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NECESSARY CONDITIONS FOR BLOW-UP SOLUTIONS
TO THE RESTRICTED EULER–POISSON EQUATIONS∗

HAILIANG LIU† AND JAEMIN SHIN‡

Abstract. In this work, we study the behavior of blow-up solutions to the multidimensional
restricted Euler–Poisson equations which are the localized version of the full Euler–Poisson system. We
provide necessary conditions for the existence of finite-time blow-up solutions in terms of the initial
data, and describe the asymptotic behavior of the solutions near blow-up times. We also identify a rich
set of the initial data which yields global bounded solutions.
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1. Introduction and main results
In this paper, we consider the following ordinary differential equation (ODE) system

λ′
i=−λ2

i +
k

n
(ρ−cb), i=1,2, ·· · ,n, t>0, (1.1a)

ρ′=−ρλ, λ=
n∑

i=1

λi, (1.1b)

ρ(0)=ρ0>0, λi(0)=λi,0, (1.1c)

where ′ is the derivative in time t, k,cb are positive parameters, and n≥2 is an integer.
This system proposed in [15] is a localized version of the Euler–Poisson equations, hence
called the restricted Euler–Poisson (REP) system in the literature. We assume that the
initial data for λi are real and satisfy the order condition

λ1,0= ·· ·=λJ,0<λJ+1,0≤···≤λn,0. (1.1d)

Here, we introduce a quantity 1≤J ≤n with which we characterize the number of the
initial λi coinciding with λ1,0. The order of λi’s is known to be preserved (see [14, 15]
and Lemma 2.1). The purpose of this work is to identify necessary conditions for the
existence of blow-up solutions to this REP system, and study the detailed solution
behavior near the blow-up time.

To understand the physical meaning of each term, we recall the full Euler–Poisson
equations for the velocity field u and local density ρ,

ut+u ·∇u=k∇∆−1(ρ−cb), x∈Rn, t>0, (1.2a)

ρt+∇·(ρu)=0, (1.2b)

where the constant k represents a repulsive (k>0) or attractive (k<0) force, and cb
denotes the background state. This system (1.2) describes the dynamic behavior of
several important physical flows, including those for semi-conductors, plasma physics,
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and the collapse of stars (see [2,3,8,11,18,19]). The existence and behaviors of solutions
for (1.2) and related problems have been extensively studied under various assumptions;
see, e.g., [5, 6, 9, 12, 21] and references therein. In particular, in [15], Liu and Tadmor
introduced the method of spectral dynamics, which serves as a powerful tool to study
dynamics of the velocity gradient M =∇u along particle paths. Indeed, (1.2) can be
converted into

M ′=−M2+kR[ρ−cb],

ρ′=−ρtrM,

where ′ is the convective derivative, ∂t+u ·∇, and R is the Riesz matrix operator,

R[f ] :=∇⊗∇∆−1[f ].

It is the global nature of the Riesz matrix, R[ρ−cb], which makes the issue of regularity
for Euler–Poisson equations such an intricate question to solve, both analytically and
numerically. In this paper we focus on the REP equation for M which was proposed
in [15] by restricting attention to the local isotropic trace, k

n (ρ−cb)In×n, of the global
coupling term kR[ρ−cb] , i.e.,

M ′=−M2+
k

n
(ρ−cb)In×n, (1.3a)

ρ′=−ρtrM. (1.3b)

This is a matrix Ricatti equation for the n×n matrix M , coupled with the density
equation, which should mimic the dynamics of (ρ,∇u) in the full Euler–Poisson equa-
tions. The REP system (1.1) for the eigenvalue λi of M follows from (1.3). We note
that the REP system [15] is to the full Euler–Poisson equations what the restricted
Euler (RE) model is to the full Euler equations, while the RE system is known to be
useful in understanding the local topology of the Euler dynamics; we refer the reader
to [1, 4, 7, 22].

The existence of a critical threshold phenomenon associated with this 2D REP
model with zero background, cb=0, was first identified in [15]. A precise description of
the critical threshold for the 2D REP system, with both zero and nonzero background
charges, was given in [16]. These results have been extended to multi-dimensional REP
equations by Lee and Liu in [14]. Lee identified upper-thresholds for finite time blow-up
solutions to an improved REP equation in two dimensions ([13]). It is worth mentioning
that critical thresholds for restricted Euler equations were studied in [17] and [20].

In this work, we attempt to advance our understanding of the critical threshold
phenomenon by providing necessary conditions for the existence of finite-time blow-
up solutions to the REP system (1.1). Our results thus provide a complement to the
existing results in [13,15,16] for REP systems.

In order to see the subtleness of the problem, we recall that a movable essential
singularity cannot be achieved for a first-order scalar differential equation u′=F (t,u),
as long as F is a rational function of u with coefficients that are algebraic functions of
t ([10]). However, this is not the case for the system of equations considered here. In
other words, the singularity types of solutions λ and ρ of (1.1) are not known a priori.
This is one of the main difficulties with this problem, because we cannot simply utilize
some balance equations to analyze the behavior of solutions near a singular point. To
overcome this difficulty, we transform the Riccati-type equations (1.1a) into second-
order linear differential equations for

ui(t)= e
∫ t
0
λi(s)ds.
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By analyzing the general solution to the second-order differential equation, we are able
to reveal the behavior of ui, which also provides information on the behavior of λ′

i.
Indeed, we can characterize the asymptotic behaviors of λi and ρ near the blow-up time
by the gap of the initial data λi,0 together with ρ0.

The quantity J defined in (1.1d) is critical in terms of different solution behaviors
of λi. We state our main results in the following.

Theorem 1.1. Suppose that the maximum interval of existence for (1.1) is [0,tB) for
some 0<tB <∞. Then

1≤J ≤ n

2
and (1.4)

tB ≥ 1

ω
arctan

(
λ1,0

ω

)
+

π

2ω
, ω :=

√
kcb/n. (1.5)

Moreover,

lim
t→t−B

λi(t)=−∞, 1≤ i≤J, (1.6a)

lim
t→t−B

λi(t)=∞, J <i≤n, (1.6b)

lim
t→t−B

ρ(t)=∞, (1.6c)

and also

lim
t→t−B

λ1(t)e
∫ t
0
λ1(s)+λn(s)ds=−p, (1.7a)

lim
t→t−B

λn(t)e
∫ t
0
λ1(s)+λn(s)ds= q, (1.7b)

for some 0≤ q≤p.

Remark 1.1. An interesting feature of the behavior of λi is that λi diverge to −∞ if
and only if λi,0=λ1,0 and all the other λi diverge to +∞. Moreover, J cannot exceed
n/2 and in the case of J ≥3, J is strictly smaller than n/2; see Theorem 1.2. The limits
in (1.7) indicate how λi are connected through p and q, which are mainly characterized
by the gap of the initial data λi,0 together with ρ0.

Our second theorem gives the detailed blow-up rates of solutions. We note that
λi(t)=λ1(t) for 1≤ i≤J (see Lemma 2.1).

Theorem 1.2. Under the hypothesis in Theorem 1.1, the blow-up rates of singular
solutions depend on the size of J , and can be made more precise as follows:

(i) If J =1, then n≥2 and

lim
t→t−B

(tB− t)λ1(t)=−1,

λi(t)=O(| ln(tB− t)|) as t→ t−B , 2≤ i≤n,

ρ(t)=O
( 1

tB− t

)
as t→ t−B .

(ii) If J =2, then n≥4 and one of the following cases must hold:
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(a) If n≥5, then

lim
t→t−B

(tB− t)λ1(t)=−1,

lim
t→t−B

(tB− t)λi(t)=0, lim
t→t−B

∫ t

0

λi(s)ds=∞, 3≤ i≤n,

ρ(t)=o

(
1

(tB− t)2

)
as t→ t−B .

(b) If n=4 and (λ1,0−λ3,0)(λ1,0−λ4,0)=:A0>kρ0, then

lim
t→t−B

(tB− t)λ1(t)=−1

2
− 1

2

√
A0

A0−kρ0
,

lim
t→t−B

(tB− t)λi(t)=−1

2
+

1

2

√
A0

A0−kρ0
, i=3,4,

ρ(t)=O
( 1

(tB− t)2

)
as t→ t−B .

(c) If n=4 and A0=kρ0, then there exists C>0 such that

lim
t→t−B

(tB− t)2λ1(t)=−C,

lim
t→t−B

(tB− t)2λi(t)=C, i=3,4,

lim
t→t−B

(tB− t)4ρ(t)=
k

4
C2.

(iii) If J ≥3, then n>2J and there exists C>1 such that

lim
t→t−B

(tB− t)λ1(t)=−C,

lim
t→t−B

(tB− t)λi(t)=C−1, J+1≤ i≤n,

ρ(t)=O
( 1

(tB− t)2

)
as t→ t−B .

Remark 1.2. Note that for each J specified in different cases, n has to be in a certain
range so as to fulfill the requirement that the maximum interval of existence for (1.1)
be finite.

In contrast to the finite-time breakdown, the multi-dimensional REP equations
admit a large class of global bounded solutions. Our results are summarized below.

Theorem 1.3. If

J >
n

2
,

or

J ≥3 and J =
n

2
,

then (1.1) has a global bounded solution.
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This has improved upon some global existence results in [14], in particular Theorem
2.3 (corresponding to n=3,J =3) and Theorem 2.9 (corresponding to J =n) therein.

The remainder of this paper is organized as follows. In Section 2, we first show that
no highly oscillating solution exists (see (2.2) for the definition of a highly oscillating
solution). That is, we show that ρ and |λi| diverge to ∞ for some i when (1.1) admits
a finite-time blow-up solution. We also provide a proof of (1.5). In Section 3, we
transform (1.1a) to a second-order linear differential equation, and demonstrate the
solution behaviors of (1.7). To prove Theorem 1.2 using (1.7), we consider the subcases

p>q and p= q.

We study the case with p>q in Section 4. Here, we show that the coefficients of leading
singular order terms for λ1 and λn can be represented as −p/(p−q) and q/(p−q),
respectively. We also conclude that this case yields (i), (a) and (b) of (ii), or (iii) in
Theorem 1.2. The last section deals with the case where p= q, which implies (c) of (ii)
in Theorem 1.2. The main difficulty in this case lies in that the leading singular terms of
−λ1 and λn are the same. For this reason, we have examined the second singular terms.
We also provide explicit solutions to the REP system (1.1) assuming that λ3,0=λ4,0.
We remark that (1.4) and (1.6) follow from Theorem 1.2.

Notation 1.1. Throughout the paper we write

f(x)=O(g(x)) as x→x−
0 ,

if there are M,δ>0 such that

|f(x)|≤M |g(x)| for all x0−x<δ.

Similarly, we write

f(x)=o(g(x)) as x→x−
0 ,

if for any ε>0 there is δ>0 such that

|f(x)|≤ ε|g(x)| for all x0−x<δ.

2. Non-oscillating solutions
Suppose that [0,tB) is the maximum interval of existence of solutions to an ordinary

differential equation (ODE) u′=F (t,u). Then, either

lim
t→t−B

|u(t)|=∞, (2.1)

or

0< limsup
t→t−B

u(t)− liminf
t→t−B

u(t). (2.2)

Here, we define ∞−∞=0. We say that a solution blows up at a finite time if it satisfies
(2.1), and is oscillating at a finite time if it satisfies (2.2). Note that u(t) satisfying (2.1)
may be oscillating in the standard sense, i.e., u(t)→∞ but u′(t)≯0 (or u(t)→−∞ but
u′(t)≮0).

For the REP system (1.1), we can prove that there exist no finite-time oscillating
solutions. More precisely, the following proposition holds.
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Proposition 2.1. Suppose that the maximum interval of existence for (1.1) is [0,tB)
for some 0<tB <∞. Then, it holds for some i that

lim
t→t−B

|λi(t)|=∞. (2.3)

Proof. If λi is assumed to be an oscillating solution of type (2.2), then there exists
a sequence of disjoint intervals (am,bm)⊂ (0,tB) on which λi is decreasing and

lim
m→∞

(bm−am)=0, (2.4)

lim
m→∞

(λi(bm)−λi(am))<0, (2.5)

lim
m→∞

(|λi(bm)|+ |λi(am)|)<∞. (2.6)

Note that if (2.6) fails, then one can conclude that limt→tB |λi(t)|=∞, although λi is
oscillating in the standard sense.

From (1.1b)

ρ=ρ0e
−
∫ t
0
λ(s)ds>0.

It follows from (1.1a) that

λ′
i≥−λ2

i −ω2, ω :=

√
kcb
n

.

That is,

λ′
i

λ2
i +ω2

≥−1. (2.7)

Upon integration over (am,bm), this implies that

1

ω
arctan

(λi(bm)

ω

)
− 1

ω
arctan

(λi(am)

ω

)
≥−(bm−am).

Owing to the conditions (2.5) and (2.6), the left-hand side is strictly less than 0, while
the right-hand side converges to 0. Thus, there exist no oscillating solutions of type
(2.2) for λi.

The order-preserving property of λi is well known (see [14, 15]). Indeed, it follows
from (1.1a) that

(λi−λj)
′=−(λi+λj)(λi−λj), (2.8)

and this yields the following lemma.

Lemma 2.1. For any t>0, the solutions λi of (1.1) satisfy

λ1(t)= ·· ·=λJ(t)<λJ+1(t)≤···≤λn(t).

Proposition 2.1 states that lim
t→t−B

|λi(t)|=∞ for some i. Then, one can conclude that

lim
t→t−B

λ1(t)=−∞,
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owing to Lemma 2.1 concerning order preservation. In fact, if we assume that there
exists no λi diverging to −∞, then λj tends to +∞ for some j as t→ t−B , so does
λ=

∑n
i=1λi. Thus,

min
0≤t≤tB

λ(t)>−∞,

and

λ′
j(t)=−λ2

j (t)+
kρ0
n

e−
∫ t
0
λ(s)ds−ω2

≤ kρ0
n

e
−tB min

0≤t≤tB
λ(t)

−ω2<∞,

which contradicts the fact that λj →∞ as t→ t−B . Thus, it must hold that limt→t−B
λi(t)=

−∞ for some i. Owing to the order preservation in Lemma 2.1, the following proposition
holds.

Proposition 2.2. Suppose that the maximum interval of existence for (1.1) is [0,tB)
for some 0<tB <∞. Then, there exist 1≤J1≤J2≤n such that

lim
t→t−B

λi(t)=−∞, 1≤ i≤J1, (2.9)

lim
t→t−B

λi(t)=∞, J2<i≤n. (2.10)

We remark that there exists no λi satisfying (2.10) in the case that J2=n. However,
(2.9) indicates that

lim
t→t−B

λ1=−∞.

The estimation (1.5) of tB also follows immediately. Integrating (2.7) for i=1 over
(0,t) yields that

arctan
(λ1(t)

ω

)
>arctan

(λ1,0

ω

)
−ωt.

Sending t to tB implies that

−π

2
≥arctan

(λ1,0

ω

)
−ωtB .

Thus, we obtain (1.5) in Theorem 1.1.

Theorem 2.1. Suppose that the maximum interval of existence for (1.1) is [0,tB) for
some 0<tB <∞. Then,

tB ≥ 1

ω
arctan

(
λ1,0

ω

)
+

π

2ω
.

Next, we turn our attention to density ρ. Here, we show that ρ /∈L1(0,tB) through
a contradiction argument. Assuming that ρ∈L1(0,tB), we find that J2=n, because
integrating (1.1a) gives that for i=1,2, ·· · ,n

λi(t)−λi,0=−
∫ t

0

λ2
i (s)ds+

k

n

∫ t

0

(ρ(s)−cb)dx<∞.
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It follows that J1=n or λi is finite for J1<i≤n. Thus, there exists f(t) such that

ρ(t)=ρ0e
−
∫ t
0
λ(s)ds=f(t)e−

∑J1
i=1

∫ t
0
λi(s)ds, 0<f(t)<∞. (2.11)

Now, let 1≤ i≤J1. Then, there exists t1∈ (0,tB) such that

λi(t)<0, t1<t<tB ,

and λ̃i :=λi−ω satisfies

λ̃′
i=λ′

i>−λ2
i −ω2>−λ̃2

i .

We then deduce that

λ̃i<− 1

tB− t
, t1<t<tB .

Thus, for some constant K>0 it holds that

−
J1∑
i=1

∫ t

0

λi(s)ds> ln(K(tB− t)−J1), t1<t<tB .

Substituting the inequality into (2.11) yields

ρ(t)=f(t)e−
∑J1

i=1

∫ t
0
λi(s)ds>

Kf(t)

(tB− t)J1
, t1<t<tB .

In Proposition 2.2, we have shown J1≥1, which contradicts the assumption that ρ∈
L1(0,tB). We summarize this result as follows.

Proposition 2.3. Suppose that the maximum interval of existence for (1.1) is [0,tB)
for some 0<tB <∞. Then,

lim
t→t−B

∫ t

0

ρ(s)ds=∞. (2.12)

3. Transformed equations
Although Proposition 2.2 and Proposition 2.3 state that for some i, λi and

∫ t

0
ρ(s)ds

diverge as t→ t−B , respectively, they do not illuminate the behaviors of λ′
i and ρ near tB ,

which are essential for analyzing solution singularities. To go further, we transform the
Riccati-type equation (1.1a) to a second-order linear differential equation by defining

ui(t)= e
∫ t
0
λi(s)ds. (3.1)

This gives

λi=
u′
i

ui
,

ui(0)=1, u′
i(0)=λi,0, (3.2)

and

ρ(t)=ρ0e
−
∑n

i=1

∫ t
0
λi(s)ds=ρ0

n∏
i=1

1

ui(t)
. (3.3)
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Equation (1.1a) is also transformed to

u′′
i −

k

n
(ρ−cb)ui=0, (3.4)

or (recall that ω2=kcb/n)

u′′
i +ω2ui=

k

n
ρ0

n∏
m=1
m ̸=i

1

um
=:gi. (3.5)

The general solution of (3.5) is thus given by

ui(t)= c1 sinωt+c2 cosωt+
1

ω

∫ t

0

gi(s)sinω(t−s)ds. (3.6)

We proceed to observe the behavior of ui near tB . Let 1≤ i≤J1, i.e.,

λi=
u′
i

ui
→−∞ as t→ t−B , (3.7)

then the positivity of ui implies that u′
i<0, and thus ui converges. Let −αi≤0 be the

least upper bound of u′
i. Then, for any ε>0 there exists t0∈ (0,tB) such that

−αi−ε<u′
i(t0)≤−αi.

On the other hand, it follows from (3.4) that for any t0<t<tB ,

u′
i(t)−u′

i(t0)=

∫ t

t0

k

n
(ρ(s)−cb)ui(s)ds. (3.8)

Owing to Proposition 2.3 and the convergence of ui, there exists t1∈ (t0,tB) such that

u′
i(t)−u′

i(t0)=

∫ t

t0

k

n
(ρ(s)−cb)ui(s)ds>0, t1≤ t<tB

and

−αi−ε<u′
i(t0)<u′

i(t)≤−αi, t0≤ t1≤ t<tB .

This implies that

lim
t→t−B

u′
i(t)=−αi, (3.9)

and thus ui converges to 0 as t approaches tB , satisfying (3.7). We may extend the
interval of existence and obtain the boundary conditions:

ui(tB)=0, u′
i(tB)=−αi. (3.10)

It follows from (3.6) that

ui(t)=
1

ω

(∫ t

tB

gi(s)sinω(t−s)ds−αi sinω(t− tB)

)
. (3.11)
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In (3.8), we observe that

gi=
k

n
ρ0

n∏
m=1
m ̸=i

1

um
=

k

n
ρui∈L1(0,tB). (3.12)

Next we consider the case that J2<j≤n; that is,

λj =
u′
j

uj
→∞. (3.13)

Because uj >0, u′
j must be positive in a neighborhood of tB , which implies that uj is

increasing near tB . Thus,

either lim
t→t−B

uj(t)=∞ or lim
t→t−B

uj(t)=βj (3.14)

for some βj >0. In either case, u′
j must diverge to ∞, owing to (3.13).

Thanks to the behavior of ui near tB , we obtain the following lemma.

Lemma 3.1. Suppose that the maximum interval of existence for (1.1) is [0,tB) for
some 0<tB <∞. Then, for 1≤J1≤J2≤n defined in Proposition 2.2

λi,0=λj,0, 1≤ i,j≤J1,

λi(t)=λj(t), 1≤ i,j≤J1,

and

lim
t→t−B

λi(t)

λj(t)
=1, J2<i,j≤n,

lim
t→t−B

uj(t)

un(t)
=

λj,0−λ1,0

λn,0−λ1,0
, J2<j<n.

Proof. We employ Abel’s identity for (3.4) together with the initial conditions
(3.2) to obtain

u′
i(t)uj(t)−ui(t)u

′
j(t)=λi,0−λj,0, 0≤ t<tB . (3.15)

Let 1≤ i,j≤J1. Because ui(tB)=uj(tB)=0 and u′
i(tB),u

′
j(tB) are bounded, the left-

hand side of (3.15) vanishes at t= tB , and thus λi,0=λj,0, as desired.
We rewrite (3.15) as

λi(t)−λj(t)=
u′
i(t)

ui(t)
−

u′
j(t)

uj(t)
=

λi,0−λj,0

ui(t)uj(t)
. (3.16)

This yields

lim
t→t−B

λi(t)

λj(t)
=1, J2<i,j≤n,

because 1/(uiuj) converges for J2<i,j≤n.
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From (3.15) we observe that u1 and un are linearly independent solutions of (3.4).
Then, for J2<j<n we can represent uj as a linear combination of u1 and un. Further
using the initial conditions (3.2), we obtain

uj =
λn,0−λj,0

λn,0−λ1,0
u1+

λj,0−λ1,0

λn,0−λ1,0
un. (3.17)

On the other hand, the behaviors of u1 and uj near tB in (3.10) and (3.14) imply that

lim
t→t−B

u1(t)/uj(t)=0,

and it follows that

lim
t→t−B

uj(t)

un(t)
=

λj,0−λ1,0

λn,0−λ1,0
, J2<j<n.

Further, we are able to show that J1=J2=J . That is, there don’t exist bounded
λi. More precisely, we have

Theorem 3.1. Suppose that the maximum interval of existence for (1.1) is [0,tB) for
some 0<tB <∞. Then,

1≤J <n

and

lim
t→t−B

λi(t)=

{
−∞, 1≤ i≤J,

∞, J <i≤n.

Proof. From Lemma 3.1 it follows that J =J1 and also J =J1<n; otherwise, all
λi,0 would be identical, and this implies the existence of a global solution (see Theorem
2.9 in [14]).

Now we show J1=J2 by a contradiction argument. Indeed, if it is assumed that
J1<J2, then there exists |λi|<∞ for J1<i≤J2. It follows that for all 0<t<tB ,∫ t

0

ρ(s)ds=

∫ t

0

[
cb+

n

k
(λ′

i(s)+λ2
i (s))

]
ds<∞,

which contradicts Proposition 2.3.

Theorem 3.1 implies that for i=1, ·· · ,J and j=J+1, ·· · ,n, u′
i=u′

1<0 and u′
j >0

in a neighborhood of tB . Because u1,uj >0, we observe from (3.15) that u′
1uj and u1u

′
j

should be bounded in [0,tB ]. Furthermore, it follows from (3.16) that u1uj converges
to 0.

Corollary 3.1. Let tB and J be as in Theorem 3.1, and uj as in (3.1). Then, for
any J <j≤n,

|u′
1(t)uj(t)|<∞, 0≤ t<tB ,

|u1(t)u
′
j(t)|<∞, 0≤ t<tB ,

and

lim
t→t−B

(u1uj)(t)=0. (3.18)
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Now, we may divide (3.10) and (3.14) into the following cases, assuming that J <
j≤n:

u′
1(tB)=−α1<0 and lim

t→t−B

uj(t)=∞, (3.19)

u′
1(tB)=0 and lim

t→t−B

uj(t)=βj >0, (3.20)

u′
1(tB)=−α1<0 and lim

t→t−B

uj(t)=βj >0,

u′
1(tB)=0 and lim

t→t−B

uj(t)=∞.

However, (3.19) and (3.20) cannot occur. Indeed, (3.19) contradicts the boundedness
of u′

1uj in Corollary 3.1. If (3.20) is assumed, then u′
1uj →0, and thus u1u

′
j →−λ1,0+

λj,0>0 as t approaches tB . It follows that, in a neighborhood of tB ,

(u1uj)
′>0.

This also contradicts Corollary 3.1, owing to (3.18) and the fact that u1uj >0. Thus,
we have the following proposition.

Proposition 3.1. Suppose that the maximum interval of existence for (1.1) is [0,tB)
for some 0<tB <∞. Define uj as (3.1). If J <j≤n, then either

u′
1(tB)=−α1 and lim

t→t−B

uj(t)=βj for some α1,βj >0, (3.21)

or

u′
1(tB)=0 and lim

t→t−B

uj(t)=∞ (3.22)

must hold.

Next, we demonstrate the convergence of u′
1uj and u1u

′
j for J <j≤n. If (3.21)

holds in Proposition 3.1, then the convergence follows from (3.15). In the case of (3.22),
we show the convergence through several lemmas.

Lemma 3.2. Under the hypothesis of Proposition 3.1, for any t∈ [0,tB)∣∣∣∣∫ t

0

u′
1(s)u

′
j(s)+g1j(s)ds

∣∣∣∣<∞,

where

gij :=
k

n
ρuiuj .

Proof. From (3.5), we deduce that

u′′
1uj+ω2u1uj =g1j .

Integrating this equation over [0,t] yields

u′
1(t)uj(t)−λ1,0+

∫ t

0

ω2u1(s)uj(s)ds=

∫ t

0

u′
1(s)u

′
j(s)+g1j(s)ds. (3.23)
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Then, the lemma follows from Corollary 3.1.

Lemma 3.3. Under the hypothesis of Proposition 3.1,∫ t

0

u′
1(s)u

′
j(s)+g1j(s)ds

converges as t→ t−B.

Proof. If (3.21) holds in Proposition 3.1, then the lemma immediately follows
from (3.23) and (3.18).

In the case of (3.22), from (3.11) and (3.6) we have that

u′
1(s)=

∫ s

tB

g1(τ)cosω(s−τ)dτ,

u′
j(s)=λj0 cosωs−ω sinωs+

∫ s

0

gj(τ)cosω(s−τ)dτ,

and ∫ t

0

u′
1(s)u

′
j(s)ds=

∫ t

0

[∫ s

tB

g1(x)cosω(s−x)dx(λj0 cosωs−ω sinωs)

]
ds

+

∫ t

0

[∫ s

tB

g1(x)cosω(s−x)dx

∫ s

0

gj(y)cosω(s−y)dy

]
ds

=: I+II.

We notice that d
dtI→0 as t→ t−B , because g1∈L1(0,tB). It follows that I also converges.

Thus, it suffices to show that

h(t) := II+

∫ t

0

g1j(s)ds

converges.
Changing the order of integration yields

II=

∫ t

0

∫ y

tB

g1(x)gj(y)

(
1

2ω
sinω(x−y)+

x−y

2
cosω(x−y)

)
dxdy

and the integral representation of u1, (3.11), yields∫ t

0

g1j(y)dy=

∫ t

0

gj(y)u1(y)dy

=

∫ t

0

∫ y

tB

gj(y)g1(x)
1

ω
sinω(y−x)dxdy.

We combine the two equations to obtain

h(t)=
1

2ω

∫ t

0

∫ y

tB

g1(x)gj(y)[ω(x−y)cosω(x−y)−sinω(x−y)]dxdy.

Now, take 0<t0<tB such that

ω(tB− t0)<
π

2
.
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Then, for t0≤ t<tB ,

h(t)=
1

2ω

∫ t

t0

∫ y

tB

g1(x)gj(y)[ω(x−y)cosω(x−y)−sinω(x−y)]dxdy+h(t0)

is a decreasing function, as the integrand h′(t) is negative over the domain (t0,tB).
Furthermore, we observe from Lemma 3.2 and the convergence of I that

h(t)=

(∫ t

0

u′
1(s)u

′
j(s)ds+

∫ t

0

g1j(s)ds

)
−I

is bounded. It follows that h(t) converges as t→ t−B , as desired.

We proceed to show the convergence of u′
1uj and u1u

′
j , which gives (1.7) in Theorem

1.1.

Theorem 3.2. Suppose that the maximum interval of existence for (1.1) is [0,tB) for
some 0<tB <∞. Define uj as (3.1). If J <j≤n, then there exist 0≤ qj ≤pj such that

lim
t→t−B

u′
1(t)uj(t)=−pj , lim

t→t−B

u1(t)u
′
j(t)= qj

Proof. The convergence of u′
1uj follows from Lemma 3.3 together with (3.23), and

the convergence of u1u
′
j follows from (3.15).

Clearly, pj ,qj ≥0 and pj+qj =−(λ1,0−λj,0), by (3.15). Furthermore, one can show
that 0≤ qj ≤pj . Suppose that pj <qj . Then, there exists t1∈ (0,tB) such that if t1<
t<tB , then

λj(t)

−λ1(t)
>1

and

λ′
j(t)=−λ2

j (t)+
k

n
(ρ(t)−cb)<−λ2

1(t)+
k

n
(ρ(t)−cb)=λ′

1(t).

Integration over [t1,t] yields

λj(t)−λj(t1)<λ1(t)−λ1(t1)

which contradicts the fact that λ1→−∞ and λj →+∞.

From now on, we let p and q denote pn and qn, respectively. Then from Theorem
3.2 either

p>q

or

p= q

must hold. We investigate the solution behaviors stated in Theorem 1.2 by considering
these cases in the following two sections. Indeed, we obtain (c) of (ii) in Theorem 1.2
by assuming that p= q, and all the other cases follow from p>q.
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4. The case p>q
In this section, we describe the behaviors of blow-up solutions of (1.1) assuming

that

p>q.

We first state a technical lemma.

Lemma 4.1. Suppose that a function R(t) defined in [0,tB) satisfies

(tB− t)R(t)→0 as t→ t−B .

Then,

lim
t→t−B

(tB− t)

∫ t

0

R2(s)ds=0,

lim
t→t−B

(tB− t)

∫ t

0

1

tB−s
R(s)ds=0.

Furthermore, for any 0<ε<1 there exists M>0 such that

(tB− t)ε

M
<e−

∫ t
0
R(s)ds<

M

(tB− t)ε
. (4.1)

Proof. The first two limits follow from L’Hôpital’s rule. Let 0<ε<1. Then,
because lims→t−B

(tB−s)R(s)=0, there exists t1∈ (0,tB) such that for all t1<s<tB ,

(tB−s)|R(s)|<ε.

Then, for t>t1, ∣∣∣∣∫ t

0

R(s)ds

∣∣∣∣≤∫ t

0

(tB−s)|R(s)| 1

tB−s
ds

<ε

∫ t

t1

1

tB−s
ds+

∫ t1

0

|R(s)|ds

≤−ε ln(tB− t)+C,

for some constant C that is independent of t. With M = eC it follows that

(tB− t)ε

M
<e−

∫ t
0
R(s)ds<

M

(tB− t)ε
.

Because of (3.18) and Theorem 3.2, we set (u1un)(tB)=0 and (u1un)
′(tB)=−p+

q<0. Then, for some η(t) such that

η(tB)=0, η′(tB)=0, (4.2)

it holds that

(u1un)(t)=(p−q)(tB− t)+η(t).
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It follows that

λ1(t)−λn(t)=
λ1,0−λn,0

(u1un)(t)
=

λ1,0−λn,0

(p−q)(tB− t)+η(t)
=

−p−q

(p−q)(tB− t)+η(t)
,

λ1(t)+λn(t)=
(u1un)

′(t)

u1un(t)
=

−(p−q)+η′(t)

(p−q)(tB− t)+η(t)
.

Hence,

λ1(t)=
−p+η′(t)/2

(p−q)(tB− t)+η(t)
,

λn(t)=
q+η′(t)/2

(p−q)(tB− t)+η(t)
.

Owing to (4.2) we have the following forms:

λ1(t)=
−p

p−q

1

tB− t
+R1(t),

λn(t)=
q

p−q

1

tB− t
+Rn(t),

where Rj(t) (j=1,n) satisfies limt→t−B
Rj(t)(tB− t)=0.

Let

λj(t)=
ξj

tB− t
+Rj (j=1,n),

with

ξ1 :=
−p

p−q
, ξn :=

q

p−q
. (4.3)

Substituting this into the main equation (1.1a) yields

R′
j(t)=−

ξ2j +ξj

(tB− t)2
−R2

j (t)−
2ξj

tB− t
Rj(t)+

kρ0
n

e−
∫ t
0
λ(s)ds−ω2. (4.4)

Integrating over (0,t) and multiplying by (tB− t) give

(tB− t)Rj(t)=−(ξ2j +ξj)−(tB− t)

∫ t

0

[
R2

j (τ)+
2ξj

tB−τ
Rj(τ)

]
dτ

+
kρ0
n

(tB− t)

∫ t

0

e−
∫ τ
0
λ(s)dsdτ

+(tB− t)

[
ξ2j +ξj

tB
−ω2t+Rj(0)

]
.

Because (tB− t)
∫ t

0

[
R2

j (τ)+2ξjRj(τ)/(tB−τ)
]
dτ converges to 0 as t→ t−B by Lemma

4.1, we obtain the following quadratic equation for ξ:

ξ2+ξ− kρ0
n

lim
t→t−B

(tB− t)

∫ t

0

e−
∫ τ
0
λ(s)dsdτ =0. (4.5)
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Here, ξ= ξ1,ξn, for which the limit in (4.5) must exist.
Owing to Lemma 3.1 together with Theorem 3.1, we have that

λi(t)=
ξ1

tB− t
+Ri(t), Ri(t)=R1(t), 1≤ i≤J, (4.6)

λi(t)=
ξn

tB− t
+Ri(t), J <i≤n, (4.7)

where limt→t−B
(tB− t)Ri(t)=0 for all 1≤ i≤n. It follows that

λ(t)=
−pJ+q(n−J)

p−q

1

tB− t
+

n∑
i=1

Ri(t)=
γ

tB− t
+R(t), (4.8)

where

γ :=
−pJ+q(n−J)

p−q
, (4.9)

R(t) :=
n∑

i=1

Ri(t), lim
t→t−B

(tB− t)R(t)=0.

Now, we evaluate the limit in (4.5) as follows. Note that∫ t

0

e−
∫ τ
0
λ(s)dsdτ = t−γ

B

∫ t

0

(tB−τ)γe−
∫ τ
0
R(s)dsdτ. (4.10)

If follows from (4.1) that for any 0<ε<1, there exists M>0 such that

tB− t

M

∫ t

0

(tB−τ)γ+εdτ < (tB− t)

∫ t

0

(tB−τ)γe−
∫ τ
0 R(s)dsdτ <M(tB− t)

∫ t

0

(tB−τ)γ−εdτ.

Assume that γ+2<0. Then, the lower bound

−1

M(γ+1+ε)

[
(tB− t)γ+2+ε− tγ+1+ε

B (tB− t)
]
→+∞ as t→ t−B

by taking ε sufficiently small so that γ+2+ε<0. This is not the case, as the limit in
(4.5) must converge, as previously mentioned. On the other hand, γ+2>0 implies that
the upper bound

−M

γ+1−ε

[
(tB− t)γ+2−ε− tγ+1−ε

B (tB− t)
]
→0 as t→ t−B

by taking ε such that γ+2−ε>0 and γ−ε ̸=−1. This ensures that

ξ2+ξ=0.

It follows that

ξ1=
−p

p−q
=−1, ξn=

q

p−q
=0.

Substituting q=0 into (4.9) together with γ+2>0 then yields

J =1.
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Now, consider the case that γ+2=0. We first claim that

lim
t→t−B

(tB− t)

∫ t

0

(tB−τ)−2e−
∫ τ
0
R(s)dsdτ (4.11a)

= lim
t→t−B

e−
∫ t
0
R(s)ds. (4.11b)

We remark that, in general, the convergence of (4.11a), which we have already verified,
does not guarantee the convergence of (4.11b), because (4.11a) may converge for an

oscillating divergent
∫ t

0
R(s)ds. However, the decay property of R can eliminate this

case. By integration by parts,

lim
t→t−B

(tB− t)

∫ t

0

(tB−τ)−2e−
∫ τ
0
R(s)dsdτ

= lim
t→t−B

[
e−

∫ t
0
R(s)ds− tB− t

tB
+(tB− t)

∫ t

0

(tB−τ)−1e−
∫ τ
0
R(s)dsR(τ)dτ

]
. (4.12)

Recall that (tB− t)R(t)→0 as t→ t−B . Then, there exists t1∈ (0,tB) such that

(tB− t)|R(t)|<1, t1<t<tB ,

and∣∣∣∣(tB− t)

∫ t

0

(tB−τ)−1e−
∫ τ
0
R(s)dsR(τ)dτ

∣∣∣∣ (4.13)

≤ (tB− t)

∫ t1

0

(tB−τ)−1e−
∫ τ
0
R(s)ds|R(τ)|dτ+(tB− t)

∫ t

t1

(tB−τ)−2e−
∫ τ
0
R(s)dsdτ.

(4.14)

Because (4.11a) converges, the second term in (4.14) converges, and thus (4.13) con-

verges as t→ t−B . The convergence of exp
(
−
∫ tB
0

R(s)ds
)

follows from (4.12). Now,

apply L’Hôpital’s rule to obtain (4.11).
Thus, the case with γ+2=0 may be considered as either

lim
t→t−B

(tB− t)

∫ t

0

(tB−τ)γe−
∫ τ
0
R(s)dsdτ = lim

t→t−B

e−
∫ t
0
R(s)ds=0, (4.15)

or

lim
t→t−B

(tB− t)

∫ t

0

(tB−τ)γe−
∫ τ
0
R(s)dsdτ = lim

t→t−B

e−
∫ t
0
R(s)ds=R0>0. (4.16)

For the case that (4.15), a similar argument as that in the case for γ+2<0 yields

ξ1=
−p

p−q
=−1, ξn=

q

p−q
=0,

and

J =2.
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Furthermore, (4.15) implies that

lim
t→t−B

∫ t

0

R(s)ds=∞.

For the case that (4.16), we deduce from (4.5) and (4.10) that

ξ2+ξ− kρ0t
2
BR0

n
=0,

and from (4.9) that

p(J−2)= q(n−J−2).

We divide this into two cases, by taking into account p>q:

J =2, n=4 or

J ≥3, n>2J

In summary, we have the following:

Theorem 4.1. Suppose that [0,tB) be the maximum interval of existence for (1.1).
Define ui as (3.1), and let

lim
t→t−B

u′
1(t)un(t)=−p, lim

t→t−B

u1(t)u
′
n(t)= q.

If p>q, then λi (i=1,2, ·· · ,n) and λ can be represented by (4.6), (4.7), and (4.8).
Moreover, one of the following must hold, where ξ= ξ1, ξn:

(1) J =1 and

ξ2+ξ=0.

(2-a) J =2, limt→t−B

∫ t

0
R(s)ds=∞, and

ξ2+ξ=0.

(2-b) J =2, n=4, limt→t−B
exp(−

∫ t

0
R(s)ds)=R0>0, and

ξ2+ξ− kρ0t
2
BR0

4
=0.

(3) J ≥3, n>2J , limt→t−B
exp(−

∫ t

0
R(s)ds)=R0>0, and

ξ2+ξ− kρ0t
2
BR0

n
=0.

Furthermore, these cases imply (i), (a), (b) of (ii), and (iii) in Theorem 1.2, respec-
tively.

The remainder of the proof of Theorem 4.1 demonstrates the relations between the
cases in Theorem 4.1 and in Theorem 1.2.
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Assuming (1), we immediately have the following representation of λi:

λi(t)=


−1

tB− t
+R1(t), i=1,

Ri(t), 2≤ i≤n,

λ(t)=
−1

tB− t
+R(t), R(t)=

n∑
i=1

Ri(t).

Although lim
t→t−B

(tB− t)Ri(t)=0 for i=1,2, ·· · ,n, we require the integrability of Ri to

obtain (i) in Theorem 1.2. Indeed, this is the case.

Lemma 4.2. Assuming (1) in Theorem 4.1,

λi∈L1(0,tB), i=2, ·· · ,n,

and ∫ tB

0

R1(s)ds=C.

Proof. Let i=2,3, ·· · ,n. Then, we deduce that

λi(t)=−
∫ t

0

λ2
i (s)ds+

kρ0tB
n

∫ t

0

1

tB−s
e−

∫ s
0
R(τ)dτds− kcb

n
t+λi,0 (4.17)

≤
∫ t

0

1

tB−s
e−

∫ s
0
R(τ)dτds+λi,0. (4.18)

Multiplying by (tB− t)1/2 yields

(tB− t)1/2λi(t)≤ (tB− t)1/2
∫ t

0

1

tB−s
e−

∫ s
0
R(τ)dτds+(tB− t)1/2λi,0. (4.19)

Now, we take ε=1/3 in (4.1) to obtain

e−
∫ s
0
R(τ)dτ ≤ M

(tB−s)1/3
.

Then, we observe that the right-hand side of (4.19) converges to 0. Thus,

lim
t→t−B

(tB− t)1/2λi(t)=0,

because λi>0 near tB . This implies that

λi∈L1(0,tB), i=2,3, ·· · ,n. (4.20)

To demonstrate the convergence of
∫ t

0
R1(s)ds, we deduce from (2.8) that

(tB− t)(λ1(t)−λn(t))=(λ1,0−λn,0)tBe
−
∫ t
0
R1(s)+λn(s)ds. (4.21)

Because the left-hand side converges to −1 assuming (1), there exists a constant C1

such that ∫ tB

0

R1(s)+λn(s)ds=C1, (4.22)
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and thus (4.20), λn∈L1(0,tB), yields∫ tB

0

R1(s)ds=C.

Lemma 4.2 enhances the estimate (4.1) as

0< lim
t→t−B

e−
∫ t
0
R(s)ds<∞.

Immediately, we obtain

ρ(t)=O
( 1

tB− t

)
as t→ t−B .

Furthermore, it follows from (4.18) that λi is at most O(ln(tB− t)) for i=2,3, ·· · ,n.
Then, λi∈L2(0,tB), and applying (4.17) again yields

λi(t)=O(ln(tB− t)) i=2,3, ·· · ,n.

This shows that (1) implies (i) in Theorem 1.2.
In the case of (2-a) in Theorem 4.1,

λi(t)=


−1

tB− t
+Ri(t), i=1,2,

Ri(t), 3≤ i≤n,

λ(t)=
−2

tB− t
+R(t), R(t)=

n∑
i=1

Ri(t), R1(t)=R2(t).

Now, let 3≤ i≤n. Then, similar to the derivation of (4.22), we have that∫ tB

0

R1(s)+λi(s)ds=Ci. (4.23)

If
∫ t

0
λi(s)ds is assumed to converge, then

∫ t

0
R1(s)ds, and thus

∫ t

0
R(s)ds converges,

which does not belong to (2-a). Taking into account λi→∞, we must have

lim
t→t−B

∫ t

0

λi(s)ds=∞, i=3,4, ·· · ,n.

Then, (4.23) yields

lim
t→t−B

∫ t

0

R1(s)ds=−∞. (4.24)

Summing (4.23) over i=3,4, ·· · ,n yields that for some constant C,∫ tB

0

R(s)+(n−4)R1(s)ds=C. (4.25)

Because limt→t−B

∫ t

0
R(s)ds=∞ in (2-a), we have that

n≥5,
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and it follows that

ρ(t)=o

(
1

(tB− t)2

)
as t→ t−B .

Hence, we conclude that (2-a) in Theorem 4.1 implies (a) of (ii) in Theorem 1.2.
Now, we consider the case of (2-b). Because the solutions to the characteristic

equation (4.5) are ξ1=−p/(p−q) and ξ4= q/(p−q), it follows that

pq

(p−q)2
=

kρ0t
2
BR0

4
(4.26)

and

λi(t)=


ξ1

tB− t
+Ri(t), i=1,2,

ξ4
tB− t

+Ri(t), i=3,4,

λ(t)=
−2

tB− t
+R(t), R(t)=

4∑
i=1

Ri(t), R1(t)=R2(t).

Note that the representation of λ follows from ξ1+ξ4=−1, and the representation of
λ3 (i.e., ξ3= ξ4) follows from Lemma 3.1. Because limt→t−B

exp(−
∫ t

0
R(s)ds)=R0>0,

we immediately obtain that

ρ(t)=O
( 1

(tB− t)2

)
as t→ t−B .

Similar to (4.21), we deduce that

(tB− t)(λ1(t)−λi(t))=(λ1,0−λi,0)tBe
−
∫ t
0
R1(s)+Ri(s)ds, i=3,4.

Sending t→ t−B and multiplying the two equations for i=3,4 yield that

(p+q)2

(p−q)2
=A0t

2
BR0. (4.27)

Recall that

A0 := (λ1,0−λ3,0)(λ1,0−λ4,0).

Then, we combine (4.26) and (4.27) to obtain

(p−q)2=4
( A0

kρ0
−1
)
pq.

Thus, it must hold that

A0>kρ0. (4.28)

Furthermore, we obtain representations of ξ1 and ξ4 in terms of the given parameters.
Indeed, we have

ξ1=−1

2
− 1

2

√
A0

A0−kρ0
,
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ξ3= ξ4=−1

2
+

1

2

√
A0

A0−kρ0
,

as described in (b) of (ii) in Theorem 1.2.
In the case of (3) in Theorem 4.1, we have that

lim
t→t−B

(tB− t)λ1(t)=
−p

p−q
,

lim
t→t−B

(tB− t)λi(t)=
q

p−q
, J+1≤ i≤n.

The behavior of ρ,

ρ(t)=O
( 1

(tB− t)2

)
as t→ t−B ,

follows from (−pJ+q(n−J))/(p−q)=−2 and exp(−
∫ tB
0

R(s)ds)=R0. This shows that
(3) implies (iii) in Theorem 1.2.

5. The case p=q
In this section, we investigate the blow-up solution behaviors when

p= q

(
=

λn,0−λ1,0

2

)
. (5.1)

As previously noted, understanding the behaviors of λ′
i near tB is essential. One tech-

nique to achieve this is to compare the behaviors of λ2
i and ρ from (1.1a). However, the

main difficulty lies in the fact that the condition (5.1) implies that the leading singular
terms of

∫
λ2
i and k/n

∫
ρ are the same. Indeed, integrating (1.1a) yields

λ1(t)−λ1,0=−
∫ t

0

λ2
1(s)ds+

k

n

∫ t

0

ρ(s)−ω2ds→−∞,

λn(t)−λn,0=−
∫ t

0

λ2
n(s)ds+

k

n

∫ t

0

ρ(s)−ω2ds→+∞,

implying that in a neighborhood of tB ,∫ t

0

λ2
n(s)ds<

∫ t

0

ρ(s)ds<

∫ t

0

λ2
1(s)ds. (5.2)

However, the condition (5.1) yields

lim
t→t−B

λ1(t)

λn(t)
= lim

t→t−B

u′
1(t)un(t)

u1(t)u′
n(t)

=−1, (5.3)

which indicates that the leading singular terms of all integrals in (5.2) are the same. For
this reason, we study the case of (5.1) by examining the second singular terms of

∫
λ2
i

and
∫
ρ. We remark that one cannot compare λ2

i and kρ/n directly as Proposition 2.3
demonstrates the behavior of

∫
ρ rather than ρ. Furthermore, we notice that the case

(5.1) occurs only in the case of (3.22) in Proposition 3.1. Indeed, (3.21) implies that

lim
t→tB

∫ t

0

λn(s)ds= lim
t→tB

∫ t

0

u′
n(s)

un(s)
ds=lnβn<∞.
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Assuming (5.1), we have observed (5.3), which implies that λ1∈L1(0,tB). Thus, λi∈
L1(0,tB) for all i, and thus ρ is bounded. This contradicts Proposition 2.3. More
precisely, λi∈L1(0,tB) (i>J), which is a necessary and sufficient condition for the
convergence of ui (i>J) or (3.21) in Proposition 3.1, only holds in (i) in Theorem 1.2.
That is, (i) is equivalent to (3.21), and all other cases in Theorem 1.2 are associated
with (3.22) in Proposition 3.1.

We define η as

u′
1

u1
+

u′
n

un
=−2η. (5.4)

Because limt→t−B
(u1un)(t)=0 in Corollary 3.1 and limt→t−B

(u1un)
′(t)=0 from the con-

dition (5.1), η satisfies

lim
t→t−B

η(t)(u1un)(t)=− lim
t→t−B

(u1un)
′(t)

2
=0, (5.5)

lim
t→t−B

∫ t

0

η(s)ds=− lim
t→t−B

ln((u1un)(t))

2
=∞. (5.6)

We remark that the behavior of η near tB is not clear at this point, owing to the highly
oscillating type (2.2).

Recall (3.15) or that for all t∈ (0,tB),

u′
1

u1
− u′

n

un
=−2

p

u1un
. (5.7)

Then, together with (5.4), we have that

λ1=
u′
1

u1
=− p

u1un
−η, (5.8)

λn=
u′
n

un
=

p

u1un
−η. (5.9)

Substituting these representations into the main equation (1.1a) yields

λ′
1=−λ2

1+
k

n
ρ−ω2=−

[(
p

u1un

)2

+2
pη

u1un
+η2

]
+

k

n
ρ−ω2, (5.10)

λ′
n=−λ2

1+
k

n
ρ−ω2=−

[(
p

u1un

)2

−2
pη

u1un
+η2

]
+

k

n
ρ−ω2. (5.11)

Owing to the property of η in (5.5), we obtain

lim
t→t−B

∫ t

0

pη(s)

(u1un)(s)
ds∫ t

0

(
p

(u1un)(s)

)2

ds

=0.

Thus, the leading singular term of
∫ t

0
λ2
i (s)ds (i=1,n) is∫ t

0

(
p

(u1un)(s)

)2

ds,
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and this should be the same as the leading singular term of k/n
∫ t

0
ρ(s)ds, otherwise the

integrations of (5.10) and (5.11) yield that λ1λn>0 near tB . Now, we define δ as∫ t

0

(
p

(u1un)(s)

)2

ds+δ(t) :=

∫ t

0

k

n
ρ(s)−ω2ds, (5.12)

satisfying

lim
t→t−B

δ(t)∫ t

0

(
p

(u1un)(s)

)2

ds

=0, δ(0)=0. (5.13)

It follows from (5.10) and (5.11) that

λ1(t)−λ1,0=

∫ t

0

(
−2

pη(s)

(u1un)(s)
−η2(s)

)
ds+δ(t), (5.14)

λn(t)−λn,0=

∫ t

0

(
2

pη(s)

(u1un)(s)
−η2(s)

)
ds+δ(t). (5.15)

Now, we present a technical lemma. In Corollary 3.1, we showed that u1un→0 as
t tends to tB . Thus, one may expect that for some θ>1, u1u

θ
n converges to a nonzero

constant by assuming (3.22). However, this is not the case, at least when p= q.

Lemma 5.1. Assume the hypothesis of Theorem 4.1, and suppose that

p= q.

Then, for any θ≤1,

lim
t→t−B

(u1u
θ
n)(t)=0.

For θ>1, if the convergence of u1u
θ
n is assumed, then

lim
t→t−B

(u1u
θ
n)(t)=0.

Proof. Recall that p= q only occurs in (3.22), i.e., un→∞. Then, it clearly holds
that limt→t−B

(u1u
θ
n)(t)=0 for θ≤1, because limt→t−B

(u1un)(t)=0 in Corollary 3.1.

Let θ>1 and

lim
t→t−B

(u1u
θ
n)(t)=C.

We deduce from (3.15) that(
ui(t)

uj(t)

)′

=
λi,0−λj,0

u2
j (t)

,

ui(t)=uj(t)+uj(t)(λi,0−λj,0)

∫ t

0

1

u2
j (s)

ds.

Multiplying by uθ
n in the equation for i=1,j=n yields

(u1u
θ
n)(t)=uθ+1

n (t)

(
1+(λ1,0−λn,0)

∫ t

0

1

u2
n(s)

ds

)
.
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Then, 1+(λ10−λn,0)
∫ tB
0

1/u2
n(s)ds=0, because the left-hand side converges to C, and

uθ+1
n →∞. Apply L’Hôpital’s rule to the right-hand side, to yield

lim
t→t−B

(u1u
θ
n)(t)= lim

t→t−B

λ1,0−λn,0

−θ−1

uθ
n(t)

u′
n(t)

= lim
t→t−B

λ1,0−λn,0

−θ−1

(uθ
nu1)(t)

(u′
nu1)(t)

.

Because the final limit exists,

C=
2p

θ+1

C

p
=

2C

θ+1
.

Then, as we assumed that θ>1, it follows that C=0, as desired.

In the following theorem, we claim that the case of p= q implies (c) of (ii) in Theorem
1.2.

Theorem 5.1. Suppose that [0,tB) be the maximum interval of existence for (1.1).
Define ui as (3.1), and let

lim
t→t−B

u′
1(t)un(t)=−p, lim

t→t−B

u1(t)u
′
n(t)= q.

If

p= q,

then J =2, n=4, and

(λ1,0−λ3,0)(λ1,0−λ4,0)=:A0=kρ0.

Moreover, this implies (c) of (ii) in Theorem 1.2.

Proof. Recall (3.3)

ρ=ρ0

n∏
i=1

1

ui
.

From (5.12) and (5.13),

lim
t→t−B

∫ t

0
(u1un)

−2ds∫ t

0

∏n
i=1u

−1
i ds

=
kρ0
np2

.

We apply Cauchy’s mean value theorem, to obtain

∫ t

0
(u1un)

−2ds∫ t

0

∏n
i=1u

−1
i ds

1−
∫ t1
0 (u1un)

−2ds∫ t
0
(u1un)−2ds

1−
∫ t1
0

∏n
i=1u

−1
i ds∫ t

0

∏n
i=1u

−1
i ds

=

∏n
i=1ui(τ)

u2
1(τ)u

2
n(τ)

for some t1<τ <t. Owing to the convergence of the left-hand side as t→ t−B , we can
construct a sequence {τl}∞l=1 converging to tB such that

lim
l→∞

∏n
i=1ui(τl)

u2
1(τl)u

2
n(τl)

=
kρ0
np2

.
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It follows from Lemma 3.1 that

lim
l→∞

uJ−2
1 (τl)u

n−J−2
n (τl)=

kρ0
np2

n−1∏
j=J+1

λn,0−λ1,0

λj,0−λ1,0
. (5.16)

If it is assumed that J ̸=2, then

lim
l→∞

u1(τl)u
n−J−2
J−2

n (τl)=

kρ0
np2

n−1∏
j=J+1

λn,0−λ1,0

λj,0−λ1,0

 1
J−2

. (5.17)

If it is additionally assumed that (n−J−2)/(J−2)≤1, then Lemma 5.1 implies thatkρ0
np2

n−1∏
j=J+1

λn,0−λ1,0

λj,0−λ1,0

 1
J−2

=0,

which is not possible. The assumption that (n−J−2)/(J−2)>1 also yields a con-

tradiction. Indeed, under this assumption one can show that u1u
(n−J−2)/(J−2)
n is an

increasing function in a neighborhood of tB , by showing that for any ε>0 there exists
t1∈ (0,tB) such that

(u1u
1+ε
n )′(t)>0, t1<t<tB (5.18)

in the case of p= q. Then, together with (5.17) we have

lim
t→t−B

u1(t)u
n−J−2
J−2

n (t)=

kρ0
np2

n−1∏
j=J+1

λn0−λ10

λj0−λ10

 1
J−2

.

Now, we apply Lemma 5.1 to obtainkρ0
np2

n−1∏
j=J+1

λn,0−λ1,0

λj,0−λ1,0

 1
J−2

=0,

which is also not possible.
Hence, J =2. Because the case of p= q is corresponds to (3.22), we must have that

n=4. Moreover, substituting (5.1) into (5.16) with J =2 and n=4 yields

kρ0=(λ4,0−λ1,0)(λ3,0−λ1,0), (5.19)

as desired.
It remains to verify the solution behaviors described in (c) of (ii) in Theorem 1.2.

We first state a lemma describing the behavior of δ near tB .

Lemma 5.2. Under the hypothesis of Theorem 5.1, δ defined in (5.12) satisfies

lim
t→t−B

δ′(t)=−ω2.

Proof. We have shown that J =2 and n=4 when p= q. Thus, we deduce from
(5.12) and (3.3) that

δ′=
1

u2
1u4

(
kρ0
4

1

u3
− p2

u4

)
−ω2.
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Using the representation in (3.17),

u3=
λ4,0−λ3,0

λ4,0−λ1,0
u1+

λ3,0−λ1,0

λ4,0−λ1,0
u4,

we have that

δ′=
−p2(λ4,0−λ3,0)

(λ4,0−λ3,0)u1+(λ3,0−λ1,0)u4

1

u1u2
4

−ω2. (5.20)

The condition p= q implies that in a neighborhood of tB ,

lim
t→t−B

(u1u
2
4)

′(t)>0,

as mentioned in (5.18). Thus, 1/(u1u
2
4) is a decreasing function near tB and converges.

Moreover, in the case of (3.22) we have that

−p2(λ4,0−λ3,0)

(λ4,0−λ3,0)u1+(λ3,0−λ10)u4
→0.

Hence, we conclude that

lim
t→t−B

δ′(t)=−ω2.

Proof. (Continued Proof of Theorem 5.1.) Substituting (5.8) and (5.9) into
(5.14) and (5.15) yields

− p

(u1u4)(t)
−η(t)−λ1,0=

∫ t

0

(
−2

pη(s)

(u1u4)(s)
−η2(s)

)
ds+δ(t),

p

(u1u4)(t)
−η(t)−λ4,0=

∫ t

0

(
2

pη(s)

(u1u4)(s)
−η2(s)

)
ds+δ(t).

We deduce that

η(t)=

∫ t

0

η2(s)ds−δ(t)− λ1,0+λ4,0

2
.

Notice that the integral equation, together with (5.6) and Lemma 5.2, yields

η(t)→∞, as t→ t−B . (5.21)

The integral equation can be rewritten as

η′=η2−δ′, η(0)=−λ1,0+λ4,0

2
. (5.22)

Then, for t sufficiently close to tB so that

0<

∫ tB

t

η2(s)−δ′(s)

η2(s)+1
ds<π,

we have that

arctan(η(τ))−arctan(η(t))=

∫ τ

t

η2(s)−δ′(s)

η2(s)+1
ds, t<τ <tB .
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Now, send τ → t−B to obtain

η(t)=cot

(∫ tB

t

η2(s)−δ′(s)

η2(s)+1
ds

)
.

Owing to Lemma 5.2 and (5.21), we have

lim
t→t−B

(tB− t)η(t)=1

and for some σ,

η(t)=
1

tB− t
+σ(t), σ(t)=o(tB− t). (5.23)

Moreover, one can show that σ is integrable, i.e.,∣∣∣∫ tB

0

σ(s)ds
∣∣∣<∞. (5.24)

Indeed, substituting (5.23) into (5.22) yields

σ′(t)=σ2(t)+
2σ(t)

tB− t
−δ′(t),

and for t1<t<tB

(tB− t)σ(t)−(tB− t1)σ(t1)=

∫ t

t1

(tB−s)σ2(s)ds+

∫ t

t1

σ(s)ds−
∫ t

t1

(tB−s)δ′(s)ds.

If
∫ t

t1
(tB−s)σ2(s)ds were unbounded, then

∫ t

t1
σ(s)ds→−∞ as t→ t−B , as the left-hand

side and δ′(t) converge. However, this yields a contradiction, because∫ t

t1
(tB−s)σ2(s)ds∫ t

t1
σ(s)ds

→0.

Thus, for t1 sufficiently close to tB ,∣∣∣(tB− t)σ(t)−(tB− t1)σ(t1)
∣∣∣= ∣∣∣∣∫ t

t1

(tB−s)σ2(s)ds+

∫ t

t1

σ(s)ds−
∫ t

t1

(tB−s)δ′(s)ds

∣∣∣∣
>

∫ t

t1

(tB−s)σ2(s)ds→∞, as t→ t−B .

Hence,
∫ t

t1
(tB−s)σ2(s)ds converges. Thus we have (5.24).

We now estimate λi and ρ from the representation of η. Integrating (5.4) together
with (5.23) yields

(u1u4)(t)=
(tB− t)2

t2Be
2
∫ t
0
σ(s)ds

.

Substituting this representation and (5.23) into (5.8), (5.9), and (5.12) yields

λ1(t)=−pt2Be
2
∫ t
0
σ(s)ds

(tB− t)2
− 1

(tB− t)
−σ(t).
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λ4(t)=
pt2Be

2
∫ t
0
σ(s)ds

(tB− t)2
− 1

(tB− t)
−σ(t),

and

ρ(t)=
4p2t4Be

4
∫ t
0
σ(s)ds

k(tB− t)4
+

4δ′(t)

k
+cb.

These representations, together with (5.24), imply (c) of (ii) in Theorem 1.2.

We close this section by providing a specific example with p= q.

Example 5.1. Recall that

ω=

√
kcb
4

, p= q=
λ4,0−λ1,0

2
.

Let λ3,0=λ4,0. Then, we have that

kρ0=1, δ′(t)=−ω2,

from (5.19) and (5.20), respectively. Furthermore, we can obtain an explicit formula
for η by solving (5.22):

η(t)=ω tan

(
ωt−arctan

(
λ1,0+λ4,0

2ω

))
.

The maximum interval of existence follows from the domain of η:

tB =
π/2+arctan

(
λ1,0+λ4,0

2ω

)
ω

.

Then, integrating (5.4) yields

(u1u4)(t)=

((
λ1,0+λ4,0

2ω

)2

+1

)
cos2

(
ωt−arctan

(
λ1,0+λ4,0

2ω

))
.

Finally, we deduce from (5.8), (5.9), and (5.12) that

λ1=λ1=− p(
λ1,0+λ4,0

2ω

)2
+1

sec2
(
ωt−arctan

(
λ1,0+λ4,0

2ω

))

−ω tan

(
ωt−arctan

(
λ1,0+λ4,0

2ω

))
,

λ3=λ4=
p(

λ1,0+λ4,0

2ω

)2
+1

sec2
(
ωt−arctan

(
λ1,0+λ4,0

2ω

))

−ω tan

(
ωt−arctan

(
λ1,0+λ4,0

2ω

))
,

ρ=
ρ0((

λ1,0+λ4,0

2ω

)2
+1

)2 sec
4

(
ωt−arctan

(
λ1,0+λ4,0

2ω

))
.
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