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Abstract. The ultra-relativistic Euler equations for an ideal gas are described in terms of the
pressure p, the spatial part u € R3 of the dimensionless four-velocity and the particle density n.
Radially symmetric solutions of these equations are studied. Analytical solutions are presented for
the linearized system. For the original nonlinear equations we design and analyze a numerical scheme
for simulating radially symmetric solutions in three space dimensions. The good performance of the
scheme is demonstrated by numerical examples. In particular, it was observed that the method
has the capability to capture accurately the pressure singularity formation caused by shock wave
reflections at the origin.
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1. Introduction. Relativistic flow problems are vital in many astrophysical phe-
nomena. An effective way to improve our knowledge of the actual mechanisms is due
to relativistic hydrodynamics simulations. Especially, solutions describing radially
symmetric gas flow are important in applications as well as in theory. They are
particularly well suited for numerical simulations of certain multi-dimensional prob-
lems. In this paper we focus on radially symmetric solutions. We consider a special
relativistic system which is much simpler than flows in general relativistic theory.
Interestingly, even compared to the classical Euler equations of non-relativistic gas
dynamics the equations we consider exhibit a simpler mathematical structure.

We are concerned with the ultra-relativistic equations for a perfect fluid in
Minkowski space-time, namely

3
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where

Toap = —PYgap + dpuaup

denotes the energy-momentum tensor for the ideal ultra-relativistic gas. Here p rep-
resents the pressure, u € R? is the spatial part of the four-velocity (uwo, u1, ug, uz) =

(v/14 |u)?,u). The flat Minkowski metric is given as
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and the particle-density four-vector is denoted by
Ny = nug. (1.2)

Here n is the proper particle density. We note that the quantities uq, Tag, gas, Na
and even x, are usually written down as Lorentz-invariant tensors with upper indices
instead of lower indices in order to make use of Einstein’s summation convention. But
in the following calculations these upper indices could be mixed up with powers. Since
we will not make use of the lowering and raising of Lorentz-tensor indices, our change
of the notation will not lead to confusions. For the physical background we refer to
Weinberg [22, Part one, pp 47-52], further details can be found in Kunik [10, Chapter
3.9], and for the corresponding classical Euler equations see Courant and Friedrichs
[5]. For a general introduction to the mathematical theory of hyperbolic conservation
laws see Bressan [4] and Dafermos [6]. A nice overview of radially symmetric solutions
to conservation laws is given in Jenssen’s survey paper [9].

The unknown quantities p, u and n satisfying (1.1) depend in general on time
t = 29 > 0 and position z = (z1,22,23) € R*. It is well known that even for
smooth initial data, where the fields are prescribed at ¢ = 0, the solution may develop
shock discontinuities. This requires a weak form of the conservation laws in (1.1).
Since the conservation law for the particle-density four-vector (1.2) decouples from the
conservation laws of energy and momentum, we will restrict ourselves to the resulting
closed subsystem for the variables p and u satisfying the first set of equations in (1.1).
Putting o = 0 this gives the conservation of energy

B o e 0 —~
= (3p+4plu )+;8—xk (4puk\/1+|g| ) —0, (1.3)

whereas for a = j = 1,2, 3 we obtain the conservation of momentum

3
0 ,
En (4puj 1+ |ul ) ,; 8— Sk + 4dpujur) =0, j=1,2,3. (1.4)

Like the classical Euler equations, these relativistic Euler equations constitute a hyper-
bolic system of conservation laws and have their origin in the kinetic theory of gases.
This can be used for the construction of numerical schemes which preserve positive
pressure and satisfy a discrete version of the entropy inequality, see [10, 11, 13]. Some
other analytical and numerical methods for the ultra relativistic Euler equations are
studied in [1, 2, 3, 8, 12, 15, 16, 17, 18]. Recently numerical results using central up-
wind scheme are reported in [7] for one and two dimensional special ultra-relativistic
Euler equations. In [14] Lai presents a detailed analysis of self-similar solutions of ra-
dially symmetric relativistic Euler equations in three and two space dimensions. These
are special solutions depending only on r/t with radius 7 and time ¢ which satisfy sys-
tems of ordinary differential equations. Especially his study of the ultra- relativistic
FEuler equations enables us to compare his solutions with two of our numerical results.

In this paper, we study radially symmetric solutions and construct a correspond-
ing scheme to solve the ultra-relativistic Euler equations (1.3), (1.4) in three space
dimensions. One of the main advantages of the radially symmetric problem is that
it can be used to efficiently simulate special wave patterns for fully three dimen-
sional problems such as the detonation problem, see [21]; also Example 5.5 in [20]
for the classical Euler equations. We show this with Example 4 in Section 5 for the
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ultra-relativistic Euler equations. This allows the prediction of pressure singularity
formation caused by shock wave reflections at the origin. We hope that our specific
solutions may become benchmarks for testing fully 3D simulations.

In the next section we will define radially symmetric solutions of (1.3), (1.4) in
a weak integral form. We will also present the initial- and boundary value problem
for nonlinear radially symmetric solutions. In Section 3 we will especially solve the
corresponding linearized model, which reveals singularities in the pressure field due
to reflections of contact discontinuities at the boundary. Formulation and analysis
of a scheme preserving positive pressure and based on the balance laws (2.13) are
presented in Section 4. In this connection emphasis is on a proper treatment of the
radius and the boundary conditions in the balance laws. The numerical examples are
given in Section 5.

2. Radially symmetric solutions. Assume for a moment a smooth solution
p,u of the ultra-relativistic Euler equations (1.3), (1.4). We put r = |z| for r > 0 and
look for radially symmetric solutions

u(t,r)

p=p(tr)>0, u(tz)= x. (2.1)

Here the quantity u(t,z) € R? is completely determined by a new real valued quantity
u(t,r) depending on ¢ > 0, > 0. For continuity we have the boundary condition

h?olu(t’r) =0, t>0. (2.2)

Note that n = %g is the outer normal vector field of the sphere 0Br bounding the
ball Br = {z € R3 : |z| < R} of radius R > 0, and that |u|? = u? as wellasu =u-n.
Therefore, it is natural to apply the Gaussian divergence theorem for the integration
of the second term with respect to Br of the conservation law (1.3) in order to make
use of the radial symmetry of the fields. We obtain with (2.1) for any fixed R > 0

R

4#% / (3p(t,7) + 4p(t, r)u’(t, ) r’dr + / dpu/1+u?2dS =0.

0 OBRr

The integrand in the surface integral is constant. Hence we have

R
% / (3p(t,r) +4p(t,r)u(t,r)) r’dr + R*4p(t, R)u(t,R)\/1+ u?(t,R) =0. (2.3)
0

This idea does not work for the momentum equation (1.4), because (2.1) would give
values zero after integration with respect to Bg. Here we integrate (1.4) for j = 3
over the upper half-ball

B}S ={z = (21,22, 23) eR? ;3> 0},

use the Gaussian divergence theorem and spherical coordinates

x1 =rcospsiny,xy = rsinpsind, x3 = rcosv
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with r > 0,0 < ¢ < 2m and 0 < ¢ < 7/2, and obtain from (2.1)

Sl

R
/4p(t, u(t,r)y/1 + u(t,r)rdr
0 (2.4)

R
+ R? (4p(t, R)u?(t, R) + p(t, R)) =2 /p(t,r) rdr.
0
Now we differentiate the equations (2.3), (2.4) with respect to R > 0. Afterwards

we replace R by the better suited variable z > 0.
We put p = p(t, x), u = u(t, z) for abbreviation and have the 2 by 2 system

ﬁ (pr(3 + 4u2)) + % (4x2puv 1+ u2) =0,

%t 2 2 9 2 2 (2:5)
5 (4:10 puy/1 4+ u ) +a (2°p(1 + 4u?)) = 2zp.

The validity of this system may also be checked by differentiation from (2.1),
(1.3) and (1.4). The solutions of (2.5) are restricted to the state space
Seul = {(p7u) € R2 P> O}

For the formulation of weak entropy solutions we will introduce a transformation
in state space. With Se; = {(a,b) € R? : |b] < a} there is a one-to-one transforma-
tion © : Sy — Seul given by

_(pB+4u?)\  [(a
O(p,u) = (4pu ) = o) (2.6)
The inverse transformation is given by

1 b
p==(V4a?2 -3 —a), u=—-—or.
3( ) VAap(p + a)

Using the transformation (2.6) in state space we can also rewrite (2.5) in an equivalent
form. We put

2
c=c(a,b) = §a — =V/4a? — 3b2, (2.7)

3 3
and obtain from (2.5), (2.6)
9 (o 9 [ o
— (z%a) + — (z“b) =0,
En (z°b) + E (z%¢) = z(a —¢)

We look for weak solutions of (2.8) in the quarterplane
Q={(tz):t>0,2>0}.
For x > 0 we prescribe the two initial functions

11{1(1) a(t,z) = ap(x), 11{1(1) b(t,x) =bo(zx), >0 (2.9)
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with |bo(z)] < ao(x) for x > 0. Recall our preliminary assumption that we have
a smooth and radially symmetric solution of the three dimensional ultra-relativistic
Euler equations (1.3) and (1.4), which implies the boundary condition (2.2) as well as
a locally bounded energy and momentum density. Hence we have the following two
boundary conditions for t > 0:

. 2 _ . _
ilJr/r(l)(x a(t,x)) =0, th/r(lJ b(t,x) =0. (2.10)

x

We recall (2.7), multiply in both equations of (2.8) with any C! test function ¢ :
R? — R with compact support in R? and obtain from (2.10) after partial integration

//( ——i—b—) :v2dacdt+/a0¢0x2d:vzo,

0

ol ¢
// (b = + ¢(a, b) %) 22 dadt (2.11)
Q

oo

_ 2, _
—i—g/(a c(a,b))¢xdwdt+0/bo¢ox dx=0.

Weuse ¢ = o(t, @), 3¢ = 57 (t.2), g5 = g5 (t:2), a = a(t,z), b= b(t,x), ¢o = $(0,2),
ap = ap(x), bg = bo(x) as abbreviations in (2.11). Now we drop the assumption that
we have a smooth solution of the ultra-relativistic Euler equations and will no longer
assume that a and b are locally bounded.

DEFINITION 2.1 (Weak radially symmetric solutions). We say that a,b is a weak
solution of (2.8) with initial data ag,ao if and only if the following conditions are
satisfied:

e a,b:Q +— R are measurable with |b| < a.
e za(t,z) is integrable in (0,%) x (0,20) C @ for all ¢y, 29 > 0.
e ag,bg : Ryg — R are measurable with |by| < ag. We require for all zop > 0
that zao(z) is integrable for 0 < z < xg.
e The boundary conditions (2.10) are satisfied for almost all ¢ > 0.
e Equations (2.11) are satisfied for all C! test function ¢ : R? — R with compact
support in R2.
If ¢ : Q = R>g is a new nonnegative C! test function restricted to the quarter plane
@ with compact support in @, then we will consider a weak solution a, b which further
satisfies the weak entropy inequality, see Kunik [10, Chapter 4.4],

% 9y
34\ /1 1 u2 ey 2 <
//( V14 u? N (9:5) xdxdt <0. (2.12)

Here we make use of O(p,u) = n (2.6). In this case we call a,b a weak entropy

a

)1

solution of the system (2.8). O
REMARK 2.2 (Properties of weak entropy solutions).

1) Tt follows from the assumptions in Definition 2.1 for a, b, ap and by that all
the integrals in (2.11) and (2.12) are well defined. For (2.11) we first note
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that xa is locally integrable. From |b| < a and (2.7) we conclude that zb and
xc(a, b) are locally integrable as well. For the entropy inequality we make use
of (2.6) and obtain

P41+ u2 =277 (3a — c(a,b))? (a — cla, b)) .

With § < ¢(a,b) < a we have p* 4| < p¥/*\/1 4 u? < (a/3)3/* and conclude
that the integral in (2.12) is well defined.

2) At all points of smoothness any solution p, u satisfying (2.5) will also satisfy
the entropy conservation law

O (w2 T2) 4+ (a2 = 0,

ot Ox
In this case the additional conservation law can be obtained from (2.5) by a
straightforward but lengthy calculation.

3) In the presence of shock waves (2.12) will satisfy the strict inequality in
general, and we obtain a simple evaluation of (2.12), see [1, Chapter 2.1] for
more details: If for p_,py > 0 the left state (p_,u_) can be connected to
the right state (p4,u4) by a single shock satisfying the Rankine-Hugoniot
jump conditions, then this shock wave satisfies the entropy inequality if and
only if u_ > u,. This condition can also be checked easily for the numerical
solutions with shock curves in Chapter 5.

In [10] we have used contour integrals for weak solutions of conservation laws,
following Oleinik’s formulation [19] for a scalar conservation law. Here we recall the
definition (2.7) of ¢, make use of the abbreviations a = a(t,z), b = b(t,x) and obtain
an alternative formulation of (2.11) if we require especially for a piecewise smooth

weak solution a, b and for each convex domain 2 C @) with piecewise smooth boundary
00 C Q:

22ady — 2%bdt =0,

0% (2.13)
/xzb dx — 2?cdt = //a:(a —¢)dtdz .
o Q

3. Solutions of the linearized system. A linearized version of the system
(2.8) is given by

(20) + o (s7) = 0,
X

9
ot
ﬁ(2b)+ﬂ 2 \_2 (3.)
at ar\3%) " 3"

We linearize at the state (a,b) = (a,0). The system can be obtained by neglecting
the terms b2 in (2.8). For t = 0 and 2 > 0 we prescribe initial data ag(z) = a(0,z),
bo(z) = b(0,x) and assume that by(0) = 0. From the radial symmetry the variable
x > 0 corresponds to the radius variable. Now we want to extend our initial data to
all of R using symmetry in order to obtain simple solution formulas. For x > 0 we
extend ag to an even function with ag(—x) = ag(z) and by to an odd function with



RADIALLY SYMMETRIC SOLUTIONS 407

bo(—x) = —bg(z). Now we assume that ag,by : R — R are both C'-functions. For
x € R we define the two even primitive functions
Ap(z) = /uao(u) du, By(z)= /bo(u) du . (3.2)
0 0

THEOREM 3.1. The solution of (3.1) satisfying the initial conditions
%réa(t,x) = ap(x), llf% b(t,z) =bo(z), x=>0,

is given for allt >0, x > 0 by
t

o= (e (o )
t

30 (e )

(3.3)
Ele Rl )]
RN
b(t,a:)——%}gx {<x+%>a0(“’+% _éAO(H%)}
2\;§x K _%%0 (x_i?)_éAo <w_i3>} (3.4)
+%Km+\%)bo<x+%)—% %Bo(iﬁ%)]
1

[ )

Proof. Assume that F}, = f; for any C?-function Fy. If we make the ansatz

1 t
ap(t,z) = — — ),
1 t 1 t (3:5)
by(t,z) = ——— 2+ —=|+—==Flz+—=],
+2) \/gxfo( \/§> V32 0( \/5)
then we can easily check that a,b; : Q — R satisfy (3.1) with
fo(x) fole)  Folx)

limay (t,z) = ——=, limby(t,z) =———= ,
10 +( ) z £10 +( ) \/gx \/§$2

In the same way
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also satisfy (3.1) for ¢t > 0, z > 0 with

: fo( ) _ folz)  Fo(z)
%rréa (t,x) = %réb_(t,x) = Br B2

Using (3.2), (3.5) and (3.6) we can check that (3.3) and (3.4) satisfy (3.1) line by line
in the following way:

For the first line on the right-hand side in (3.3) and (3.4) we put Fy(z) = 1 Ag(x)
and use (3.5), for the second line we put again Fy(z) = 3 Ag(z) and use (3.6), and
the third and fourth line with Fy(z) = —@ x Bo(x), (3.5) and Fy(z) = —i—‘/Tg x Bo(x),
(3.6), respectively. In this way the initial conditions are also obtained. O

z>0.

REMARK 3.2. It follows from the previous theorem that z a(t,x) and = b(¢, ) are
even bounded in any bounded subdomain of the quarterplane ¢,z > 0.

However, for more general weak solutions |a(t,z)| and |[b(¢,z)| may become in-
finitly large in certain small time intervals for « | 0. This is shown in the following
example with a spherical imploding contact discontinuity: We first use (3.2). Put
bo(x) = Bo(x) =0 for all x € R and

(z) = 1 for |z| <1,
S for |[x| > 1.

Then we have the even function
T 19 "
_ _ [ 3z or |z| <1,
Ao(@) /uao(u)du { 2?— 4 for|z|>1.
0

We define, as seen in Figure 1, the convex domains

Ql—{(t,$)€R>0XR>O : .TESl—t/\/g},
={(t,x) €ERsg xRog : [1—t/V3| <z <1+1t/V3},
={(t,x) € Rog X Rsg : > 1+1/V3},
={(t,x) €Rsg xRsg : z < t/V3 -1}

and obtain from (3.3), (3.4)
1 for (t,x) € Oy,
a(t,x) 3+ ! for (t,x) €
’ = Y T y L )
2 23z 2
2 for (t,x) € Q3 Uy,
0 for (t,I)691U93UQ4,
b(t,z) = 2 _ 2
(t,2) F-3(1+27) for (t,x) € Qy.
12v/3 22

We can easily check that a, b satisfy the differential equations (3.1) in the inte-
rior of each Q;, j = 1,2,3,4. Moreover, for ¢ = 1,2,3 the Rankine-Hugoniot jump
conditions
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Fic. 1. Solution of the linearized system.

of the linearized system are satisfied across the three contact discontinuities

t
p(t)=1——, 0<t<+V3,
1() \/g

¢
zo(t) = — —1, t>/3,
2() \/g

t

za(t)=1+—, £>0,

\/g )

see Figure 1. Theorem 3.1 gives a weak solution of the linearized system even if the
initial functions ag, by have jump discontinuities.

THEOREM 3.3. Take the assumptions as in Theorem 3.1. If by, aq are both C?-
functions, then we have hi% b(t,x) =0 for allt > 0.

Proof. L'Hospital’s rule can be applied twice to obtain the desired radial limit. O

The linearized system could be solved explicitly. However, we cannot expect a
quantitativly similar behaviour between both models concerning the singular structure
near the boundary, where nonlinear momentum terms cannot be neglected.

4. Formulation of the numerical scheme. We develop a numerical scheme
which preserves positive pressure for the initial value problem with the radially sym-
metric ultra-relativistic Euler equations. The method of contour-integration for the
formulation of the balance laws (2.13) is used to construct a function called ”Euler”
which enables the evolution in time of the numerical solution on a staggered grid, i.e.
it allows us to construct the solution (a’,b") at the next time step from the solution
(a+,by) in two neighboring gridpoints at the former time step according to Figure 3.
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First we determine the computational domain and define some quantities which are
needed for its discretization.
1) Given are t.,z. > 0 in order to calculate a numerical solution of the initial
value problem (2.13), (2.9) in the time range [0,t.] and the spatial range
[0, z].
2) We want to use a staggered grid scheme. Any given number N € N with
N -z, > t, determines the time step size

12

At = .
2N

The time steps are
t,=(m—-1)At, n=1,...,2N+1.

3) Put

then the spatial mesh size is

with the spatial grid points
zj=G-1)Az, j=1,....N+M+1.

Note that our scheme uses a trapezoidal computational domain D defined
below that includes the target domain [0,%.] x [0,z.]. Thereby, we can use
all initial data that influence the solution on the target domain. In this way
we avoid using a numerical boundary condition at z..

4) The number

_ ATy

A=A

is used to satisfy the CFL-condition and to define the computational domain
D={(t,x)eR* : 0<t<t,, 0<z<z, +At.—1)}.
The typical trapezoidal form of the computational domain is illustrated in Figure 2.
For the formulation and the positive pressure property of our numerical scheme
we need two lemmas.

LEMMA 4.1. Assume that |by| < ayx. We recall that X\ > 1, (2.7) and put
¢y = c¢(ax,by). Then
c_

) — +b—_ <b_+—<a-+—
Y\ ST ST
bt

b b
b) —(a+—%)<b+—%<a+— N .

Proof. The proof of b) is quite analogous to a), hence we will only show a). The
left inequality in a) is equivalent with A(a— +b_) > —c_ —b_, and due to A > 1 and
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Ty + A

Tk

0 t

*
Fic. 2. The computational domain D

a_ +b_ > 0 it is sufficient to show a_ +b_ > —c_ — b_ . We have

a_+b_>—c_—b_

3 / 3 3
= 2a_ + 5b_ >1/a% — Zb% with 2a_ + 5b_ >0

9 3
& 4a® + 6a_b_ + Zb% >a? — sz,
& 3(a-+b-)>0,

which shows the left inequality. The right inequality in a) is equivalent to
Ma— —b_) > c_ —b_.Due to A > 1 and a_ —b_ > 0 it is sufficient to show
a_ > c_ . We have

a_ > c_

/ 3
=2 a3—1b2_>a_ with a_ >0

< 4a® —3b% > a2
& 3(a® —b%)>0.
0

LEMMA 4.2. Assume that a > 0, 0 <n < 1/3 and —a(l+1n) < & < a(l —n).
Then we obtain 4a(1 + 3n?) — 362 > 0 and

€4 ny/4a?2(1+ 31?) — 362
<
1+ 352

a.

Proof. We have

4a(1+3n%) — 362 > 4a*(1 + 31°) — 3a*(1 +n)? = a*(1 - 3n)* > 0,
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and the square root in the estimate of the lemma is well defined. To show the estimate
we use 0 < n < 1/3 and first note that

—a(1+n) + 1421+ 302) = 3(—a(l +7))2
1+ 372 N
a(l —n) +nv/4a*(1 + 3n?) — 3(a(1 — n))?
1+ 372

)

=a.

Therefore it is sufficient for the proof of the lemma to show that
B(§) =€ +1v/4a?(1+ 31?) — 3¢2

is strictly monotonically increasing for —a(l +7) < £ < a(1 —n). The condition
B'(€) = 0 gives 3n¢ = /4a2(1+ 3n2) — 3€2, hence ¢ > 0 and the unique solution
&= % > a(1 — n) outside the interval. On the other hand we have B'(0) =1 > 0.
Hence B is strictly increasing in the interval. 0

For the numerical discretization of the system (2.13) we choose the trian-
gular balance domain €2 depicted in Figure 3. We assume that the midpoints
P_ = (t,7 — Az/2), Py = (I,7 + Azx/2) and P’ = (t + At,T) of the cords of 9
are numerical gridpoints for the computational domain D. Let the numerical solution
(a+,by) be given at the gridpoints Py. We have to require |b4| < ax for the numer-
ical solution in the actual time step £ = ¢, with t = 1,...,2N. The major task is to
calculate the numerical solution (a’,b’) for the next time step ¢ + At = t,41 at its
gridpoint P’, see Figure 3.

The spatial value T > 0 is given. We have to determine a function

Euler(a_,b_,a,,by, T, Az, \) = (a', ) (4.1)

for the calculation of (a’,b'). This leads to the structure of a staggered grid scheme.
Note that at the boundary the balance region €2 may have parts outside D, e.g. points
below the half-space £ > 0. In the latter case we will employ a simple reflection
principle for the numerical solution in order to use the function Euler as well for the
evaluation of the boundary conditions.

Next we will make use of the fact that the points Py with numerical values (at, by)
and P’ with unknown value (a’,b’) are the midpoints of the three boundary cords of
the balance region Q. We put ¢y = c¢(ag,by) and ¢/ = ¢(d’, ') for abbreviation, see
(2.7). Then we use for k = 0, 1,2 the straight line paths v from Figure 3 and for the
corresponding path integrals

/an(t, x)dx — 2*b(t, ) dt and /xzb(t, x)dr — z2c(alt, ), b(t, x)) dt
Tk Tk

with the unknown weak entropy solution a(t, ), b(t, z) their numerical discretizations
Iy o and Iy p, respectively, given by

T+Az
1
Iy = /an' dx — 2%V dt = / 22 dz = 4a’ AL (EQ + g(A:v)2> ,
Yo T—Ax
T+Ax (42)

1
Iop = /:v2b’ dr —2*d dt = b / 2% do = 4b' AAL (52 + g(A:c)2> :

Yo T—Ax
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X

E+AI/2 oo (a+,b+) Yo
!
Q

T LN X (a’,b’)

E*AI‘/2 o0 e (a—’b—)
Y2
0 t— At t t+At t

F1G. 3. The balance region Q2

/x2a+ dr — 2%by dt = —2(May — by )At <Tz + %(Az)z + iA:z:) ,
71
/:172 dr — x?cy dt = —2(\by — cy)At <T2 + %(AI)2 + iA:z:) .

71

Iy, = /x2a dr — 2?b_dt = —2(Ma_ +b_)At <EQ + %(AI)Q - iAx) ,
Y2
Iy, = /be, dr —z?c_dt = —2(\b_ +c_)At <TQ + %(Az)Q - EAQJ) .
Y2
We recall that T > 0 and put
27 Az
T (A
The numerical discretization of the first balance law in (2.13) gives

IO,a = _Il,a - I2,a .

413

(4.4)
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We obtain from (4.2), (4.3),(4.4), (4.5) and (4.6) for a’ the explicit solution

a’:% o +5)a- : a+—7+)(1+q/2). (@.7)

For the numerical discretization of the second balance law in (2.13) we approximate

the integral
// z(a — c)dtdx
Q

(a' =) //xdtd:v =2(a — ) TAtAz.
O

Now (4.2), (4.3), (4.4) give the following ansatz for the calculation of b':
Iny =—Ip— Iy +2(a" — ) TAtAz . (4.8)

Recall ¢y = ¢(ax,by) with ¢ = ¢(a,b) in (2.7). We use the abbreviations

g:%(b,+%)(1—q/2)+%(b+—%)(1+q/2)—%, 77:%- (4.9)

From (4.8) we obtain the implicit equation
b =&+ nV4a? — 302 . (4.10)
This leads to a quadratic equation for b’. Lemma 4.1 gives
—d'(1+n)<&<d(l—n)

for the quantity a’ in (4.7). In order to apply Lemma 4.2 with o’ instead of a we have
to choose the solution

_ S+ ny/4a”(1+30?) — 3¢2

bl
1+ 352

(4.11)

of (4.10) with the positive square root. Now b’ is well defined with |b'| < o/, see the
transformation (2.6) in state space. We summarize our results in the following

THEOREM 4.3 (Numerical solution (a’,b") for the balance region ). Given are
real quantities T > 0 and ax, by. Assume that |by| < ax. We recall A > 1 defined
in terms of At and Ax and put cx = c(ay,by) in the definition (2.7). Then we have
|b'| < o' for the quantities o’ and b calculated from (4.5), (4.7), (4.9) and (4.11). O

DEFINITION 4.4 (The function Euler). The state (a/,b’) from Theorem 4.3 defines
the function Euler in (4.1). O

REMARK 4.5. Assume that the state (at,bs) with |b4| < ay is given and that
T = 0. We define the "reflected state” R(ay,b;) = (ay, —b4) and obtain

Euler(a+, —b+, a4, b+, O, A.I, )\) = (a+ — b+/A, O) . (412)
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This means that numerical values (a’, ') calculated with the function Euler in (4.1) at
the boundary T = 0 with reflected states (a—,b_) = R(a4, b, ) satisfy the boundary
condition ¥ = 0.

Now we are able to formulate the numerical scheme for the solution of the initial-
boundary value problem (2.9), (2.10), (2.13). We construct staggered grid points in
the computational domain D and compute the numerical solution at these gridpoints.
The function Euler enables the evolution of the numerical solution in time, i.e. it
allows us to construct the solution at time ¢ = ¢,,11 from the solution which is already
calculated in the gridpoints at the former time step t = ¢,,. Note that the triangu-
lar balance domains that we used to determine the routine Euler overlap. But this
presents no problem since they are not needed once the formulas for new values have
been obtained.

e The staggered gridpoints are (tn,zn;) € D for ¢, = (n — 1)At,
n=1,....2N+1landj=1,...,. M+ N — [(n—1)/2] with

T { ($j+xj+1)/2 1fnls Odd
n,j —

x; if n is even.

We want to calculate the numerical solution (ay j,bn ;) at (£, Zn, ).
e For j =1,...,M + N we calculate the numerical solution (a1 j,b1 ;) at the
gridpoint (¢1,21,;) = (0, (x; + x41)/2) from the given initial data by

aij =ag(x15), bij="bo(w1y).

This corresponds to taking the integral average of the initial data on (z;, z11)
and using the midpoint rule as quadrature.

e Assume that for a fixed odd index n € {1,...,2N} we have already
determined the numerical solution (as ;,bn ;) at the gridpoints (¢, zx ;),
j=1,...,M+N—(n—1)/2.

First we determine the solution (an41.1,bnt1,1) at the boundary point
(tn+1, Tnt1,1) = (tnt1,0) according to (4.12) in Remark 4.5. For this purpose
we put ay = an,1, by =by,1, a— = an,1, b— = —b, 1 and have

(an+171a bn+171) = Elﬂer(afa b*v a+, bJrv 0, AIE, >\) with bn+1,1 =0.
Next we put a— = anj—1, b— = by j—1 and ar = anj, by = by, for
j=2,...,M+ N — (n—1)/2 and determine the values an+1,j, bn+1,; at
time t,,41 and position T = x,,11,; = z; from
(@nt1,5,bnt1,;) = Euler(a—,b_,a4,b4,T, Az, \).

e Assume that for a fixed even indexr n € {1,...,2N} we have already
determined the numerical solution (ay j,bn ;) at the gridpoints (¢, %n ),
j=1,....M+N—-n/2+1.

We put a- = anj, b = by; and ay = anjt+1, by = by 41 for
j=1,...,M+ N —n/2 and determine the values an41,j, bnt1,; at time
tnt1 and position T = xp41,; = (z; + j41)/2 from

(@nt1,5,bnt1,5) = Euler(a—,b_, a4,b4, T, Az, \).

Based on Lemma 4.1 and 4.2 we obtained Theorem 4.3. This implies positive pressure
for our scheme, namely the following

THEOREM 4.6. The numerical scheme described above preserves a positive pres-
sure p, provided that |bg| < ag with the initial data in (2.9). O
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5. Numerical examples. We solve the initial value problem (2.8), (2.9) numer-
ically for different choices of the initial data ag, bg. We make use of the transformation
(2.6). However, for our numerical results we take the usual velocity

v= with |v] <1

V1+u?

instead of the four velocity v and the initial velocity vog = v(0,-). The restriction
|v] < 1 leads to better color plots.

1)

If ag > 0 is constant and by = 0, then we obtain a stationary solution, which
is exactly reconstructed with these values by the scheme in Section 4. This
corresponds to u = v = 0 and constant pressure p. Such a steady part is
contained in the following examples.

We choose the constant initial data ag = 7, by = 4v/2 corresponding to
a constant initial pressure pg = 1 and a constant radial part ug = 1 and
v = 1/ V2 of the initial four velocity and usual velocity, respectively. The

%103 pressure p(t,-) at time t=1

p(t,x) at time t = 1

0 \ \ \ \ \
0 0.1 02 03 04 05 06 07 08 09 1

radius x

Fic. 4. Pressure p at t = 1 from the second example

numerical approximation leads us to the assumption that the exact solution
depends only on z/t. Indeed, the existence of such a self-similar solution
is justified in Lai’s recent paper [14, Theorem 1.1]. Then we have a region
emanating from the zero point with a low constant pressure p = 0.00032 and
zero velocity v = 0 for ¢t > 0, followed by a centered rarefaction fan starting
from the zero point above the region with the constant values. The numerical
solution with z, = 1, ¢, = 1 and N = 3000 is given in the Figures 4 and 5. We
also found that the computational values are in good agreement with those
predicted from the results in Lai [14].

We choose the constant initial data ag = 7, by = —4v/2 corresponding to
a constant initial pressure pg = 1 and a constant radial part ug = —1 and
vp = —1/v/2 of the initial four velocity and usual velocity, respectively. The
exact solution again depends only on z/t, see [14, Theorem 1.1]. Here we
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velocity v(t,-) at time t=1

o
o]
1

o
3
T

o
[«>]
T

o
[9)]
T

o
N
T

o
w
T

o
N
T

0 . | | | .
0 0.1 02 03 04 05 06 07 08 09

radius x

F1G. 5. Velocity v at t =1 from the second example
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observe a straight line shock wave with slope s = 0.523 emanating from the
zero point, with a constant pressure p = 25.55 and zero velocity v = 0 for t > 0
below the shock wave, followed by a centered rarefaction fan starting from
the zero point above the shock wave. The numerical solution with z, = 1,
t. =1 and N = 3000 is given in Figures 6 and 7.

p(t,x) at time t = 1

pressure p(t,-) at time t=1

25

20

5 I I I I

0 01 02 03 04 05 06 07 08 09
radius x

Fic. 6. Pressure p att =1 from the third example
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velocity v(t,-) at time t=1

-0.05

— 015

0.2

-0.25

0.3

v(t,x) attime t =

-0.35

041

-0.45

05 \ \ \ \ \
0 0.1 02 03 04 05 06 07 08 09 1

radius x

FiG. 7. Velocity v at t =1 from the third example

4) Expansion of a three dimensional spherical bubble with initial data

1 for0<z<1
pO(x)_{m for x> 1, vo(@) =0-

Initially, the pressure inside the bubble is ten times larger than outside, which
leads to a fast expansion of the bubble into the outer low pressure area. This
in turn gives rise to the formation of another low pressure area, namely the
light yellow or white region in Figure 8 emanating from the zero point. The
corresponding velocity is depicted in Figure 9. We observe the formation of a
shock wave, running downwards into the new low pressure area and reaching
the zero point around time ¢ = 4.16, see Figures 10 and 11. The formation
of this new shock wave is a peculiar nonlinear phenomenon. Shortly before
the shock reaches the zero point the pressure takes very low values, but its
reflection from the zero point causes a strong increase of the pressure in a
very small time-space range near the boundary.

For the last example we have also changed the size of the initial bubble. We
only obtained the expected numerical solutions which are rescaled versions of
the solutions presented here. Hence it is sufficient to study the problem with
the initial bubble in the unit sphere around the origin.

Example 4 shows considerable differences in the values of the pressure, es-
pecially in the domain (t,z) € [4, 4.1] x [0, 0.02] a pressure less than 107°.
At present we restrict our study to weak solutions without a vacuum state
a = b = 0. But a vacuum state may occur for certain initial data with
symmetry and positive pressure in radially symmetric solutions of the ultra-
relativistic Euler equations, see Lai’s paper [14, Lemmas 2.4, 2.5; Remark 2.2].
In this case it is convenient to use the original quantities a and b for which
we have developed the scheme in Section 4. The question arises whether our
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pressure p, N = 3000, t,=3, x,=2

2 1

18 0.9

16 0.8

14 0.7

w 1.2 0.6
72}

=) 0.5
o
®

0.4

103

10.2

10.1

0 0.5 1 1.5 2 25 3
time t

Fic. 8. Pressure p from Example /.

velocity v, N = 3000, t,=3, x,=2

>
73]
=
o
v
-
10
1-0.2
L] 0.4
0 0.5 1 15 2 25 3
time t

Fic. 9. Velocity v from Example / .
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pressure p, N = 3000, t,=5, x,=2

0.05 140
120
0.04
100
x
[72]
8 003 50
o
©
0.02 |
- 40
0.01
I <20

412 414 416 418 42 422 424 426 428
time t

FiG. 10. Zoom mear the pressure singularity, Example / .

velocity v, N = 3000, t,=5, x,=2

radius x

time t

Fic. 11. Velocity v from Example 4, extension of the solution from Figure 9 with rescaled colors .
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scheme has the capability to capture more general solutions including the
vacuum state accurately.
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