+H |V = HHW ] |
vilz2y Ly L2(I)
1 Ly ()27
N
v Ly L2(1)
(16)
for 1 <k < Kj. In the particular case when k = 0, we have
()2
ldllxocry :=sup | @l 2 + [lg—=1l,2
o(l) ey Ly «/_ Ly
1
+ H : ‘ 17
” |y (V) IIL%D 20 (I7)

Above, we let {or}, {wr} be sequences whose precise requirements are given in
(23). Ko will be a fixed, large number. k appearing above in (16) is a fixed, small
number. In the event that / = (0, c0), we simply drop the / from (15), and denote
the corresponding norms by || - [ x, || - [l x,-

We will denote by E(x) and I (x) arbitrary quantity satisfying respectively

00 k
sup | Ex ()| < Z I$llx;, /0 eoldx < Y il (18)

j=0 j=0

We now introduce the function p via

ep(x, ) = ulx, ) —ulx, ¥). 19)

Inserting this into the Equation (13) generates the equation that we will study

o B L
Ox =@+ ep)byy + 46 =0, A =227 = (20)

Pli=1 = do(¥), dly=0=0, Jlyr00 =0,

where the unknowns are p, ¢ (which clearly can be expressed in terms of one
another according to (10), (19)). Note that this has the effect of clearly distinguishing
between the linearized operator and the quadratic terms, the latter being those having
an ¢ in front of them in (20).

1.3. Main Ideas

The main mechanisms can be summarized in four steps listed below. Overall, at
each order of x regularity up to Bf ° for a fixed K large, there are two estimates that
are performed. We call these the “Energy estimate” and the “Quotient estimate”.
This results in the control of the norm ||¢|| x as shown above.
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Step 1: L? level
At the L? level, we may center our discussion around the linearized operator
from (20), which reads as

by — lipyy + A9, i 1)

The standard energy estimate performed on (21) gives abound on sup,. ||¢ || iz +
v
| \/ﬁqbl/, ||i2 2 The crucial point here is that Vi enters the ¢y term, which creates
difficulties dﬁe to the degeneracy of u near v = 0. Due to the structure of the
Blasius profiles, #y, < 0, and so A > 0 and thus has a favorable (but not too
powerful) contribution at this stage.

The second estimate at the L? level is the “Quotient estimate”, which can be
found in Lemma 25. There are two distinguished features of the quantities that are
controlled (see the estimate (83)). First, there is a far-field weight of (). Second,
there is a nonlinear weight % which gives additional control near the boundary
{y =0}

The reason we can close this Quotient estimate is due to the precise structure
of Blasius solutions. Indeed, the choice of weight (f_> is specially designed so that
the interaction with the linearized equation, (21), produces the quantity

_ I__
/¢2 X positive quantities x €2, where Q = —iy, + Euux.

This type of quantity would be out of reach of the norm X. This is because this is a
linear term, and thus does not come with a small-parameter of ¢, so it’s contribution
cannot be absorbed to the left-hand side of estimate (83). However, by using the
convexity of u#, a Blasius solution, we are able to show that Q2 (x, y) is globally
positive.

The reason we need the quotient estimate is two-fold, corresponding to the two
weights appearing on ¢ term on the left-hand side of (83). The weight () comes
in for Step 4, whereas the boundary weight % comes in for Step 3.

Step 2: HX for 1 < k < K,

We now fix K sothat 1 < K| <« K. The tier of derivatives between 1 and K
we call the “middle tier”. The middle tier is distinguished from the top tier because
we are able to expend derivatives. More precisely, since the derivative count is less
than K| which is substantially smaller than K, we can invoke the estimates (64)
which lose one derivative. The middle tier is distinguished from the bottom (L%
tier because the linearized operator is no longer (21), but rather (¢ := 3, ¢)

- Oyl
— (1
O — gl + Ap) — "7¢<”. (22)

We arrive here by substituting the Equation (20) upon differentiating it in x. This
is shown in Equation (86) (the linearized operator in (22) comes from the linear
contributions of the first four terms in (22)). The reason the linearized equation
has changed is due to the quasilinearity present in (21). At this stage we repeat the
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process of Step 1, taking advantage of the further property of Blasius solutions that
ocu < 0.

Step 3: H* for K1 +1 < k < Ky

We now arrive at the top tier of derivative in the norm X. The top tier is dis-
tinguished because we do not have derivatives to expend. Precisely, this means we
must take care to invoke only those estimates from Lemma 16 with indices /, m,
which have feature of applying in particular when / = m = Ky (the top order
derivative). First of all, we select K¢ large enough so that the “tame principle”
kicks in. For instance, terms like 8){ fx 8;( 0=J g X 85 O are bound to have either j
or Ko — j to be much smaller than Ko — 3. This is standard in quasilinear problems.

The important part, however, is that the crucial weight of % available due to the
quotient estimate, is used to “save derivatives”. This is most easily seen in a term
such as (“high” and “low” refer to order of x derivative)

/ PN (& S ).

For a term such as this, we are forced to put ¢V in an L type norm in or-
der to conserve the high derivatives. To do this, with the weights of u distributed
as optimally as we are allowed with the X norm, we must invoke the additional

- weight available due to the quotient estimate. This is quantified by proving a

7a

localized, optimal weight, uniform estimate on qbi% (see (75)).

Step 4: Optimal decay

Using Steps 1-3 we are able to show global existence of ¢ in the space X.
The space X certainly encodes decay information regarding the solution ¢ - this is
evident by consulting (15). However, one notices that the quantity ||¢|| 2 is only

shown to be bounded from the specification of the norm X. For the heat equation
. . 1
set on R, the quantity ||@||, 2 is expected to decay at rate (x)~ 4.
To explain how we obtain this “optimal” decay, the reader should now recall the

2 4
classical Nash inequality, [4], which states that ||¢||i2 < ||¢¢||z2 ||¢||z1 . Typically,
y v v
one uses this by saying ||| L is conserved (say) and thus one inserts the Nash

inequality to the basic energy bound to obtain an ODE of the form 7 + 1> = 0, for

n= ||¢||i2 , which immediately results in (x)_% decay of ||¢||L$/,~

In our case, two difficulties are present in order to carry out this procedure to op-
timize the decay. First, we only have the degenerate weighted quantity || \/E‘W/ I 2
appearing in the energy. Second, we cannot control ||¢||;1 by integrating the equa-
tion.

To contend with these difficulties, we establish a new Nash-type inequality in
Lemma 37 which (1) accounts for the degenerate weight of /u and (2) replaces
the L' norm by L?((v/) %) (which scales the same way). The type of inequality we
are able to establish is piecewise (as is seen from Lemma 37). Remarkably, both
upper bounds in estimate (129) yield the same, optimal, decay rate of (x)_%.
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1.4. Preliminaries and Notations

There are various parameters and notations appearing in our analysis. We
include here an explanation of what they all mean. The bracket is defined via
(x)P := 14xP. Ko, K| will be fixed, large universal numbers which refer to the reg-
ularity indices in x. Ko appears in (15), whereas K is selectedtobe 1 <« K| < K.
For concreteness, one can take Ko = 100, K; = 50.

k is reserved for the exponent of the i weight appearing in (16). {ak},f:"o and

{wi },ﬁl are reserved for the x weights appearing in (16). These exponents satisfy
the following criteria:

Ok—1 < Wi < 0O, 2wi > 0+ 0k—1, Ok, w increasing,
1
ma
It is clearly possible to find sequences satisfying the conditions in (23).

We will often localize to regions of & using x (-), where x is a smooth cut-off
function:

oKy < op=0. 23)

_ 1on (0, 1)
X_{()on(z,oo)’ r=0 e

For L2 norms of functions of two variables, say f(x, ¥), we use the notation
113, = / [ 9)? dy.
v

We will also use the notation ||f||%2(s<1) = f F2x &) dy.

The parameter § will play the role of a small parameter introduced by Young’s
inequality for products: ab < 8a* + Csb?. Cs will refer to a constant that grows
as § | 0. As Young’s inequality needs to be applied several times, we will use §
each time with the understanding that it refers to different values, as opposed to

indexing the §’s per use of Young’s inequality.

2. The Space X

2.1. Bootstrap Assumptions

Global existence in the space X will be obtained by a standard continuity argu-
ment which relies on the following bootstrap assumption:

x € I := (0, x4), where [[¢]x(,) =< 2ll¢olx;,,- (25)

Above, ¢y is the initial data, ¢|,—o, according to (20). Motivated by (16), we use
the notation X ({0}) to denote the norm of the initial data (which is (16) formally
with I = {0} to eliminate the integrations in X):

1
(¥)2

% Vulx=1

)

2
Ly

lldoll 0 == ligoll,;2 +
X0y Ly
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1 1

*) () (Y)2 ™" k—1) |2 (k—1) (¥)27¢
= + oy —| +]o + o AL
ooy, == ¢ H% ey ; oy s H% ey ;
Ko
Igollx,, =Y Igoll s, (26)
k=0

for 1 < k < Kjy. Above, we have used ¢>(()k) = 8fq>|x:o. As usual in evolution
problems, one obtains this initial data iteratively from the equation, (20).

Definition 7. (Compatibility Conditions) We evaluate the Equation (20) at x = 1

iteratively (as is standard in parabolic problems). For instance, ¢(()1) = updoyy —

Alx=0¢0. We now need to ensure that ¢(()1)|1/,:0 = 0, which is ensured so long as
(0@0yy — Alx=0%0)|y=0 = 0. In this way, higher order conditions are also derived
(we do not write them down explicitly, as they are cumbersome).

Lemma 8. (Initial Data) Assume (11) and the compatibility conditions as in Defi-
nition 7. Then the initial data satisfies

ligollx;, = Cin 27

for a universal constant Cjy independent of €.

Proof. The assumption of (11) ensures that ||¢|| < 1. Specifically, the term

x@ =
ool L2 is clearly controlled by the assumption (11). For the latter term in [[¢ | .0,
0}

we split into the region ¥ < 1 and ¥ > 1. The region ¢ > 1 is clearly con-
trolled by (11) due to the fact u = 1 in that region. For the region ¥ < 1,
by using the Hardy inequality, admissible because ¢¢(0) = 0, we can estimate
lléo ¢1EO ”Lﬁ, ||¢0u_10||L2 < ||8¢,¢>0||sz,which again is controlled by (11). From here,

one observes that the assumptions on (11) due to the  derivative going up to order

2Ky, and the compatibility conditions, Definition 7, are sufficient to control d)(()k) in

the norm X{(Sf fork < Kyg. O

In particular, this means that quantities denoted by Ej(x) and Ix(x) as in (18)
satisfy

Xx
sup |Eg, ()| = 2[l¢ollx,, /; ko (x)|dx = 2[l¢ollx,, - (28)

xel,

2.2. Embeddings

The reader should recall the specification of the X (I) norm given in (15).
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2.2.1. w and « Estimates The proofs of the estimates of this sub-section are
inter-connected due to their nonlinear nature, and so it will be convenient to give a
parameter assignment to the value:
) . (29)
Ly

Lemma 9. For «, w defined as in (29), under the bootstrap assumption (25), the
following inequalities are valid:

u

u

P u
L (T
xel ' Lio xel u Lio

1 —¢ea
w < T %eq" (30)
—2ea

Proof. To prove the boundedness of |%|, we estimate

4, -

u
<vvealt],
u LIZ/

u—+ep

u

G HRE L A
u u L? u L;O

| ..
ij,o u L‘//

’

from which we get

|,. ==
il 1 —ea’

IA

(€29

F

.For the second inequality, we appeal to the fact that p < au < 2 to
estimate

u _ u u
il u+ep L u—elp| L
_ u - 1 1l —ea (32)
- (1_ e )ﬁ _l—lf"éa_l—Zea'
[ L
v
a

Lemma 10. Fix any subinterval I C I, C (0, 00), the following estimate is valid:

2
Ly

sup <||¢,,, ()M g + |Vagyy (0)3 7 ()1

xel

) N 1(_60?90[ ol x, 1)
(33)

for a universal constant, independent of the interval I.

Proof. We estimate using the Equation (20)
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|[Viey =i,
< ﬁﬁ<x>1—“' e H )= ()2
u %)
(j)(l) 1 1 1 1
< |V (x) = ()17 H T E) )2
u L2

v

(34)

H Yo — x(&))wfﬁ—“

L2
v
Above, x is the function fixed in (24). It is clear from the definition of (16) that the

first term on the right-hand side of (34) is bounded by ||¢|| x,. For the third term,
we use that the Blasius profile, u, is non-degenerate in the far-field:

(I =xEDu >l —xE)i 2 o.
‘We now estimate A via
Uyy

Al =2
1Al i (20 +eult)

Thus, the third term is controlled by a factor of —2—||¢| x
For the second term, we estimate using first ](36’5 second the self-similarity of

the Blasius profile: Coé < u < C1+/E when & < 1, and third the Hardy inequality:

¢

1

- < 5|l X -
fo@) 0tz st | premit]
<of | Lx@owi]
WZ L\ZI/
1 1 3 1_
<o) (mex@xw ‘..
v
3 TP 1,
+|view i ©w? Lz)
v
sot ([ertenx@mi=], +fow] . ).
v

Above, we have used in the support of x and x’ that ¢ < /x. Upon inserting into
the second term of (34), we obtain

1
ﬁA¢<x>1‘”‘x<s><w>%‘“

< 1A oo (1)~ 02 (H () 2y X () (W) T~

2
Ly

+ |ewri

L2

)

1
S o2 |fllx -
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Above, we have used that 07 > w; in the estimation of the ¢y term, which is
required according to the specification of || - ||x, in (16).

To obtain the estimate on the ¢, quantity in (33), we first localize based on the
location of &. Letting x = 1 on (0, 1), and 0 on (2, 00), be a smooth, decreasing
cut-off function, we first have

o0 o0 o0 1
2 _ 2 _ _ 2 .7
by 2% (€) = /w 3y (3 x (&) = [w 2¢y byy x () /w Pyx'®)

<

~

¢
=X
I

1 _1
mex o TX? ||¢w||i2w
L2 v

S <HW%¢¢/¢X

S (191, + [Viadpu (0. .

The far-field contribution is estimated easily upon using that # = 1 in the support
ofl—x. O

g Hviten ], ) asaely o+t ou iy

Lemma 11. The following estimate is valid, for a constant independent of I :

d

Proof. Clearly we may restrict to the region § < 1, in which case we relate u to
the self-similar variable, 1, via u? > w?i? > a)zé . Now, since ¢|y—o = 0, we may
use the standard Hardy inequality via

< a)3()c)_%+"1

~

o0
Ly

u

a + sup (36)

xel

XD

d) 1 1// /! /!
| s g 5«»2%/0 by (v, ¥ Ay

2 _1
S O Vxlpy iy S @) lx, ),

from which we obtain

1
sup || — < @’ (x)Tato ‘ . 37
XEF,’)MHL;ON ) 4 o7
By using the identity p = uﬁﬂ , We estimate
gl I P e W s O e W
wllegy = Juu+ )| u? (2 —¢e2) s 2—¢l o
1 10

Sl .
N2—€a(x> ¢ X1(I) %)

O

Corollary 12. The following estimate is valid, for a constant independent of 1
o+a S lolx - (39)

From here on, due to (39), and our bootstrap assumption, (25), we are able to
drop the dependence on « and w in forthcoming estimates.
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2.2.2. Higher Order Embeddings We will again need to proceed in a nonlinear
fashion. Thus, we give parameter names to the following quantities:

(k)
BK) = sup | L= (x)k+i—oen
xel u L
k PN !
y® = sup | (o) TRy
xel || U 12 (40)
W
T(k) := sup \/_¢(k) k+1 —07+1 (w)%*/( ,
xel Lzz/,
(® . sup ) Jug$) (x yerizom|
xel Lv;
Lemma 13. Let P(-, ..., ) be a polynomial in its arguments. The following esti-
mates are valid, for constants independent of I:
3
sup [A{) e + 1A 2 S 1dllx, ) (41)
xel v v
sup || 9% A (x) 1 H <14+6p® 4ep (,3(0), o ﬂ(k_l)) , (42)
xel 00
sup A(x)k+% , S+ ey® 4 ep (y(o), o y*ED gO ,Bk*])
xel Lw
(43)
There exists a decomposition 8){A = A(()j) + eAij) such that
sup )Ag“ (x)kH H <1, (44)
xel LI/O,O
k 3 1_ i — _
sup [ i3] Sy D P (@, Ly ED O, gk,
xel Ly
(45)
Proof. We use the expression for A to generate the identity
A2+e2) =222 (46)
u u
We first use the self-similarity of u from (7) to evaluate
u 1
_Lzy = —g(n), smooth, bounded, and decaying g(-). a7
u X

From here, the base case of k = 0 follows upon estimating |2+ &2 s> 5, according
to (39) because it holds true for the function on the right-hand 51de of (46). We thus
assume (42), (43) hold true for indices 0, ..., k — 1. We apply 8!; to (46) to obtain

k p K Uyy I gak=IP . (k) (k)
A(2+85>=—28x?— Zc,a AYTE = AP +eal. @®)
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By (47),

<1
2~ "
Ly

)Agf) (x)k-l-%

‘Aék)(x)kH H - T sup

sup
Lu/ xel

xel

For the A term, we first note that (eventually we will set the index m = k — [
from (48))

(my ~m-l (m—=1)
p_up _a L\ up
3;”5 =-—+ E o <M8XE> - . (49)

We now note that % is bounded from above using (39), and that || (i 3l %) X))z <
1. From here, we estimate

8;71@()6)"1*(7;714—] < V(m) 4.4 y(o)

XEHWH §5WLF“+5@W

L;f del
(50)
From here, we can estimate
sup ‘A(lk) (x) k1 H < supz H oL A (x)+! H a)lcc—lg<x>k—l H
xel xe] u L;o
<P (ﬂ“’), . ﬂ(k‘”) + 8%,
which establishes (42).
Next, we estimate
. 1554 ) ]
HA(k><x>k+Z < <x>l+1H 91 L ki1
1 ~Y oo —_
L2 g 150 BT L
k—I , p
+ Y [mawtE] e 2w
=151 ¥ " Ly

from which (43) follows upon using (42), (43) inductively, coupled with (50), and
using that 0, < 4—1‘, for all m, according to our assumption, (23). Estimates (44),
(45) follow in essentially the same manner. O

Lemma 14. Let ¢ solve (20), and assume the bootstrap (25). The following esti-
mates are valid, for constants independent of I :

1_
)G YO 4 gl oy, fork =0 (SD)

%],

xel

BLO <Y® 1 1pllx, oy + (1 +eBENBED] fork > 1
_(1_
BO < ()G plx, 1y (52)
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Proof. We first restrict the ¢ quantity to the region, £ < 1, and control this contri-
bution via the same Hardy type inequality we established in (35),

= xen < Vol .
< Jrr) ki (H Japl), ykri-ou - H ¢‘xk+1<1>>
< () YO gy o). (53)

The far-field contribution is controlled by integrating from oo and using that uiz =1
in the region & > 1, via

o0 (1~ xen = - /;o oy (Jo 1~ @

=~ [ 200 - xom+ / |

<

s 1®

(k)

2t

Thus,

e (FA P P Y

SNolxe

upon using that ox4+1 > oy and 041 > Wg+1.

By using the identity p = ;== we obtain
w _ ¢ L - j
=— - 8 dyp forany N,
P W th ntad E Cj.N ( +u)dx p y
©) _ ¢ 54
P T ura (54)

According to (52), we will set N = k. We proceed inductively, the base case being
already established in (36). Assume that (52) is known for indices 0, .., k — 1. Set
N = k in the expression (54), and estimate via

® *
14 (ki =041 4 L=k 1)
{x) {x)

u o uz =S}
LS Ly
k— k—j ~= J 1
" Z 0 ' (2u +¢ep) dx p (x) (k+z—ﬁk+1)
‘ u u
j=0 LY LY

v 14
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u

*)
<0 g P ykri-ann | 4 (1 + sﬁ(k*”) Bk=D,

Ly

(55)

upon invoking the induction hypothesis and estimate (51), and that oy 11 > 011
when 0 < j < k. This concludes the proof. O

Lemma 15. Let ¢ solve (20), and assume the bootstrap (25). The following esti-
mates are valid, for constants independent of 1 :

o®

)R g

sup
xel

S llxes ) (56)
Ly

_ k-1 _
y® <Nplxe, ) +ey® VBl 4y &0 O <y lx, (. (57)

Proof. First, consider (56). In the region & > 1, we have u 2> 1, in which case the
result follows from the definition of the norm. Thus we may restrict to £ < 1, in
which case we use that u> > n> > £ = % on the region where & < 1:

p® p® p®
H—z i =vE S
Ly ESD Ly ESD Ly ESD
S I T
SV ey + 00 x6 ~ 0,
< (x>—(k—ffk+1) d" )
X1 (D)

Above, we have used the Hardy inequality in the i direction, admissible because
™|y —o = 0. The same proof works when the weight of ¥ is added.

We now move to the second line. First, for the base case of k = 0,

¢ 1y d 1y
_— 2 —_ 2
W ()

u

< ()7
2
Ly

~

2
Ly

2t

9l

X
(58)

, <
Ly

This gives the y(o) estimate in (57).
We now fix k in the range 1 < k < Ko — 1 (so, in particular, (25) is valid), and
assume inductively that

PR

n _(w>§71{ 5 (x>7r+(7r+l, for r :O"‘.,k— 1. (59)
u u

2
Ly

Using (54), we obtain

(k)
By

u
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k k—j -
p® 1 O ' (u +u) i
S — ()27 ) e —— 0l p(y) 27"
u(u+u) i u(u + u) 5
=y .
< ¢(k) . 2 k j(u—i—u) a){p %_K
S ﬁ—z(l/f) Cjk ” PR v)
L2 j=0 sz
k-1 Jo-
(4 u) 1
+ cj _ pl)2"
j—LZli J u(u + u) L%//
—L2
I. = J i
8 1 Oy P
(k— Uk+1)H ‘ c € 1« X
< )" _ Z k| — s Al
j=0 L LS
L5 =iy j
P,  1_
+ Z ¢k )
LY Ly
(2u+8,0) Ao
- Z Cik = (y)?
=551 Ly Ly
(k)
—(k— 4 _ _ k=1
S 0 ® D gl e | =] o]y peyEnplsY
| X1
v
(60)
which thus gives the desired result. O
Lemma 16. Fix any subinterval I C I, C (0, 00). Fork > 1,
T < Nllxe, o +TED + e k=D gLSH 4 gy ) L5
+ey @1+ 1+ e85 Igl1x,
T S lgllxin 61)

for a universal constant, independent of the interval I.

Proof. The base case has been treated in estimate (33). By taking 8)16‘_1 of Equa-
tion (20), we have

k k
k i ok—i i k—i
upl) = WD =" cioludt T gy + Y cjolani g (62)
j=1 j=0
L*
Dividing through by /u,
®) )b
| vassy it -
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LI
¢<k+1> 1 3 (it + £p) =)
i) ey | O HM “|..
f L%} j=1 u L‘//
P p I k— k—
cox P —K (k—j) ¢ J)
Z )? Hf o Z HM ‘|
= j=15%] v
k=j) L, o= j) L.
A” (¥)2— A()H )27
ﬁ
v i=L%l LZW//
(k—j)
£ 3 e fimnt=, |
j k L‘/f \/E Lo°
v
< ()~ k1o (H¢ £ %D 4 gglily k=D 4 o (0,15
Xk+1

k
+(1+8y(k)+sp <y<0)’...’y<k—1>,ﬂ<0> ..... ﬁ<k—1>>) (Tm +H¢HX )
151+

+(1 +ep(8) op (ﬂ@ ..... ﬁ(L%J)")) Xk).

Above, we have invoked that oy 11 > o when j < k+ 1. We have also invoked the

decomposition of 8,{ A= A(()j ) 4+ sAij ) and applied estimates for each piece from
(44), (45). O

Lemma 17. Fix any subinterval I C I, C (0, 00). Fork > 1,

(O < TED Ll x, 0 + 0+ BONED 4 (1 4 epO)T®),

R L (63)
for a universal constant, independent of the interval I.

Proof. We again estimate using (5) via

(k+1) k N o .
) ¢ i (U + ep) H (k—j) H
s HL*‘H Vi +,-Zl o MR M
_ b
Z ¢(k—j)
‘],
= Vi |

v
From here the result follows upon invoking (51) for the first term, estimate (42) for
the final term, and recalling the definitions of (40), (16). O

By combining the estimates (52), (57), (61) and (63), we have established

Corollary 18. The following estimates are valid, independent of the interval I:

ED oy ® 4 B0 4y O gl () (64)
1_
G- T o
sup [ 24D x) Selldlxan + 19k o (69)
s \/ﬁ L%} k() k—1(1)
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2.2.3. Miscellaneous Estimates

Lemma 19. Let ¢ solve (20), and p be given by (19). Then the following estimates

are valid:

sup (H up® ) |

xel

Proof. We directly estimate using (54), which gives

Ly
¢(k) I m |
_” u —(Y)?2 +Z Cjk KT+ w)dl paly) e
u+ i . L
LW j=0
151 .
) i . L
S|+ D ek |20 Qi e0)dpVu(v)?
k -

1 k—jon- i 1_
D ek |20 Qi ep)al pr ()T

j=151) Ly
e 1 ajp
—(k—o%) gk 3K X
S ) O gy T8 2o ik | oV T L=
j=0 v LS
v
L5 -z _
- Z Cik o pu(y) |
Lo v
v
— k—Jj ~y= j 1_
+ Z cik| =0T Qi+ep)| |dxovul¥) Tl
=5t W '
e (O e P PN
< () ( i PRt CTA AR A Y 4 P

, |30k 2 )3~ eyt

2) S elixen-
Ly

(66)

This concludes the estimate of the first term in (66). For the second term, we simply
expand using the product rule, as done in (49). The result then follows from the

first estimate in (66), upon using that || ||L:>o ~

1, and ||u81 1

| S

We will also invoke the following lemma about A, defined in (20):

< 1.

O

Lemma 20. Assume (25). For k > 1, there exists a decomposition BfA = Aék) +

£A§k) where

sup
xel

AP = e

(67)



On Global-in-x Stability of Blasius Profiles 971

3 (k 3 1_
sup [u? AP )/ T y) 1| L S ellgln + I9lx (69)
xel v

3 3
sup [u3 0 A0 S e Bl + Il ) + 1 (69)
xel

for a universal constant Cy and an implicit constant in (68) that are independent

of I.

Proof. We first recall the decomposition from (48). The first estimate, (67), is clear
from the definition of Ag and by using the property (47).

For estimate (68), we recall the definition of A; from (48). We first establish
the result for Ail), which will serve as our base case:

w3 AP @) )

N
—
~

D=

|
=

S [ur 40,2 )1+
u

~

v
S IAW s 170, 8 0% ()2~

S lollx,

upon invoking (41) to estimate the A term, and (66) to estimate the p term (and the
bootstrap, (25)).

We thus assume (68) holds for all indices O, .. ., kK — 1, and further decompose
it via

2 480 o)k 2=

2
Ly
k-1 k—1
< 3ol 4 ak=IP k43, Ak 3ol 4 ak=1P k43, 1k
S [wretacal S ta | L e Jurotaral T Lty |
P i L= i L
k=1 L5
3 iy 3 1 3 _ P 3 1_
£ Y [utolanat Bttt Lo 3 [udnant St an i
u L u L
= v 1=0 ¥
k—1
3ol 4 ak=1P k43, Lok
e uralaral 1 Bt ian i
=155 y

k—1
3 P 43 1_
< Pttt ot 2ottt
k=1

: 3o k1P ki3, L
+o Y Joharn | [uot T 2 ekt gy

2
Ly
k=l 3 3 | 0
301 13,4 k—1 k=1
te Y |urolag i) N |~
=451 !

slol,



972 S. IYER

The p terms in Lfb in the first two sums above is estimated upon invoking (66),
the Ag term in L in the first sum above is estimated using (47), the A; term in
L in the second sum above is estimated using (42). For the third sum, we use
that [ < k — 1 to invoke the induction hypothesis, and finally the L* term of p we
expand as in (49) to see it is controlled by [|¢]lx,_,. -

For the final inequality, (69), we have

the A(()k) term is clearly seen to be bounded by a universal constant upon invoking
(47), whereas the A(lk) term is bounded according to (68). O

3 3 3 3
u? AP (x)k+a w2 AN (x)k+a

=|

2’

3 3
30k k+3
u20, Ax)" "4 2 2

+8‘
2
Ly

A key feature we take advantage of is that decay is enhanced in the region § < 1
due to controlling the weight v 3= in the norm, (16).

Lemma 21. (Lz(é < 1) Estimates) Let ¢ solve (20), and assume the bootstrap
(25). Then, fora =0, 1, 2,

3:;¢(k) (x)k+%+%—0k+2—%

sup
xel

< 70
By S 10 (70)

for a constant independent of I.

Proof. We first address the j = O case by rearranging the Equation (20) to obtain

1 1
quw = ||~ ¢« + [ -A¢
Ly Ju iz e<ny el es<n
1 d)(]) 3 @
S| 5= +aw|_ w2
v 12 g<1) > VI <
M
1] 3|l ¢
S | —= + A oo (X) 74 || —F=
Vi 13 ¢<1) Vi L2(E<1)
K (1) 2 K
< i+t |2 1AW )~ |2
w§+K 5 3tk 2
L3 =<1 12E<D)
1,k 1 1,k 1 1
< (xyaith | pWy1x T3 oWy a=x (V"2 ¢/
< x) by Y L= (x) YT ) T2 (6) 2
_34x 1_ _34k 1_ _1
w7 iy L @ e om
5 K
< (x)Tatoets . 71
S ) s (71)

Above, we have used the localization to the region {§ < 1} in several ways. First, we
have bounded u below by a factor of \/£. Second, we use the inequality 1 < R
The second to last inequality is the Hardy inequality, admissible because both
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P, ¢(1)|¢=0 = 0. In the final estimate, we simply appeal to the definition of the
norm, (16).
We now integrate via

ey SAEE)
L3S

S (<x>3—"f+2—5

v
X(E)I¢|=X(§)’/O ¢«/f‘~ L2<0)

) (72)
L@(&,ﬁl))

Above, we have used in the support of x (£) that /¥ < (x) 7. In turn, (72) implies

¢x/f‘

_1 3 g,k
19122 <ty S 075 (VT2 2y 2 e ) - (73)

We can make the above estimate global in & by simply noting that

O |
1912 ey = |$w 2w

Ly (E=1)

1

< Do, 4

< 0 (8 gy b

LiE=n "~

For the enhanced localized ¢y estimate, we have first, by a standard interpola-
tion, and second by inserting (73) for the ||¢|| 12 term, (71) for the ||y y || 12 term,

and (74) for the final ¢ term as follows

_1
\qw\ + () 7E 1012 ey

L3 (<)

ey llL2 <1y = H‘P‘ L3 (s<1)‘

1 5 o
S 078 (03 gyl ) w5 gd
!¢!

L2 (£<1) +C
¥ =

+ (x)_(%_%)

Xo(I)

(x _(%_%

4

=8|y

xzu) Xo(D)

For any § > 0. By absorbing the § term to the left-hand side, we conclude the proof
for k = 0. The general k case follows in an analogous manner, upon invoking the

expression (5) for the ¢y estimate. O

Lemma 22. (L* Estimates) Let ¢ solve Equation (20), and assume the bootstrap
(25). Then the following estimate is valid:

k 3 5 .k
Iy s 337772 S iglxaa,s (75)

for a constant independent of I.
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Proof. We again consider the k = 0 case. We use the Equation (20) to write

L m A
Hﬁqb‘WHLff(Sﬁ) _Hﬁd) HLf;@fl) + Hﬁd)HL;O(Eﬂ)' (76)
For the first term, we estimate
x®)] 0] < x@ iy /w oy | s x@wruivt|ef| |
u 0 13, ¢<D)

<y (Foms) )

LyEsh ™

<o ,
S|y X3 (1)

upon invoking (70). The second term in (76) follows similarly, upon invoking that
A{x)|lco < 1. The general k case follows from invoking expression (5). This

concludes the proof. O

3. Baseline Tier: L2 Estimates

In this section, we obtain two estimates at the L? level - the energy estimate and
the quotient estimate. The reader is urged to keep in mind the linearized structure
which is present at the L? level, Equation (21).

We urge the reader to keep in mind the bootstrap assumption, (25), which will
be in implicit use throughout the estimates of this section. In particular, we will
repeatedly use the following inequalities to bound nonlinear quantities, which has
been rigorously established in (30) - (51):

uSusSu, lplSu, pl S . (7
Before coming to our energy estimate, we first prove the following lemma:

Lemma 23. Let u be the Blasius solution. Then denoting u, the d, in (x, ¥) coor-
dinates,

_ _ v _ Uyy
ux(x,iﬂ)=Mx(x,y)+Euy(x,y)=7- (78)

Proof. This follows from the chain rule. Specifically, differentiate the equality
u(x,y) = u(x, ) to obtain the identities

ity (x, y) = ity (x, ), ity (x, y) = @ity (x, ) + @iy y (6, ¥),  (79)
and
it (x, y) = it (0, Y) + ity Yo O, ) = ity (x, ) — Dity (x, ). (80)

Rearranging (80) and invoking the first identity in (79) yields uy(x, ¢¥) =
uyx(x,y) + ﬁ%(x, v), which is the first equality of (78). The second equality of
(78) follows from u solving the Prandtl equation, (1). O
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Lemma 24. (Energy Estimate) Let ¢ solve (20). Assume the bootstrap assumption
(25). Then, for Ko > 1,

%/¢2+/m¢w|2 < e (r) O I, (). @81)

Proof. We take inner product of the Equation (20) against ¢ to obtain

ax 2 - 2 1 - 2 2
7/(15 +fu|¢w| —E/M«/fx/xlfﬁl +/8p¢w¢+/AI¢I =0. (82

We now use two properties:
e 2o - —- 2
u>0, uiyy =iy, —uluy|” <0,

which hold by properties of the Blasius profile. We also use that A > 0, which
again holds by the concavity of the Blasius profile, (7). Finally, we estimate

{x)s=

'/spww‘ Sew G|

£(x) 3200 4O O o (1

1—0
s 0 (0013 19

AR ZAN

e(x)" G20 B (03 < e(x)"OP Ig, (1),

where we have used the definitions (40), inequalities (64) to control the 8, Y terms,
and that 201 < 41T' This concludes the proof. O

Lemma 25. (Quotient Estimate) Let ¢ be a solution to (20). Assume the bootstrap
assumption, (25). Then the following estimate is valid:

Oy 1 _
) / o'~ (v) + f o5 (V) < e(n) P Ig, (). (83)

Proof. We have the identity

R 1 L
> /¢>2—<¢>+/¢§,<w>+/¢2<w>——”2+fA¢2—<‘”> =0. (84
u 2u u

We group the latter two terms together via

(84.3) + (84.4) = /qb u3 /qs S2+S2R],
where
Q=%+M2A=w_zu2__ﬁ¢’
2 2 u(u + u)
1

Q= iy, + Sy,

UyyeP eplly + eUpy + 82,0,0x

QR = Aeg +
Ot it en 2




976 S. IYER

For the reader’s convenience, we derive the equality above upon substituting
(10):

Q= e _ w2 f_tyy
2 u(u +u)
1 u u
— (7 - _ 22 yy kD »y
R e e To T o S Tr s
1__ 1, _ _ _ u
= Emfix + z(p”x +upx + Eppx) —Uyy + 8/)2’2 tep +e9A
=q+af
First, by (78) and by convexity of the Blasius profile, 2 = — uyy > 0. We

thus need to estimate the nonlinear part in QX:

et

A iy
i+ s
u Lt//

< ellpiy)d me
N

12, |
\/ﬁ W
H Py
2 v

<o) I Eg () < e(x) "D I, (x). (85)

& || PPx
o)y e|om
u2 ” Lf[f 210 u?

o0
Ly

We now proceed to prove the final inequality above after Equation (85) by

estimating all five of the L;o terms above. First, upon invoking (41), (51), and (64),
we obtain

Ap ¢
- <||All7 H_
[l =10

Above, we have also estimated A via invoking (41).
Second, upon invoking (39), u ~ n, iy, ~ n%(x)~!

| s @ O B
Ly

on 1 < 1, we estimate

Freaen H I B T et
u?(2i +ep) llLe — el 2 +epliL 2u —eub Ly
1 p
—1 P
1
< ()1 H O < (=0

where we have invoked (64) to ﬂ(o).
Third, again upon invoking (40), (64) and (39),
LY u v

OONH OON 00
L L L v

<) (0“13(0) ) o < ()T OP 1 ().
Fourth, again upon invoking (40), (64) and (39),

%], < L 1%

ux

Py
= ||LOo

u?

u i

Px
u

Lo ST S )T 1k ().
v
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Fifth, again upon invoking (40) and (64),

= |l 15
LY u Lf u

v

PP - - -
‘ X < (x) (0+)(x> (1+),3(0),3(1) 5 (x) (0+)1K0(x)~

~

o0
Ly

Inserting these estimates into (85) yields the estimate shown beneath (85). This
concludes the proof. 0O

4. Middle Tier;: H* for 1 < k < K|

Atthe H'! level, the linearized equation changes and so requires a new treatment
(compare (21) versus (22)). Taking one x derivative of (20), we obtain

1
o0 —ugy), + ApY —uDyy + Arg = 0.

The point here is that () can be separated into u" =: ") +¢p(V. While the pV
contribution is quadratic (it carries an ¢ factor), the D contribution is linear and
highest order in ¢. To see this, we use the equation to rewrite ¢y via

(O] A
U — ugyy + A" —u® [¢ ‘q + Acp = 0. (86)
u u

Remark 26. (Notational Convention) We introduce the following notation, conve-
nient for majorizing terms appearing in the energy estimates:

Ri—1(x) := ()" O L1 (0) + e ()" O Ig, (x). (87)

Lemma 27. Let ¢ solve the equation (20). Assume the bootstrap assumption, (25).
Then the following inequality is valid:

—/|¢ |2 (x) =2 +f|¢ 12— (x)! 21 < Ro(x). (88)

Proof. To obtain this estimate, we take the inner-product of (20) against ¢ % (x)1-201

which produces the identity

/|¢x l 2a)1+ /|¢ | 1 —2wy

2 1
2‘“‘ / by [20r) 21 — / S (89)

For the first term on the right-hand side above, we invoke from (83) that || ¢y, || iz

is an integrable quantity in x, and therefore upon using w; > 0, it can be bounded
by (x)_(0+) Ip(x) (recall our convention for I (x) defined in (18)). For the second
term on the right-hand side of (89), we estimate via

1
‘/ )90y S By b — |

Lt .

40l |

2
Ly
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S HA ) S0t oot
8|y 21 — L +C5(x)_(1+)E0(X)
1//
8lger) 2 —| |+ C5x)" (),
¥

where we have used Young’s inequality for products for any parameter 6. We pick
& small, universally, so as to absorb the first term on the right-hand side above to
the left-hand side of (89). We have used (41) for A and (83) for the ¢ term. Again,
we invoke (83) to establish that the above quantities are integrable in x. O

Lemma 28. (Energy Estimate) Let ¢ solve the equation (20). Assume the bootstrap
assumption, (25). Then the following inequality is valid:

%‘ / [V ()* 72 4 / ulpyI*(x)> 77 < Ro(x). (90)

Proof. We apply the multiplier ¢V (x)?>~2°1 to (86). Denote by R(x) the right-hand
side of (90). This generates the identity

0 _ _ u —
§/|¢(1)|2<x>2 201 +/u|¢$)|2x2 201 _/%W(l)'Z(x)Z 20']

2
+/A|¢(l)|2x2—201 _fu(l) |¢ | (x>2—20'1

u

_ 2—2201 /|¢(l)|2<x>1—201 +/u(1)%¢(1)<x>2—2m +/Ax¢¢(l)(x)2_2‘”.
oD

The third and fourth terms on the left-hand side are damping terms, as in the
lowest order estimate. The first term on the right-hand side is controlled by Ro(x)
due to the previous estimate, (88), and our choice that o7 > w;.

The new leading order contribution is the last term on the left-hand side, which,
precisely, is

- [ L0 - [ LRy, ©2)

The key point is that the first term above is nonnegative, because i, < 0 for Blasius
solutions and according to (78),

- f 0P @) > 0.

We estimate the p contribution from (92), which enables us to use the smallness of
&:

2 2
S et 0 e )|
v

(0]
o2 s[5, Joer
u

12

|~ ;



On Global-in-x Stability of Blasius Profiles 979
S e(0) M Ek (1) S etx) "Ik, (),

where we have invoked estimate (64) to estimate the (M term, and the specification
of the norm (16).
We now need to estimate

'f A¢¢(l) >2—201

aD
/ ——Aggp D (x)? 72

M
< te / 'OTA¢¢(D(X)2_2°' S 93)

For the first term in (93), we do not have any factors of &, so we take advantage
of the fact that one of the terms, ¢, is lower order:

M

[(93.1)] < (x)~'2 ¢(1) >*—w1

TR P
u()

2
L‘//

A

<x)*<%+>wH ”L%Q HA(x)HLiOEQ(x)RO(x)%

< () "I Eg(x) + Ro(x) < Ro(x).

Above, we have used (39) to estimate w, (41) to estimate the A term, (16) to estimate
the ¢ term by Ep(x), and (88) to estimate the ¢ term. We have also used that
o1 > w1. We used Young’s inequality to go from the second to third inequality, and
the definition of Ry in (87) to ultimately bound from above by Ry.

For the second term from (93), we use the smallness of ¢ and that o1 > w; via

(€]
19321 £ 60" DN oo | Tt ot 73 F s 0Ot
58<x)‘(0+)HA(x)HOOﬂ<1>H¢<x)— -4 - oD (x) 2= -

<o) P Ig, (x),

~

upon invoking (41) for the A term, (64) for the 8 term, and just the norm (16) for
the L?ﬁ terms.
For the final term on the right-hand side of (91), we estimate

[ Acop 022

— _1l_2
S 07O A e,

¢ )2 12
v

< ) O IRy S Ro().
We have used (42) and then (64) to estimate the A, term. For the ¢ term, we use

the definition of the norm, X(. For the d)(l) term, we use (88) and that o1 > wj.
This concludes the proof. O
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Lemma 29. Let ¢ solve the Equation (20). Assume the bootstrap assumption, (25).
Then the following inequality is valid:

a_x 2 12k 12w /l 2 12w, 1-2k
) /(f’l/,l/f X '+ M(bxx v
< CoRo(w) +5 [ 1o Py (22 ©4)

Proof. We apply the weighted multiplier %q&xxl_%"l (y)172¢, which produces the
identity

—/% 12K12w]+/ ¢212a)1 )172/(
_ 1_22w1 /¢w(w>l—2Kx—2w| +(1 _ZK)/qbwquxl_zwll/f_ZK

+ / A¢£¢xx1‘2°" ()=, (95)

We clearly see that the first term on the right-hand side of (95) is bounded by
()~ OD 15 () upon invoking the second term on the left-hand side of (83). We
estimate the second term on the right-hand side of (95) via the Hardy inequality on
¢y, admissible because ¢y |y—o = 0,

by T (x) 1

‘ I e R T I

2
Ly

1_ _
N ot
v

< Colx)™ 0 H«mvﬂ‘”

2
Ly

_ 1.2 1_ o |12
I 0 PR T i
1 2
= Coat™ Pl + 8oy )| L. 96)
v
Above, we have used that 2w; > o7.
Lastly, we estimate
‘/A¢l¢ x1—2w1<w)1—2K
u
10) 1. _1_ Px 1, 1
s aw] | =wiaie] Sy
Lyl Vu L2 Vu L3
¢ o
S C(x) O + 8 | =)z x| 97)
Vu L2

the latter term being absorbed to the left-hand side of (95). O
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Lemma 30. (Quotient Estimate) Let ¢ be a solution to (20). Assume the bootstrap
assumption, (25). Then the following estimate is valid:

/‘(p(l)‘ < )2-201 +/‘¢(1)‘ Y12 ()220

SRo(x) + / \qs“)\ Lt oy,

Proof. We take the inner product of (86) with #(w)l’z" (x)27291  which pro-
duces the identity

1 u
(1)‘ Y2 y2-20 4 - [ M
/ ‘(l) + 2 f u?

+/‘¢1(/,1)‘ <w)1—2K<x)2—20'1 +2K(12_2K)/\‘¢(l)‘21//—21(—1(x>2—20

+/A‘¢(1)‘2%<w)1_zk<x>2—zm _/”_;_x ¢

_ 2_201/‘qb(l)‘zl(w)lfzk(x)lf&n +8/£‘¢(1))2Mmzzm
2 u " !

1-2k
+ / Ax¢¢“>L<x>2—2"l. (98)

u

¢(1) ‘2<I//)1—2K <x)2—20'1

(1)‘2M<x>2—2m
u

All of the terms on the left-hand side above are identical to that of Lemma 25,
with the exception of the sixth, final term which is a further positive contribution
due to the sign condition u#, < 0. The first term on the left-hand side appears on
the right-hand side of the estimate we are proving. We are thus left with controlling
the final two terms on the right-hand side, and these are treated identically to the
corresponding terms in Lemma 28. O

A nearly identical sequence of estimates is performed for the 2 through K
order of 9,.

Lemma31. Let 2 < k < K| < Ky, and let ¢ solve (20). Assume the bootstrap
assumption (25). For any 0 < § < 1, the following estimates hold:

/‘¢(k 2 >2k 1- 2wk+f)¢(k)) 2k 1-2ay < Re_1 (%), 99)

s hofure

%x/‘(bl(pkq)‘2(1//)1—2,(()()21(—1—2@,(+/l‘d)(k)‘2(x>zk_1_2mk<1/f>1—2x
u

< CsRic () +3 f 000 12 -2 (101

/‘d)(k)‘ —2 x) 2201 +/‘¢(k) () 172 () 2k 20

S Rici () + / \¢><">\ ) e, (102)

¢<") ()72 < Ry (x) (100)
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5. Highest Tier: H* for K| < k < K
We take 8!5 to the Equation (20) to obtain
k k
o o
O —udiPyy + ADSp — Y c;diudy pyy + Y cjdlAdy ¢ =0.
j=1 j=1

We will simplify notations by setting ¢p®) := 8§¢, in which case the above equation
reads as

k k
s .
O —upl) + Ap® =3 cu D7+ 3 ol Ap*D =0, (103)
=1 j=I

As apreliminary to the energy estimate, we will perform the following estimate:

Lemma 32. Let ¢ be a solution to (20). Assume the bootstrap assumption, (25).
Then the following estimate is valid:

Proof. We consider Equation (103) with k replaced by k — 1, which we write as
follows for the readers’ convenience:

k—1
d))(ck—l) ¢<k 1)+A¢(k 1) Zc u(;)¢(k - J)+Zc 8] ¢(k 1=/ — 0.
Jj=1 Jj=1

(105)

k
‘We now apply the multiplier ‘l’;—) (x)2k=1=2ex This generates the identity

/‘¢(k n? )Zk—l—wk+/‘¢(k)‘2<x)2k—l—wk

k—1
_nl - iy k—1—j) 1 -
—_ | Ap®=D 2 k) y2k=1 2wk+ /\C‘u(j) ( D2 ) 1\ 2k—1-20;
/¢ —¢(x) ; ju gy~ O )

k—1
_ Z/Cja){A(b(k—l—]);¢(k)<x)2k—l—2wk
j=1

L551)
1 ]
/A¢)(k 1) ¢(k)( )2k 1— 2&)k+ E /Cj (])d)( =J) ¢(k)( )2]( 12wy

k=1 1 -
+ Z /CjM(J)qﬁl(w// ./);¢(k)<x>2k 1-20

JLkl
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2
. . 1 L
_ Z /C]a){Aqs(k 1 ]);¢(k)(x>2k 12w
. 1
= D [ e AgtTITI g )i (106)

We now proceed to estimate the five terms appearing on the right-hand side of
(106), starting with

-l -
’/A¢(k 1);¢(k)(x>2k 1-20;

(k—=1) (k)
< (x)~OH) ¢ k=3 —an_ ¢ ! e
N e N
v v
_ k=D 5 o®
S (x) 0+ A(x) ( )k 3 —Wk—1 Z >k 53—k
o, [t |Srcie]
»® 2
< Cs(x) " E () Re—1 (x) + 8 | == (x )k_f“”k
Vu 5

for any § > 0. We select § < 1 so that the final term above can be absorbed to the
left-hand side of (106). Above, we have invoked (41), the definition of the norm,
(16), and that w; > wg_1.

Next, we have, when 1 < j < L%J,

(j) 4 (k=1=j) 1 (k) 2k—1—-2wy
T - (x
‘/ vy u 2

i) 4 ep() ' ©
< (02 i ”[(p(k D) ki | LM L
u L3 Ju "
. . (k)
S ()27 (1 + efD)r =11 L(x)k—%—wk
u 12
v
1+ p® 1 ?
S Cs(x) (I +eEjo(x)Ex—j(x) + 6 (x)m2—ex
u 5

2
ARSI

N

< Cs(x) R (x) + 8

2
Ly

where above, we have used the definitions (40), estimate (64), and that w; > oj_.
Next, we have, when L’%IJ <j<k-1,

D oak=1=p 1y k= 1—20,
u — X
' / oy =P )
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7D )
< (x)e ﬂ ~3 H\/—gb(k 1= ey 1=+ o .
Ly
¢0
X || —=(x)" T2
Vu .
v
; ; (9]
5(x)—%—(1+8y(1))t(k—1—.,) ¢—(x>k—%—wk
Vu L
v
2
1+) 2 ¢() el
< Cs(x)" "0 + e Ej(0))? Ex—jp1(x)* + 8 N
i L2
v
2
(k)
< CoRei(n)+6 |2 P k|
Vi .

v

where, above, we have used the definitions (40), and estimate (64) and that w; >
ox—1 for j in the specified range.
We now again consider the range, when 1 < j < L’%IJ,

‘/a){A¢(klj);¢(k)(X>2k]2wk

(k=1—j) (k)
< (x)~OD Ha] ,+1H ¢ J (x>k—l—j—%—a)k—j o) ()i o
| Ju 2| Ve L2
v v
—(04) (b(k) k—1_
< (x) A+ eEj (e l—1—j(x) | —=(x)""27*
Vu 2
L
v
2
. P® 1y
S CsRi—1(x) +6 (x)
u 5

Above, we have used (42) and (64).
Next, we have when L L] < J < k — 1. For this, we estimate via

i a1
‘[a}{A¢(k—1—});¢(k)(x>2k—l—2wk

. . (k—1-7j) . (k)
< 0 0 udalaw | | Sttt
Ly u Lo ﬁ 12
v v
—(ip ¢(k) k—1_4
S)T2T(Ej 1 (x0) + eEj(0)Ej—j (x) || —=(x)" 727
Vu 2
Ly
»® P
< CsRp—1(x) + 8 ()2
N 2
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We have invoked (69), (51), (64), and that w; > ox—1 > 0}—;.
This concludes the proof. O

Lemma 33. (Energy Estimate) Let ¢ be a solution to (20). Assume the bootstrap
assumption, (25). Then the following estimate is valid:

a _ _
) / 117 (x) 260 4 / ulpy) P25 < Ry (). (107)

Proof. We apply the weighted multiplier ¢ (x)2*—%) to Equation (103), which
produces the identity

9 2 ~ 2 B i 2 B
236/‘(1)(1()‘ (x>2k72ak+/u‘¢l(//k)‘ (x) 220 _/ g*//‘qb(k)‘ (x) 220
2
+/A)¢(k)) (x>2k—2crk _/-Iz(l)dbl(pkl;l)(b(k)(x)Zk—Zok

2k — 20y 2 - k— _
=== /‘¢(k)‘ (x) 241 2crk+€/p(l)¢l(/j¢l)¢(k)<x)2k 201

k
k —ox i) (k—j _
"‘/8/’4’,(/,3,(15(1‘)(36)2(1‘ Uk)+ch/u(j)¢l(/fw1)¢(k)<x>2k 20k
j=2
k ' '
_|-ch/81A¢(k—,1)¢(k)<x>2k—20k. (108)
j=1

The left-hand side is the same as that appearing in the Middle-Tier energy
estimate, the only exception being the final term on the left-hand side. For this, we
invoke the identity to write

ah am

_ k—1 20, 20y _ _
_/”(1)¢’1(//¢ )30 () 220k _/ U1 2 ) 2k—20 _/7L(k D g0 ()220

u u

While the first term above is a damping term, we estimate the latter by

7D
‘/ u_L(kfl)d)(k)(x)Zkuok
u

i
—(x)
u

S )7 9 ()2

~

HL(kfl)<x)k7<rk
o0

2 2
LT// Ll//

S B3 (@) (Ex-1(0) + e Eg()) Rt ()

< Rie—1(x),

where we have invoked estimates (65), (104), and o > w.
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The first term on the right-hand side of (108) is controlled by Ry (x) already by
Lemma 32 upon using that ox > wi. We thus begin with

k—1 —
5/)0(])¢,(/“/, )¢(k)<x)2k 20’k

p()

<elx)” A+ ¢(k><x>k—%—wk

(k— 1) k o
Hfd) ‘ L2 L?
v v

< s<x>‘(%+)ﬁ“>v“‘—”RH(x)f
1 1
< e(x) "2 Ey(x) Ex () Rg—1(x)? < Rp—1(x),

upon invoking (64), (104), and o > w.
We now move to

k —
/ ep ¢ (x) 2

k _ k
__/&OMS( )¢(k)<x)2(k ak)_/gp‘qb()‘ ) 2(k=01)

- e¢‘f_€_ P i [Lap o[ i, 109

where above, we have used the identity
1 # ity
u = _ .
e e\ TGP

The first term above is majorized by invoking (33) via

-3 I )y oY e
100.0] Set) 4 fupy i o o] Tt
L2 u
v 12
v
—(3—
< e ) o] | (B + 00br)
v
(1_
<ot () 10,
Above, we have localized based on the location of the self-similar variable, &:
¢(k) _ ¢(k) o ¢(k) B
ST = | W@+ | S 0 T = x @)
Ly Ly Ly

In the support of 1 — x, we use that u 2 1 according to (30) and the corresponding
fact for u. Hence,

¢(k)

| S E).
L3

()RR (1 — x (&)

S o ® e

2
L3
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For the localized contribution, we perform the Hardy inequality. Specifically, we
again appeal to (30) to assert that u> > & > ¥¥ from which we have

~ w B
“ ®)
H¢_2<x>k_gk)(($) < ¢_(x>%+k—okx(g) < qb_( )%+k—ak
’ L21// 1/[ L12// df L%[/
S “¢$)(X>k—ﬁk L%b (x)% < Ik(x)(x)%. (110)

The second term above is easily majorized by

1109:2)] < o)1) [2ei=] _ |Vas® et

2
Ly

o0
Ly
2

2

< et~ (7) g0 | g =

< 8<x)_(£_)EKOIK0-

~

Above, we have appealed to estimate (64).
For the fourth term on the right-hand side of (108), we begin by considering
the case when j = min{j, k — j} > 2. We estimate directly that

ol B
‘/u(n(ﬁ;w/)(/)(k)(x)z(k o)

i) 4 gp)

S w)~a (x)/ 9 ()t

u(p](/jkl;]) (x>k—j—0k,j+1

2 2
Ly Ly

Ly

) 0 (1 4 ep D) 10— R, ()

A

(14 1
(x) (2 )(1+3Ej+l)Ekfj+1Rk2_1
< Rp-1(x),

A

where we have used estimate (104), and (64), oy > @i > 0% jt1,
We now treat this term for j = max{j, k — j} < k. We split

= [ W08 w2 (4 + 2. (a1

The far-field term is estimated as

1

‘(111.2)‘ < ()~ D ey —4

2
Ly

% “ﬁ¢$1;j) (x>(k*j)+170’k—j+] +1

ot
Ly

2
Ly

< o ()

i <ﬁ<j) + ng)) (x)/ 4

2
Ly
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% Hﬁd"(/f';j) () k=D H =0k g H $® (xyk—3- p
v
—(%+) 1
S (x) I+ EEj(x))Ek—j-i-ZRk—l(x)z < Ri—1(x).
Above, we use (64), (66) and (104).
We estimate the localized contribution via
Dot =P o
| = /\/Eu Dyigy, Fm Vx @
7
< (x)%(xf(%‘) HW(J)( & D+(3-ok-j1)
LEESD

(k) <x)k—tfk

8 (Hﬁaﬁ%ﬂk‘” + )72

2
Lw>

1
, + Rk—l(xﬂ)
Ly

2
Ly

3

<t ) E 0B 0w <Hﬁ¢$) (ko

= Col0) 3T E (0 Bk 200 + 8 Vg (x)f

2
, + Ri—1(x)
L

2
<R +6 H\/ﬁq)fj)(x%—“k L
v

We select 6 < 1 based only on universal constants, so that the § term above can be
absorbed to the left-hand side of (108). Above, we have used that u ~ 1 ~ /£ in
the region where & < 1, which is according to (30). We have also used the Hardy
inequality in the i direction, which yields

[Vl "

—o®x'(©)

X2

5 [wisf

x (&)

2
Ly

Finally, we have used the enhanced uniform decay estimate, (75), the third inequal-
ity in (56), and the estimate we established in (104).

We now move to the final term. In the case when j = min{j, k — j} > 1, we
estimate

‘/3£A¢(kj>¢<k)(x>z<kok>

= (67O od ALy ol ey Th e |

i

1 1
SOV A4 6B () R j-1(0)? Ri1(0)? < Rei ().
Above, we use (41) for the A term, (104) for the ¢ terms, and that o} > wyg, o >

Wk—j-
In the case when j = max{j, k — j} < k, we estimate

V 8] Ap—) g8 () 2k=a0
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pk=

3 .3 .1 )
Sx)72 Huza,{fux)fﬁ A

2
Lw u

)
k=1 —awy
o) X 2
‘Lw H ﬁ< )

< <x>,(%+> (8Ej(X) + Ej—l(x)>Ek—j+l(x)Rk—l(x)% < Rie—1(x).

Above, we use (69) for the A term, (51), (64) for the ¢*—7) term, and (104) for the
»® term. We also use that oy > wy, ox > Ok—j+1-

This concludes the proof. O

Lemma 34. Let ¢ be a solution to (20). Assume the bootstrap assumption, (25).
Then the following estimate is valid:

/‘¢(k n? >2k7172wk(w>172/<+/‘¢(k)‘2(x>2k7172wk<w)172/<

2

< CsRic1 () + 8 | @) (1)~ gy 2 (112)

-
Ly

Proof. We apply the multlpher ( yZk=l=ok (4} 1=2K 6 (105). This produces the
identity

/‘¢(k 1) )Zkflfwk“ﬁ)l*zk +/|¢(k)|2<x)2k717wk(w>172/€

nl 1 -
_—/Ad)(k 1);¢(k)<x)2k 1 wk(l/f)l 2K
L551)

+ Z /Cj (])¢(k - J)ld)(k)( >2k 1 wk(¢>l —2k

+ i / (/)¢(k 1- /)1¢(k)< Y2k =10y 1-26
=151
1451 ' .

-2 / cjoy A1 g () ey 172
j=1
k—1 ) N

- X f c;0y AUTITI g ()2 172

=5

— (1= 2) / Gy e () () (113)

The estimation of these terms is nearly identical to Lemma 32, with the excep-
tion of the final term, for which we invoke the Hardy inequality:
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‘/ ¢$71)¢(k) <.x>2k_l_2wk1//'_2K

_ 1
SRl P I B

W

2
Ly

< Colia ) +8 o |

=
Ly

‘We note that this Hardy inequality is admissible because of the defect factor of —«
in the ¥ weight, as well as the fact that ¢® ly=0 = 0. We also note that we have
used the inequality 2wy > oy + ox—1 regarding the x-defect factors. O

Lemma 35. (Quotient Estimate) Let ¢ be a solution to (20). Assume the bootstrap
assumption (25). Then the following estimate is valid:

/‘¢(k)‘ )2k 20k+/‘¢(k)‘ () 172 ()220
S Rict () + / ]qb(")] e (o2, (114)

Proof. We apply the weighted “quotient multiplier” ¢ % ()1 =2¢ (x)2k=9) which
produces the identity

_/’ﬂﬂ Y26y 20k=00) _ /Wwa()wy%mmq)

+/‘¢$)‘ () 1726 () 200 (1 _2K)/‘d)(k)‘zw_zk(x)z(k—ak)
+/Al‘¢<k>‘2<1/,)1—2x<x)2<k—ak>_/L—,m(b%l)d,(k)i(wl—h(x)z(k_gk)

(k—ok)/‘¢(k)‘ 1 2,< 2k 1—20

) k=) 1 _ _
+Zci/“(])¢fw”¢(k);<1”>l 2 () 2k=00)
—

k
. . 1 B B
+D e / 00 Ag U0 — () 172 ) 2w
s

- 1 -2k —o]
I Rl ST i B (1s)
u

The left-hand side is known to be positive, as in the lower order quotient estimates.
‘We thus move to the right-hand side.
First, consider

1

- k—1 _ _

/ (l)ﬁl(pw )ﬁ(k) <w>l 2/(( )2(]( ox)
u

—(1
- _/£|¢(k)|21<1//)12K<x>2(kﬂk)_/ﬁ(l)L(k1)¢(k)l(1/[>12/c<x>2(kak)‘
u u u
(116)
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The lower order terms, L*~D are inserted into (117) to produce

‘/ ¥L(k—l)¢(k) (1//);_2’< (x)Z(k—ak)X(%-)

- T W)
< (x)~(H Y =D (x)k—ox P® (e
X ” X s NG X - NG .
< ey i | aon @, W (V)2 b—oo
S (x) (I+e8)||L NG ()"0 . (o] BV ()% .
v %
< ()"0 + s E2 () (1 + e Er el ® YL (ko
~ 2 k NG I
1«
< Ricy () 4 C |p® WL k-
N 2

Above, we have used (64) for the BV term, (65) for the L&*~D term, and we move
the ¢ to the right-hand side of the estimate, according to (114) using Young’s
inequality for products. We have also used that o} > wy.

Next, we consider

1
k—1
8/P(I)¢I(M/ )¢(k) <¢'>1 2K<x)2(k %)

M 1
p - - —oy
8/7L(k 1)¢(k);(1//>1 2 [y 2 k=)

S 8/&lq&(k}|21(1/,>172K<x)2(k70'k) +
u u

o o® 1 2
Se|—w| | =)

u L3 Ju Lﬁ,

+e(r)~(2 P ﬁ<x) L(k—UM(x)k—ok ¢(k)w<x)k—%—wk
u L5 N L3 u L

< etn) O BD L) + e(x)"E P BD(1 + e B (0) Ik (x)?
< R(x).

Above, we have used that op > wy, estimate (112) for each of the ¢ terms, (65)
for the L&~ term, and (64) for the /3(1) term.
Next, we consider

- D i) o (W) T
=3 [ a0 e 2 () 4 @), i)
j=2
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First, assume 2 < j = min{j, k — j}. Then,

( )
‘(117 1)‘ -3+ u/ “¢$¢J)f ) EirH=on iy
u 2
H ¢(k) 1 >k_7_wk
Ly
-G+ ety 2% PV
S x)"eP A4 ep)r () B (eykon
N ,
L
v
(L k) . 1
< () <2+)(1+8E/+1)Ek—j+1 ¢_<w)§—f(<x)k_§_wk
; N 2
L
v
1+ ¢(k) . ] 2
S ()C)_( )(1+8Ej+l)Ek—j+1 + _<¢)§_K<x) — -k
Vu ,
L
v
2
(k)
S Re1 + ¢—(1ﬂ>%_’(<x>k—%—wk
N 5

Above, the ¢© term contributes to the right-hand side of our estimate, (114). We
have used (64) to estimate the 8, T terms. We have also used oy > oy ;41 and
or > wy for j > 2. Note that the contribution from (x)_(H‘)Ek_j_H < Rj_1
because j > 2.

Second, assume j = max{j, k — j}. In this case, we estimate the localized
contribution from (117) via

‘(117 1)) < elx)” (1+) “[p(j) j— G’(‘/’ (k j)Jr(%*tTk—jH)

Ly
x o w3 gy
L
_ —(i k— 1
)C> (14) Hﬁu(j) H H[¢( ]) k —j+1l—ok— ]<w>2 —K L
12
1
(k) <W>7_K k—awy
x ¢ I (x) .
¥
l—K
S 8(x>7(1+)(1 + Ej)t(kfj)lk% 4 <x)_(%+)T(k7j) ¢(k) <w>2 (x)kf%fwk
u L2
1, 2
2
S Rc1(0) + () "IV E (07 + |lo® e W2 h=t e
N 2
1, 2
< R+ o P eyt
u L2

12
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Above, we use that o < % and that oy > wy, and oy > oy for j > 0. We have
used (64) to estimate the ¢, Y terms, and (66) to estimate the ,o(j ) term in L12/f.
We next treat

/ a){Ad)(k_j)(P(k)MOC)Z(](_JI{)' (118)
u

For 1 < j = min{j, k — j}, we estimate

*k=J) ‘
‘(118)’<(X —0H HE)J ]‘HH _¢ (W)%_KOC)(]‘—])_%—wk—j
Ly | u L
v
¢(k) l el
(Y) 27 ()2
\/_ 5
~04) AP P
S () (L4 eEj D) l1(x) || —=(Y) 27 (x)" 727
NG 2
1 1 2
SRk—l(X)Jr‘ V2K (kT
Ly

Above, we have used that oy > Wk, Ok > Ok—j for j > 0, we have also used the
definition of (16) for the ¢ =/) term, and estimate (42) for the A term.
Next, we consider the case when j = max{j, k — j} < k, in which case we

estimate using the decomposition 8] A(] ) + SA(j ) as in (67), (68) via
1 . ) (k=) .
[19)] 5 00 [udaP it [T s
L3 u Lo
v
Tk
o
Vu .2
14
. (k=j)
- () j+1 ¢ k—j—wp—; fa—
+ ("I AP | e )
0 Ly Ju L
v
—
w | p® ket
Vi .2
v
1
—(1s L (W)f_'( _1_
< (x) (2 >(5EjEk7j+l+Rk2_j_1) ¢(k)7(x>k 2Tk
LZ
v
1 2

¢(k) (1}0\)/2—_’( (x)k—%—wk
u

2
1
< (x)~UH <8EjEk—j+1 + R,fjl) +
12
v
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1k
5 Ri—1(x) + ¢(k)%(x>k—é—wk

2
Ly

Above, we use that oy > wy, ox > ox—jy1 for j = max{j, k — j}. We use (67),

(68) for the A term, (51), (64) to estimate the ¢*~/) term in L, and (112) to

bound the ¢(k_j ) term in sz, as we have ensured in this range of indices, j > 1.
This concludes the proof. O

Summarizing the estimates from this section, we have

Lemma 36. Let K1 < k < Ky, and let ¢ solve (20). Assume the bootstrap assump-
tion, (25). For any 0 < § < 1, the following estimates hold:

/‘¢(k H|? x)2k=1- 2wk+/‘¢(k)‘ yA-I=200 < Ry (x), (119)

_X/‘(p(k)‘ (x>2k—20k+/

/‘ (k— 1)‘ )= 2K(x>2k—l—2wk+/l‘d)(k)‘z(x)ﬂ(—l—zwk<1/f>l—2lc
u

¢(") ()220 < Ry (x) (120)

< CoRi1(x) +5 / 9] 1 ey (121)
/‘(b(k)‘ < 2k 20k+/‘¢(k) () 1726 () 220
<R+ / o] Lyt eyt 2, (122)

This concludes our scheme of a-priori estimates.

6. Global Existence in X

The aim of this section is to close the bootstrap and establish global existence
in X, which proves the main theorem.

Proof of Theorem 3. First, combining estimates (81), (83), Lemma 31 and
Lemma 36, we obtain the following estimates on the interval 7, = (0, x,), which,
as we recall from (25), is the maximal interval on which [|¢ || x(,) < 2ll¢oll x;,:

%/qﬁz + / ity |* < elx) " O Ik, (x), (123)

Oy 1 _
) / '~ (v) + / o5 (W) < elx) " P Ig, (), (124)

and for 1 <k < Ky,

/‘¢$ 1)‘ ) 2k=1- zwk+/‘¢(k)‘ YA=1=200 < R (x), (125)
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8_X[‘¢(k)‘2<x>2k—20k+/u

/‘(P(k 1 w>l—2x(x>2k—l—2a)k+/£‘¢(k)‘2(x>2k—l—2wk<w>l—2k (126)

< CsRi— 1(x)+5f‘¢(k) J1=26 1y 2k=20

2
()72 < Ry (x)

1-2k
_X/‘¢(k)‘ —<x>2k—2ak +/‘¢$)‘2W>1—2K<x)2k—2ok (127)
2 u

S R0+ [ o] ot ot (128)

First, we pick § small relative to universal constants to close the two estimates,
(127) and (128) in terms of Cs Rx—1(x). Recalling the definition of Rt_; given in
(87), we obtain the full estimate

& (f ¢° +/¢2l<1/,>> + O f (/ ’¢(k71)‘2<x>2k—1—2wk
2 u 2 v

+/ ¢(k) ()2 20k+[‘¢(k 1 (w>1—2x(x>2k—l—2wk

2 1-2k 2
+ [ o] =) 4 fafoy[ + [ 3w
+/ »® 2%(x>2k_1_2‘”"+/u

L I e e N L e

< e() P 1 ().

Integrating this energy inequality from (0, x,), we obtain, for a constant Cy de-
termined by the implicit constant above and the initial data (which enters through

(28))

2
k —
¢( )‘ (X>2k 20}

ol x .y < lldollx;, + Collldollx;, el x -

Thus, by taking ¢ small enough, depending on universal constants and the size of
1 .

the data [|¢o||x;,, so that Co([lgollx,,) < 3. we obtain that ||l x 1) < 3 lollx;,.

which contradicts the maximality of I, in the bootstrap assumption, (25). Thus, no

such 7, can exist. 0O

6.1. Nash-type Inequalities and Optimal Decay

Lemma 37. Solutions ¢ € X to the system (20) satisfy the following Nash-type
inequality

X0
< max , 7 (129)

2
2 ~Y
ol
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Proof. We first localize based on & = % Fix a t to be selected later. Then by

(o~ )

For the localized portion, we need to condition on whether ornot t < lor v > 1.
We integrate by parts via

3| n(8) - (5) - [
s B S o) -
Hqsx <T> . fw{mx ‘ /1//¢¢wx qus 0%

triangle inequality we split

+
2
Lv/

(130)

lol. =

L2 -
2
Ly

(131)
‘We estimate the former term above term via
f § vix |y ifr <1
WM%M( ) )
T px”\/_q&]/,”Lz ift > 1.
More specifically, in the case when p < 1,
é 2
/w»m,x (;) = |ox|, z ¢>,,,x p Vx
Ly
< ox Liﬁusmx 5 5 ”¢x wa
< lexl Jxri
Ly

< o()

2 3
+ Cxt?2
Ly

The o(1) term is absorbed to the left-hand side of (131).

In the case when p > 1, we must estimate E% <t i Ju. To see that this is true,
first assume & < 1. Then S% <Ju< \/ﬁr% because T > 1 by assumption. Next,
suppose & > 1. Then 5% < 4 < r%ﬁbecause u 2 1 on the region when & > 1.

For the second term in (131), we estimate identically to the far-field term from
(130), which we now treat.

For the far-field term, we estimate via

/¢2wlx <§)C <
vi\t/) | T yx

In summary, we have thus established the inequality

Jo + ]

2
g S w(r)x)
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3
where ¢(7) is the piecewise function equal to 72 on 7 < 1 and 72 on p > 1.
We now select

4 _4
x~3 N ° ﬁw, oS i o<1
_ Ly L,
- 2 2
1 3 =
xT2|pSY 0 by i 0 =r>1

The key point is that 7 is homogeneous in r, and therefore we may consistently
enforce when t < 1 and t > 1 because these are equivalenttor < 1 andr > 1.

To conclude, we note that by definition of the X norm, the weighted quantities
oVl 12 are conserved in x for solutions to (20). This immediately gives (129).
O

Corollary 38. The solution ¢ to (20) satisfies the following asymptotics for j <
Ko —1:

0) j+i- 0] j+3- 0) jti-
e P e A P Y o IR

7, = ] 132
G ICES T (132)

Proof. Using (129) in (81), letting a(x) := ||<1)||i2 , we obtain either one of the
v
two ODEs (- = dy):

o+ Czot3 <QOora -+ C3x7%o¢% <0,

at each x € R,. This immediately implies that |o| < (x) _%, which means that
1
1ol .2 S ()7 e
We may x-differentiate (129) and use them in the higher order energy estimates
(90) and (107) in exactly the same fashion, which yields that || ¢/ | 2 < (x)7I™ i
O
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