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NECESSARY CONDITIONS FOR BLOW-UP SOLUTIONS
TO THE RESTRICTED EULER-POISSON EQUATIONS*

HAILIANG LIUT AND JAEMIN SHIN?

Abstract. In this work, we study the behavior of blow-up solutions to the multidimensional
restricted Euler—Poisson equations which are the localized version of the full Euler—Poisson system. We
provide necessary conditions for the existence of finite-time blow-up solutions in terms of the initial
data, and describe the asymptotic behavior of the solutions near blow-up times. We also identify a rich
set of the initial data which yields global bounded solutions.
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1. Introduction and main results
In this paper, we consider the following ordinary differential equation (ODE) system

k
N==X+=(p—cb), i=1,2,+,n, >0, (1.1a)
n
n
pl==ph A=\, (1.1b)
=1
p(0)=po>0, Xi(0)=X;o, (1.1c)

where ’ is the derivative in time ¢, k,c;, are positive parameters, and n > 2 is an integer.
This system proposed in [15] is a localized version of the Euler—Poisson equations, hence
called the restricted Euler—Poisson (REP) system in the literature. We assume that the
initial data for \; are real and satisfy the order condition

Ao="=A70<A741,0< - < Ap 0. (1.1d)

Here, we introduce a quantity 1 <.J<n with which we characterize the number of the
initial A\; coinciding with A1 o. The order of A;’s is known to be preserved (see [14,15]
and Lemma 2.1). The purpose of this work is to identify necessary conditions for the
existence of blow-up solutions to this REP system, and study the detailed solution
behavior near the blow-up time.

To understand the physical meaning of each term, we recall the full Euler—Poisson
equations for the velocity field u and local density p,

w+u-Vu=kVA (p—cp), 2 €R™, >0, (1.2a)
pe+ V- (pu) =0, (1.2b)

where the constant k represents a repulsive (k>0) or attractive (k<0) force, and ¢
denotes the background state. This system (1.2) describes the dynamic behavior of
several important physical flows, including those for semi-conductors, plasma physics,
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and the collapse of stars (see [2,3,8,11,18,19]). The existence and behaviors of solutions
for (1.2) and related problems have been extensively studied under various assumptions;
see, e.g., [5,6,9,12,21] and references therein. In particular, in [15], Liu and Tadmor
introduced the method of spectral dynamics, which serves as a powerful tool to study
dynamics of the velocity gradient M =Vu along particle paths. Indeed, (1.2) can be
converted into

M'=—-M?+EkR[p—c),
p'=—ptrM,
where ' is the convective derivative, 9; +u-V, and R is the Riesz matrix operator,
R[f]:=VaVA~f].

It is the global nature of the Riesz matrix, R[p— ¢p], which makes the issue of regularity
for Euler—Poisson equations such an intricate question to solve, both analytically and
numerically. In this paper we focus on the REP equation for M which was proposed
in [15] by restricting attention to the local isotropic trace, %(p—cb)lnxn, of the global
coupling term kR[p—cp) , i.e.,

M’:—M2+%(p—cb)Ian, (1.3a)
p'=—ptrM. (1.3b)

This is a matrix Ricatti equation for the n xn matrix M, coupled with the density
equation, which should mimic the dynamics of (p,Vu) in the full Euler—Poisson equa-~
tions. The REP system (1.1) for the eigenvalue \; of M follows from (1.3). We note
that the REP system [15] is to the full Euler-Poisson equations what the restricted
Euler (RE) model is to the full Euler equations, while the RE system is known to be
useful in understanding the local topology of the Euler dynamics; we refer the reader
to [1,4,7,22].

The existence of a critical threshold phenomenon associated with this 2D REP
model with zero background, ¢, =0, was first identified in [15]. A precise description of
the critical threshold for the 2D REP system, with both zero and nonzero background
charges, was given in [16]. These results have been extended to multi-dimensional REP
equations by Lee and Liu in [14]. Lee identified upper-thresholds for finite time blow-up
solutions to an improved REP equation in two dimensions ([13]). It is worth mentioning
that critical thresholds for restricted Euler equations were studied in [17] and [20].

In this work, we attempt to advance our understanding of the critical threshold
phenomenon by providing necessary conditions for the existence of finite-time blow-
up solutions to the REP system (1.1). Our results thus provide a complement to the
existing results in [13,15,16] for REP systems.

In order to see the subtleness of the problem, we recall that a movable essential
singularity cannot be achieved for a first-order scalar differential equation u' = F(¢,u),
as long as F' is a rational function of u with coefficients that are algebraic functions of
t ([10]). However, this is not the case for the system of equations considered here. In
other words, the singularity types of solutions A and p of (1.1) are not known a priori.
This is one of the main difficulties with this problem, because we cannot simply utilize
some balance equations to analyze the behavior of solutions near a singular point. To
overcome this difficulty, we transform the Riccati-type equations (1.1a) into second-
order linear differential equations for

u;(t) = efo Ai(9)ds,
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By analyzing the general solution to the second-order differential equation, we are able
to reveal the behavior of w;, which also provides information on the behavior of ;.
Indeed, we can characterize the asymptotic behaviors of A; and p near the blow-up time
by the gap of the initial data \; o together with po.

The quantity J defined in (1.1d) is critical in terms of different solution behaviors
of A\;. We state our main results in the following.

THEOREM 1.1. Suppose that the maximum interval of existence for (1.1) is [0,tg) for
some 0<tg <oo. Then

1<J< and (1.4)

n
2

1 A
tharctan( 1’0>+27;, w:=1/kep/n. (1.5)
w

w
Moreover,
lim A\;(t)=—o00, 1<i<J, (1.6a)
t—tg
lim A;(t) =00, J<i<n, (1.6b)
t—tyg
lim p(t) =00, (1.6¢)
t—tg
and also
lim A (t)edo M)+ An(s)ds — (1.7a)
t—ty
Hm A, ()efo M) FAn(o)ds — o (1.7b)
t—tg

for some 0 < g <p.

REMARK 1.1. An interesting feature of the behavior of A; is that \; diverge to —oo if
and only if A; g =2A; 0 and all the other A; diverge to +0o. Moreover, J cannot exceed
n/2 and in the case of J >3, J is strictly smaller than n/2; see Theorem 1.2. The limits
in (1.7) indicate how \; are connected through p and ¢, which are mainly characterized
by the gap of the initial data \; o together with pg.

Our second theorem gives the detailed blow-up rates of solutions. We note that
Ai(t)=A1(t) for 1<i<J (see Lemma 2.1).

THEOREM 1.2. Under the hypothesis in Theorem 1.1, the blow-up rates of singular
solutions depend on the size of J, and can be made more precise as follows:

(i) If J=1, then n>2 and

lim (t5 — ) (8) = —1,

t—tg

Ait)=0(|ln(tp—t)|) ast—tyz, 2<i<n,

p(t) :O(tg%z) ast—tg.

(ii) If J=2, then n>4 and one of the following cases must hold:
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(a) If n>5, then
lim (tg —t)\1 (t)=—1,

t—tg
t
lim (tg —t)Ai(t)=0, lim | Ai(s)ds=o00, 3<i<m,

t—>t]; t—>t§ 0

1 _
p(t):O m as t%tB
(b) Ifn:4 and ()\1’0—)\370)(>\1,0—)\4’0) :ZAO>I€p0, then

1 1 Ay
lim (tg—t)\(t)=—=— =y | ——,
tatg(B ) 1() 2 2 AO_kPO

1 1 Ay
lim (tg—t)\;(t)=—=+ =4 | ——, i=3,4,
HtJE(B Mit)==5+3 A Fpn

1 _
(¢c) If n=4 and Ag=kpo, then there exists C >0 such that
lim (tg —t)*\ () =—C,
t—tg
lim (tg —t)*\;i(t)=C, i=3,4,

t—tg

lim (tg—t)*p(t) = ZCQ.

t—tg
(#ii) If J>3, then n>2J and there exists C >1 such that
lim (tB - t)/\l (t) = —C,
t—ts
lim (tg —t)\(t)=C—1, J+1<i<n,
t—tg

p(t) :O(ﬁ) ast—tg.

REMARK 1.2. Note that for each J specified in different cases, n has to be in a certain
range so as to fulfill the requirement that the maximum interval of existence for (1.1)
be finite.

In contrast to the finite-time breakdown, the multi-dimensional REP equations
admit a large class of global bounded solutions. Our results are summarized below.

THEOREM 1.3. If
n
J> -,
2
or

n

> -
J>3 and J 5

then (1.1) has a global bounded solution.
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This has improved upon some global existence results in [14], in particular Theorem
2.3 (corresponding to n=3,J =3) and Theorem 2.9 (corresponding to J =n) therein.

The remainder of this paper is organized as follows. In Section 2, we first show that
no highly oscillating solution exists (see (2.2) for the definition of a highly oscillating
solution). That is, we show that p and |);| diverge to oo for some 7 when (1.1) admits
a finite-time blow-up solution. We also provide a proof of (1.5). In Section 3, we
transform (1.1a) to a second-order linear differential equation, and demonstrate the
solution behaviors of (1.7). To prove Theorem 1.2 using (1.7), we consider the subcases

p>q and p=q.

We study the case with p> ¢ in Section 4. Here, we show that the coeficients of leading
singular order terms for A\; and )\, can be represented as —p/(p—gq) and ¢q/(p—q),
respectively. We also conclude that this case yields (i), (a) and (b) of (ii), or (iii) in
Theorem 1.2. The last section deals with the case where p=g¢, which implies (c) of (ii)
in Theorem 1.2. The main difficulty in this case lies in that the leading singular terms of
—A1 and A, are the same. For this reason, we have examined the second singular terms.
We also provide explicit solutions to the REP system (1.1) assuming that A3 o= A40.
We remark that (1.4) and (1.6) follow from Theorem 1.2.

NOTATION 1.1. Throughout the paper we write
flx)=0(g(z)) aszx—z,,
if there are M,0 >0 such that
|[f(z)| <Mlg(x)| for all xog—x <4.
Similarly, we write
f(x)=o(g(x)) asz—uxg,
if for any € >0 there is 6 >0 such that

If(z)|<elg(x)| for all zg—x <.

2. Non-oscillating solutions
Suppose that [0,¢5) is the maximum interval of existence of solutions to an ordinary
differential equation (ODE) u' = F(¢,u). Then, either

lim |u(t)] = o0, (2.1)
t—tg
or
0 <limsupwu(t) —liminfu(t). (2.2)
t—tp t=ip

Here, we define oo —oo=0. We say that a solution blows up at a finite time if it satisfies
(2.1), and is oscillating at a finite time if it satisfies (2.2). Note that u(t) satisfying (2.1)
may be oscillating in the standard sense, i.e., u(t) — 0o but w'(¢) # 0 (or u(t) — —oo but
u'(t) £0).

For the REP system (1.1), we can prove that there exist no finite-time oscillating
solutions. More precisely, the following proposition holds.
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PROPOSITION 2.1. Suppose that the mazimum interval of existence for (1.1) is [0,tp)
for some 0 <tp <oco. Then, it holds for some i that

lim | A;(t)] = oc. (2.3)

t—tg

Proof. If \; is assumed to be an oscillating solution of type (2.2), then there exists
a sequence of disjoint intervals (am,,b,) C (0,tp) on which A; is decreasing and

W}gn (bm —am) =0, (2.4)
T (u(b) ~ Aan)) <0, (2:5)
Jim (A (bm) [+ [ Xi(am)]) < oo (2.6)

Note that if (2.6) fails, then one can conclude that lim; ,;, |A;(¢)| =00, although A; is
oscillating in the standard sense.
From (1.1D)
p:poeffot)\(s)ds >0.

It follows from (1.1a) that

That is,

A2 4 w? =

Upon integration over (a,,,b,,), this implies that

%arctan (@) - éarctan (W) > —(bpm—am).

Owing to the conditions (2.5) and (2.6), the left-hand side is strictly less than 0, while
the right-hand side converges to 0. Thus, there exist no oscillating solutions of type
(2.2) for A;. 0

The order-preserving property of A; is well known (see [14,15]). Indeed, it follows
from (1.1a) that

A=) ==+ X)) (N = Aj), (2.8)

and this yields the following lemma.

LEMMA 2.1. For any t >0, the solutions A; of (1.1) satisfy

M) ==y () < Aysa(B) <+ < An(D),
Proposition 2.1 states that lim |A;(¢)] = oo for some . Then, one can conclude that
t—tg
lim /\1(t) = —00,

t—tg
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owing to Lemma 2.1 concerning order preservation. In fact, if we assume that there
exists no A; diverging to —oo, then A; tends to +oo for some j as t—t5, so does
A= Ao Thus,

min A(t) > —oo,
0<t<tp

and

k ¢
X () ==X () + LR Jo A 2

Lpo —ts min A(t)
< ZPo, Tosts<ts —w? < o0,
n

which contradicts the fact that A; — oo as ¢t —t;. Thus, it must hold that limt_m5 Ai(t)=
—oo for some i. Owing to the order preservation in Lemma 2.1, the following proposition
holds.

PROPOSITION 2.2. Suppose that the mazimum interval of existence for (1.1) is [0,t5)
for some 0 <tp <oo. Then, there exist 1 <Jy < Jo <n such that

lim A;(t) =—o0, 1<i<Jy, (2.9)
t—tg

lim )\i(t):OO, Jo <i<n. (210)
t—tg

We remark that there exists no A; satisfying (2.10) in the case that Jo =n. However,
(2.9) indicates that

lim )\1 = —0Q.
t—tg

The estimation (1.5) of tp also follows immediately. Integrating (2.7) for i=1 over
(0,%) yields that

arctan ()\it) ) > arctan (%) —wt.

Sending ¢ to tp implies that

0 AL0
—fzarctan< ! )—th.
2 w

Thus, we obtain (1.5) in Theorem 1.1.

THEOREM 2.1. Suppose that the maximum interval of existence for (1.1) is [0,tg) for
some 0<tp <oo. Then,

1 )\1 0 ™
tg> —arctan| —— | +—.
w w 2w

Next, we turn our attention to density p. Here, we show that p¢ L'(0,tg) through
a contradiction argument. Assuming that p€ L'(0,t5), we find that J,=n, because
integrating (1.1a) gives that for i=1,2,---,n

)\i(t)—)\w:—/o )\f(s)ds—f—k/o (p(s)—cp)dx < cc.

n



334 BLOW-UP SOLUTIONS TO THE REP EQUATIONS
It follows that J; =n or \; is finite for J; <i<n. Thus, there exists f(¢) such that
p(t) = poeJo M = f(1)e" T A Eds 0 < f(4) < 0o (2.11)
Now, let 1<i<J;. Then, there exists ¢; € (0,¢p) such that
Ai(t)<0, ti<t<tg,
and ;\i := \; —w satisfies
N=XN>-2\2—w?> )2,

We then deduce that

A < ! t1<t<t
i tB_ta 1 B-

Thus, for some constant K >0 it holds that

72/ ds>ln (tht)i‘]l), th<t<tp.

Substituting the inequality into (2.11) yields
Kf(t)
(tg—t)7

In Proposition 2.2, we have shown J; > 1, which contradicts the assumption that pe
L'(0,tp). We summarize this result as follows.

p(t) = f(t)e™ St Ji Mile)ds t<t<tp.

PROPOSITION 2.3. Suppose that the mazimum interval of existence for (1.1) is [0,tp)
for some 0 <tp <oco. Then,

¢
lim [ p(s)ds=o0. (2.12)

t—>tg 0
3. Transformed equations
Although Proposition 2.2 and Proposition 2.3 state that for some i, A; and fo s)ds
diverge as t —t5, respectively, they do not illuminate the behaviors of \; and p near t¢p,

which are essential for analyzing solution singularities. To go further, we transform the
Riccati-type equation (1.1a) to a second-order linear differential equation by defining

wi () =eJo M), (3.1)

This gives

u;
ui(0)=1, uj(0)=X;p, (3.2)
and
|
— - ft)\,;(s)ds:

p(t)=poe~ =i=1Jo poHuZ_(t)~ (3.3)

i=1
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Equation (1.1a) is also transformed to

k
u! ——(p—cp)u; =0, (3.4)
n
or (recall that w? =key/n)
ko oyr |l
" 2
; i = — =10;. 35
U; +wu npomlzllum g (3.5)

The general solution of (3.5) is thus given by
1t
u; (t) = 1 sinwt + co coswt + —/ gi(s)sinw(t — s)ds. (3.6)
wJo

We proceed to observe the behavior of u; near tg. Let 1<i<Jy, i.e.,

!
)\i:%—>—oo as t—tg, (3.7)
Usg

then the positivity of w; implies that u; <0, and thus u; converges. Let —a; <0 be the
least upper bound of w}. Then, for any £ >0 there exists to € (0,t5) such that

—a; —e <ul(ty) < —a.

On the other hand, it follows from (3.4) that for any ¢, <t <tp,

t
k
) = uito) = [ (ol = cus(s)ds. (38)
to
Owing to Proposition 2.3 and the convergence of u;, there exists t; € (to,t5) such that
"k
w, () —u(to) :/ H(p(s) —cp)ui(s)ds >0, t;<t<tp
to

and
—a; —e<uj(to) <uj(t) < —ay, to<t1<t<tp.
This implies that

lim () = —ay, (3.9)

t—tg

and thus wu; converges to 0 as t approaches tpg, satisfying (3.7). We may extend the
interval of existence and obtain the boundary conditions:

uwi(tp)=0, wu(tp)=—aq;. (3.10)

It follows from (3.6) that

ui(t):1<

w

/t gi(s) sina(t — s)ds—aisinw(t—tg)) . (3.11)

tp
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In (3.8), we observe that

E o 1k

i = — —_— = 7 Ll ,t . ']-2

g npoglum —pu; € L(0,t5) (3.12)
m#i

Next we consider the case that Jy <j <n; that is,

'

Aj=—L—o00. (3.13)

Because u; >0, u; must be positive in a neighborhood of ¢g, which implies that u; is
increasing near tg. Thus,

either lim u;(t)=o00 or lim u;(t)=p; (3.14)
t—=ig t—tg
for some 3; > 0. In either case, u; must diverge to oo, owing to (3.13).
Thanks to the behavior of u; near tg, we obtain the following lemma.

LEMMA 3.1. Suppose that the mazimum interval of existence for (1.1) is [0,tp) for
some 0<tp <oo. Then, for 1 <J; <Jy<n defined in Proposition 2.2

)\i,O :)\j,Ov 1 SZaJ < Jla
)\i(t)Z)\j(t), 1<4,5 < Jq,

and
A (t .
li ()zl, Jo <1,7<n,
t—ty Aj(t)
oui(t) Ajo—Aip )
lim 22 =22 — Jya<j<n.
t—t5 Un () Ano—A10 2=

Proof.  We employ Abel’s identity for (3.4) together with the initial conditions
(3.2) to obtain

Ué(t)uj'(t)7U¢(t)ug(t):/\i707Aj70, 0<t<ip. (315)
Let 1<i,j<J;. Because u;(tp)=u;(tp)=0 and uj(tp),u}(tp) are bounded, the left-
hand side of (3.15) vanishes at t=tp, and thus A; o=\, 0, as desired.

We rewrite (3.15) as

' (t) _ Ul(t) . )\i,() — )\ij
wi(t)  uy(t)  wi(t)uy(t)

(3.16)

This yields

lim Ai(t)
t—ty, Aj(t)

:17 J2<i7j§n7

because 1/(u;u;) converges for Jy <i,j <n.
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From (3.15) we observe that u; and w, are linearly independent solutions of (3.4).
Then, for J; <j<n we can represent u; as a linear combination of u; and u,. Further
using the initial conditions (3.2), we obtain

An,0 = Aj0 Aj0— AL
= uy + Uny -
An0—A1,0 An0—A1,0

(3.17)

On the other hand, the behaviors of u; and u; near tg in (3.10) and (3.14) imply that

lim wq(t)/u;(t)=0,

t—tg
and it follows that

(T Nig—A
lim uj(): 2.0 1’0, Jo<j<n.
t—ty Un(t)  Ano—A10

]
Further, we are able to show that J; =J,=.J. That is, there don’t exist bounded
Ai. More precisely, we have

THEOREM 3.1. Suppose that the mazimum interval of existence for (1.1) is [0,tg) for
some 0<tp <oo. Then,

1<J<n

and

t—tg

—00, 1<i<J,
00, J<i<n.

Proof. From Lemma 3.1 it follows that J=J; and also J=J; <n; otherwise, all
Ai,0 would be identical, and this implies the existence of a global solution (see Theorem
2.9 in [14]).

Now we show J; =Js by a contradiction argument. Indeed, if it is assumed that
J1 < Ja, then there exists |\;| < oo for Jy <i<Jy. It follows that for all 0 <t<tp,

/Otp(S)ds :/Ot [cb—i- %(A;(s) +>\12(s))} ds < o0,

which contradicts Proposition 2.3. O

Theorem 3.1 implies that for i=1,---,J and j=J+1,---,n, uj=u} <0 and u} >0

in a neighborhood of t5. Because u1,u; >0, we observe from (3.15) that uju; and uiuj

should be bounded in [0,tg]. Furthermore, it follows from (3.16) that uju; converges
to 0.

COROLLARY 3.1. Lettp and J be as in Theorem 3.1, and u; as in (3.1). Then, for
any J<j<n,

[uf (t)u;(t)| <o, 0<t<tp,
lup (t)uf(t)| <oo, 0<t<tp,

and

lim (uyu;)(t) =0. (3.18)

t—tg
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Now, we may divide (3.10) and (3.14) into the following cases, assuming that J <
j<n:

ui(tg)=—a1 <0 and lim u;(t)=o0, (3.19)
t—tg
ui(tp)=0 and lim u;(t)=0;>0, (3.20)
t—ty
ui(tp)=—0a1 <0 and lim u;(t)=06;>0,
t—tg

ui(tg)=0 and lim u;(t)=ooc.
t—tg

However, (3.19) and (3.20) cannot occur. Indeed, (3.19) contradicts the boundedness
of uju; in Corollary 3.1. If (3.20) is assumed, then uju; — 0, and thus uyuj — —A; o+
Aj,0>0 as t approaches tp. It follows that, in a neighborhood of ¢p,

(uluj)’ > 0.

This also contradicts Corollary 3.1, owing to (3.18) and the fact that wiu; >0. Thus,
we have the following proposition.

PROPOSITION 3.1.  Suppose that the mazimum interval of existence for (1.1) is [0,tp)
for some 0<tp <oco. Define uj as (3.1). If J<j<n, then either

ui(tg)=—ay and lim u;(t)=p; for some ay,B;>0, (3.21)
t—tg
or
ui(tg) =0 and lim u;(t)=o00 (3.22)
t—tg
must hold.

Next, we demonstrate the convergence of uju; and ujuj for J<j<n. If (3.21)
holds in Proposition 3.1, then the convergence follows from (3.15). In the case of (3.22),
we show the convergence through several lemmas.

LEMMA 3.2.  Under the hypothesis of Proposition 3.1, for any t€[0,tp)

/0 uy (s)ufs(s)+g15(s)ds| < oo,

where
gij = 5puzuj
Proof. From (3.5), we deduce that
ufuj +wuiu; =g

Integrating this equation over [0,¢] yields

u'l(t)uj(t)—)\l,0+/o w2u1(s)uj(s)ds:/0 uy (s)uls(s)+g1j(s)ds. (3.23)



H. LIU AND J. SHIN 339

Then, the lemma follows from Corollary 3.1. a

LEMMA 3.3.  Under the hypothesis of Proposition 3.1,

/ ()45 (5) + 1 (5)ds
0

converges ast—tp.

Proof.  If (3.21) holds in Proposition 3.1, then the lemma immediately follows
from (3.23) and (3.18).

In the case of (3.22), from (3.11) and (3.6) we have that

uy(s) :/S g1(7)cosw(s—T)dr,

tp

S
uj(s) = \jo cosws — wsinws —|—/O g;(T)cosw(s—T)dr,

and

/Otull(s)u;»(s)ds:/ot [/S g1(z)cosw(s —z)dx ()\jocosws—wsinws)} ds

tp

+/Ot [/; 91(a:)cosw(s—x)dx/osgj(y)cosw(s_y)dy] ds

=:T+1I.

We notice that %I—H) ast—tp, because g; € L' (0,t5). It follows that I also converges.
Thus, it suffices to show that

h(t) :=II—|—/O g1j(s)ds

converges.
Changing the order of integration yields

1= [ [ ataras0 (sineta -+

and the integral representation of uq, (3.11), yields

€T —

y cosw(x — y)) dxdy

t t
[ aswids=[ g ay
0 0
t Yy 1 )
[ [ astwian(@)  sineoty ) dody.
0 tp w
We combine the two equations to obtain

I ,
m0) =52 [ [ 91(@0i0) (e —g)conio—y) —sins(e —y)]dody.
0 tp
Now, take 0 <ty <tp such that

w(tB—t0)<g.
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Then, for tg <t<tp,

)= [ [ 91015 )t —p)cosite ) —sinw(o )] dody+ h(to)

is a decreasing function, as the integrand h'(t) is negative over the domain (tg,tp).
Furthermore, we observe from Lemma 3.2 and the convergence of I that

h(t) = (/Otu’l(s)u;-(s)dS—F/Otglj(s)ds) 1

is bounded. It follows that h(t) converges as t —t5, as desired. |

We proceed to show the convergence of uju; and ulu;, which gives (1.7) in Theorem
1.1.

THEOREM 3.2. Suppose that the maximum interval of existence for (1.1) is [0,tg) for
some 0<tp <oo. Define u; as (3.1). If J<j<n, then there exist 0<q; <p; such that

lim uf (t)u; () =—p;,  lim uy(E)(t) =g

— J
t—tp t—tp

Proof. The convergence of uju; follows from Lemma 3.3 together with (3.23), and
the convergence of uju; follows from (3.15).

Clearly, p;,q; >0 and p; +¢; =—(A1,0— Aj0), by (3.15). Furthermore, one can show
that 0<g¢; <p;. Suppose that p; <g¢;. Then, there exists ¢; € (0,¢5) such that if ¢; <
t<tpg, then

Aj(t)

WO >1

and
/ 2 k 2 k l
Aj () == A5 )+ (p(t) —ep) < =AL(E) + - (p(t) —cp) = M1 (2).
Integration over [t1,t] yields

Aj() = Aj(t1) < Aa(t) = Aa(ta)

which contradicts the fact that Ay = —oco0 and \; — +o0. 0

From now on, we let p and ¢ denote p, and g,, respectively. Then from Theorem
3.2 either

p>q
or
p=q

must hold. We investigate the solution behaviors stated in Theorem 1.2 by considering
these cases in the following two sections. Indeed, we obtain (c) of (ii) in Theorem 1.2
by assuming that p=gq, and all the other cases follow from p> q.
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4. The case p>q
In this section, we describe the behaviors of blow-up solutions of (1.1) assuming
that

p>q.
We first state a technical lemma.

LEMMA 4.1.  Suppose that a function R(t) defined in [0,tg) satisfies
(te—t)R(t)=0 ast—tg.

Then,

lim (tp—1t) /tRQ(s)ds =0,

t—tg 0

!
lim (tht)/ R(s)ds=0.
t—tg o tp—s

Furthermore, for any 0<e <1 there exists M >0 such that

(tB—t)° _ _tR(s)a M
- A 4.1
M <e - < (tB _ t)s ( )
Proof. The first two limits follow from L’Hopital’s rule. Let 0 <e<1. Then,
because lim_,,- (ts —s)R(s)=0, there exists t; € (0,tp) such that for all t; <s<itg,

(tg—s)|R(s)|<e.

Then, for ¢t >4,

g/o (tr—5)|R(s)] ;s

t 1 t1
<€/ ds—i—/ |R(s)|ds
t tB—s 0

< —eln(tg—t)+C,

/OtR(s)ds

for some constant C' that is independent of ¢. With M =€ it follows that

(tB _t)s — ft R(s)ds M
—_— < - <
Mo o (tp —1)°

a
Because of (3.18) and Theorem 3.2, we set (uiuy,)(tg)=0 and (uiu,) (tg)=—p+
g <0. Then, for some 7(t) such that

n(tB):07 n/(tB):Oﬂ (4'2)
it holds that

(urun)(t) = (p—q)(t —t) +n(t).
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It follows that

_ )\170 —)\mo . )\1,0 —/\n,O _ —p—4q
MO == @) = oo a0+ r—a)Es -+ 0
~(wmuy)'(t)  —(p—q)+10'(t)
ALt) +An (1) = wun(t) — (p—q)(tz—t)+n(t)
Hence,
_ —pHn(1)/2
M= -0
() q+n'(t)/2

T —a)ts—t)+n(t)

Owing to (4.2) we have the following forms:

— 1
A1 (t) p_pq P— Ry (1),
q 1
At R, (1),
()= Ra()
where R;(t) (j=1,n) satisfies hmt%t R;(t)(tg—t)=0
Let
Aj(t)= th—t+R (=1,n)
with
Gri= o, G (4.3)
p—q p q

Substituting this into the main equation (1.1a) yields

E2+¢; 265 kpo _
! —_ > > p2 _ J . —JoMs)ds _, 2
R;(t) tp—tF 14 (0= Ri(t)+ = "e w?. (4.4)

Integrating over (0,t) and multiplying by (tp —t) give

(ts = )R (t) =~ (& +&) - (tB—t)/0 {Rf(T)Jr 25 Rj(T):|dT

tB—T

k b (s)ds
+ﬂ(t3—t)/ e~ Jo A&)ds g
0

2
+(tg— )[fthj w?t+R;(0) | .

Because (tp—t) fot [R?(T)—i—?ijj(T)/(tB—T)} dr converges to 0 as t =t by Lemma
4.1, we obtain the following quadratic equation for &:

t
E+e- Shm(tB_t)/ —loA&dsgr =g (4.5)
0

t—t
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Here, £ =£4,&,, for which the limit in (4.5) must exist.
Owing to Lemma 3.1 together with Theorem 3.1, we have that

Ai(t) =~ 3 CHR(), Ri()=Ru(t), 1<i<l] (4.6)
5
Xi(t)= &n +Ri(t), J<i<n, (4.7
tp—t
where hmt—n; (tg—t)R;(t)=0 for all 1 <i<m. It follows that
—pJ+qn—J) 1 = 7y
0= A= R (48)
where
—pJ+q(n—J
o ZPIHa(n=J) (4.9)
p—q
R(t):=» Ri(t), lim (tp—t)R(t)=0.
= t—tp
Now, we evaluate the limit in (4.5) as follows. Note that
t ¢ B}
/ e I MS)deT:t;/ (tg —7)7e o B)ds g, (4.10)
0 0

If follows from (4.1) that for any 0 <e <1, there exists M >0 such that

tp—t
M

t t t
/ (ts —T)'YJredT <(tm —t)/ (ts —T)'YeffoT R(s)ds gr M(ts —t)/ (tg—T1)""%dr.
0 0 0
Assume that v+2 < 0. Then, the lower bound

-1
RCERE) [(tB — )2 e (g —t)] — 400 ast—ty

by taking e sufficiently small so that y+2+¢e <0. This is not the case, as the limit in
(4.5) must converge, as previously mentioned. On the other hand, v+2 > 0 implies that
the upper bound

-M
PO [(tB — )72 T (e —t)] —0ast—tg
by taking € such that 7y4+2—&>0 and v—e# —1. This ensures that
£+£=0.
It follows that

= __17 fnzi 0.

5127_ =
p—q pP—q

Substituting ¢ =0 into (4.9) together with v+ 2 >0 then yields

J=1
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Now, consider the case that v+2=0. We first claim that

t
lim (tg—t) / (tg—7) "2 Jo B()dsgr (4.11a)
t—>t§ 0
= lim e~ Jo R(s)ds, (4.11b)
t—tg

We remark that, in general, the convergence of (4.11a), which we have already verified,
does not guarantee the convergence of (4.11b), because (4.11a) may converge for an
oscillating divergent fot R(s)ds. However, the decay property of R can eliminate this
case. By integration by parts,

t
lim (tht)/ (tB—T)*Qe*fJ R(s)ds g
0

t—tg
¢ tp—t ¢ .
= lim {efo R(s)ds _ +(tg—t) / (tg—7)"te o B R()dr| . (4.12)
t—tg tB 0

Recall that (tg —t)R(t) =0 as t —t5. Then, there exists t; € (0,tg) such that
(tht)lR(t)|<1, t1<t<tp,

and

t
‘(tB _t)/ (tB —T)_le_fnT R(S)dSR(T)dT
0

(4.13)

t1 t
< (tB—t)/ (tg—7)"te do R<S>d3|R(T)\dT+(tB—t)/ (tg—7) 2 Jo B()ds g
0 tq
(4.14)

Because (4.11a) converges, the second term in (4.14) converges, and thus (4.13) con-
verges as t—ty. The convergence of exp (— fOtB R(s)ds) follows from (4.12). Now,

apply L’Hépital’s rule to obtain (4.11).
Thus, the case with 742 =0 may be considered as either

t
lim (tp ft)/ (tg—7) e Jo B gr — Jim e Jo Rs)ds — (4.15)
t—>t§ 0 t—>tf5

or

t
lim (g —t) / (tg—7) e~ Jd BO&dsgr — Nim e~ Jo BO)s = R > 0. (4.16)
t—tg 0 t—tyg

For the case that (4.15), a similar argument as that in the case for 7+2<0 yields

and
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Furthermore, (4.15) implies that
¢

lim [ R(s)ds=cc.

t—=tzJo

For the case that (4.16), we deduce from (4.5) and (4.10) that

2
52 +€_ prZ;LBRO :O,

and from (4.9) that
p(J—2)=q(n—J-2).
We divide this into two cases, by taking into account p>g¢:

J=2, n=4 or
J>3, n>2J
In summary, we have the following:

THEOREM 4.1.  Suppose that [0,tg) be the mazimum interval of existence for (1.1).
Define u; as (3.1), and let

lim u) (t)u,(t)=—p, lim wuq(t)u,(t)=q.

_ _ n
t—tg t—tg

If p>q, then A\; (i=1,2,---,n) and X can be represented by (4.6), (4.7), and (4.8).
Moreover, one of the following must hold, where £ =&, &,
(1) J=1 and
& +¢=0.

(2-a) J=2, lim, - fOtR(s)ds:oo, and

£+£=0.
(2-b) J=2, n=4, lim, - exp(ffOtR(s)ds):Rg >0, and

_ kpotBRo _

0.
4

£ +¢
(8) J=3, n>2J, lim, - exp(— [y R(s)ds)=Ro >0, and

kpot; Ry —0
== =0,

¢ +¢
Furthermore, these cases imply (i), (a), (b) of (ii), and (iii) in Theorem 1.2, respec-
tively.

The remainder of the proof of Theorem 4.1 demonstrates the relations between the
cases in Theorem 4.1 and in Theorem 1.2.
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Assuming (1), we immediately have the following representation of A;:

—1
)\z(t): thtJrRl(t)a 7121,
Rz(t)v 2<i<n,
A(t) = t;t +R(t), R(t) :ZRi(t)'

Although lim (tg—t)R;(t)=0 for i=1,2,---,n, we require the integrability of R; to

t—ty
obtain (i) in Theorem 1.2. Indeed, this is the case.

LEMMA 4.2.  Assuming (1) in Theorem /.1,
NeL'0,tp), i=2,--,n,
and
tp
/ Ry (s)ds=C.
0

Proof. Let i=2,3,---,n. Then, we deduce that

t t
kpot 1 . k
)\i(t):—/ )\f(s)ds—i—M/ S L COLLF L VT YN (4.17)
0 n o tB—s n
t
1 .
g/ . Se*fo BT s 4 N\ . (4.18)
0o '‘B—
Multiplying by (tp —t)'/? yields
t
(ts—t)'"*Ni(t) < (tp —t)l/Q/ @—Se—fng(T)desju(tB—t)l/%,o. (4.19)
-

Now, we take e=1/3 in (4.1) to obtain

o JoRmar o M
=tp—s)1/3

Then, we observe that the right-hand side of (4.19) converges to 0. Thus,
lim (tB - t)l/Q)\i(t) = 0,

t—tg
because \; >0 near tg. This implies that
N ELY0,tp), i=2,3,--- n. (4.20)
To demonstrate the convergence of fot R (s)ds, we deduce from (2.8) that
(t5 =) (A1 (t) = A () = (A0 = Ano)tpeJo B HA()ds, (4.21)

Because the left-hand side converges to —1 assuming (1), there exists a constant C
such that

/OtB Ri(s)+An(8)ds=C1, (4.22)
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and thus (4.20), \, € L'(0,tp), yields

tp
/ Ri(s)ds=C.
0

Lemma 4.2 enhances the estimate (4.1) as

0< lim e~ Jo B(®)ds oo
t—tg

Immediately, we obtain

p(t)=0( ) ast—tp.

tp—

Furthermore, it follows from (4.18) that A; is at most O(In(tg —1t)) for i=2,3,---

Then, \; € L?(0,t5), and applying (4.17) again yields
Xi(t)=0(In(tg —t)) i=2,3,--,n.

This shows that (1) implies (i) in Theorem 1.2.
In the case of (2-a) in Theorem 4.1,

.
N(t) = tB_tJrRi(t), 1=1,2,

R;i(¢), 3<i<n,
NO)= R, RO=Y Ri(0). Fi(t)=Fa(0)

i=1
Now, let 3<i<mn. Then, similar to the derivation of (4.22), we have that
tp

Rl (S) + )\2 (S)dS = Cz
0

347

(4.23)

If fg Ai(s)ds is assumed to converge, then fOtRl(s)ds, and thus ng(s)ds converges,

which does not belong to (2-a). Taking into account \; — oo, we must have
t
lim Ai(s)ds=o00, i=3,4,---,n.

t—=tpJ0O

Then, (4.23) yields
t
lim [ Ri(s)ds=—oc.
t—=tgJo
Summing (4.23) over i =3,4,---,n yields that for some constant C,
tp

R(s)+(n—4)Ry(s)ds=C.
0

Because lirnt_ﬂg fOtR(S)dSZOO in (2-a), we have that

n>>5,

(4.24)

(4.25)
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and it follows that
1 _
p(t):o m ast—>tB.

Hence, we conclude that (2-a) in Theorem 4.1 implies (a) of (ii) in Theorem 1.2.
Now, we consider the case of (2-b). Because the solutions to the characteristic
equation (4.5) are &4 =—p/(p—q) and £&,=q/(p—q), it follows that

pa___ kpothRo

4.26
-7 4 (4:26)
and
LR, =12
Ai(t)= thZt
) t ) | = 747
P— +R;(t) i=3
_9 4
()= +R(), Rl)=) Ri(t), Ri(t)=Ra(t).
tp—t i=1
Note that the representation of A follows from &; +&,=—1, and the representation of

Az (ie., £3=¢4) follows from Lemma 3.1. Because limIHtJ_3 exp(—ng(s)ds) =Ry >0,
we immediately obtain that

b
(tg —t)?

p(t)z(’)( ) ast—tg.
Similar to (4.21), we deduce that
(t =)\ (t) = X)) = (1,0 — Aio)tpe Jo B+ RiIds =3 4

Sending t —t; and multiplying the two equations for i=3,4 yield that

(p+q)? 2
= Apts Ry. 427
(-2 o
Recall that
Ag:=(A1,0—23,0)(A1,0 = Ad0)-

Then, we combine (4.26) and (4.27) to obtain

A
2 0
(2 g
(p—a) oy P
Thus, it must hold that
AO > kpo (428)

Furthermore, we obtain representations of ¢; and &4 in terms of the given parameters.

Indeed, we have
1 1 Ag
==z
2 2 AO — k‘po
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1 1 [ A
53—54——54‘5 m7

as described in (b) of (ii) in Theorem 1.2.
In the case of (3) in Theorem 4.1, we have that

lim (t5 — )M\ () = — 2

t—tg p—q’
lim (tp—t)Ai(t) = —L—, J+1<i<n.
totg pP—q

The behavior of p,

1
(tp—1)?

p(t)=0(

) ast—tp,
follows from (—pJ+q(n—J))/(p—q) =—2 and exp(— fOtB R(s)ds)= Ry. This shows that
(3) implies (iii) in Theorem 1.2.

5. The case p=g¢q
In this section, we investigate the blow-up solution behaviors when

p:q(: /\n’og)\l’o), (51)

As previously noted, understanding the behaviors of A\, near tp is essential. One tech-
nique to achieve this is to compare the behaviors of A? and p from (1.1a). However, the
main difficulty lies in the fact that the condition (5.1) implies that the leading singular
terms of [A? and k/n [ p are the same. Indeed, integrating (1.1a) yields

¢ ¢
k
/\1(t)—>\170:—/ /\f(s)der—/ p(s) —w?ds — —oo0,
0 nJo
t k t
)\n(t)—)\n,oz—/ )\i(s)ds—i—g/ p(s) —w?ds — +o0,
0 0
implying that in a neighborhood of t¢g,
¢ ¢ ¢
/ )\,zl(s)ds</ p(s)ds</ M (s)ds. (5.2)
0 0 0
However, the condition (5.1) yields
I
lim A1 (¢) ) (£)un ()

= lim % Z
t—tg )\n(t) t—ty Ul (t)u'/n(t)

=1, (5.3)

which indicates that the leading singular terms of all integrals in (5.2) are the same. For
this reason, we study the case of (5.1) by examining the second singular terms of [ A2
and [p. We remark that one cannot compare A? and kp/n directly as Proposition 2.3
demonstrates the behavior of [ p rather than p. Furthermore, we notice that the case
(5.1) occurs only in the case of (3.22) in Proposition 3.1. Indeed, (3.21) implies that

t t u (S)
lim [ Ay(s)ds= lim T —ds=Inp, < oco.
t—ts J t—tp Jo Un($)
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Assuming (5.1), we have observed (5.3), which implies that \; € L'(0,tg5). Thus, \; €
L'(0,tp) for all i, and thus p is bounded. This contradicts Proposition 2.3. More
precisely, \; € L*(0,tg) (i>.J), which is a necessary and sufficient condition for the
convergence of u; (¢>.J) or (3.21) in Proposition 3.1, only holds in (i) in Theorem 1.2.
That is, (i) is equivalent to (3.21), and all other cases in Theorem 1.2 are associated
with (3.22) in Proposition 3.1.
We define 7 as
/ !/

e (5.4)

Ui Un,
Because lim, _,, - (u1u,)(t) =0 in Corollary 3.1 and lim, (uruy,)'(t) =0 from the con-
dition (5.1), n satisfies

i 0) () () = — i 220 g, (55
lim [ n(s)ds=— lim M:o& (5.6)
t—t5Jo tty

We remark that the behavior of n near tp is not clear at this point, owing to the highly
oscillating type (2.2).
Recall (3.15) or that for all t€ (0,t5),

/ li
U _Un_ o P (5.7)

Uy Un U Unp

Then, together with (5.4), we have that

) P
AN=—"L=— - 5.8
! uy U Unp ( )
u! P
/\nzu—"zulu —. (5.9)

Substituting these representations into the main equation (1.1a) yields

k 2 k
A’1=—A%+p—w2=—[< P > 2 2 -, (5.10)

n UL Uy, UL Uy, n

k 2 k
A;=—A?+p—w2=—l< b > R Ry (5.11)

n U1 U, U1 U, n

Owing to the property of 7 in (5.5), we obtain
t
/ pis) o
oy )

Thus, the leading singular term of fg A2(s)ds (i=1,n) is

[ ()

=0.
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and this should be the same as the leading singular term of k/n fot p(s)ds, otherwise the
integrations of (5.10) and (5.11) yield that A; A, >0 near tp. Now, we define ¢ as

/ot <(u11Z)(s))2d5+5(t):/otzp(s>w2d5, (5.12)

satisfying

lim o) =0, 4(0)=0. (5.13)

) ()

It follows from (5.10) and (5.11) that

Al(t)f)\w:/o (2%n2(3))d3+5(t), (5.14)
An(t)—)\n,oz/o (2m—n2(s))ds+5(t). (5.15)

Now, we present a technical lemma. In Corollary 3.1, we showed that u;u, —0 as
t tends to tp. Thus, one may expect that for some 6> 1, uju’ converges to a nonzero
constant by assuming (3.22). However, this is not the case, at least when p=gq.

LEMMA 5.1.  Assume the hypothesis of Theorem 4.1, and suppose that
pP=q.
Then, for any 0<1,

lim (uyu?)(t)=0.

t—tg
For 6> 1, if the convergence of uiu® is assumed, then

lim (upul)(t)=0.

t—tg

Proof. Recall that p=gq only occurs in (3.22), i.e., u, —00. Then, it clearly holds
that limt%t}_3 (u1uf)(t) =0 for § <1, because limt%tjg (u1up)(t) =0 in Corollary 3.1.
Let #>1 and

lim (uyul)(t)=C.

t—tg

We deduce from (3.15) that

() -2

wlt) =)+ 0,00 =) [ s

Multiplying by u? in the equation for i=1,j =n yields

(uyul) (t) =ul* (1) <1 +(A,0—Ano) /Ot u%l@ds) .
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Then, 1+ (Ao —An0) /o *81/u2 (s)ds =0, because the left-hand side converges to C, and
ultt — oo, Apply L’ Hopltal s rule to the right-hand side, to yield

Ao—Anoul(t
lim (uluZ)(t): lim 210 —7n.0 Un(?)
t—ty toty —0—1 u (t)

A0 — Anyo (wQuq)(t)

Because the final limit exists,

2p C 20
T 0+1 p O+1
Then, as we assumed that 6 > 1, it follows that C'=0, as desired. 0

In the following theorem, we claim that the case of p=¢ implies (c) of (ii) in Theorem
1.2.

THEOREM 5.1.  Suppose that [0,tg) be the mazimum interval of existence for (1.1).
Define u; as (3.1), and let

lim ) (H)u,(t)=—p, lim ui(t)u) (t)=q.

_ _ n
t—tg t—tg

If

then J=2, n=4, and
(AM,0—A3,0)(A1,0—Aa0) =2 Ao =kpo.

Moreover, this implies (c) of (ii) in Theorem 1.2.
Proof. Recall (3.3)

71
P:POHUT-
i=1
From (5.12) and (5.13),

fo ulun) 2ds _ kpo

11
—1 2
BfO =1 z dS np

We apply Cauchy’s mean value theorem, to obtain

tq —2
t _ . Jot (wiun)"%ds "
fO ulun) 2ds 1 fJ(ulun)_Qd.s _ Hi:l ui(T)

fO = 1U 1d$1 M U%(T)U%(T)

0H?1 i Yds

for some t; <7 <t. Owing to the convergence of the left-hand side as ¢ —tj, we can
construct a sequence {7}, converging to ¢tp such that

lim [T ui(n)  kpo
HOOU%(Tl)UQ(Tz) T onp?’
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It follows from Lemma 3.1 that

n—1

k Ano—A
llim uf_z(rl)uzfjd(n) = Lg 7_’0 10 (5.16)
— 00 np J=T+1 )\j,O_)\l,O
If it is assumed that J #2, then
T
n—J—2 k n—1 Ano—A

lim wy (n)un” 7 ()= | Lo 2n0 7 210 (5.17)
l—o00 np i )‘j,O —)\170

If it is additionally assumed that (n—J—2)/(J—2)<1, then Lemma 5.1 implies that
1
T2

kpo T o= Ao —0

2
n A A
P J=d+1 3,0 1,0

which is not possible. The assumption that (n—J—2)/(J—2)>1 also yields a con-
tradiction. Indeed, under this assumption one can show that ulu%"“"?)/("‘” is an
increasing function in a neighborhood of tg, by showing that for any € >0 there exists

t1€(0,tp) such that
(uup™)' (1) >0, ti<t<tp (5.18)
in the case of p=¢. Then, together with (5.17) we have

1
J—=2

nd-3 kpo Tt Ano—A
lim s (tyun” 2 (0)= [ 2o J] S22
st np* iy Ajo— Ao

Now, we apply Lemma 5.1 to obtain

n—1
kpo An,0—A1,0
2
n Niog—A
P” 271 M0 T AL

which is also not possible.
Hence, J =2. Because the case of p=gq is corresponds to (3.22), we must have that
n=4. Moreover, substituting (5.1) into (5.16) with J=2 and n=4 yields

kpo=(A1,0—A1,0)(A3,0—A1,0), (5.19)

as desired.
It remains to verify the solution behaviors described in (c) of (ii) in Theorem 1.2.
We first state a lemma describing the behavior of ¢ near tp.

LEMMA 5.2.  Under the hypothesis of Theorem 5.1, § defined in (5.12) satisfies

lim ¢’ (t) = —w?.
t—tg

Proof. We have shown that J=2 and n=4 when p=g¢q. Thus, we deduce from

(5.12) and (3.3) that
2
(S/: 21 <kp01—p> —w2.
UTU4 4 uz uy
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Using the representation in (3.17),

B )\4,0*)\3,0u )\3,0*>\1,0u
- 1 4
Ad,0 =10 Ad,0 = A1,0

us

we have that

—p?*(Ma0—A30) 1
§ = P-(Aso— a0 W2 5.20
(Ag,0—A3,0)u1 + (N30 — A1,0)us ugud “ (5:20)

The condition p=gq implies that in a neighborhood of ¢z,

lim (uyui)'(t) >0,

t—tyg

as mentioned in (5.18). Thus, 1/(uju?) is a decreasing function near tp and converges.
Moreover, in the case of (3.22) we have that

—p*(As,0—A30)
(Ag,0—A3,0)u1 4+ (A3,0 — A10)ua

—0.

Hence, we conclude that

lim &' () = —w?.
t—tg
|
Proof. (Continued Proof of Theorem 5.1.) Substituting (5.8) and (5.9) into

(5.14) and (5.15) yields

0 -wa= [ (22 ) ds+ s,

(u1uy uitg)(s)
oy 040~ [ (o )00

We deduce that

Aot Ag

)= [ (s)ds—o(0) 210

Notice that the integral equation, together with (5.6) and Lemma 5.2, yields
n(t)—oo, ast—tp. (5.21)
The integral equation can be rewritten as

Aot Ag

n'=n*=4&, n(0)= 5 (5.22)

Then, for ¢ sufficiently close to tg so that

tp 2 Y
0</ ) —0s) g
. n%(s)+1

we have that

arctan(n(T))—arctan(n(t)):/ iU s, t<T<tp.
t
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Now, send 7 —15 to obtain

Owing to Lemma 5.2 and (5.21), we have

lim (t5 —t)n(t) =1

t—=ty

and for some o,

n(t)= ! +o(t), o(t)=o(tp—1). (5.23)

Moreover, one can show that o is integrable, i.e.,

‘/OtB U(s)ds‘ < 00. (5.24)

Indeed, substituting (5.23) into (5.22) yields

7=+ 220 )

and for t; <t<tp
(tB—t)U(t)—(tB—tl)U(tl)Z/t (tB—s)a2(s)ds+/t O’(S)ds—/t (tp—5)d'(s)ds.

If fttl (tp —s)o?(s)ds were unbounded, then fttl o(s)ds — —oo as t—tp, as the left-hand
side and ¢’(t) converge. However, this yields a contradiction, because

fttl (tg —s)o?(s)ds
fttl o(s)ds

Thus, for ¢; sufficiently close to tpg,

—0.

/ (b5 — $)0?(8)ds 1 / o (s)ds / (b — )6 ()ds

t1 ty t1

‘(tB —t)o(t)—(tg —tl)g(tl)’ _

t
>/ (tp—s)o?(s)ds— o0, ast—tp.
t1

Hence, Ltl (tg —s)o?(s)ds converges. Thus we have (5.24).

We now estimate A; and p from the representation of 7. Integrating (5.4) together
with (5.23) yields

(tg—t)?

(urug)(t) = 22l o

Substituting this representation and (5.23) into (5.8), (5.9), and (5.12) yields

thBBZI()tU(S)dS 1
B A )
(tg—1t) (tg—1)

Ar(t) =
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+2 2 [to(s)ds 1
M) =B —o(t),
(tp—t) (ts—1)
and
Ap2th 4 [fo(s)ds 48" (t
p(t): 7Y Be 0 + ()+Cb~
k(tp—t)* k
These representations, together with (5.24), imply (c) of (ii) in Theorem 1.2. d

We close this section by providing a specific example with p=gq.

EXAMPLE 5.1. Recall that

e [ ke _ :A4,o—)\1,0
1 p=q B .

Let A3 9= MA4,0. Then, we have that
kpo=1, &' (t)=—w?

from (5.19) and (5.20), respectively. Furthermore, we can obtain an explicit formula
for n by solving (5.22):

n(t) =wtan (wt —arctan </\170+/\470)> '

2w

The mazimum interval of existence follows from the domain of n:

7/2+ arctan (%)

tp
w

Then, integrating (5.4) yields

(Mot Aa0 ? 9 A1,0+ A0
(U1U4)(t)—<(2w> —|—1> cos” | wt —arctan 5% .

Finally, we deduce from (5.8), (5.9), and (5.12) that

A A
SO VR A—— <wt_arctan (*))
2w
A A
—wtan (wt arctan <1’0+4’0>) ,
2w

A A
Ag=Ag= % sec? (wt —arctan (M)>
(A1,0+>\4,0> +1 2w

2w

A
—wtan <wt— arctan (I’O—‘_M’O>) ,
2w

A A
p= Po 5 sec’ (wt— arctan <10+40)> .
< A1,0+A4,0 2 2w
ey

2w
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