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Abstract

We characterize the well known self-similar Blasius profiles, [ū, v̄], as down-
stream attractors to solutions [u, v] to the 2D, stationary Prandtl system. It was
established in Serrin (Proc R Soc Lond A 299:491–507, 1967) using maximum
principle techniques that ‖u − ū‖L∞

y
→ 0 as x → ∞. In the case of localized data

near Blasius, this paper provides an energy based proof of asymptotic stability.
Central to our analysis is a new weighted “quotient estimate” which couples with
a higher order, nonlinear energy cascade. Similar quotient estimates have played
a crucial role in establishing the validity of the inviscid Prandtl layer expansion
in Guo and Iyer (Validity of steady Prandtl layer expansions. arXiv:1805.05891
2018).

1. Introduction

The 2D, stationary, homogeneous Prandtl equations are given by

uux + vuy − uyy = 0, ux + vy = 0, (x, y) ∈ R+ × R+. (1)

The system is typically supplemented with initial data at {x = 0} and boundary
data at {y = 0}, and y ↑ ∞:

u|x=0 = u0(y), [u, v]|y=0 = 0, u|y↑∞ = uE (x). (2)

For simplicity, we will take uE (x) = 1, but any constant will also work. The x
direction is considered a time-like direction, while the y-direction is considered a
space-like direction, and the Equation (1) is considered as an evolution in the x
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variable. Correspondingly, u0(y) is called the “initial data” and as a general matter
of terminology, in this paper the words “global” and “local” refer to the x-direction.

The following is a classical result due to Oleinik (see [5], P. 21, Theorem 2.1.1):

Theorem 1. [5] Assume that

u0(y) > 0 for y > 0,

u′
0(0) > 0,

u0 ∈ C∞(y ≥ 0),

u′′
0(y) ∼ y2 near y = 0,

|u0(y) − 1| and ∂ky u0(y) decay exponentially for k ≥ 1.

Then there exists a global solution, [u, v] to (1) satisfying, for some y0,m > 0,

sup
x

sup
y∈(0,y0)

|u, v, uy, uyy, ux | � 1, (3)

uy(x, 0) > 0 and u > 0. (4)

Given the global existence of a solution to (1), the next point is to describe more
precisely the asymptotics of the evolution as x → ∞. In order to do this, let us
introduce the self-similar Blasius solutions:

[ū, v̄] =
[
f ′(η),

1√
x + x0

{η f ′(η) − f (η)}
]
, where η = y√

x + x0
, (5)

where f satisfies

f f ′′ + f ′′′ = 0, f ′(0) = 0, f ′(∞) = 1,
f (η)

η

η→∞−−−→ 1. (6)

Here, x0 > 0 is a free parameter. The following hold:

0 ≤ f ′ ≤ 1, f ′′(η) ≥ 0, f ′′(0) > 0, f ′′′(η) ≤ 0. (7)

We now recall the following result of Serrin:

Theorem 2. [6] Let u be a solution to (1), (2) such that ∂yu0(y) is continuous. Then
the following asymptotics hold:

‖u − ū‖L∞
y

→ 0 as x → ∞. (8)

First, let us mention that the results in [6] are more general than the theorem
stated above in the sense that uE (x) in (2) is allowed to have polynomial growth
in x , whereas in the present paper we are only concerned with constant uE (which
corresponds to shear flow).

The purpose of the present work is to provide a new interpretation of [6] un-
der the assumption of small, localized perturbations of the Blasius profile. More
specifically, the point is to introduce energy methods as opposed to the maximum
principle methods used in [6], which are more robust and have a hope of finding
application to other realms, particularly in the study of the inviscid limit.
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1.1. Asymptotic Stability and Change of Coordinates

When studying the asymptotic stablity of ū, we need an appropriate notion of
the difference between the two functions, u, ū, which, in our case, does not coincide
with pointwise subtraction u(x, y) − ū(x, y), but rather is a version of modulated
subtraction. To define what we mean, we first introduce a change of coordinates
called the von-Mise coordinate system (also used in [6]).

First, we introduce the stream function, ψ , associated to u, a solution to the
system (1):

ψ =
∫ y

0
u(x, y′) dy′. (9)

A classical idea ([5]) is to write the Prandtl system, (1) in the variables (x, ψ):

∂x (u
2) − u∂ψψ(u2) = 0.

Define the difference unknown:

εφ(x, ψ) := u2(x, ψ) − ū2(x, ψ). (10)

Above, the parameter ε is introduced based on the size of the initial data (this is
made clear in the statement of Theorem 3, but for now, one can ignore it as it is just
a rescaling).

The stream functionψ is considered an independent variable,which takes values
inR+. In order to recover the value of the quantity u appearing in the diffusive term
of (13), one uses the relation (9) (which is invertible). Similarly, in order to recover
the value of ū, one again uses the relation, but this time (9) with the u replaced
with ū. Hence, the difference shown in (10), which we shall adopt as our notion
of difference, means in the original coordinate system, that we compare u and ū at
different values of y determined nonlinearly:

u2(x, y1) − ū2(x, y2), where
∫ y1

0
u(x, y) dy =

∫ y2

0
ū(x, y) dy.

Theorem 3. Fix any 0 < ε � 1 and K0 
 1 relative only to universal constants.
Assume the function φ0(ψ) satisfies

|∂ lψφ0(ψ)〈ψ〉10| ≤ 1 for 0 ≤ l ≤ 2K0. (11)

Assume also standard parabolic compatibility conditions up to order K0 on the
data φ0 (these are described in Definition 7). Define the difference, φ, according
to (10). Then there exists a unique solution, [u, v], to the Prandtl equations, (1),
so that φ, as defined by (10), realizes as initial data φ|x=1 = φ0, and this φ exists
globally in the space X (defined precisely in (15)) and satisfies the global estimate

‖φ‖X ≤ C(‖φ0‖Xin ) (12)

for a constant depending on the norm of the initial data (see (26) for a precise
definition of the norm Xin).
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Remark 4. The parameter ε, fixed as a hypothesis in the theorem, has entered in
the definition of φ from (10), when coupled with the prescription of order 1 initial
data, (11). Thus, prescribing that φ0 is order 1 through (11) has the effect of fixing
u2 − ū2 to be size ε (small) initially.

Remark 5. An inspection of the norm X , defined in (15), shows that this norm
encodes global decay information for φ, and this is the precise sense in which u
converges to ū. In fact, enhanced decay as compared to what is encoded in ‖ · ‖X
is available due to our Nash-type argument provided in (132), but we do not state
this as part of the main theorem.

Note that we require the small κ0 > 0 in (12) to avoid logarithmic singularities
at x = ∞. The fundamental difficulties in establishing (12) are that the equation
we analyze, shown below in (20), is degenerate at the top (diffusive) order, and
quasilinear.

One of the motivations for establishing quantitive estimates of the type (12) is
due to recent advances in the validity theory for steady Navier–Stokes flows, for
instance the works of [2,3]. In particular, using the estimates (12) we can generalize
the class of data treated by [2].

Corollary 6. Consider initial data, u0(y), that is a small perturbation of Blasius
in the sense of Theorem 3. Then for x0 
 1, we may take [u(x0, ·), v(x0, ·)] as the
{x = 0} data in Theorem 1 of [2].

Proof. This follows immediately upon applying the estimates (12) above in the
proof of Lemma 9 of [2]. ��

A second motivation for this work is that in order to prove the global validity
of steady Prandtl expansions, a work currently underway, one needs a precise un-
derstanding of the decay mechanism in the Prandtl equations, which is established
in the present work.

Let us also point the reader towards the related work of [1], which studies the
formation of singularities (in this context called “separation”) for the inhomoge-
neous version of (1) (with adverse pressure gradient).

1.2. Main Objects

It is shown in [6], Equation (12), that φ satisfies the equation

φx − uφψψ + Aφ = 0, A = −2
ū yy

ū(ū + u)
,

φ|x=1 = φ0(ψ), φ|ψ=0 = 0, φ|ψ↑∞ = 0.
(13)

First, note that we have introduced the parameter ε in the definition of φ, (10).
This is due to the fact that the perturbation, u0 − ū0 is initially small (precisely,
(11)), and thus it is convenient to rescale to order one quantities according to (20).
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Recall the self-similar variable η as defined in (5). For simplicity, we will set
the parameter x0 = 1. We define a new self-similar variable, which reflects the
diffusive scaling in (13) via

ξ := ψ√
x + 1

.

It is instructive to compare the variables ξ, ψ with the self-similar variable η = y√
x
.

It is well known (for instance from the result of Oleinik, Theorem 1) that both ū
and u behave like η in the region where η ≤ 1. More precisely, there exist universal
constants C0,C1 such that

C0η ≤ ū, u ≤ C1η for 0 ≤ η ≤ 1. (14)

For the purpose of easing notation, we will denote (14) by ū ∼ η and u ∼ η for
0 ≤ η ≤ 1. In order to compare ψ with η, we thus use (9) via

ψ = ψ(x, y) =
∫ y

0
u(x, y′) dy′ ∼

∫ y

0
η′ dy′ = 1√

x

∫ y

0
y′ dy′

= y2

2
√
x

= 1

2

(
y√
x

)2 √
x = 1

2
η2

√
x,

and we thus obtain the relation
√

ξ ∼ η for η ≤ 1.

The basic object of study throughout the paper will be φ, which satisfies the
Equation (13), in the variables (x, ψ) and correspondingly the self-similar variable
ξ .

Let us now give a brief review of the properties of ū and u. First, as we have
already mentioned, Oleinik’s global existence result, Theorem 1, gives that u ∼ η

near η ≤ 1. Regarding ū, the main properties are summarized in (6). Of particular
note is the concavity of ū, guaranteed by f ′′′ < 0. In particular this implies that
A ≥ 0 in (13).

We will now introduce the norms in which we measure the solution φ. First,
we simplify notation throughout the paper by putting φ(k) := ∂kxφ. Let I ⊂ (0,∞)

be an interval of x . Then we define

‖φ‖X (I ) :=
K0∑
k=0

‖φ‖Xk (I ), (15)

‖φ‖Xk (I ) := sup
x∈I

⎛
⎝
∥∥∥φ(k)〈x〉k−σk

∥∥∥
L2

ψ

+
∥∥∥∥∥φ

(k) 〈ψ〉 1
2−κ

√
u

〈x〉k−σk

∥∥∥∥∥
L2

ψ

+
∥∥∥φ(k−1)

ψ 〈x〉k−1−ωk

∥∥∥
2

L2
ψ

+
∥∥∥∥∥φ

(k−1)
ψ 〈x〉k−1−ωk

〈ψ〉 1
2−κ

√
u

∥∥∥∥∥
L2

ψ

⎞
⎠
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+
∥∥∥∥
∥∥∥√uφ

(k)
ψ 〈x〉k−σk

∥∥∥
L2

ψ

∥∥∥∥
L2
x (I )

+
∥∥∥∥
∥∥∥φ(k)

ψ 〈ψ〉 1
2−κ 〈x〉k−σk

∥∥∥
L2

ψ

∥∥∥∥
L2
x (I )

+
∥∥∥∥
∥∥∥φ(k)〈x〉k− 1

2−ωk

∥∥∥
L2

ψ

∥∥∥∥
L2
x (I )

+
∥∥∥∥∥∥

∥∥∥∥∥φ
(k)〈x〉k− 1

2−ωk
〈ψ〉 1

2−κ

√
u

∥∥∥∥∥
L2

ψ

∥∥∥∥∥∥
L2
x (I )

,

(16)

for 1 ≤ k ≤ K0. In the particular case when k = 0, we have

‖φ‖X0(I ) := sup
x∈I

(
‖φ‖L2

ψ
+ ‖φ 〈ψ〉 1

2√
u

‖L2
ψ

)

+
∥∥∥‖√uφψ‖L2

ψ

∥∥∥
L2
x (I )

+
∥∥∥‖φψ 〈ψ〉 1

2 ‖L2
ψ

∥∥∥
L2
x (I )

. (17)

Above, we let {σk}, {ωk} be sequences whose precise requirements are given in
(23). K0 will be a fixed, large number. κ appearing above in (16) is a fixed, small
number. In the event that I = (0,∞), we simply drop the I from (15), and denote
the corresponding norms by ‖ · ‖X , ‖ · ‖Xk .

We will denote by Ek(x) and Ik(x) arbitrary quantity satisfying respectively

sup
x

|Ek(x)| ≤
k∑
j=0

‖φ‖X j ,

∫ ∞

0
|Ik(x)| dx ≤

k∑
j=0

‖φ‖X j . (18)

We now introduce the function ρ via

ερ(x, ψ) := u(x, ψ) − ū(x, ψ). (19)

Inserting this into the Equation (13) generates the equation that we will study

φx − (ū + ερ)φψψ + Aφ = 0, A = −2
ū yy

ū(2ū + ερ)
,

φ|x=1 = φ0(ψ), φ|ψ=0 = 0, φ|ψ↑∞ = 0,
(20)

where the unknowns are ρ, φ (which clearly can be expressed in terms of one
another according to (10), (19)).Note that this has the effect of clearly distinguishing
between the linearizedoperator and the quadratic terms, the latter being those having
an ε in front of them in (20).

1.3. Main Ideas

The main mechanisms can be summarized in four steps listed below. Overall, at
each order of x regularity up to ∂

K0
x for a fixed K0 large, there are two estimates that

are performed. We call these the “Energy estimate” and the “Quotient estimate”.
This results in the control of the norm ‖φ‖X as shown above.
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Step 1: L2 level
At the L2 level, we may center our discussion around the linearized operator

from (20), which reads as

φx − ūφψψ + Āφ, Ā = − ū yy

ū2
. (21)

The standard energy estimate performed on (21) gives a bound on supx ‖φ‖2
L2

ψ

+
‖√ūφψ‖2

L2
x L

2
ψ

. The crucial point here is that
√
ū enters the φψ term, which creates

difficulties due to the degeneracy of ū near ψ = 0. Due to the structure of the
Blasius profiles, ū yy ≤ 0, and so Ā ≥ 0 and thus has a favorable (but not too
powerful) contribution at this stage.

The second estimate at the L2 level is the “Quotient estimate”, which can be
found in Lemma 25. There are two distinguished features of the quantities that are
controlled (see the estimate (83)). First, there is a far-field weight of 〈ψ〉. Second,
there is a nonlinear weight 1

u which gives additional control near the boundary
{ψ = 0}.

The reason we can close this Quotient estimate is due to the precise structure
of Blasius solutions. Indeed, the choice of weight 〈ψ〉

u is specially designed so that
the interaction with the linearized equation, (21), produces the quantity

∫
φ2 × positive quantities × �, where � = −ū yy + 1

2
ūūx .

This type of quantity would be out of reach of the norm X . This is because this is a
linear term, and thus does not come with a small-parameter of ε, so it’s contribution
cannot be absorbed to the left-hand side of estimate (83). However, by using the
convexity of ū, a Blasius solution, we are able to show that �(x, y) is globally
positive.

The reason we need the quotient estimate is two-fold, corresponding to the two
weights appearing on φ term on the left-hand side of (83). The weight 〈ψ〉 comes
in for Step 4, whereas the boundary weight 1

u comes in for Step 3.

Step 2: Hk for 1 ≤ k ≤ K1
We now fix K1 so that 1 � K1 � K0. The tier of derivatives between 1 and K1

we call the “middle tier”. The middle tier is distinguished from the top tier because
we are able to expend derivatives. More precisely, since the derivative count is less
than K1 which is substantially smaller than K0, we can invoke the estimates (64)
which lose one derivative. The middle tier is distinguished from the bottom (L2)
tier because the linearized operator is no longer (21), but rather (φ(1) := ∂xφ)

φ(1)
x − ūφ

(1)
ψψ + Āφ(1) − ∂x ū

ū
φ(1). (22)

We arrive here by substituting the Equation (20) upon differentiating it in x . This
is shown in Equation (86) (the linearized operator in (22) comes from the linear
contributions of the first four terms in (22)). The reason the linearized equation
has changed is due to the quasilinearity present in (21). At this stage we repeat the
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process of Step 1, taking advantage of the further property of Blasius solutions that
∂x ū < 0.

Step 3: Hk for K1 + 1 ≤ k ≤ K0

We now arrive at the top tier of derivative in the norm X . The top tier is dis-
tinguished because we do not have derivatives to expend. Precisely, this means we
must take care to invoke only those estimates from Lemma 16 with indices l,m,
which have feature of applying in particular when l = m = K0 (the top order
derivative). First of all, we select K0 large enough so that the “tame principle”
kicks in. For instance, terms like ∂

j
x f × ∂

K0− j
x g× ∂

K0
x h are bound to have either j

or K0− j to be much smaller than K0−3. This is standard in quasilinear problems.
The important part, however, is that the crucial weight of 1

u available due to the
quotient estimate, is used to “save derivatives”. This is most easily seen in a term
such as (“high” and “low” refer to order of x derivative)

∫
φhighφlow

ψψφhighχ(ξ � 1).

For a term such as this, we are forced to put φlow
ψψ in an L∞ type norm in or-

der to conserve the high derivatives. To do this, with the weights of u distributed
as optimally as we are allowed with the X norm, we must invoke the additional
1√
u
weight available due to the quotient estimate. This is quantified by proving a

localized, optimal weight, uniform estimate on φlow
ψψ (see (75)).

Step 4: Optimal decay
Using Steps 1–3 we are able to show global existence of φ in the space X .

The space X certainly encodes decay information regarding the solution φ - this is
evident by consulting (15). However, one notices that the quantity ‖φ‖L2

ψ
is only

shown to be bounded from the specification of the norm X . For the heat equation

set on R, the quantity ‖φ‖L2
ψ
is expected to decay at rate 〈x〉− 1

4 .

To explain howwe obtain this “optimal” decay, the reader should now recall the

classicalNash inequality, [4],which states that‖φ‖2
L2

ψ

� ‖φψ‖
2
3

L2
ψ

‖φ‖
4
3

L1
ψ

. Typically,

one uses this by saying ‖φ‖L1
ψ
is conserved (say) and thus one inserts the Nash

inequality to the basic energy bound to obtain an ODE of the form η̇ + η3 = 0, for

η = ‖φ‖2
L2

ψ

, which immediately results in 〈x〉− 1
4 decay of ‖φ‖L2

ψ
.

In our case, two difficulties are present in order to carry out this procedure to op-
timize the decay. First, we only have the degenerate weighted quantity ‖√ūφψ‖L2

ψ

appearing in the energy. Second, we cannot control ‖φ‖L1 by integrating the equa-
tion.

To contend with these difficulties, we establish a new Nash-type inequality in
Lemma 37 which (1) accounts for the degenerate weight of

√
u and (2) replaces

the L1 norm by L2(〈ψ〉 1
2 ) (which scales the same way). The type of inequality we

are able to establish is piecewise (as is seen from Lemma 37). Remarkably, both

upper bounds in estimate (129) yield the same, optimal, decay rate of 〈x〉− 1
4 .
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1.4. Preliminaries and Notations

There are various parameters and notations appearing in our analysis. We
include here an explanation of what they all mean. The bracket is defined via
〈x〉p := 1+x p. K0, K1 will be fixed, large universal numberswhich refer to the reg-
ularity indices in x . K0 appears in (15), whereas K1 is selected to be 1 � K1 � K0.
For concreteness, one can take K0 = 100, K1 = 50.

κ is reserved for the exponent of the ψ weight appearing in (16). {σk}K0
k=0 and

{ωk}K0
k=1 are reserved for the x weights appearing in (16). These exponents satisfy

the following criteria:

σk−1 < ωk < σk, 2ωk > σk + σk−1, σk, ωk increasing,

σK0 <
1

100
, σ0 = 0. (23)

It is clearly possible to find sequences satisfying the conditions in (23).
We will often localize to regions of ξ using χ(·), where χ is a smooth cut-off

function:

χ =
{
1 on (0, 1)

0 on (2,∞)
, χ ≤ 0. (24)

For L2 norms of functions of two variables, say f (x, ψ), we use the notation

‖ f ‖2
L2

ψ

:=
∫

f (x, ψ)2 dψ.

We will also use the notation ‖ f ‖2
L2(ξ≤1)

:= ∫ f 2χ(ξ) dψ .
The parameter δ will play the role of a small parameter introduced by Young’s

inequality for products: ab ≤ δa2 + Cδb2. Cδ will refer to a constant that grows
as δ ↓ 0. As Young’s inequality needs to be applied several times, we will use δ

each time with the understanding that it refers to different values, as opposed to
indexing the δ’s per use of Young’s inequality.

2. The Space X

2.1. Bootstrap Assumptions

Global existence in the space X will be obtained by a standard continuity argu-
ment which relies on the following bootstrap assumption:

x ∈ I∗ := (0, x∗), where ‖φ‖X (I∗) ≤ 2‖φ0‖Xin . (25)

Above, φ0 is the initial data, φ|x=0, according to (20). Motivated by (16), we use
the notation X ({0}) to denote the norm of the initial data (which is (16) formally
with I = {0} to eliminate the integrations in X ):

‖φ0‖X (0)
{0}

:= ‖φ0‖L2
ψ

+
∥∥∥∥∥φ0

〈ψ〉 1
2√

u|x=1

∥∥∥∥∥
L2

ψ

,
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‖φ0‖Xk{0}
:=
∥∥∥φ(k)

0

∥∥∥
L2

ψ

+
∥∥∥∥∥φ

(k)
0

〈ψ〉 1
2−κ

√
u|x=1

∥∥∥∥∥
L2

ψ

+
∥∥∥∂ψφ

(k−1)
0

∥∥∥2
L2

ψ

+
∥∥∥∥∥∂ψφ

(k−1)
0

〈ψ〉 1
2−κ

√
u|x=1

∥∥∥∥∥
L2

ψ

,

‖φ0‖Xin :=
K0∑
k=0

‖φ0‖Xk{0}
, (26)

for 1 ≤ k ≤ K0. Above, we have used φ
(k)
0 = ∂kxφ|x=0. As usual in evolution

problems, one obtains this initial data iteratively from the equation, (20).

Definition 7. (Compatibility Conditions) We evaluate the Equation (20) at x = 1
iteratively (as is standard in parabolic problems). For instance, φ(1)

0 = u0φ0ψψ −
A|x=0φ0. We now need to ensure that φ

(1)
0 |ψ=0 = 0, which is ensured so long as

(u0φ0ψψ −A|x=0φ0)|ψ=0 = 0. In this way, higher order conditions are also derived
(we do not write them down explicitly, as they are cumbersome).

Lemma 8. (Initial Data) Assume (11) and the compatibility conditions as in Defi-
nition 7. Then the initial data satisfies

‖φ0‖Xin ≤ CI N (27)

for a universal constant CI N independent of ε.

Proof. The assumption of (11) ensures that ‖φ‖
X (0)

{0}
� 1. Specifically, the term

‖φ0‖L2
ψ
is clearly controlled by the assumption (11). For the latter term in ‖φ‖

X (0)
{0}
,

we split into the region ψ ≤ 1 and ψ ≥ 1. The region ψ ≥ 1 is clearly con-
trolled by (11) due to the fact u � 1 in that region. For the region ψ ≤ 1,
by using the Hardy inequality, admissible because φ0(0) = 0, we can estimate
‖φ0

1√
u0

‖L2
ψ
‖φ0

1
u0

‖L2
ψ

� ‖∂ψφ0‖L2
ψ
, which again is controlled by (11). From here,

one observes that the assumptions on (11) due to theψ derivative going up to order
2K0, and the compatibility conditions, Definition 7, are sufficient to control φ(k)

0 in

the norm X (k)
{0} for k ≤ K0. ��

In particular, this means that quantities denoted by Ek(x) and Ik(x) as in (18)
satisfy

sup
x∈I∗

|EK0(x)| ≤ 2‖φ0‖Xin ,

∫ x∗

1
|IK0(x)| dx ≤ 2‖φ0‖Xin . (28)

2.2. Embeddings

The reader should recall the specification of the X (I ) norm given in (15).
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2.2.1. ω and α Estimates The proofs of the estimates of this sub-section are
inter-connected due to their nonlinear nature, and so it will be convenient to give a
parameter assignment to the value:

α := sup
x∈I

∥∥∥ρ

u

∥∥∥
L∞

ψ

, ω := sup
x∈I

(∥∥∥u
ū

∥∥∥
L∞

ψ

+
∥∥∥∥
ū

u

∥∥∥∥
L∞

ψ

)
. (29)

Lemma 9. For α,ω defined as in (29), under the bootstrap assumption (25), the
following inequalities are valid:

ω ≤ 1 − εα

1 − 2εα
. (30)

Proof. To prove the boundedness of | uū |, we estimate

∥∥∥u
ū

∥∥∥
L∞

ψ

=
∥∥∥∥
ū + ερ

ū

∥∥∥∥
L∞

ψ

≤ 1 + ε

∥∥∥ρ

ū

∥∥∥
L∞

ψ

≤ 1 + ε

∥∥∥ρ

u

∥∥∥
L∞

ψ

∥∥∥u
ū

∥∥∥
L∞

ψ

,

≤ 1 + εα

∥∥∥u
ū

∥∥∥
L∞

ψ

,

from which we get

∥∥∥u
ū

∥∥∥
L∞

ψ

≤ 1

1 − εα
. (31)

For the second inequality, we appeal to the fact that ρ ≤ αu ≤ α
1−εα

ū to
estimate

∥∥∥∥
ū

u

∥∥∥∥
L∞

ψ

=
∥∥∥∥

ū

ū + ερ

∥∥∥∥
L∞

ψ

≤
∥∥∥∥

ū

ū − ε|ρ|
∥∥∥∥
L∞

ψ

≤
∥∥∥∥∥∥

ū(
1 − εα

1−εα

)
ū

∥∥∥∥∥∥
L∞

ψ

≤ 1

1 − εα
1−εα

= 1 − εα

1 − 2εα
. (32)

��
Lemma 10. Fix any subinterval I ⊂ I∗ ⊂ (0,∞), the following estimate is valid:

sup
x∈I

(
‖φψ 〈x〉 3

4−σ1‖L∞
ψ

+
∥∥∥√uφψψ 〈ψ〉 1

2−κ 〈x〉1−σ1

∥∥∥
L2

ψ

)
� 〈ω〉

1 − εα
‖φ‖X1(I ),

(33)

for a universal constant, independent of the interval I .

Proof. We estimate using the Equation (20)
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∥∥∥√uφψψ 〈x〉1−σ1〈ψ〉 1
2−κ
∥∥∥
L2

ψ

≤
∥∥∥∥∥
√
u

φ(1)

u
〈x〉1−σ1〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

+
∥∥∥∥

1√
u
Aφ〈x〉1−σ1〈ψ〉 1

2−κ

∥∥∥∥
L2

ψ

≤
∥∥∥∥∥
√
u

φ(1)

u
〈x〉1−σ1〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

+
∥∥∥∥

1√
u
Aφ〈x〉1−σ1χ(ξ)〈ψ〉 1

2−κ

∥∥∥∥
L2

ψ

+
∥∥∥∥

1√
u
Aφ〈x〉1−σ1(1 − χ(ξ))〈ψ〉 1

2−κ

∥∥∥∥
L2

ψ

. (34)

Above, χ is the function fixed in (24). It is clear from the definition of (16) that the
first term on the right-hand side of (34) is bounded by ‖φ‖X1 . For the third term,
we use that the Blasius profile, ū, is non-degenerate in the far-field:

(1 − χ(ξ))u ≥ ω(1 − χ(ξ))ū � ω.

We now estimate A via

|A| = 2

∣∣∣∣∣
ū yy

ū
(
2ū + εū ρ

u
u
ū

)
∣∣∣∣∣ �

1

1 − εα
〈x〉−1.

Thus, the third term is controlled by a factor of ω
1−εα

‖φ‖X1 .
For the second term, we estimate using first (30), second the self-similarity of

the Blasius profile: C0ξ ≤ ū ≤ C1
√

ξ when ξ ≤ 1, and third the Hardy inequality:

∥∥∥∥
φ√
u

χ(ξ)〈ψ〉 1
2−κ

∥∥∥∥
L2

ψ

� ω
1
2

∥∥∥∥
φ√
ū

χ(ξ)〈ψ〉 1
2−κ

∥∥∥∥
L2

ψ

� ω
1
2

∥∥∥∥∥
φ

ψ
1
4

χ(ξ)〈ψ〉 1
2−κ

∥∥∥∥∥
L2

ψ

〈x〉 1
8

� ω
1
2 〈x〉 1

8

(∥∥∥ψ 3
4 φψχ(ξ)〈ψ〉 1

2−κ
∥∥∥
L2

ψ

+
∥∥∥ψ 3

4 φ〈x〉 1
8 〈x〉− 1

2 χ ′(ξ)〈ψ〉 1
2−κ
∥∥∥
L2

ψ

)

� ω
1
2

(∥∥∥〈x〉 1
2 φψχ(ξ)〈ψ〉 1

2−κ
∥∥∥
L2

ψ

+
∥∥∥φ〈ψ〉 1

2−κ
∥∥∥
L2

ψ

)
.

Above, we have used in the support of χ and χ ′ that ψ � √
x . Upon inserting into

the second term of (34), we obtain∥∥∥∥
1√
u
Aφ〈x〉1−σ1χ(ξ)〈ψ〉 1

2−κ

∥∥∥∥
L2

ψ

≤ ‖A〈x〉‖∞〈x〉−σ1ω
1
2

(∥∥∥〈x〉 1
2 φψχ(ξ)〈ψ〉 1

2−κ
∥∥∥
L2

ψ

+
∥∥∥φ〈ψ〉 1

2−κ
∥∥∥
L2

ψ

)

� ω
1
2 ‖φ‖X1(I ).
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Above, we have used that σ1 > ω1 in the estimation of the φψ term, which is
required according to the specification of ‖ · ‖X1 in (16).

To obtain the estimate on the φψ quantity in (33), we first localize based on the
location of ξ . Letting χ = 1 on (0, 1), and 0 on (2,∞), be a smooth, decreasing
cut-off function, we first have

|φψ |2χ(ξ) = −
∫ ∞

ψ

∂ψ(φ2
ψχ(ξ)) = −

∫ ∞

ψ

2φψφψψχ(ξ) −
∫ ∞

ψ

φ2
ψχ ′(ξ)

1√
x

�
∥∥∥∥∥

φψ

ψ
1
4

χ

∥∥∥∥∥
L2

ψ

∥∥∥ψ 1
4 φψψχ

∥∥∥
L2

ψ

+ x− 1
2
∥∥φψ

∥∥2
L2

ψ

�
(∥∥∥ψ 3

4 φψψχ

∥∥∥
L2

ψ

+
∥∥∥ψ 3

4 x− 1
2 φψχ ′

∥∥∥
L2

ψ

)∥∥√uφψψ

∥∥
L2

ψ
x

1
8 + x− 1

2
∥∥φψ

∥∥2
L2

ψ

� x− 3
2+2σ1

(
‖φ‖2X1

+ ∥∥√uφψψ 〈x〉1−σ1
∥∥2) . (35)

The far-field contribution is estimated easily upon using that u � 1 in the support
of 1 − χ . ��
Lemma 11. The following estimate is valid, for a constant independent of I :

α + sup
x∈I

∥∥∥∥
φ

u2

∥∥∥∥
L∞

ψ

� ω3〈x〉− 1
4+σ1

∥∥∥φ
∥∥∥
X1(I )

. (36)

Proof. Clearly we may restrict to the region ξ � 1, in which case we relate u to
the self-similar variable, η, via u2 ≥ ω2ū2 � ω2ξ . Now, since φ|ψ=0 = 0, we may
use the standard Hardy inequality via

∣∣∣ φ

u2

∣∣∣ � ω2 1

ξ
|φ(x, ψ)| � ω2

√
x

ψ
|
∫ ψ

0
φψ(x, ψ ′) dψ ′|

� ω2√x‖φψ‖L∞
ψ

� ω3〈x〉− 1
4+σ1‖φ‖X1(I ),

from which we obtain

sup
x∈I

∥∥∥ φ

u2

∥∥∥
L∞

ψ

� ω3〈x〉− 1
4+σ1

∥∥∥φ
∥∥∥
X1(I )

. (37)

By using the identity ρ = φ
u+ū , we estimate

α =
∥∥∥ρ

u

∥∥∥
L∞

ψ

≤
∥∥∥∥

φ

u(u + ū)

∥∥∥∥
L∞

ψ

=
∥∥∥∥∥

φ

u2
(
2 − ε

ρ
u

)
∥∥∥∥∥
L∞

ψ

≤
∥∥∥∥

1

2 − ε
ρ
u

∥∥∥∥
L∞

ψ

∥∥∥∥
φ

u2

∥∥∥∥
L∞

ψ

� 1

2 − εα
〈x〉− 1−σ1

4 ω3
∥∥∥φ
∥∥∥
X1(I )

. (38)

��
Corollary 12. The following estimate is valid, for a constant independent of I

ω + α � ‖φ‖X1(I ). (39)

From here on, due to (39), and our bootstrap assumption, (25), we are able to
drop the dependence on α and ω in forthcoming estimates.
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2.2.2. Higher Order Embeddings We will again need to proceed in a nonlinear
fashion. Thus, we give parameter names to the following quantities:

β(k) := sup
x∈I

∥∥∥∥∥
ρ(k)

u
〈x〉k+ 1

4−σk+1

∥∥∥∥∥
L∞

ψ

,

γ (k) := sup
x∈I

∥∥∥∥∥
ρ(k)

u
〈x〉k−σk+1〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

,

ϒ(k) := sup
x∈I

∥∥∥√uφ
(k)
ψψ 〈x〉k+1−σl+1〈ψ〉 1

2−κ
∥∥∥
L2

ψ

,

ι(k) := sup
x∈I

∥∥∥√uφ
(k)
ψψ 〈x〉k+ 5

4−σk+1

∥∥∥
L∞

ψ

(40)

Lemma 13. Let P(·, . . . , ·) be a polynomial in its arguments. The following esti-
mates are valid, for constants independent of I :

sup
x∈I

‖A〈x〉‖L∞
ψ

+ ‖A〈x〉 3
4 ‖L2

ψ
� ‖φ‖X1(I ), (41)

sup
x∈I

∥∥∥∂kx A〈x〉k+1
∥∥∥∞ � 1 + εβ(k) + εP

(
β(0), . . . , β(k−1)

)
, (42)

sup
x∈I

∥∥∥∂kx A〈x〉k+ 3
4

∥∥∥
L2

ψ

� 1 + εγ (k) + εP
(
γ (0), . . . , γ (k−1), β(0), . . . , βk−1

)

(43)

There exists a decomposition ∂
j
x A = A( j)

0 + εA( j)
1 such that

sup
x∈I

∥∥∥A(k)
0 〈x〉k+1

∥∥∥
L∞

ψ

� 1, (44)

sup
x∈I

∥∥∥A(k)
1 〈x〉k+ 3

4 〈ψ〉 1
2−κ
∥∥∥
L2

ψ

� γ ( j) + P
(
γ (0), . . . , γ (k−1), β(0), . . . , β(k−1)

)
.

(45)

Proof. We use the expression for A to generate the identity

A
(
2 + ε

ρ

ū

)
= −2

ū yy

ū2
. (46)

We first use the self-similarity of ū from (7) to evaluate

ū yy

ū2
= 1

x
g(η), smooth, bounded, and decaying g(·). (47)

From here, the base case of k = 0 follows upon estimating |2+ε
ρ
ū | ≥ 3

2 , according
to (39) because it holds true for the function on the right-hand side of (46). We thus
assume (42), (43) hold true for indices 0, . . . , k − 1. We apply ∂kx to (46) to obtain

∂kx A
(
2 + ε

ρ

ū

)
= −2∂kx

ū yy

ū2
− ε

k−1∑
l=0

ckl ∂
l
x A∂k−l

x
ρ

ū
=: A(k)

0 + εA(k)
1 . (48)
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By (47),

sup
x∈I

∥∥∥A(k)
0 〈x〉k+1

∥∥∥
L∞

ψ

+ sup
x∈I

∥∥∥A(k)
0 〈x〉k+ 3

4

∥∥∥
L2

ψ

� 1.

For the A1 term, we first note that (eventually we will set the index m = k − l
from (48))

∂mx
ρ

ū
= u

ū

ρ(m)

u
+

m−1∑
l=0

cml

(
ū∂ lx

1

ū

)
u

ū

ρ(m−l)

u
. (49)

Wenownote that uū is bounded fromaboveusing (39), and that‖(ū∂ lx
1
ū )〈x〉l‖L∞ �

1. From here, we estimate
∥∥∥∂mx

ρ

ū
〈x〉m

∥∥∥
L∞

ψ

� β(m) + · · · + β(0),

∥∥∥∂mx
ρ

ū
〈x〉m−σm+1

∥∥∥
L2

ψ

� γ (m) + · · · + γ (0).

(50)

From here, we can estimate

sup
x∈I

∥∥∥A(k)
1 〈x〉k+1

∥∥∥
L∞

ψ

� sup
x∈I

k−l∑
l=0

∥∥∥∂ lx A〈x〉l+1
∥∥∥
L∞

ψ

∥∥∥∂k−l
x

ρ

ū
〈x〉k−l

∥∥∥
L∞

ψ

� P
(
β(0), . . . , β(k−1)

)
+ β(k),

which establishes (42).
Next, we estimate

∥∥∥A(k)
1 〈x〉k+ 3

4

∥∥∥
L2

ψ

�
� k−1

2 �∑
l=0

∥∥∥∂ lx A〈x〉l+1
∥∥∥
L∞

ψ

∥∥∥∂k−l
x

ρ

ū
〈x〉k−l− 1

4

∥∥∥
L2

ψ

+
k−l∑

l=� k−1
2 �

∥∥∥∂ lx A〈x〉l+ 3
4

∥∥∥
L2

ψ

∥∥∥∂k−l
x

ρ

ū
〈x〉k−l

∥∥∥
L∞

ψ

,

from which (43) follows upon using (42), (43) inductively, coupled with (50), and
using that σm < 1

4 , for all m, according to our assumption, (23). Estimates (44),
(45) follow in essentially the same manner. ��
Lemma 14. Let φ solve (20), and assume the bootstrap (25). The following esti-
mates are valid, for constants independent of I :

sup
x∈I

∥∥∥φ(k)

u2

∥∥∥
L∞

ψ

〈x〉k+( 14−σk+1) � ϒ(k) + ‖φ‖Xk+1(I ), for k ≥ 0 (51)

β(k) � ϒ(k) + ‖φ‖Xk+1(I ) + (1 + εβ(k−1))β(k−1), for k ≥ 1

β(0) � 〈x〉−( 14−σ1)‖φ‖X1(I ). (52)
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Proof. We first restrict the φ quantity to the region, ξ ≤ 1, and control this contri-
bution via the same Hardy type inequality we established in (35),

∣∣∣φ
(k)

u2

∣∣∣(1 − χ(ξ)) �
√
x
∥∥∥φ(k)

ψ

∥∥∥
L∞

ψ

�
√
x〈x〉−k− 3

4+σk+1

(∥∥∥√uφ
(k)
ψψ 〈x〉k+1−σk+1

∥∥∥
L2

ψ

+
∥∥∥φ
∥∥∥
Xk+1(I )

)

≤ 〈x〉−k− 1
4+σk+1(ϒ(k) + ‖φ‖Xk+1(I )). (53)

The far-field contribution is controlled by integrating from∞ and using that 1
u2

� 1
in the region ξ ≥ 1, via

∣∣∣φ(k)
∣∣∣
2
(1 − χ(ξ)) = −

∫ ∞

ψ

∂ψ

(∣∣∣φ(k)
∣∣∣
2
(1 − χ(ξ)))

= −
∫ ∞

ψ

2φ(k)φ
(k)
ψ (1 − χ(ξ))) +

∫ ∣∣∣φ(k)
∣∣∣
2 1√

x
χ ′(ξ)

�
∥∥∥φ(k)

∥∥∥
L2

ψ

∥∥∥φ(k)
ψ

∥∥∥
L2

ψ

+ 1√
x

∥∥∥
∣∣∣φ(k)

∥∥∥
2

L2
ψ

.

Thus,

∣∣∣φ(k)
∣∣∣(1 − χ(ξ))〈x〉k+ 1

4−σk+1 � 〈x〉k+ 1
4−σk+1

(∥∥∥φ(k)
∥∥∥

1
2

L2
ψ

∥∥∥φ(k)
ψ

∥∥∥
1
2

L2
ψ

+ 1

〈x〉 1
4

∥∥∥
∣∣∣φ(k)

∥∥∥
L2

ψ

)

� ‖φ‖Xk+1(I ),

upon using that σk+1 > σk and σk+1 > ωk+1.
By using the identity ρ = φ

u+ū , we obtain

ρ(N ) = φ(N )

u + ū
− 1

u + ū

N−1∑
j=0

c j,N ∂
N− j
x (ū + u)∂

j
x ρ for any N ,

ρ(0) = φ

u + ū
. (54)

According to (52), we will set N = k. We proceed inductively, the base case being
already established in (36). Assume that (52) is known for indices 0, .., k − 1. Set
N = k in the expression (54), and estimate via

∥∥∥∥∥
ρ(k)

u
〈x〉(k+ 1

4−σl+1)

∥∥∥∥∥
L∞

ψ

�
∥∥∥∥∥
φ(k)

u2
〈x〉(k+ 1

4−σk+1)

∥∥∥∥∥
L∞

ψ

+
k−1∑
j=0

∥∥∥∥∥
∂
k− j
x (2ū + ερ)

u

∥∥∥∥∥
L∞

ψ

∥∥∥∥∥
∂
j
x ρ

u

∥∥∥∥∥
L∞

ψ

〈x〉
(
k+ 1

4−σk+1

)
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� ϒ(k) + ε

∥∥∥∥∥
ρ(k)

u
〈x〉(k+ 1

4−σk+1)

∥∥∥∥∥
L∞

ψ

+
(
1 + εβ(k−1)

)
β(k−1),

(55)

upon invoking the induction hypothesis and estimate (51), and that σk+1 > σ j+1
when 0 < j < k. This concludes the proof. ��
Lemma 15. Let φ solve (20), and assume the bootstrap (25). The following esti-
mates are valid, for constants independent of I :

sup
x∈I

∥∥∥∥∥
φ(k)

u2
〈x〉k−σk+1〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

� ‖φ‖Xk+1(I ) (56)

γ (k) � ‖φ‖Xk+1(I ) + εγ (k−1)β� k−1
2 � + γ (k−1), γ (0) � 〈x〉σ1‖φ‖X1(I ). (57)

Proof. First, consider (56). In the region ξ ≥ 1, we have u � 1, in which case the
result follows from the definition of the norm. Thus we may restrict to ξ ≤ 1, in
which case we use that u2 � η2 � ξ = ψ√

x
on the region where ξ ≤ 1:

∥∥∥∥∥
φ(k)

u2

∥∥∥∥∥
L2

ψ(ξ�1)

�
∥∥∥∥∥
φ(k)

ξ

∥∥∥∥∥
L2

ψ(ξ�1)

= √
x

∥∥∥∥∥
φ(k)

ψ

∥∥∥∥∥
L2

ψ(ξ�1)

�
√
x
∥∥∥φ(k)

ψ

∥∥∥
L2

ψ(ξ�1)
+
∥∥∥φ(k)χ(ξ ∼ 1)

∥∥∥
L2

ψ

� 〈x〉−(k−σk+1)
∥∥∥φ
∥∥∥
Xk+1(I )

.

Above, we have used the Hardy inequality in the ψ direction, admissible because

φ(k)|ψ=0 = 0. The same proof works when the weight of ψ
1
2−κ is added.

We now move to the second line. First, for the base case of k = 0,

∥∥∥ρ

u
〈ψ〉 1

2−κ
∥∥∥
L2

ψ

≤
∥∥∥∥

φ

u(u + ū)
〈ψ〉 1

2−κ

∥∥∥∥
L2

ψ

�
∥∥∥∥

φ

u2
〈ψ〉 1

2−κ

∥∥∥∥
L2

ψ

� 〈x〉σ1
∥∥∥φ
∥∥∥
X (I )

.

(58)

This gives the γ (0) estimate in (57).
We now fix k in the range 1 ≤ k ≤ K0 − 1 (so, in particular, (25) is valid), and

assume inductively that
∥∥∥∥∥

ρ(r)

u + ū
〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

� 〈x〉−r+σr+1 , for r = 0, . . . , k − 1. (59)

Using (54), we obtain
∥∥∥∥∥
ρ(k)

u
〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ
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�
∥∥∥∥∥

φ(k)

u(u + ū)
〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

+
k∑
j=0

c j,k

∥∥∥∥∥
∂
k− j
x (ū + u)

u(u + ū)
∂
j
x ρ〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

�
∥∥∥∥∥
φ(k)

ū2
〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

+
� k−1

2 �∑
j=0

c j,k

∥∥∥∥∥
∂
k− j
x (ū + u)

u

∂
j
x ρ

(u + ū)
〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

+
k−1∑

j=� k−1
2 �

c j,k

∥∥∥∥∥
∂
k− j
x (ū + u)

u(u + ū)

∥∥∥∥∥
L∞

ψ

∥∥∥∂ j
x ρ〈ψ〉 1

2−κ
∥∥∥
L2

ψ

� 〈x〉−(k−σk+1)
∥∥∥φ
∥∥∥
Xk+1(I )

+
� k−1

2 �∑
j=0

c j,k

∥∥∥∥∥
ε∂

k− j
x ρ

u
〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

∥∥∥∥∥
∂
j
x ρ

ū

∥∥∥∥∥
L∞

ψ

+
� k−1

2 �∑
j=0

c j,k

∥∥∥∥∥
∂
k− j
x ū

u

∥∥∥∥∥
L∞

ψ

∥∥∥∥∥
∂
j
x ρ

ū
〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

+
k−1∑

j=� k−1
2 �

c j,k

∥∥∥∥∥
∂
k− j
x (2ū + ερ)

ū

∥∥∥∥∥
L∞

ψ

∥∥∥∥∥
∂
j
x ρ

u
〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

� 〈x〉−(k−σk+1)

⎛
⎝‖φ‖Xk+1(I ) + ε

∥∥∥∥∥
ρ(k)

u

∥∥∥∥∥
L2

ψ

∥∥∥φ
∥∥∥
X1(I )

+ γ (k−1) + εγ (k−1)β� k−1
2 �
⎞
⎠ ,

(60)

which thus gives the desired result. ��
Lemma 16. Fix any subinterval I ⊂ I∗ ⊂ (0,∞). For k ≥ 1,

ϒ(k) � ‖φ‖Xk+1(I ) + ϒ(k−1) + εϒ(k−1)β� k−1
2 � + εγ (k)ι�

k−1
2 �

+ εγ (k)ϒ(k−1) + (1 + εβ(k−1))‖φ‖Xk ,

ϒ(0) � ‖φ‖X1(I ) (61)

for a universal constant, independent of the interval I .

Proof. The base case has been treated in estimate (33). By taking ∂k−1
x of Equa-

tion (20), we have

uφ
(k)
ψψ = φ(k+1) −

k∑
j=1

c j∂
j
x u∂

k− j
x φψψ +

k∑
j=0

c j∂
j
x A∂

k− j
x φ

︸ ︷︷ ︸
L(k)

. (62)

Dividing through by
√
u,

∥∥∥√uφ
(k)
ψψ 〈ψ〉 1

2 −κ
∥∥∥
L2

ψ
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≤
∥∥∥∥∥

φ(k+1)

√
u

〈ψ〉 1
2 −κ

∥∥∥∥∥
L2

ψ

+
� k
2 �∑

j=1

∥∥∥∥∥
∂
j
x (ū + ερ)

u

∥∥∥∥∥
L∞

ψ

∥∥∥√uφ
(k− j)
ψψ 〈ψ〉 1

2 −κ
∥∥∥
L2

ψ

+
k∑

j=� k
2 �

∥∥∥∥∥
ε∂

j
x ρ

u
〈ψ〉 1

2 −κ

∥∥∥∥∥
L2

ψ

∥∥∥√uφ
(k− j)
ψψ

∥∥∥
L∞

ψ

+
k∑

j=� k
2 �

∥∥∥∥∥
∂
j
x ū

u

∥∥∥∥∥
L∞

ψ

∥∥∥√uφ
(k− j)
ψψ 〈ψ〉 1

2 −κ
∥∥∥
L2

ψ

+
� k
2 �∑

j=0

∥∥∥∂ j
x A
∥∥∥
L∞

ψ

∥∥∥∥∥
φ(k− j)

√
u

〈ψ〉 1
2 −κ

∥∥∥∥∥
L2

ψ

+
k∑

j=� k
2 �

∥∥∥∂ j
x A0

∥∥∥
L∞

ψ

∥∥∥∥∥
φ(k− j)

√
u

〈ψ〉 1
2 −κ

∥∥∥∥∥
L2

ψ

+
k∑

j=� k
2 �

ε

∥∥∥∂ j
x A1〈ψ〉 1

2 −κ
∥∥∥
L2

ψ

∥∥∥∥∥
φ(k− j)

√
u

∥∥∥∥∥
L∞

ψ

� 〈x〉−(k+1−σk+1)

(∥∥∥φ
∥∥∥
Xk+1

+ ϒ(k−1) + εβ� k
2 �ϒ(k−1) + εγ (k)ι�

k
2 �

+
(
1 + εγ (k) + εP

(
γ (0), . . . , γ (k−1), β(0), . . . , β(k−1)

))(
ϒ� k

2 � +
∥∥∥φ
∥∥∥
X� k2 �+1

)

+
(
1 + εβ

(
� k
2 �
)

+ εP

(
β(0), . . . , β

(
� k
2 �
)
−1
))∥∥∥φ

∥∥∥
Xk

)
.

Above, we have invoked that σk+1 > σ j when j < k+1. We have also invoked the

decomposition of ∂
j
x A = A( j)

0 + εA( j)
1 and applied estimates for each piece from

(44), (45). ��
Lemma 17. Fix any subinterval I ⊂ I∗ ⊂ (0,∞). For k ≥ 1,

ι(k) � ϒ(k+1) + ‖φ‖Xk+1(I ) + (1 + εβ(k))ι(k−1) + (1 + εβ(k))ϒ(k),

ι(0) � ‖φ‖X1(I ) (63)

for a universal constant, independent of the interval I .

Proof. We again estimate using (5) via

∥∥∥√uφ
(k)
ψψ

∥∥∥
L∞

ψ

≤
∥∥∥∥∥
φ(k+1)

√
u

∥∥∥∥∥
L∞

ψ

+
k∑
j=1

∥∥∥∥∥
∂
j
x (ū + ερ)

u

∥∥∥∥∥
L∞

ψ

∥∥∥√uφ
(k− j)
ψψ

∥∥∥
L∞

ψ

+
k∑
j=0

∥∥∥∂ j
x A
∥∥∥
L∞

ψ

∥∥∥∥∥
φ(k− j)

√
u

∥∥∥∥∥
L2

ψ

.

From here the result follows upon invoking (51) for the first term, estimate (42) for
the final term, and recalling the definitions of (40), (16). ��

By combining the estimates (52), (57), (61) and (63), we have established

Corollary 18. The following estimates are valid, independent of the interval I :

ι(k−1) + ϒ(k) + β(k) + γ (k) � ‖φ‖Xk+1(I ), (64)

sup
x∈I

∥∥∥L(k−1) 〈ψ〉 1
2−κ

√
u

〈x〉k−σk

∥∥∥
L2

ψ

� ε‖φ‖Xk (I ) + ‖φ‖Xk−1(I ). (65)
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2.2.3. Miscellaneous Estimates

Lemma 19. Let φ solve (20), and ρ be given by (19). Then the following estimates
are valid:

sup
x∈I

(∥∥∥√uρ(k)〈ψ〉 1
2−κ 〈x〉k−σk

∥∥∥
L2

ψ

+
∥∥∥u 3

2 ∂kx
ρ

ū
〈ψ〉 1

2−κ 〈x〉k−σk

∥∥∥
L2

ψ

)
� ‖φ‖Xk (I ).

(66)

Proof. We directly estimate using (54), which gives
∥∥∥√uρ(k)〈ψ〉 1

2−κ
∥∥∥
L2

ψ

≤
∥∥∥∥∥
√
u

φ(k)

u + ū
〈ψ〉 1

2−κ

∥∥∥∥∥
L2

ψ

+
m∑
j=0

c j,k

∥∥∥∥
1

ū
∂
k− j
x (ū + u)∂

j
x ρ

√
u〈ψ〉 1

2−κ

∥∥∥∥
L2

ψ

� 〈x〉−(k−σk )
∥∥∥φ
∥∥∥
Xk (I )

+
� k−1

2 �∑
j=0

c j,k

∥∥∥∥
1

ū
∂
k− j
x (2ū + ερ)∂

j
x ρ

√
u〈ψ〉 1

2−κ

∥∥∥∥
L2

ψ

+
k−1∑

j=� k−1
2 �

c j,k

∥∥∥∥
1

ū
∂
k− j
x (2ū + ερ)∂

j
x ρ

√
u〈ψ〉 1

2−κ

∥∥∥∥
L2

ψ

� 〈x〉−(k−σk )
∥∥∥φ
∥∥∥
X (I )

+ ε

� k−1
2 �∑

j=0

c j,k
∥∥∥∂k− j

x ρ
√
u〈ψ〉 1

2−κ
∥∥∥
L2

ψ

∥∥∥∥∥
∂
j
x ρ

u

∥∥∥∥∥
L∞

ψ

+
� k−1

2 �∑
j=0

c j,k

∥∥∥∥∥
∂
k− j
x ū

u

∥∥∥∥∥
L∞

ψ

∥∥∥∂ j
x ρ

√
u〈ψ〉 1

2−κ
∥∥∥
L2

ψ

+
k−1∑

j=� k−1
2 �

c j,k

∥∥∥∥
1

ū
∂
k− j
x (2ū + ερ)

∥∥∥∥
L∞

ψ

∥∥∥∂ j
x ρ

√
u〈ψ〉 1

2−κ
∥∥∥
L2

ψ

� 〈x〉−(k−σk )

(∥∥∥φ
∥∥∥
Xk (I )

+ ε

∥∥∥√uρ(k)〈ψ〉 1
2−κ 〈x〉k−σk

∥∥∥
L2

ψ

∥∥∥φ
∥∥∥
Xk−1(I )

)
.

This concludes the estimate of the first term in (66). For the second term, we simply
expand using the product rule, as done in (49). The result then follows from the
first estimate in (66), upon using that

∥∥ u
ū

∥∥
L∞ � 1, and

∥∥ū∂ lx
1
ū 〈x〉l∥∥L∞ � 1. ��

We will also invoke the following lemma about A, defined in (20):

Lemma 20. Assume (25). For k ≥ 1, there exists a decomposition ∂kx A = A(k)
0 +

εA(k)
1 where

sup
x∈I

∥∥∥A(k)
0 〈x〉k

∥∥∥
L∞ ≤ Ck, (67)
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sup
x∈I

∥∥∥u 3
2 A(k)

1 〈x〉k+ 3
4 〈ψ〉 1

2−κ
∥∥∥
L2

ψ

� ε‖φ‖Xk (I ) + ‖φ‖Xk−1(I ), (68)

sup
x∈I

∥∥∥u 3
2 ∂kx A〈x〉k+ 3

4 ‖L2
ψ

� ε

∥∥∥φ‖Xk (I ) + ‖φ‖Xk−1(I ) + 1 (69)

for a universal constant Ck and an implicit constant in (68) that are independent
of I .

Proof. We first recall the decomposition from (48). The first estimate, (67), is clear
from the definition of A0 and by using the property (47).

For estimate (68), we recall the definition of A1 from (48). We first establish
the result for A(1)

1 , which will serve as our base case:

∥∥∥u 3
2 A(1)

1 〈x〉1+ 3
4 〈ψ〉 1

2−κ
∥∥∥
L2

ψ

�
∥∥∥u 3

2 A∂x
ρ

ū
〈x〉1+ 3

4 〈ψ〉 1
2−κ
∥∥∥
L2

ψ

� ‖A〈x〉‖∞
∥∥∥u 3

2 ∂x
ρ

ū
〈x〉 3

4 〈ψ〉 1
2−κ
∥∥∥
L2

ψ

� ‖φ‖X1 ,

upon invoking (41) to estimate the A term, and (66) to estimate the ρ term (and the
bootstrap, (25)).

We thus assume (68) holds for all indices 0, . . . , k − 1, and further decompose
it via

∥∥∥u 3
2 A(k)

1 〈x〉k+ 3
4 〈ψ〉 1

2−κ
∥∥∥
L2

ψ

�
k−1∑
l=0

∥∥∥u 3
2 ∂lx A0∂

k−l
x

ρ

ū
〈x〉k+ 3

4 〈ψ〉 1
2−κ

∥∥∥
L2

ψ

+ ε

k−1∑
l=0

∥∥∥u 3
2 ∂lx A1∂

k−l
x

ρ

ū
〈x〉k+ 3

4 〈ψ〉 1
2−κ

∥∥∥
L2

ψ

�
k−1∑
l=0

∥∥∥u 3
2 ∂lx A0∂

k−l
x

ρ

ū
〈x〉k+ 3

4 〈ψ〉 1
2−κ

∥∥∥
L2

ψ

+ ε

� k−1
2 �∑

l=0

∥∥∥u 3
2 ∂lx A1∂

k−l
x

ρ

ū
〈x〉k+ 3

4 〈ψ〉 1
2−κ

∥∥∥
L2

ψ

+ ε

k−1∑

l=� k−1
2 �

∥∥∥u 3
2 ∂lx A1∂

k−l
x

ρ

ū
〈x〉k+ 3

4 〈ψ〉 1
2−κ

∥∥∥
L2

ψ

�
k−1∑
l=0

∥∥∥∂lx A0〈x〉l+1
∥∥∥
L∞

∥∥∥u 3
2 ∂k−l

x
ρ

ū
〈x〉k−l+ 3

4 〈ψ〉 1
2−κ

∥∥∥
L2

ψ

+ ε

� k−1
2 �∑

l=0

∥∥∥∂lx A1〈x〉l+1
∥∥∥
L∞

∥∥∥u 3
2 ∂k−l

x
ρ

ū
〈x〉k−l+ 3

4 〈ψ〉 1
2−κ

∥∥∥
L2

ψ

+ ε

k−1∑

l=� k−1
2 �

∥∥∥u 3
2 ∂lx A1〈x〉l+

3
4 〈ψ〉 1

2−κ
∥∥∥
L2

ψ

∥∥∥∂k−l
x

ρ

ū
〈x〉k−l

∥∥∥
L∞

ψ

�
∥∥∥φ
∥∥∥
Xk

.
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The ρ terms in L2
ψ in the first two sums above is estimated upon invoking (66),

the A0 term in L∞ in the first sum above is estimated using (47), the A1 term in
L∞ in the second sum above is estimated using (42). For the third sum, we use
that l ≤ k − 1 to invoke the induction hypothesis, and finally the L∞ term of ρ we
expand as in (49) to see it is controlled by ‖φ‖Xk−l+1 .

For the final inequality, (69), we have
∥∥∥u 3

2 ∂kx A〈x〉k+ 3
4

∥∥∥
L2

ψ

≤
∥∥∥u 3

2 A(k)
0 〈x〉k+ 3

4

∥∥∥
L2

ψ

+ ε

∥∥∥u 3
2 A(k)

1 〈x〉k+ 3
4

∥∥∥
L2

ψ

;

the A(k)
0 term is clearly seen to be bounded by a universal constant upon invoking

(47), whereas the A(k)
1 term is bounded according to (68). ��

A key feature we take advantage of is that decay is enhanced in the region ξ ≤ 1

due to controlling the weight ψ
1
2−κ in the norm, (16).

Lemma 21. (L2(ξ � 1) Estimates) Let φ solve (20), and assume the bootstrap
(25). Then, for α = 0, 1, 2,

sup
x∈I

∥∥∥∂α
ψφ(k)〈x〉k+ α

2 + 1
4−σk+2− κ

2

∥∥∥
L2

ψ(ξ≤1)
� ‖φ‖Xk+2(I ) (70)

for a constant independent of I .

Proof. We first address the j = 0 case by rearranging the Equation (20) to obtain

∥∥∥φψψ

∥∥∥
L2

ψ (ξ�1)
=
∥∥∥∥
1

u
φx

∥∥∥∥
L2

ψ (ξ≤1)
+
∥∥∥∥
1

u
Aφ

∥∥∥∥
L2

ψ (ξ≤1)

� 〈x〉 1
4

∥∥∥∥∥
φ(1)

√
ψ

∥∥∥∥∥
L2

ψ (ξ≤1)

+
∥∥∥A〈x〉

∥∥∥∞〈x〉− 3
4

∥∥∥∥
φ√
ψ

∥∥∥∥
L2(ξ≤1)

� 〈x〉 1
4

∥∥∥∥∥
φ(1)

√
ψ

∥∥∥∥∥
L2

ψ (ξ≤1)

+ ‖A〈x〉‖∞ 〈x〉− 3
4

∥∥∥∥
φ√
ψ

∥∥∥∥
L2(ξ≤1)

� 〈x〉 1
4+ κ

2

∥∥∥∥∥
φ(1)

ψ
1
2+κ

∥∥∥∥∥
L2

ψ (ξ≤1)

+ ‖A〈x〉‖∞ 〈x〉− 3
4+ κ

2

∥∥∥∥∥
φ

ψ
1
2+κ

∥∥∥∥∥
L2(ξ≤1)

� 〈x〉 1
4+ κ

2

∥∥∥φ(1)
ψ ψ

1
2−κ
∥∥∥
L2

ψ (ξ≤1)
+ 〈x〉 1

4+ κ
2

∥∥∥φ(1)ψ
1
2−κ 〈x〉− 1

2 χ ′(ξ)

∥∥∥
L2

ψ

+ 〈x〉− 3
4+ κ

2

∥∥∥ψ 1
2−κφψ

∥∥∥
L2(ξ≤1)

+ 〈x〉− 3
4+ κ

2

∥∥∥ψ 1
2−κφχ ′(ξ)〈x〉− 1

2

∥∥∥
L2

� 〈x〉− 5
4+σ2+ κ

2

∥∥∥φ
∥∥∥
X2(I )

. (71)

Above, we have used the localization to the region {ξ ≤ 1} in several ways. First, we
have bounded u below by a factor of

√
ξ . Second, we use the inequality 1 ≤ x

κ
2

ψκ .
The second to last inequality is the Hardy inequality, admissible because both
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φ, φ(1)|ψ=0 = 0. In the final estimate, we simply appeal to the definition of the
norm, (16).

We now integrate via

χ(ξ)|φ| = χ(ξ)

∣∣∣∣
∫ ψ

0
φψ

∣∣∣∣ � χ(ξ)
√

ψ

∥∥∥φψ

∥∥∥
L2

ψ(ξ�1)
� χ(ξ)〈x〉 1

4

∥∥∥φψ

∥∥∥
L2

ψ(ξ�1)

� 〈x〉− 1
2

(
〈x〉 3

4−σ j+2− κ
2

∥∥∥φψ

∥∥∥
L2

ψ(ξ�1)

)
, (72)

Above, we have used in the support of χ(ξ) that
√

ψ ≤ 〈x〉 1
4 . In turn, (72) implies

‖φ‖L2
ψ(ξ≤1) � 〈x〉− 1

4

(
〈x〉 3

4−σ j+2− κ
2 ‖φψ‖L2

ψ(ξ�1)

)
. (73)

We can make the above estimate global in ξ by simply noting that

‖φ‖L2
ψ(ξ≥1) =

∥∥∥φψ
1
2−κψ− 1

2+κ
∥∥∥
L2

ψ(ξ≥1)

� 〈x〉−
(
1
4− κ

2

) ∥∥∥φψ
1
2−κ
∥∥∥
L2

ψ(ξ≥1)
� 〈x〉−

(
1
4− κ

2

)
‖φ‖X0(I ). (74)

For the enhanced localized φψ estimate, we have first, by a standard interpola-
tion, and second by inserting (73) for the ‖φ‖L2

ψ
term, (71) for the ‖φψψ‖L2

ψ
term,

and (74) for the final φ term as follows

‖φψ‖L2
ψ(ξ≤1) �

∥∥∥φ
∥∥∥

1
2

L2
ψ(ξ≤1)

∥∥∥φψψ

∥∥∥
1
2

L2
ψ(ξ≤1)

+ 〈x〉− 1
2 ‖φ‖L2

ψ(ξ≥1)

� 〈x〉− 1
8

(
〈x〉 3

4−σ j+2− κ
2 ‖φψ‖L2

ψ(ξ�1)

) 1
2 〈x〉−

(
5
8− σ2

2 − κ
4

)
‖φ‖

1
2
X2

+ 〈x〉−
(
3
4− κ

2

)∥∥∥φ
∥∥∥
X0(I )

≤ δ

∥∥∥φψ

∥∥∥
L2

ψ(ξ≤1)
+ Cδ〈x〉− 3

4

∥∥∥φ
∥∥∥
X2(I )

+ C〈x〉−
(
3
4− κ

2

)∥∥∥φ
∥∥∥
X0(I )

.

For any δ > 0. By absorbing the δ term to the left-hand side, we conclude the proof
for k = 0. The general k case follows in an analogous manner, upon invoking the
expression (5) for the φψψ estimate. ��

Lemma 22. (L∞ Estimates) Let φ solve Equation (20), and assume the bootstrap
(25). Then the following estimate is valid:

‖√uφ
(k)
ψψ‖L∞

ψ (ξ≤1)〈x〉k+ 3
2−σ j+3− κ

2 � ‖φ‖Xk+3(I ), (75)

for a constant independent of I .
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Proof. We again consider the k = 0 case. We use the Equation (20) to write

∥∥∥√uφψψ

∥∥∥
L∞

ψ (ξ≤1)
=
∥∥∥ 1√

u
φ(1)

∥∥∥
L∞

ψ (ξ≤1)
+
∥∥∥ A√

u
φ

∥∥∥
L∞

ψ (ξ≤1)
. (76)

For the first term, we estimate

χ(ξ)

∣∣∣1
u

φ(1)
∣∣∣ � χ(ξ)〈x〉 1

8 ψ− 1
4

∣∣∣
∫ ψ

0
φ

(1)
ψ

∣∣∣ � χ(ξ)〈x〉 1
8 ψ− 1

4 ψ
1
2

∥∥∥φ(1)
ψ

∥∥∥
L2

ψ(ξ≤1)

�
∥∥∥φ(1)

ψ

∥∥∥
L2

ψ(ξ�1)
� 〈x〉−

(
3
2−σ j+3− κ

2

)∥∥∥φ
∥∥∥
X3(I )

,

upon invoking (70). The second term in (76) follows similarly, upon invoking that
‖A〈x〉‖∞ � 1. The general k case follows from invoking expression (5). This
concludes the proof. ��

3. Baseline Tier: L2 Estimates

In this section, we obtain two estimates at the L2 level - the energy estimate and
the quotient estimate. The reader is urged to keep in mind the linearized structure
which is present at the L2 level, Equation (21).

We urge the reader to keep in mind the bootstrap assumption, (25), which will
be in implicit use throughout the estimates of this section. In particular, we will
repeatedly use the following inequalities to bound nonlinear quantities, which has
been rigorously established in (30) - (51):

u � ū � u, |ρ| � u, |ρ| � ū. (77)

Before coming to our energy estimate, we first prove the following lemma:

Lemma 23. Let ū be the Blasius solution. Then denoting ūx the ∂x in (x, ψ) coor-
dinates,

ūx (x, ψ) = ūx (x, y) + v̄

ū
ū y(x, y) = ū yy

ū
. (78)

Proof. This follows from the chain rule. Specifically, differentiate the equality
ū(x, y) = ū(x, ψ) to obtain the identities

ū y(x, y) = ūūψ(x, ψ), ū yy(x, y) = ūū2ψ(x, ψ) + ū2ūψψ(x, ψ), (79)

and

ūx (x, y) = ūx (x, ψ) + ūψψx (x, ψ) = ūx (x, ψ) − v̄ūψ(x, ψ). (80)

Rearranging (80) and invoking the first identity in (79) yields ūx (x, ψ) =
ūx (x, y) + v̄

ū y
ū (x, y), which is the first equality of (78). The second equality of

(78) follows from ū solving the Prandtl equation, (1). ��
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Lemma 24. (Energy Estimate) Let φ solve (20). Assume the bootstrap assumption
(25). Then, for K0 
 1,

∂x

2

∫
φ2 +

∫
ū|φψ |2 � ε〈x〉−(0+) IK0(x). (81)

Proof. We take inner product of the Equation (20) against φ to obtain

∂x

2

∫
φ2 +

∫
ū|φψ |2 − 1

2

∫
ūψψ |φ|2 +

∫
ερφψψφ +

∫
A|φ|2 = 0. (82)

We now use two properties:

ū ≥ 0, ū2ūψψ = ū yy − ū|ūψ |2 ≤ 0,

which hold by properties of the Blasius profile. We also use that A ≥ 0, which
again holds by the concavity of the Blasius profile, (7). Finally, we estimate

∣∣∣∣
∫

ερφψψφ

∣∣∣∣ � ε〈x〉−( 54−2σ1)
∥∥∥ρ

u
〈x〉 1

4−σ1

∥∥∥
L∞

ψ

‖uφψψ 〈x〉1−σ1‖L2
ψ
‖φ‖L2

ψ

� ε〈x〉−( 54−2σ1)β(0)ϒ(0)E0(x)

� ε〈x〉−( 54−2σ1)EK0(x)
3 ≤ ε〈x〉−(0+) IK0(x),

where we have used the definitions (40), inequalities (64) to control the β,ϒ terms,
and that 2σ1 < 1

4 . This concludes the proof. ��
Lemma 25. (Quotient Estimate) Let φ be a solution to (20). Assume the bootstrap
assumption, (25). Then the following estimate is valid:

∂x

2

∫
φ2 1

u
〈ψ〉 +

∫
φ2

ψ 〈ψ〉 � ε〈x〉−(0+) IK0(x). (83)

Proof. We have the identity

∂x

2

∫
φ2 1

u
〈ψ〉 +

∫
φ2

ψ 〈ψ〉 +
∫

φ2〈ψ〉1
2

ux
u2

+
∫

Aφ2 〈ψ〉
u

= 0. (84)

We group the latter two terms together via

(84.3) + (84.4) =:
∫

φ2〈ψ〉 1

u3
�̊ =

∫
φ2〈ψ〉 1

u3
[� + �R],

where

�̊ = uux
2

+ u2A = uux
2

− 2u2
ū yy

ū(ū + u)
,

� = −ū yy + 1

2
ūūx ,

�R := Aεφ + ū yyερ

2ū + ερ
+ ερūx + εūρx + ε2ρρx

2
.
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For the reader’s convenience, we derive the equality above upon substituting
(10):

�̊ := uux
2

− 2u2
ū yy

ū(ū + u)

= 1

2
(ū + ερ)(ūx + ερx ) − 2ū2

ū yy

ū(2ū + ερ)
− εφ2

ū yy

ū(ū + u)

= 1

2
ūūx + 1

2

(
ρūx + ūρx + ερρx

)
− ū yy + ερ

ū yy

2ū + ερ
+ εφA

= � + �R .

First, by (78) and by convexity of the Blasius profile, � = − 1
2 ū yy > 0. We

thus need to estimate the nonlinear part in �R :
∣∣∣∣
∫

φ2〈ψ〉 1

u3
�R
∣∣∣∣ ≤ ε‖φ〈ψ〉 1

2−κ 1√
u

‖2
L2

ψ

[∥∥∥ Aφ

u2

∥∥∥
L∞

ψ

+
∥∥∥ ū yyρ

u2(2ū + ερ)

∥∥∥
L∞

ψ

+ 1

2

∥∥∥ρūx
u2

∥∥∥
L∞

ψ

+ 1

2

∥∥∥ρx ū

u2

∥∥∥
L∞

ψ

+ ε

2

∥∥∥ρρx

u2

∥∥∥
L∞

ψ

]

� ε〈x〉−(1+)EK0(x)
3 ≤ ε〈x〉−(0+) IK0(x). (85)

We now proceed to prove the final inequality above after Equation (85) by
estimating all five of the L∞

ψ terms above. First, upon invoking (41), (51), and (64),
we obtain

∥∥∥ Aφ

u2

∥∥∥
L∞

ψ

≤‖A‖L∞
ψ

∥∥∥ φ

u2

∥∥∥
L∞

ψ

� 〈x〉−1〈x〉−(0+)EK0(x)
2.

Above, we have also estimated A via invoking (41).
Second, upon invoking (39), u ∼ η, ū yy ∼ η2〈x〉−1 on η ≤ 1, we estimate
∥∥∥ ū yyρ

u2(2ū + ερ)

∥∥∥
L∞

ψ

≤
∥∥∥ ū yy

u2

∥∥∥
L∞

ψ

∥∥∥ ρ

2ū + ερ

∥∥∥
L∞

ψ

� 〈x〉−1
∥∥∥ ρ

2u − εu ρ
u

∥∥∥
L∞

ψ

� 〈x〉−1
∥∥∥ 1

2 − ε
ρ
u

∥∥∥
L∞

ψ

∥∥∥ρ

u
‖L∞

ψ

� 〈x〉−1
∥∥∥ 1

2 − ε
ρ
u

∥∥∥
L∞

ψ

β(0) � 〈x〉−(0+) IK0(x),

where we have invoked (64) to β(0).
Third, again upon invoking (40), (64) and (39),

∥∥∥ρūx
u2

∥∥∥
L∞

ψ

�
∥∥∥ρ

u

∥∥∥
L∞

ψ

∥∥∥ ūx
u

∥∥∥
L∞

ψ

�
∥∥∥ρ

u

∥∥∥
L∞

ψ

∥∥∥ ūx
ū

∥∥∥
L∞

ψ

‖ ū
u

‖L∞
ψ

� 〈x〉−(0+)β(0)〈x〉−1ω � 〈x〉−(0+) IK0(x).

Fourth, again upon invoking (40), (64) and (39),
∥∥∥ρx ū

u2

∥∥∥
L∞

ψ

�
∥∥∥ ū
u

∥∥∥
L∞

ψ

∥∥∥ρx

u

∥∥∥
L∞

ψ

� 〈x〉−(1+)ωβ(1) � 〈x〉−(0+) IK0(x).
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Fifth, again upon invoking (40) and (64),
∥∥∥ρρx

u2

∥∥∥
L∞

ψ

≤
∥∥∥ρ

u

∥∥∥
L∞

ψ

∥∥∥ρx

u

∥∥∥
L∞

ψ

� 〈x〉−(0+)〈x〉−(1+)β(0)β(1) � 〈x〉−(0+) IK0(x).

Inserting these estimates into (85) yields the estimate shown beneath (85). This
concludes the proof. ��

4. Middle Tier: Hk for 1 ≤ k ≤ K1

At the H1 level, the linearized equation changes and so requires a new treatment
(compare (21) versus (22)). Taking one x derivative of (20), we obtain

φ(1)
x − uφ

(1)
ψψ + Aφ(1) − u(1)φψψ + Axφ = 0.

The point here is that u(1) can be separated into u(1) =: ū(1) + ερ(1). While the ρ(1)

contribution is quadratic (it carries an ε factor), the ū(1) contribution is linear and
highest order in φ. To see this, we use the equation to rewrite φψψ via

φ(1)
x − uφ

(1)
ψψ + Aφ(1) − u(1)

[
φ(1)

u
+ Aφ

u

]
+ Axφ = 0. (86)

Remark 26. (Notational Convention) We introduce the following notation, conve-
nient for majorizing terms appearing in the energy estimates:

Rk−1(x) := 〈x〉−(0+) Ik−1(x) + ε〈x〉−(0+) IK0(x). (87)

Lemma 27. Let φ solve the equation (20). Assume the bootstrap assumption, (25).
Then the following inequality is valid:

∂x

2

∫
|φψ |2〈x〉1−2ω1 +

∫
|φx |2 1

u
〈x〉1−2ω1 � R0(x). (88)

Proof. Toobtain this estimate,we take the inner-product of (20) againstφ(1) 1
u 〈x〉1−2ω1 ,

which produces the identity
∫

|φx |2 1
u

〈x〉1−2ω1 + ∂x

2

∫
|φψ |2〈x〉1−2ω1

= 1 − 2ω1

2

∫
|φψ |2〈x〉−2ω1 −

∫
A
1

u
〈x〉1−2ω1φφx . (89)

For the first term on the right-hand side above, we invoke from (83) that ‖φψ‖2
L2

ψ

is an integrable quantity in x , and therefore upon using ω1 > 0, it can be bounded
by 〈x〉−(0+) I0(x) (recall our convention for Ik(x) defined in (18)). For the second
term on the right-hand side of (89), we estimate via

∣∣∣∣
∫

A
1

u
〈x〉1−2ω1φφx

∣∣∣∣ �
∥∥∥A〈x〉

∥∥∥∞

∥∥∥ φ√
u

〈x〉− 1
2−
∥∥∥
L2

ψ

∥∥∥φx 〈x〉 1
2−ω1

1√
u

∥∥∥
L2

ψ
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�
∥∥∥A〈x〉

∥∥∥∞

∥∥∥ φ√
u

〈x〉− 1
2−
∥∥∥
L2

ψ

∥∥∥φx 〈x〉 1
2−ω1

1√
u

∥∥∥
L2

ψ

≤ δ

∥∥∥φx 〈x〉 1
2−ω1

1√
u

∥∥∥
L2

ψ

+ Cδ〈x〉−(1+)E0(x)

≤ δ

∥∥∥φx 〈x〉 1
2−ω1

1√
u

∥∥∥
L2

ψ

+ Cδ〈x〉−(0+) I0(x),

where we have used Young’s inequality for products for any parameter δ. We pick
δ small, universally, so as to absorb the first term on the right-hand side above to
the left-hand side of (89). We have used (41) for A and (83) for the φ term. Again,
we invoke (83) to establish that the above quantities are integrable in x . ��
Lemma 28. (Energy Estimate) Let φ solve the equation (20). Assume the bootstrap
assumption, (25). Then the following inequality is valid:

∂x

2

∫
|φ(1)|2〈x〉2−2σ1 +

∫
u|φ(1)

ψ |2〈x〉2−2σ1 � R0(x). (90)

Proof. Weapply themultiplierφ(1)〈x〉2−2σ1 to (86). Denote by R(x) the right-hand
side of (90). This generates the identity

∂x

2

∫
|φ(1)|2〈x〉2−2σ1 +

∫
u|φ(1)

ψ |2x2−2σ1 −
∫

uψψ

2
|φ(1)|2〈x〉2−2σ1

+
∫

A|φ(1)|2x2−2σ1 −
∫

u(1) |φ(1)|2
u

〈x〉2−2σ1

= 2 − 2σ1
2

∫
|φ(1)|2〈x〉1−2σ1 +

∫
u(1) Aφ

u
φ(1)〈x〉2−2σ1 +

∫
Axφφ(1)〈x〉2−2σ1 .

(91)

The third and fourth terms on the left-hand side are damping terms, as in the
lowest order estimate. The first term on the right-hand side is controlled by R0(x)
due to the previous estimate, (88), and our choice that σ1 > ω1.

The new leading order contribution is the last term on the left-hand side, which,
precisely, is

−
∫

ūx
u

|φ(1)|2〈x〉2−2σ1 −
∫

ερx

u
|φ(1)|2〈x〉2−2σ1 . (92)

The key point is that the first term above is nonnegative, because ūx < 0 for Blasius
solutions and according to (78),

−
∫

ūx
u

|φ(1)|2〈x〉2−2σ1 > 0.

We estimate the ρ contribution from (92), which enables us to use the smallness of
ε:

∣∣∣(92.2)
∣∣∣ � ε

∥∥∥ρ(1)

u

∥∥∥
L∞

∥∥∥φ(1)〈x〉1−σ1

∥∥∥
2

L2
ψ

� ε〈x〉−(1+)β(1)
∥∥∥φ(1)〈x〉1−σ1

∥∥∥
2

L2
ψ
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� ε〈x〉−(1+)EK0(x)
3 � ε〈x〉−(0+) IK0(x),

where we have invoked estimate (64) to estimate the β(1) term, and the specification
of the norm (16).

We now need to estimate
∣∣∣∣
∫

u(1) 1

u
Aφφ(1)〈x〉2−2σ1

∣∣∣∣

≤
∣∣∣∣∣
∫

ū(1)

u
Aφφ(1)〈x〉2−2σ1

∣∣∣∣∣+ ε

∣∣∣∣∣
∫

ρ(1)

u
Aφφ(1)〈x〉2−2σ1

∣∣∣∣∣ . (93)

For the first term in (93), we do not have any factors of ε, so we take advantage
of the fact that one of the terms, φ, is lower order:

|(93.1)| � 〈x〉−( 12+)
∥∥∥ ū

(1)

u
〈x〉
∥∥∥
L∞

ψ

‖A〈x〉
∥∥∥
L∞

ψ

∥∥∥φ
∥∥∥
L2

ψ

∥∥∥φ(1)〈x〉 1
2−ω1

∥∥∥
L2

ψ

� 〈x〉−( 12+)ω

∥∥∥ ū
(1)

ū
〈x〉
∥∥∥
L∞

ψ

∥∥∥A〈x〉
∥∥∥
L∞

ψ

E0(x)R0(x)
1
2

� 〈x〉−(1+)E0(x) + R0(x) � R0(x).

Above, we have used (39) to estimateω, (41) to estimate the A term, (16) to estimate
the φ term by E0(x), and (88) to estimate the φ(1) term. We have also used that
σ1 > ω1. We used Young’s inequality to go from the second to third inequality, and
the definition of R0 in (87) to ultimately bound from above by R0.

For the second term from (93), we use the smallness of ε and that σ1 > ω1 via

|(93.2)| � ε〈x〉−(0+)‖A〈x〉‖∞
∥∥∥ρ(1)

u
〈x〉1+

∥∥∥
L∞

ψ

∥∥∥φ〈x〉− 1
2− σ1

2 ‖L2
ψ

∥∥∥φ(1)〈x〉 1
2−ω1‖L2

ψ

� ε〈x〉−(0+)
∥∥∥A〈x〉

∥∥∥∞β(1)
∥∥∥φ〈x〉− 1

2− σ1
2

∥∥∥
L2

ψ

∥∥∥φ(1)〈x〉 1
2−ω1

∥∥∥
L2

ψ

� ε〈x〉−(0+) IK0(x),

upon invoking (41) for the A term, (64) for the β term, and just the norm (16) for
the L2

ψ terms.
For the final term on the right-hand side of (91), we estimate

∣∣∣∣
∫

Axφφ(1)〈x〉2−2σ1

∣∣∣∣ � 〈x〉−(0+)
∥∥∥Ax 〈x〉2

∥∥∥∞

∥∥∥φ〈x〉− 1
2− σ1

2 ‖L2
ψ

∥∥∥φ(1)〈x〉 1
2−σ1‖L2

ψ

� 〈x〉−(0+) I0(x)R0(x)
1
2 � R0(x).

We have used (42) and then (64) to estimate the Ax term. For the φ term, we use
the definition of the norm, X0. For the φ(1) term, we use (88) and that σ1 > ω1.

This concludes the proof. ��
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Lemma 29. Let φ solve the Equation (20). Assume the bootstrap assumption, (25).
Then the following inequality is valid:

∂x

2

∫
φ2

ψψ1−2κ x1−2ω1 +
∫

1

u
φ2
x x

1−2ω1ψ1−2κ

≤ CδR0(x) + δ

∫
|φ(1)

ψ |2〈ψ〉1−2κ 〈x〉2−2σ1 . (94)

Proof. We apply the weighted multiplier 1
uφx x1−2ω1〈ψ〉1−2κ , which produces the

identity

∂x

2

∫
φ2

ψ 〈ψ〉1−2κ x1−2ω1 +
∫

1

u
φ2
x x

1−2ω1〈ψ〉1−2κ

= 1 − 2ω1

2

∫
φ2

ψ 〈ψ〉1−2κ x−2ω1 + (1 − 2κ)

∫
φψφx x

1−2ω1ψ−2κ

+
∫

Aφ
1

u
φx x

1−2ω1〈ψ〉1−2κ . (95)

We clearly see that the first term on the right-hand side of (95) is bounded by
〈x〉−(0+) I0(x) upon invoking the second term on the left-hand side of (83). We
estimate the second term on the right-hand side of (95) via the Hardy inequality on
φx , admissible because φx |ψ=0 = 0,

∣∣∣∣
∫

φψφx x
1−2ω1ψ−2κ

∣∣∣∣ � 〈x〉−(0+)
∥∥∥φψψ

1
2−κ
∥∥∥
L2

ψ

∥∥∥φxψ
− 1

2−κ 〈x〉1−σ1

∥∥∥
L2

ψ

≤ Cκ 〈x〉−(0+)
∥∥∥φψψ

1
2−κ
∥∥∥
L2

ψ

∥∥∥φxψψ
1
2−κ 〈x〉1−σ1

∥∥∥
L2

ψ

≤ Cκ,δ〈x〉−(0+)
∥∥∥φψψ

1
2−κ
∥∥∥
2

L2
ψ

+ δ

∥∥∥φxψψ
1
2−κ 〈x〉1−σ1

∥∥∥
2

L2
ψ

≤ Cκ,δx
−(0+) I0(x) + δ

∥∥∥φxψψ
1
2−κ 〈x〉1−σ1

∥∥∥
2

L2
ψ

. (96)

Above, we have used that 2ω1 > σ1.
Lastly, we estimate

∣∣∣∣
∫

Aφ
1

u
φx x

1−2ω1〈ψ〉1−2κ
∣∣∣∣

�
∥∥∥A〈x〉

∥∥∥
L∞

ψ

∥∥∥∥
φ√
u

〈ψ〉 1
2−κ x− 1

2−ω1

∥∥∥∥
L2

ψ

∥∥∥∥
φx√
u

〈ψ〉 1
2−κ x

1
2−ω1

∥∥∥∥
L2

ψ

� Cδ〈x〉−(0+) I0(x) + δ

∥∥∥∥
φx√
u

〈ψ〉 1
2−κ x

1
2−ω1

∥∥∥∥
2

L2
ψ

, (97)

the latter term being absorbed to the left-hand side of (95). ��
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Lemma 30. (Quotient Estimate) Let φ be a solution to (20). Assume the bootstrap
assumption, (25). Then the following estimate is valid:

∂x

2

∫ ∣∣∣φ(1)
∣∣∣
2 〈ψ〉1−2κ

u
〈x〉2−2σ1 +

∫ ∣∣∣φ(1)
ψ

∣∣∣
2〈ψ〉1−2κ 〈x〉2−2σ1

�R0(x) +
∫ ∣∣∣φ(1)

∣∣∣
2 1

u
〈ψ〉1−2κ 〈x〉1−2σ1 .

Proof. We take the inner product of (86) with φ(1)

u 〈ψ〉1−2κ 〈x〉2−2σ1 , which pro-
duces the identity

∂x

2

∫ ∣∣∣φ(1)
∣∣∣
2 1

u
〈ψ〉1−2κ 〈x〉2−2σ1 + 1

2

∫
ux
u2

∣∣∣φ(1)
∣∣∣
2〈ψ〉1−2κ 〈x〉2−2σ1

+
∫ ∣∣∣φ(1)

ψ

∣∣∣
2〈ψ〉1−2κ 〈x〉2−2σ1 + 2κ(1 − 2κ)

2

∫ ∣∣∣φ(1)
∣∣∣
2
ψ−2κ−1〈x〉2−2σ

+
∫

A
∣∣∣φ(1)

∣∣∣
2 1

u
〈ψ〉1−2κ 〈x〉2−2σ1 −

∫
ūx
u

∣∣∣φ(1)
∣∣∣
2 〈ψ〉1−2κ

u
〈x〉2−2σ1

= 2 − 2σ1
2

∫ ∣∣∣φ(1)
∣∣∣
2 1

u
〈ψ〉1−2κ 〈x〉1−2σ1 + ε

∫
ρ(1)

u

∣∣∣φ(1)
∣∣∣
2 〈ψ〉1−2κ

u
〈x〉2−2σ1

+
∫

Axφφ(1) 〈ψ〉1−2κ

u
〈x〉2−2σ1 . (98)

All of the terms on the left-hand side above are identical to that of Lemma 25,
with the exception of the sixth, final term which is a further positive contribution
due to the sign condition ūx ≤ 0. The first term on the left-hand side appears on
the right-hand side of the estimate we are proving. We are thus left with controlling
the final two terms on the right-hand side, and these are treated identically to the
corresponding terms in Lemma 28. ��

A nearly identical sequence of estimates is performed for the 2 through K1
order of ∂x .

Lemma 31. Let 2 ≤ k ≤ K1 � K0, and let φ solve (20). Assume the bootstrap
assumption, (25). For any 0 < δ � 1, the following estimates hold:

∂x

2

∫ ∣∣∣φ(k−1)
ψ

∣∣∣
2〈x〉2k−1−2ωk +

∫ ∣∣∣φ(k)
∣∣∣
2 1

u
〈x〉2k−1−2ωk � Rk−1(x), (99)

∂x

2

∫ ∣∣∣φ(k)
∣∣∣
2〈x〉2k−2σk +

∫
u
∣∣∣φ(k)

ψ

∣∣∣
2〈x〉2k−2σk � Rk−1(x) (100)

∂x

2

∫ ∣∣∣φ(k−1)
ψ

∣∣∣
2〈ψ〉1−2κ 〈x〉2k−1−2ωk +

∫
1

u

∣∣∣φ(k)
∣∣∣
2〈x〉2k−1−2ωk 〈ψ〉1−2κ

≤ CδRk−1(x) + δ

∫ ∣∣∣φ(k)
ψ

∣∣∣
2〈ψ〉1−2κ 〈x〉2k−2σk (101)

∂x

2

∫ ∣∣∣φ(k)
∣∣∣
2 〈ψ〉1−2κ

u
〈x〉2k−2σk +

∫ ∣∣∣φ(k)
ψ

∣∣∣
2〈ψ〉1−2κ 〈x〉2k−2σk

� Rk−1(x) +
∫ ∣∣∣φ(k)

∣∣∣
2 1

u
〈ψ〉1−2κ 〈x〉2k−1−2ωk . (102)
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5. Highest Tier: Hk for K1 < k ≤ K0

We take ∂kx to the Equation (20) to obtain

∂kxφx − u∂kxφψψ + A∂kxφ −
k∑
j=1

c j∂
j
x u∂

k− j
x φψψ +

k∑
j=1

c j∂
j
x A∂

k− j
x φ = 0.

Wewill simplify notations by setting φ(k) := ∂kxφ, in which case the above equation
reads as

φ(k)
x − uφ

(k)
ψψ + Aφ(k) −

k∑
j=1

c j u
( j)φ

(k− j)
ψψ +

k∑
j=1

c j∂
j
x Aφ(k− j) = 0. (103)

As a preliminary to the energy estimate, wewill perform the following estimate:

Lemma 32. Let φ be a solution to (20). Assume the bootstrap assumption, (25).
Then the following estimate is valid:

∂x

2

∫
|φ(k−1)

ψ |2〈x〉2k−1−2ωk +
∫

|φ(k)|2〈x〉2k−1−2ωk � Rk−1(x). (104)

Proof. We consider Equation (103) with k replaced by k − 1, which we write as
follows for the readers’ convenience:

φ(k−1)
x − uφ

(k−1)
ψψ + Aφ(k−1) −

k−1∑
j=1

c j u
( j)φ

(k−1− j)
ψψ +

k−1∑
j=1

c j∂
j
x Aφ(k−1− j) = 0.

(105)

We now apply the multiplier φ(k)

u 〈x〉2k−1−2ωk . This generates the identity

∂x

2

∫ ∣∣∣φ(k−1)
ψ

∣∣∣
2〈x〉2k−1−ωk +

∫ ∣∣∣φ(k)
∣∣∣
2〈x〉2k−1−ωk

= −
∫

Aφ(k−1) 1

u
φ(k)〈x〉2k−1−2ωk +

k−1∑
j=1

∫
c j u

( j)φ
(k−1− j)
ψψ

1

u
φ(k)〈x〉2k−1−2ωk

−
k−1∑
j=1

∫
c j∂

j
x Aφ(k−1− j) 1

u
φ(k)〈x〉2k−1−2ωk

= −
∫

Aφ(k−1) 1

u
φ(k)〈x〉2k−1−2ωk +

� k−1
2 �∑

j=1

∫
c j u

( j)φ
(k−1− j)
ψψ

1

u
φ(k)〈x〉2k−1−2ωk

+
k−1∑

j=� k−1
2 �

∫
c j u

( j)φ
(k−1− j)
ψψ

1

u
φ(k)〈x〉2k−1−2ωk
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−
� k−1

2 �∑
j=1

∫
c j∂

j
x Aφ(k−1− j) 1

u
φ(k)〈x〉2k−1−2ωk

−
k−1∑

j=� k−1
2 �

∫
c j∂

j
x Aφ(k−1− j) 1

u
φ(k)〈x〉2k−1−2ωk . (106)

We now proceed to estimate the five terms appearing on the right-hand side of
(106), starting with

∣∣∣∣
∫

Aφ(k−1) 1

u
φ(k)〈x〉2k−1−2ωk

∣∣∣∣

� 〈x〉−(0+)
∥∥∥A〈x〉

∥∥∥∞

∥∥∥∥∥
φ(k−1)

√
u

〈x〉k− 3
2−ωk−1

∥∥∥∥∥
L2

ψ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−(0+)
∥∥∥A〈x〉

∥∥∥∞

∥∥∥∥∥
φ(k−1)

√
u

〈x〉k− 3
2−ωk−1

∥∥∥∥∥
L2

ψ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

≤ Cδ〈x〉−(0+)E1(x)Rk−1(x) + δ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ

for any δ > 0. We select δ � 1 so that the final term above can be absorbed to the
left-hand side of (106). Above, we have invoked (41), the definition of the norm,
(16), and that ωk > ωk−1.

Next, we have, when 1 ≤ j ≤ � k−1
2 �,

∣∣∣∣
∫

u( j)φ
(k−1− j)
ψψ

1

u
φ(k)〈x〉2k−1−2ωk

∣∣∣∣

� 〈x〉− 1
2−
∥∥∥∥∥
ū( j) + ερ( j)

u
〈x〉 j

∥∥∥∥∥
L∞

ψ

∥∥∥√uφ
(k−1− j)
ψψ 〈x〉k− j−σk− j+1

∥∥∥
L2

ψ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉− 1
2−(1 + εβ( j))ϒ(k−1− j)

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

≤ Cδ〈x〉−(1+)(1 + εE j+2(x))Ek− j (x) + δ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ

≤ Cδ〈x〉−(0+)Rk−1(x) + δ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ

,

where above, we have used the definitions (40), estimate (64), and that ωk > σk−1.
Next, we have, when � k−1

2 � ≤ j ≤ k − 1,
∣∣∣∣
∫

u( j)φ
(k−1− j)
ψψ

1

u
φ(k)〈x〉2k−1−2ωk

∣∣∣∣
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� 〈x〉− 1
2−
∥∥∥∥∥
ū( j) + ερ( j)

u
〈x〉 j− 1

4

∥∥∥∥∥
L2

ψ

∥∥∥√uφ
(k−1− j)
ψψ 〈x〉(k−1− j)+ 5

4−σk− j

∥∥∥
L∞

ψ

×
∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉− 1
2−(1 + εγ ( j))ι(k−1− j)

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

≤ Cδ〈x〉−(1+)(1 + εE j (x))
2Ek− j+1(x)

2 + δ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ

≤ CδRk−1(x) + δ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ

,

where, above, we have used the definitions (40), and estimate (64) and that ωk >

σk−1 for j in the specified range.
We now again consider the range, when 1 ≤ j ≤ � k−1

2 �,
∣∣∣∣
∫

∂
j
x Aφ(k−1− j) 1

u
φ(k)〈x〉2k−1−2ωk

∣∣∣∣

� 〈x〉−(0+)
∥∥∥∂ j

x A〈x〉 j+1
∥∥∥
L∞

∥∥∥∥∥
φ(k−1− j)

√
u

〈x〉k−1− j− 1
2−ωk− j

∥∥∥∥∥
L2

ψ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−(0+)(1 + εE j+1(x))Ik−1− j (x)

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

� CδRk−1(x) + δ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ

.

Above, we have used (42) and (64).
Next, we have when � k−1

2 � ≤ j ≤ k − 1. For this, we estimate via

∣∣∣∣
∫

∂
j
x Aφ(k−1− j) 1

u
φ(k)〈x〉2k−1−2ωk

∣∣∣∣

� 〈x〉−( 12+)
∥∥∥u 3

2 ∂
j
x A〈x〉 j+ 3

4

∥∥∥
L2

ψ

∥∥∥∥∥
φ(k−1− j)

u2
〈x〉k−1− j+ 1

4−σk− j

∥∥∥∥∥
L∞

ψ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−( 12+)(E j−1(x) + εE j (x))Ek− j (x)

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

≤ CδRk−1(x) + δ

∥∥∥∥∥
φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ

.
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We have invoked (69), (51), (64), and that ωk > σk−1 > σk− j .
This concludes the proof. ��

Lemma 33. (Energy Estimate) Let φ be a solution to (20). Assume the bootstrap
assumption, (25). Then the following estimate is valid:

∂x

2

∫
|φ(k)|2〈x〉2(k−σk ) +

∫
u|φ(k)

ψ |2〈x〉2(k−σk ) � Rk−1(x). (107)

Proof. We apply the weighted multiplier φ(k)〈x〉2(k−σk ) to Equation (103), which
produces the identity

∂x

2

∫ ∣∣∣φ(k)
∣∣∣
2〈x〉2k−2σk +

∫
ū
∣∣∣φ(k)

ψ

∣∣∣
2〈x〉2k−2σk −

∫
ūψψ

2

∣∣∣φ(k)
∣∣∣
2〈x〉2k−2σk

+
∫

A
∣∣∣φ(k)

∣∣∣
2〈x〉2k−2σk −

∫
ū(1)φ

(k−1)
ψψ φ(k)〈x〉2k−2σk

= 2k − 2σk
2

∫ ∣∣∣φ(k)
∣∣∣
2〈x〉2k−1−2σk + ε

∫
ρ(1)φ

(k−1)
ψψ φ(k)〈x〉2k−2σk

+
∫

ερφ
(k)
ψψφ(k)〈x〉2(k−σk ) +

k∑
j=2

c j

∫
u( j)φ

(k− j)
ψψ φ(k)〈x〉2k−2σk

+
k∑
j=1

c j

∫
∂
j
x Aφ(k− j)φ(k)〈x〉2k−2σk . (108)

The left-hand side is the same as that appearing in the Middle-Tier energy
estimate, the only exception being the final term on the left-hand side. For this, we
invoke the identity to write

−
∫

ū(1)φ
(k−1)
ψψ φ(k)〈x〉2k−2σk = −

∫
ū(1)

u
|φ(k)|2〈x〉2k−2σk −

∫
ū(1)

u
L(k−1)φ(k)〈x〉2k−2σk .

While the first term above is a damping term, we estimate the latter by

∣∣∣∣∣
∫

ū(1)

u
L(k−1)φ(k)〈x〉2k−2σk

∣∣∣∣∣

� 〈x〉− 1
2−
∥∥∥∥∥
ū(1)

u
〈x〉
∥∥∥∥∥∞

∥∥∥L(k−1)〈x〉k−σk

∥∥∥
L2

ψ

∥∥∥φ(k)〈x〉k− 1
2−ωk

∥∥∥
L2

ψ

� E3(x)
(
Ek−1(x) + εEk(x)

)
Rk−1(x)

1
2

� Rk−1(x),

where we have invoked estimates (65), (104), and σk > ωk .
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The first term on the right-hand side of (108) is controlled by Rk(x) already by
Lemma 32 upon using that σk > ωk . We thus begin with

∣∣∣∣ε
∫

ρ(1)φ
(k−1)
ψψ φ(k)〈x〉2k−2σk

∣∣∣∣

� ε〈x〉−( 12+)

∥∥∥∥∥
ρ(1)

u
〈x〉
∥∥∥∥∥
L∞

ψ

∥∥∥√uφ
(k−1)
ψψ 〈x〉k−σk

∥∥∥
L2

ψ

∥∥∥φ(k)〈x〉k− 1
2−ωk

∥∥∥
L2

ψ

� ε〈x〉−( 12+)β(1)ϒ(k−1)Rk−1(x)
1
2

≤ ε〈x〉−( 12+)E2(x)Ek(x)Rk−1(x)
1
2 ≤ Rk−1(x),

upon invoking (64), (104), and σk > ωk .
We now move to
∫

ερφ
(k)
ψψφ(k)〈x〉2(k−σk )

= −
∫

ερψφ
(k)
ψ φ(k)〈x〉2(k−σk ) −

∫
ερ

∣∣∣φ(k)
ψ

∣∣∣
2 〈x〉2(k−σk )

= −
∫

ε
φψ − ū y

ū ρ

1 − ε
ρ
u

φ
(k)
ψ

φ(k)

u
〈x〉2(k−σk ) −

∫
ερ

∣∣∣φ(k)
ψ

∣∣∣
2 〈x〉2(k−σk ), (109)

where above, we have used the identity

uρψ = 1

1 − ε
ρ
u

(
φψ − ū y

ū
ρ

)
.

The first term above is majorized by invoking (33) via

∣∣∣(109.1)
∣∣∣ � ε〈x〉− 3

4+σ1

∥∥∥uρψ 〈x〉 3
4−σ1

∥∥∥
L∞

ψ

∥∥∥φ(k)
ψ 〈x〉k−σk

∥∥∥
L2

ψ

∥∥∥∥∥
φ(k)

u2
〈x〉k−σk

∥∥∥∥∥
L2

ψ

� ε〈x〉−
(
3
4−σ1

) ∥∥∥φ(k)
ψ 〈x〉k−σk

∥∥∥
L2

ψ

(
Ek(x) + 〈x〉 1

2 Ik(x)
)

� ε〈x〉−
(
1
4−σ1

)
IK0(x).

Above, we have localized based on the location of the self-similar variable, ξ :
∥∥∥∥∥
φ(k)

u2
〈x〉k−σk

∥∥∥∥∥
L2

ψ

≤
∥∥∥∥∥
φ(k)

u2
〈x〉k−σkχ(ξ)

∥∥∥∥∥
L2

ψ

+
∥∥∥∥∥
φ(k)

u2
〈x〉k−σk (1 − χ(ξ))

∥∥∥∥∥
L2

ψ

.

In the support of 1−χ , we use that u � 1 according to (30) and the corresponding
fact for ū. Hence,

∥∥∥∥∥
φ(k)

u2
〈x〉k−σk (1 − χ(ξ))

∥∥∥∥∥
L2

ψ

�
∥∥∥φ(k)〈x〉k−σk

∥∥∥
L2

ψ

� Ek(x).
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For the localized contribution, we perform the Hardy inequality. Specifically, we

again appeal to (30) to assert that u2 � ξ �
√
x

ψ
, from which we have

∥∥∥∥∥
φ(k)

u2
〈x〉k−σkχ(ξ)

∥∥∥∥∥
L2

ψ

�
∥∥∥∥∥
φ(k)

ψ
〈x〉 1

2+k−σkχ(ξ)

∥∥∥∥∥
L2

ψ

≤
∥∥∥∥∥
φ(k)

ψ
〈x〉 1

2+k−σk

∥∥∥∥∥
L2

ψ

�
∥∥∥φ(k)

ψ 〈x〉k−σk

∥∥∥
L2

ψ

〈x〉 1
2 ≤ Ik(x)〈x〉 1

2 . (110)

The second term above is easily majorized by

|(109.2)| � ε〈x〉−
(
1
4−σ1

) ∥∥∥ρ

u
〈x〉 1

4−σ1

∥∥∥
L∞

ψ

∥∥∥√uφ
(k)
ψ 〈x〉k−σk

∥∥∥
2

L2
ψ

� ε〈x〉−
(
1
4−
)
β(0)

∥∥∥√uφ
(k)
ψ 〈x〉k−σk

∥∥∥
2

L2
ψ

� ε〈x〉−
(
1
4−
)
EK0 IK0 .

Above, we have appealed to estimate (64).
For the fourth term on the right-hand side of (108), we begin by considering

the case when j = min{ j, k − j} ≥ 2. We estimate directly that
∣∣∣∣
∫

u( j)φ
(k− j)
ψψ φ(k)〈x〉2(k−σk )

∣∣∣∣

� 〈x〉−( 12+)

∥∥∥∥∥
ū( j) + ερ( j)

u
〈x〉 j

∥∥∥∥∥
L∞

ψ

∥∥∥uφ
(k− j)
ψψ 〈x〉k− j−σk− j+1

∥∥∥
L2

ψ

∥∥∥φ(k)〈x〉k−ωk

∥∥∥
L2

ψ

� 〈x〉−
(
1
2+
)
(1 + εβ( j))ϒ(k− j)Rk−1(x)

1
2

� 〈x〉−
(
1
2+
)
(1 + εE j+1)Ek− j+1R

1
2
k−1

≤ Rk−1(x),

where we have used estimate (104), and (64), σk > ωk > σk− j+1,
We now treat this term for j = max{ j, k − j} ≤ k. We split

−
∫

u( j)φ
(k− j)
ψψ φ(k)〈x〉2(k−σk )

(
χ(ξ) + χ(ξ)C

)
. (111)

The far-field term is estimated as
∣∣∣(111.2)

∣∣∣ � 〈x〉−(1+)
∥∥∥ūu( j)〈x〉 j− 1

4

∥∥∥
L2

ψ

×
∥∥∥ūφ

(k− j)
ψψ 〈x〉(k− j)+1−σk− j+1+ 1

4

∥∥∥
L∞

ψ

∥∥∥φ(k)〈x〉k− 1
2−ωk

∥∥∥
L2

ψ

� 〈x〉−
(
1
2+
) ∥∥∥ū

(
ū( j) + ερ( j)

)
〈x〉 j− 1

4

∥∥∥
L2

ψ
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×
∥∥∥ūφ

(k− j)
ψψ 〈x〉(k− j)+1−σk− j+1+ 1

4

∥∥∥
L∞

ψ

∥∥∥φ(k)〈x〉k− 1
2−ωk

∥∥∥
L2

ψ

� 〈x〉−
(
1
2+
)
(1 + εE j (x))Ek− j+2Rk−1(x)

1
2 ≤ Rk−1(x).

Above, we use (64), (66) and (104).
We estimate the localized contribution via

∣∣∣(111.1)
∣∣∣ =

∣∣∣∣∣
∫ √

ψu( j)ψ
1
4 φ

(k− j)
ψψ

φ(k)

ψ
3
4

〈x〉2(k−σk )χ(ξ)

∣∣∣∣∣

� 〈x〉 1
2 〈x〉−

(
5
4−
) ∥∥∥ūu( j)〈x〉 j− 1

4

∥∥∥
L2

ψ

∥∥∥∥
√
ūφ

(k− j)
ψψ 〈x〉(k− j)+

(
3
2−σk− j+1

)∥∥∥∥
L∞

ψ (ξ�1)

×
(∥∥∥

√
ūφ

(k)
ψ 〈x〉k−σk

∥∥∥
L2

ψ

+ 〈x〉− 1
2

∥∥∥φ(k)〈x〉k−σk

∥∥∥
L2

ψ

)

� 〈x〉−
(
3
4−
)
E j (x)Ek− j+2(x)

(∥∥∥
√
ūφ

(k)
ψ 〈x〉k−σk

∥∥∥
L2

ψ

+ Rk−1(x)
1
2

)

≤ Cδ〈x〉− 3
2−E j (x)

2Ek− j+2(x)
2 + δ

∥∥∥
√
ūφ

(k)
ψ 〈x〉k−σk

∥∥∥
2

L2
ψ

+ Rk−1(x)

≤ R(x) + δ

∥∥∥
√
ūφ

(k)
ψ 〈x〉k−σk

∥∥∥
2

L2
ψ

.

We select δ � 1 based only on universal constants, so that the δ term above can be
absorbed to the left-hand side of (108). Above, we have used that u ∼ η ∼ √

ξ in
the region where ξ � 1, which is according to (30). We have also used the Hardy
inequality in the ψ direction, which yields

∥∥∥∥∥
φ(k)

ψ
3
4

χ(ξ)

∥∥∥∥∥
L2

ψ

�
∥∥∥ψ 1

4 φ
(k)
ψ χ(ξ)

∥∥∥
L2

ψ

+
∥∥∥∥∥
ψ

1
4

x
1
2

φ(k)χ ′(ξ)

∥∥∥∥∥
L2

ψ

.

Finally, we have used the enhanced uniform decay estimate, (75), the third inequal-
ity in (56), and the estimate we established in (104).

We now move to the final term. In the case when j = min{ j, k − j} ≥ 1, we
estimate∣∣∣∣
∫

∂
j
x Aφ(k− j)φ(k)〈x〉2(k−σk )

∣∣∣∣
≤ 〈x〉−(0+)

∥∥∥∂ j
x A〈x〉 j+1‖∞‖φ(k− j)〈x〉k− j− 1

2−ωk− j

∥∥∥L2
ψ

∥∥∥φ(k)〈x〉k− 1
2−ωk

∥∥∥
L2

ψ

� 〈x〉−(0+)(1 + εE j+1(x))Rk− j−1(x)
1
2 Rk−1(x)

1
2 ≤ Rk−1(x).

Above, we use (41) for the A term, (104) for the φ terms, and that σk > ωk, σk >

ωk− j .
In the case when j = max{ j, k − j} ≤ k, we estimate

∣∣∣∣
∫

∂
j
x Aφ(k− j)φ(k)〈x〉2(k−σk )

∣∣∣∣
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� 〈x〉− 1
2−
∥∥∥u 3

2 ∂
j
x A〈x〉 j+ 3

4

∥∥∥
L2

ψ

∥∥∥∥∥
φ(k− j)

u
〈x〉k− j+ 1

4−σk− j+1

∥∥∥L∞
ψ

∥∥∥ φ(k)

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−
(
1
2+
)(

εE j (x) + E j−1(x)
)
Ek− j+1(x)Rk−1(x)

1
2 ≤ Rk−1(x).

Above, we use (69) for the A term, (51), (64) for the φ(k− j) term, and (104) for the
φ(k) term. We also use that σk > ωk, σk > σk− j+1.

This concludes the proof. ��

Lemma 34. Let φ be a solution to (20). Assume the bootstrap assumption, (25).
Then the following estimate is valid:

∂x

2

∫ ∣∣∣φ(k−1)
ψ

∣∣∣
2 〈x〉2k−1−2ωk 〈ψ〉1−2κ +

∫ ∣∣∣φ(k)
∣∣∣
2〈x〉2k−1−2ωk 〈ψ〉1−2κ

≤ CδRk−1(x) + δ

∥∥∥φ(k)
ψ 〈x〉k−σk 〈ψ〉 1

2−κ
∥∥∥
2

L2
ψ

. (112)

Proof. We apply the multiplier φ(k)

u 〈x〉2k−1−ωk 〈ψ〉1−2κ to (105). This produces the
identity

∂x

2

∫ ∣∣∣φ(k−1)
ψ

∣∣∣ 〈x〉2k−1−ωk 〈ψ〉1−2κ +
∫

|φ(k)|2〈x〉2k−1−ωk 〈ψ〉1−2κ

= −
∫

Aφ(k−1) 1

u
φ(k)〈x〉2k−1−ωk 〈ψ〉1−2κ

+
� k−1

2 �∑
j=1

∫
c j u

( j)φ
(k−1− j)
ψψ

1

u
φ(k)〈x〉2k−1−ωk 〈ψ〉1−2κ

+
k−1∑

j=� k−1
2 �

∫
c j u

( j)φ
(k−1− j)
ψψ

1

u
φ(k)〈x〉2k−1−ωk 〈ψ〉1−2κ

−
� k−1

2 �∑
j=1

∫
c j∂

j
x Aφ(k−1− j) 1

u
φ(k)〈x〉2k−1−ωk 〈ψ〉1−2κ

−
k−1∑

j=� k−1
2 �

∫
c j∂

j
x Aφ(k−1− j) 1

u
φ(k)〈x〉2k−1−ωk 〈ψ〉1−2κ

− (1 − 2κ)

∫
φ

(k−1)
ψ φ(k)〈x〉2k−1−ωk 〈ψ〉−2κ . (113)

The estimation of these terms is nearly identical to Lemma 32, with the excep-
tion of the final term, for which we invoke the Hardy inequality:
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∣∣∣∣
∫

φ
(k−1)
ψ φ(k)〈x〉2k−1−2ωkψ−2κ

∣∣∣∣
� 〈x〉−(0+)

∥∥∥φ(k−1)
ψ ψ

1
2−κ 〈x〉k−1−σk−1

∥∥∥
L2

ψ

∥∥∥φ(k)
ψ ψ

1
2−κ 〈x〉k−σk

∥∥∥
L2

ψ

≤ Cδ Ik−1(x) + δ

∥∥∥φ(k)
ψ ψ

1
2−κ 〈x〉k−σk

∥∥∥
2

L2
ψ

.

We note that this Hardy inequality is admissible because of the defect factor of −κ

in the ψ weight, as well as the fact that φ(k)|ψ=0 = 0. We also note that we have
used the inequality 2ωk > σk + σk−1 regarding the x-defect factors. ��
Lemma 35. (Quotient Estimate) Let φ be a solution to (20). Assume the bootstrap
assumption, (25). Then the following estimate is valid:

∂x

2

∫ ∣∣∣φ(k)
∣∣∣
2 〈ψ〉1−2κ

u
〈x〉2k−2σk +

∫ ∣∣∣φ(k)
ψ

∣∣∣
2 〈ψ〉1−2κ 〈x〉2k−2σk

� Rk−1(x) +
∫ ∣∣∣φ(k)

∣∣∣
2 1

u
〈ψ〉1−2κ 〈x〉2k−1−2ωk . (114)

Proof. Weapply theweighted “quotientmultiplier”φ(k) 1
u 〈ψ〉1−2κ 〈x〉2(k−σk ),which

produces the identity

∂x

2

∫ ∣∣∣φ(k)
∣∣∣
2 1

u
〈ψ〉1−2κ 〈x〉2(k−σk ) − 1

2

∫ ∣∣∣φ(k)
∣∣∣
2
∂x

(
1

u

)
〈ψ〉1−2κ 〈x〉2(k−σk )

+
∫ ∣∣∣φ(k)

ψ

∣∣∣
2 〈ψ〉1−2κ 〈x〉2(k−σk ) + κ(1 − 2κ)

∫ ∣∣∣φ(k)
∣∣∣
2
ψ−2κ 〈x〉2(k−σk )

+
∫

A
1

u

∣∣∣φ(k)
∣∣∣
2〈ψ〉1−2κ 〈x〉2(k−σk ) −

∫
ū(1)φ

(k−1)
ψψ φ(k) 1

u
〈ψ〉1−2κ 〈x〉2(k−σk )

= (k − σk)

∫ ∣∣∣φ(k)
∣∣∣
2 1

u
〈ψ〉1−2κ 〈x〉2k−1−2σk

+
k∑
j=2

c j

∫
u( j)φ

(k− j)
ψψ φ(k) 1

u
〈ψ〉1−2κ 〈x〉2(k−σk )

+
k∑
j=1

c j

∫
∂
j
x Aφ(k− j)φ(k) 1

u
〈ψ〉1−2κ 〈x〉2(k−σk )

+ ε

∫
ρ(1)φ

(k−1)
ψψ φ(k) 1

u
〈ψ〉1−2κ 〈x〉2(k−σk ). (115)

The left-hand side is known to be positive, as in the lower order quotient estimates.
We thus move to the right-hand side.

First, consider

−
∫

ū(1)φ
(k−1)
ψψ φ(k) 1

u
〈ψ〉1−2κ 〈x〉2(k−σk )

= −
∫

ū(1)

u
|φ(k)|2 1

u
〈ψ〉1−2κ 〈x〉2(k−σk )−

∫
ū(1)L(k−1)φ(k) 1

u
〈ψ〉1−2κ 〈x〉2(k−σk ).

(116)
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The lower order terms, L(k−1) are inserted into (117) to produce

∣∣∣∣∣
∫

u(1)

u
L(k−1)φ(k) 〈ψ〉1−2κ

u
〈x〉2(k−σk )χ(ξ)

∣∣∣∣∣

� 〈x〉−(1+)

∥∥∥∥∥
u(1)

u
〈x〉
∥∥∥∥∥
L∞

ψ

∥∥∥∥∥L
(k−1) 〈ψ〉 1

2−κ

√
u

〈x〉k−σk

∥∥∥∥∥
L2

ψ

∥∥∥∥∥φ
(k) 〈ψ〉 1

2−κ

√
u

〈x〉k−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−(1+)(1 + εβ(1))

∥∥∥∥∥L
(k−1) 〈ψ〉 1

2−κ

√
u

〈x〉k−σk

∥∥∥∥∥
L2

ψ

∥∥∥∥∥φ
(k) 〈ψ〉 1

2−κ

√
u

〈x〉k−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−(1+)(1 + εE2(x))(1 + εEk(x))‖φ(k) 〈ψ〉 1
2−κ

√
u

〈x〉k−ωk‖L2
ψ

≤ Rk−1(x) + C

∥∥∥∥∥φ
(k) 〈ψ〉 1

2−κ

√
u

〈x〉k−ωk

∥∥∥∥∥
2

L2
ψ

.

Above, we have used (64) for the β(1) term, (65) for the L(k−1) term, and we move
the φ(k) to the right-hand side of the estimate, according to (114) using Young’s
inequality for products. We have also used that σk > ωk .

Next, we consider

∣∣∣∣ε
∫

ρ(1)φ
(k−1)
ψψ φ(k) 1

u
〈ψ〉1−2κ 〈x〉2(k−σk )

∣∣∣∣

�
∣∣∣∣∣ε
∫

ρ(1)

u
|φ(k)|2 1

u
〈ψ〉1−2κ 〈x〉2(k−σk )

∣∣∣∣∣+
∣∣∣∣∣ε
∫

ρ(1)

u
L(k−1)φ(k) 1

u
〈ψ〉1−2κ 〈x〉2(k−σk )

∣∣∣∣∣

� ε

∥∥∥∥∥
ρ(1)

u
〈x〉
∥∥∥∥∥
L∞

ψ

∥∥∥∥∥
φ(k)

√
u

〈ψ〉1−2κ 〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ

+ ε〈x〉−( 12+)

∥∥∥∥∥
ρ(1)

u
〈x〉
∥∥∥∥∥
L∞

ψ

∥∥∥∥L(k−1) 〈ψ〉1−2κ

√
u

〈x〉k−σk

∥∥∥∥
L2

ψ

∥∥∥∥φ(k) 〈ψ〉1−2κ

√
u

〈x〉k− 1
2−ωk

∥∥∥∥
L2

ψ

� ε〈x〉−(0+)β(1) Ik(x) + ε〈x〉−( 12+)β(1)(1 + εEk(x))Ik(x)
1
2

� R(x).

Above, we have used that σk > ωk , estimate (112) for each of the φ(k) terms, (65)
for the L(k−1) term, and (64) for the β(1) term.

Next, we consider

−
k∑
j=2

c j

∫
u( j)φ

(k− j)
ψψ φ(k) 〈ψ〉1−2κ

u
〈x〉2(k−σk )

(
χ(ξ) + χ(ξ)C

)
. (117)
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First, assume 2 ≤ j = min{ j, k − j}. Then,
∣∣∣(117.1)

∣∣∣ � 〈x〉−( 12+)

∥∥∥∥∥
u( j)

u
〈x〉 j

∥∥∥∥∥
L∞

ψ

∥∥∥φ(k− j)
ψψ

√
u〈ψ〉 1

2−κ 〈x〉(k− j)+1−σk− j+1

∥∥∥
L2

ψ

×
∥∥∥∥∥
φ(k)

√
u

〈ψ〉 1
2−κ 〈x〉k− 1

2−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−( 12+)(1 + εβ( j))ϒ(k− j)

∥∥∥∥∥
φ(k)

√
u

〈ψ〉 1
2−κ 〈x〉k−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−
(
1
2+
)
(1 + εE j+1)Ek− j+1

∥∥∥∥∥
φ(k)

√
u

〈ψ〉 1
2−κ 〈x〉k− 1

2−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−(1+)(1 + εE j+1)Ek− j+1 +
∥∥∥∥∥
φ(k)

√
u

〈ψ〉 1
2−κ 〈x〉k− 1

2−ωk

∥∥∥∥∥
2

L2
ψ

� Rk−1 +
∥∥∥∥∥
φ(k)

√
u

〈ψ〉 1
2−κ 〈x〉k− 1

2−ωk

∥∥∥∥∥
2

L2
ψ

.

Above, the φ(k) term contributes to the right-hand side of our estimate, (114). We
have used (64) to estimate the β,ϒ terms. We have also used σk > σk− j+1 and
σk > ωk for j ≥ 2. Note that the contribution from 〈x〉−(1+)Ek− j+1 ≤ Rk−1
because j ≥ 2.

Second, assume j = max{ j, k − j}. In this case, we estimate the localized
contribution from (117) via

∣∣∣(117.1)
∣∣∣ � ε〈x〉−(1+)

∥∥∥√uρ( j)〈x〉 j−σ j 〈ψ〉 1
2−κ
∥∥∥
L2

ψ

∥∥∥∥
√
uφ

(k− j)
ψψ 〈x〉(k− j)+

(
5
4−σk− j+1

)∥∥∥∥
L∞

ψ

×
∥∥∥φ(k)

ψ 〈ψ〉 1
2−κ 〈x〉k−σk

∥∥∥
L2

ψ

+ 〈x〉−(1+)
∥∥∥√uū( j)〈x〉 j

∥∥∥
L∞

ψ

∥∥∥√uφ
(k− j)
ψψ 〈x〉k− j+1−σk− j 〈ψ〉 1

2−κ
∥∥∥
L2

ψ

×
∥∥∥∥∥φ

(k) 〈ψ〉 1
2−κ

√
u

〈x〉k−ωk

∥∥∥∥∥
L2

ψ

� ε〈x〉−(1+)(1 + E j )ι
(k− j) I

1
2
k + 〈x〉−

(
1
2+
)
ϒ(k− j)

∥∥∥∥∥φ
(k) 〈ψ〉 1

2−κ

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

� Rk−1(x) + 〈x〉−(1+)Ek− j+1(x)
2 +

∥∥∥∥∥φ
(k) 〈ψ〉 1

2−κ

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ

� Rk−1 +
∥∥∥∥∥φ

(k) 〈ψ〉 1
2−κ

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ

.
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Above, we use that σk < 1
4 and that σk > ωk , and σk > σk− j for j > 0. We have

used (64) to estimate the ι, ϒ terms, and (66) to estimate the ρ( j) term in L2
ψ .

We next treat

∫
∂
j
x Aφ(k− j)φ(k) 〈ψ〉1−2κ

u
〈x〉2(k−σk ). (118)

For 1 ≤ j = min{ j, k − j}, we estimate

∣∣∣(118)
∣∣∣ � 〈x〉−(0+)

∥∥∥∂ j
x A〈x〉 j+1

∥∥∥
L∞

ψ

∥∥∥∥∥
φ(k− j)

√
u

〈ψ〉 1
2−κ 〈x〉(k− j)− 1

2−ωk− j

∥∥∥∥∥
L2

ψ∥∥∥∥∥
φ(k)

√
u

〈ψ〉 1
2−κ 〈x〉k− 1

2−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−(0+)(1 + εE j+1)Ik−1(x)

∥∥∥∥
φk

√
u

〈ψ〉 1
2−κ 〈x〉k− 1

2−ωk

∥∥∥∥
L2

ψ

� Rk−1(x) +
∥∥∥∥
φk− j

√
u

〈ψ〉 1
2−κ 〈x〉k− 1

2−ωk

∥∥∥∥
2

L2
ψ

.

Above, we have used that σk > ωk, σk > σk− j for j > 0, we have also used the
definition of (16) for the φ(k− j) term, and estimate (42) for the A term.

Next, we consider the case when j = max{ j, k − j} ≤ k, in which case we
estimate using the decomposition ∂

j
x A = A( j)

0 + εA( j)
1 as in (67), (68) via

∣∣∣(118)
∣∣∣ � ε〈x〉−

(
1
2+
) ∥∥∥u 3

2 A( j)
1 〈x〉 j+ 3

4 〈ψ〉 1
2−κ
∥∥∥
L2

ψ

∥∥∥∥∥
φ(k− j)

u2
〈x〉k− j+ 1

4−σk− j+1

∥∥∥∥∥
L∞

ψ

×
∥∥∥∥∥φ

(k) 〈ψ〉 1
2−κ

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

+ 〈x〉−( 12+)
∥∥∥A( j)

0 〈x〉 j+1
∥∥∥
L∞

ψ

∥∥∥∥∥
φ(k− j)

√
u

〈x〉k− j−ωk− j 〈ψ〉 1
2−κ

∥∥∥∥∥
L2

ψ

×
∥∥∥∥∥φ

(k) 〈ψ〉 1
2−κ

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−
(
1
2+
)
(εE j Ek− j+1 + R

1
2
k− j−1)

∥∥∥∥∥φ
(k) 〈ψ〉 1

2−κ

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
L2

ψ

� 〈x〉−(1+)

(
εE j Ek− j+1 + R

1
2
k− j−1

)2

+
∥∥∥∥∥φ

(k) 〈ψ〉 1
2−κ

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ
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� Rk−1(x) +
∥∥∥∥∥φ

(k) 〈ψ〉 1
2−κ

√
u

〈x〉k− 1
2−ωk

∥∥∥∥∥
2

L2
ψ

.

Above, we use that σk > ωk, σk > σk− j+1 for j = max{ j, k − j}. We use (67),
(68) for the A term, (51), (64) to estimate the φ(k− j) term in L∞, and (112) to
bound the φ(k− j) term in L2

ψ , as we have ensured in this range of indices, j ≥ 1.
This concludes the proof. ��
Summarizing the estimates from this section, we have

Lemma 36. Let K1 ≤ k ≤ K0, and let φ solve (20). Assume the bootstrap assump-
tion, (25). For any 0 < δ � 1, the following estimates hold:

∂x

2

∫ ∣∣∣φ(k−1)
ψ

∣∣∣
2 〈x〉2k−1−2ωk +

∫ ∣∣∣φ(k)
∣∣∣
2 1

u
〈x〉2k−1−2ωk � Rk−1(x), (119)

∂x

2

∫ ∣∣∣φ(k)
∣∣∣
2〈x〉2k−2σk +

∫
u
∣∣∣φ(k)

ψ

∣∣∣
2 〈x〉2k−2σk � Rk−1(x) (120)

∂x

2

∫ ∣∣∣φ(k−1)
ψ

∣∣∣
2 〈ψ〉1−2κ 〈x〉2k−1−2ωk +

∫
1

u

∣∣∣φ(k)
∣∣∣
2〈x〉2k−1−2ωk 〈ψ〉1−2κ

≤ CδRk−1(x) + δ

∫ ∣∣∣φ(k)
ψ

∣∣∣
2 〈ψ〉1−2κ 〈x〉2k−2σk (121)

∂x

2

∫ ∣∣∣φ(k)
∣∣∣
2 〈ψ〉1−2κ

u
〈x〉2k−2σk +

∫ ∣∣∣φ(k)
ψ

∣∣∣
2 〈ψ〉1−2κ 〈x〉2k−2σk

� Rk−1(x) +
∫ ∣∣∣φ(k)

∣∣∣
2 1

u
〈ψ〉1−2κ 〈x〉2k−1−2ωk . (122)

This concludes our scheme of a-priori estimates.

6. Global Existence in X

The aim of this section is to close the bootstrap and establish global existence
in X , which proves the main theorem.

Proof of Theorem 3. First, combining estimates (81), (83), Lemma 31 and
Lemma 36, we obtain the following estimates on the interval I∗ = (0, x∗), which,
as we recall from (25), is the maximal interval on which ‖φ‖X (I∗) ≤ 2‖φ0‖Xin :

∂x

2

∫
φ2 +

∫
ū|φψ |2 � ε〈x〉−(0+) IK0(x), (123)

∂x

2

∫
φ2 1

u
〈ψ〉 +

∫
φ2

ψ 〈ψ〉 � ε〈x〉−(0+) IK0(x), (124)

and for 1 ≤ k ≤ K0,

∂x

2

∫ ∣∣∣φ(k−1)
ψ

∣∣∣
2〈x〉2k−1−2ωk +

∫ ∣∣∣φ(k)
∣∣∣
2 1

u
〈x〉2k−1−2ωk � Rk−1(x), (125)
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∂x

2

∫ ∣∣∣φ(k)
∣∣∣
2〈x〉2k−2σk +

∫
u
∣∣∣φ(k)

ψ

∣∣∣
2〈x〉2k−2σk � Rk−1(x)

∂x

2

∫ ∣∣∣φ(k−1)
ψ

∣∣∣
2〈ψ〉1−2κ 〈x〉2k−1−2ωk +

∫
1

u

∣∣∣φ(k)
∣∣∣
2〈x〉2k−1−2ωk 〈ψ〉1−2κ (126)

≤ CδRk−1(x) + δ

∫ ∣∣∣φ(k)
ψ

∣∣∣
2〈ψ〉1−2κ 〈x〉2k−2σk

∂x

2

∫ ∣∣∣φ(k)
∣∣∣
2 〈ψ〉1−2κ

u
〈x〉2k−2σk +

∫ ∣∣∣φ(k)
ψ

∣∣∣
2〈ψ〉1−2κ 〈x〉2k−2σk (127)

� Rk−1(x) +
∫ ∣∣∣φ(k)

∣∣∣
2 1

u
〈ψ〉1−2κ 〈x〉2k−1−2ωk . (128)

First, we pick δ small relative to universal constants to close the two estimates,
(127) and (128) in terms of CδRk−1(x). Recalling the definition of Rk−1 given in
(87), we obtain the full estimate

∂x

2

(∫
φ2 +

∫
φ2 1

u
〈ψ〉
)

+ ∂x

2

K0∑
k=1

(∫ ∣∣∣φ(k−1)
ψ

∣∣∣
2〈x〉2k−1−2ωk

+
∫ ∣∣∣φ(k)

∣∣∣
2〈x〉2k−2σk +

∫ ∣∣∣φ(k−1)
ψ

∣∣∣
2 〈ψ〉1−2κ 〈x〉2k−1−2ωk

+
∫ ∣∣∣φ(k)

∣∣∣
2 〈ψ〉1−2κ

u
〈x〉2k−2σk

)
+
∫

ū
∣∣∣φψ

∣∣∣
2 +

∫
φ2

ψ 〈ψ〉

+
∫ ∣∣∣φ(k)

∣∣∣
2 1

u
〈x〉2k−1−2ωk +

∫
u
∣∣∣φ(k)

ψ

∣∣∣
2〈x〉2k−2σk

+
∫

1

u

∣∣∣φ(k)
∣∣∣
2〈x〉2k−1−2ωk 〈ψ〉1−2κ +

∫ ∣∣∣φ(k)
ψ

∣∣∣
2〈ψ〉1−2κ 〈x〉2k−2σk

� ε〈x〉−(0+) IK0(x).

Integrating this energy inequality from (0, x∗), we obtain, for a constant C0 de-
termined by the implicit constant above and the initial data (which enters through
(28))

‖φ‖X (I∗) ≤ ‖φ0‖Xin + C0(‖φ0‖Xin )ε‖φ‖X (I∗).

Thus, by taking ε small enough, depending on universal constants and the size of
the data ‖φ0‖Xin so that εC0(‖φ0‖Xin ) < 1

3 , we obtain that ‖φ‖X (I∗) ≤ 3
2‖φ0‖Xin ,

which contradicts the maximality of I∗ in the bootstrap assumption, (25). Thus, no
such I∗ can exist. ��

6.1. Nash-type Inequalities and Optimal Decay

Lemma 37. Solutions φ ∈ X to the system (20) satisfy the following Nash-type
inequality

∥∥∥φ
∥∥∥
2

L2
ψ

� max

⎧⎪⎪⎨
⎪⎪⎩

x
1
10

∥∥∥√uφψ

∥∥∥
4
5

L2
ψ∥∥∥√uφψ

∥∥∥
2
3

L2
ψ

.

(129)
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Proof. We first localize based on ξ = ψ√
x
. Fix a τ to be selected later. Then by

triangle inequality we split

∥∥∥φ
∥∥∥
L2

ψ

≤
∥∥∥∥φχ

(
ξ

τ

)∥∥∥∥
L2

ψ

+
∥∥∥∥∥φχ

(
ξ

τ

)C∥∥∥∥∥
L2

ψ

. (130)

For the localized portion, we need to condition on whether or not τ < 1 or τ > 1.
We integrate by parts via

∥∥∥∥φχ

(
ξ

τ

)∥∥∥∥
2

L2
ψ

=
∫

∂ψ {ψ}φ2χ

(
ξ

τ

)2

=−
∫
2ψφφψχ

(
ξ

τ

)2

−
∫

ψφ2 1√
x

1

τ
χχ ′.

(131)

We estimate the former term above term via
∣∣∣∣∣
∫

ψφφψχ

(
ξ

τ

)2
∣∣∣∣∣ �

⎧⎨
⎩

τ
3
2 x
∥∥√uφψ

∥∥2
L2

ψ
if τ < 1

ρ2x
∥∥√uφψ

∥∥2
L2

ψ
if τ ≥ 1.

More specifically, in the case when ρ < 1,
∣∣∣∣∣
∫

ψφφψχ

(
ξ

τ

)2
∣∣∣∣∣ ≤

∥∥∥φχ

∥∥∥
L2

ψ

∥∥∥ψφψχ

∥∥∥
L2

ψ

�
∥∥∥φχ

∥∥∥
L2

ψ

∥∥∥∥
ψ√
x
φψχ

∥∥∥∥
L2

ψ

√
x

�
∥∥∥φχ

∥∥∥
L2

ψ

√
x
∥∥∥ξφψχ

∥∥∥
L2

ψ

�
∥∥∥φχ

∥∥∥√xτ
3
4

∥∥∥ξ 1
4 φψχ

∥∥∥
L2

ψ

�
∥∥∥φχ

∥∥∥
L2

ψ

√
xτ

3
4

∥∥∥√uφψχ

∥∥∥
L2

ψ

≤ o(1)
∥∥∥φχ

∥∥∥
2

L2
ψ

+ Cxτ
3
2

∥∥∥√uφψχ

∥∥∥
2

L2
ψ

.

The o(1) term is absorbed to the left-hand side of (131).
In the case when ρ > 1, we must estimate ξ

1
4 ≤ τ

1
4
√
u. To see that this is true,

first assume ξ ≤ 1. Then ξ
1
4 � √

u � √
uτ

1
4 because τ > 1 by assumption. Next,

suppose ξ ≥ 1. Then ξ
1
4 ≤ τ

1
4 � τ

1
4
√
u because u � 1 on the region when ξ ≥ 1.

For the second term in (131), we estimate identically to the far-field term from
(130), which we now treat.

For the far-field term, we estimate via
∣∣∣∣∣
∫

φ2ψ
1

ψ
χ

(
ξ

τ

)C ∣∣∣∣∣ �
1

τ
√
x

∥∥∥φ
√

ψ

∥∥∥
2

L2
ψ

.

In summary, we have thus established the inequality

∥∥∥φ
∥∥∥
2

L2
ψ

� ϕ(τ)x
∥∥∥√uφψ

∥∥∥
2

L2
ψ

+ 1

τ
√
x

∥∥∥φ
√

ψ

∥∥∥
2

L2
ψ

,
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where ϕ(τ) is the piecewise function equal to τ
3
2 on τ < 1 and τ 2 on ρ ≥ 1.

We now select

τ =

⎧⎪⎪⎨
⎪⎪⎩

x− 3
5

∥∥∥φ√
ψ

∥∥∥
4
5

L2
ψ

∥∥∥√ūφψ

∥∥∥
− 4

5

L2
ψ

:= r
6
5 if r < 1

x− 1
2

∥∥∥φ√
ψ

∥∥∥
2
3

L2
ψ

∥∥∥φψ

√
ū
∥∥∥

− 2
3

L2
ψ

:= r ≥ 1.

The key point is that τ is homogeneous in r , and therefore we may consistently
enforce when τ < 1 and τ > 1 because these are equivalent to r < 1 and r > 1.

To conclude, we note that by definition of the X norm, the weighted quantities
‖φ√

ψ‖L2
ψ
are conserved in x for solutions to (20). This immediately gives (129).

��
Corollary 38. The solution φ to (20) satisfies the following asymptotics for j ≤
K0 − 1:

∥∥∥φ( j)
∥∥∥
L2

ψ

〈x〉 j+ 1
4− +

∥∥∥φ( j)
ψ

∥∥∥
L2

ψ

〈x〉 j+ 3
4− +

∥∥∥φ( j)
∥∥∥
L∞

ψ

〈x〉 j+ 1
2−

+
∥∥∥φ( j)

ψ

∥∥∥
L∞

ψ

〈x〉 j− �
∥∥∥φ
∥∥∥
X
. (132)

Proof. Using (129) in (81), letting α(x) := ‖φ‖2
L2

ψ

, we obtain either one of the

two ODEs (· = ∂x ):

α̇ + C2α
3 ≤ 0 or α̇ + C3x

− 1
4 α

5
2 ≤ 0,

at each x ∈ R+. This immediately implies that |α| � 〈x〉− 1
2 , which means that

‖φ‖L2
ψ

� 〈x〉− 1
4 .

We may x-differentiate (129) and use them in the higher order energy estimates

(90) and (107) in exactly the same fashion,whichyields that‖φ( j)‖L2
ψ

� 〈x〉− j− 1
4−.

��
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