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Abstract: In this paper we construct unstable shocks in the context of 2D isentropic
compressible Euler in azimuthal symmetry. More specifically, we construct initial data
that when viewed in self-similar coordinates, converges asymptotically to the unstable

C
1
5 self-similar solution to the Burgers’ equation. Moreover, we show the behavior is

stable in C8 modulo a two dimensional linear subspace. Under the azimuthal symmetry
assumption, one cannot impose additional symmetry assumptions in order to isolate the
corresponding manifold of initial data leading to stability: rather, we rely on modulation
variable techniques in conjunction with a Newton scheme.
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1. Introduction

1.1. Setup of compressible Euler under azimuthal symmetry. In this paper we study
asymptotically self-similar formation of unstable shocks for the 2D isentropic com-
pressible Euler equations under azimuthal symmetry. The 2D isentropic compressible
Euler equations take the form

∂t (ρu) + div (ρ u ⊗ u) + ∇ p(ρ) = 0, (1.1a)

∂tρ + div (ρu) = 0, (1.1b)
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where u : R2 × R → R
2 is the velocity of the fluid, ρ : R2 × R → R+ is the density,

and p : R2 × R → R+ is the pressure defined by the ideal gas law

p(ρ) := 1
γ
ργ , γ > 1.

The associated sound speed σ is given by σ = ρλ where λ = γ−1
2 .

It was shown in [2], that if one imposes the following azimuthal symmetry

u(x, t) · x

|x | = ra(θ, t), u(x, t) · x⊥

|x | = rb(θ, t), ρ = r
2

γ−1 P(θ, t), (1.2)

where (r, θ) are the usual polar coordinates, then the Eq. (1.1) reduce to the 1D system
of equations

(∂t + b∂θ ) a + a2 − b2 + λ−1P2λ = 0 (1.3a)

(∂t + b∂θ ) b + 2ab + P2λ−1∂θ P = 0 (1.3b)

(∂t + b∂θ ) P + γ
λ

a P + P∂θ b = 0 . (1.3c)

An important difference between Euler under azimuthal rather than radial symmetry
is that azimuthal symmetry allows for the presence of non-trivial vorticity. We remark
that it was shown in [2], that the system (1.3) is locally well-posed in Cn for any n ≥ 1.

In order to avoid issues regarding the irregularity at the origin r = 0 (created by the
azimuthal symmetry), and in order to ensure finite kinetic-energy, following [2], we can
exploit locality and restrict the solution (1.2) to the push forward of an annulus under
the flow induced by u. To be more precise, define Ar ,r to be the annular region

Ar ,r = {x ∈ R
2 : r < |x | < r}.

Fixing 0 < r0 < r1; then, if ηu is the solution to ∂tηu = u ◦ ηu for t > t0 with
ηu(x, t0) = x , define the time dependent domain

�(t) = ηu(Ar0,r1 , t). (1.4)

Now set 0 < R0 < r0 < r1 < R1 and let K > 0. Assuming that |u| ≤ K for all
(x, t) ∈ AR0,R1 × [t0, T∗), then it follows that

�(t) ⊂ AR0,R1 for t ∈ [t0, T∗],
so long as |T∗ − t0| is assumed to be sufficiently small (depending or r0, r1, R0, R1 and
K ). Then given a solution (a, b, P) to the system (1.3), we relate these to solutions to
(1.1) via the transformation (1.2), restricted to the domain � given in (1.4).

1.2. Brief historical overview. The formation of shocks is a classical problem in hyper-
bolic PDE. The first rigorous proof of shock formation is due to the pioneering work of
Lax [12] that employed invariants devised by Riemann [22] and the method of charac-
teristics. The work of Lax was further generalized and refined by John [11], Liu [13],
and Majda [15] (cf. [9]).

In themulti-dimensional setting, Sideris in [23] demonstrated using a virial type argu-
ment the existence of solutions that form singularities in finite time. Themethod of proof
does not however lead to a classification of the type of singularity produced. The first
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proof of shock formation in the multi-dimensional setting was given by Christodoulou
[4], whereby he proved shock formation in the irrotational, relativistic setting. The work
was later generalized to non-relativistic, irrotational setting [5], and then further ex-
tended by Luk and Speck to the 2D setting with non-trivial vorticity [14]. It is important
to note that while the cited work are capable of proving shock formation (or simply
singularity formation in the case of Sideris), the methods of proof are incapable of dis-
tinguishing precise information on the shock’s profile. For example, none of the cited
work determine whether the shock occurs at one specific location or whether multiple
shocks occur simultaneously. In the recent work by the first author, Shkoller and Vicol
[2], it was shown than in 2D under the azimuthal symmetry (1.2) one can prove the ex-
istence of stable shocks (stable with respect to perturbations that preserve the azimuthal
symmetry) whose self-similar profile can be precisely described. This work in [1] was
extended to 3D in the absence of any symmetry assumption, and further extended to
the non-isentropic case in [3]. In a different direction, we would like to also bring to
attention of the remarkable recent works of Merle et al. [19,20], which demonstrated the
existence of radially symmetric imploding solutions to the isentropic Euler equation—a
completely new form of singularity for the Euler equations.

1.3. Unstable shocks for the Burgers’ equation. Before we state a rough version of the
main theorem, let us first review the concept of an unstable shock in the context of the
1D Burgers’ equation:

∂tw + w∂yw = 0 for y ∈ R. (1.5)

The Burgers’ equation satisfies the following four invariances:

1. Galilean symmetry: If w(y, t) is solves (1.5) then w(y − v, t) + v solves (1.5) for
any v ∈ R.

2. Temporal rescaling: If w(y, t) is solves (1.5) then λw(y, λt) solves (1.5) for any
λ > 0.

3. Translation invariance: If w(y, t) is solves (1.5) then w(y − y0, t) solves (1.5) for
any y0 ∈ R.

4. Spatial rescaling: If w(y, t) is solves (1.5) then λ−1w(λy, t) solves (1.5) for any
λ > 0.

Any initial data w0 with a negative slope at some point y0 will shock in finite time. Let
us assume that w0 has a global minimum slope. By temporal rescaling and translation
invariance, without loss of generality, we may assume the global minimum slope is −1,
occurring at y = 0. Let us take the initial time to be t = −1. By Galilean symmetry,
without loss of generality, we may further assume w0(0) = 0, then by methods of
characteristics that the solution w will shock at (y, t) = (0, 0).

If in addition w′′′
0 (0) = ν > 0, then the solution w will converge asymptotically at

the blow up to a self-similar profile W 1; in particular, we have

lim
t→0

(−t)
1
2 w(x(−t)−

3
2 , t) =

(ν

6

)− 1
2

W 1

((ν

6

) 1
2

x

)
, (1.6)

for any x ∈ R, where

W 1(x) =
⎛
⎝− x

2
+

(
1

27
+

x2

4

) 1
2

⎞
⎠

1
3

−
⎛
⎝ x

2
+

(
1

27
+

x2

4

) 1
2

⎞
⎠

1
3

. (1.7)
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Remark 1.1. Note one can fix ν by making use of the spacial rescaling invariance of
Burgers’ equation.

The shock profile is stable in the sense that given any initial data in a suitably small
C4 neighborhood of w0, the resulting solution will satisfy (1.6) modulo the invariances
of Burgers’ equation. The profile W 1 (together its ν rescaling given on the right hand
side of (1.6)) satisfy the following self-similar Burgers’ equation

−1

2
W 1 +

(
3

2
x + W 1

)
∂x W 1 = 0.

In addition to W 1 defined above, the Burgers’ equation admits a countable family of
smooth self-similar profiles [10]. For each i ∈ N, there exists a unique non-trivial analytic
profile Wi satisfying the ODE

− 1

2i
W i +

(
(2i + 1)x

2i
+ W i

)
∂x W i = 0.

such that

wi (x, t) = (−t)
1
2i W i (x(−t)

2i+1
2i ),

defines a self-similar solution to the Burgers’ equation. Unlike W 1, the solutions W i for
i > 1 are unstable: generic small perturbations of initial datawi (·, 0) lead to singularities
described by the stable self-similar profile W 1. Indeed a generic smooth perturbation of
wi (x, 0) leads to initial data with a global minimum at a point where the third derivative
is positive, which by the discussion above leads to a shock with asymptotic profile W 1.

The profiles W i for i > 1 are nevertheless stable modulo a finite co-dimension of
initial data: Suppose we are given initial data w0 with a global minimum, as a con-
sequence of the invariances of Burgers’ equation, we may further assume w0(0) = 0
and w′

0(0) = −1. If we further assume that w
(n)
0 (0) = 0 for n = 2, . . . , 2i and that

w
(2i+1)
0 (0) = ν > 0, then

lim
t→0

(−t)
1
2i w(x(−t)−

2i+1
2i , t) =

(
ν

(2i + 1)!
)− 1

2i

W i

((
ν

(2i + 1)!
) 1

2i

x

)
, (1.8)

for all x ∈ R. Thus the initial data leading to the unstable shock profiles W i for i > 1
are described by a manifold of finite codimension.

We note that in the paper [7], the authors study stable and unstable self-similar solu-
tions to the Burgers equation in order to investigate the Burgers equation with transverse
viscosity.

Our main objective in this work is to identify an analogous manifold, M, for the
compressible Euler equations which lead to unstable blowup dynamics according to the
profile W 2. Unlike the case for Burgers described above, the specification of M is not
as explicit as that described above, and must be found via very careful Newton scheme.
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1.4. Rough statement of main theorem. In this paper, we prove the existence of asymp-
totically self similar solutions to 2D isentropic compressible Euler equations under az-
imuthal symmetry that under the appropriate self-similar transformations are described
by the self-similar Burgers’ profile W 2:

Theorem 1.2. There exists initial data (a0, b0, P0) in C8 for which the corresponding

solutions (a, b, P) to (1.3) develop a C
1
5 -cusp singularity in finite time. At blow-up, the

solutions (a, b, P) form singularity at a unique angle; moreover, the singularities may
be described in terms of the self-similar Burgers’ profile W 2 in a manner made precise
in Theorem 2.1. The behavior described is stable in C8 with regards to the initial data
modulo a two dimensional linear subspace.

We note that analogous results exist for the Burger’s equation with traversal viscosity
[7], the Prandtl equations [6,8] and the Burgers–Hilbert equation [24]. We also note
that the formation of unstable shocks (defined and discussed below) in the context of
Bourgain–Wang solutions to NLS was obtained in [21] through virial type identities
and backwards integration techniques. These papers however rely on a symmetry to
constrain the position of the singularity which leads to a comparatively simple classi-
fication of initial data leading to unstable blow up profiles. Isentropic Euler does not
satisfy analogous symmetries leading us to develop a new shooting method in order to
describe initial data leading to unstable blowup. We believe that techniques developed
are suitably malleable and could find potential use in proving the existence of unstable
blowup for other PDE.

2. Statement of Main Theorem

2.1. Riemann invariants. Before we can state our main theorem, wemust first introduce
the concept of Riemann invariants, since it is our aim to show that we can prescribe initial
data such that one of the Riemann invariants shocks according to the self-similar profile
W 2.

As was done in [2], in order to diagonalize the system (1.3a)–(1.3c) and isolate the
Burgers-like behavior of the shock development, we will rewrite (1.3a)–(1.3c) in terms
of the Riemann invariants

w = b +
1

λ
Pλ, z = b − 1

λ
Pλ,

and the wave speeds


1 = b − Pλ = 1 − λ

2
w +

1 + λ

2
z, 
2 = b + Pλ = 1 + λ

2
w +

1 − λ

2
z.

With these substitutions we obtain the following system of nonlinear transport equations

∂tw +
(
w + 1−λ

1+λ
z
)
∂θw = −a

( 1−2λ
1+λ

z + 3+2λ
1+λ

w
)
, (2.1a)

∂t z +
(
z + 1−λ

1+λ
w

)
∂θ z = −a

( 1−2λ
1+λ

w + 3+2λ
1+λ

z
)
, (2.1b)

∂t a + 1
1+λ

(w + z)∂θa = − 2
1+λ

a2 + 1
2(1+λ)

(w + z)2 − λ
2(1+λ)

(w − z)2. (2.1c)
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2.2. Initial data assumptions. In this section we will describe the initial data used to
construct unstable shock solutions. We introduce a large constant M which will be used
to bound certain implicit constants appearing in the paper. We also let ε > 0 be a small
constant which will parameterize the slope of the initial data.

We will denote the initial data at initial time t = −ε by

w(θ,−ε) = w0, z(θ,−ε) = z0, a(θ,−ε) = a0.

The initial will be assumed to satisfy the follow support assumptions

supp (w0 − κ0) ∪ supp (z0) ∪ supp (a0) ⊂
[
− Mε

2
,

Mε

2

]
,

where κ0 > 0 will be a predetermined constant.
We will further decompose w0 as a sum

w0 = κ0 + ε
1
4 W2

(
ε− 5

4 θ
)

χ(ε−1θ) + ε
1
4 Ŵ0(ε

− 5
4 θ)

︸ ︷︷ ︸
=:w̌0(θ)

+ε
1
4

(
α(ε− 5

4 θ)2 + β(ε− 5
4 θ)3

)
χ(ε− 5

4 θ).

(2.2)

for some smooth fixed cut-off, χ , satisfying χ(x) = 1 for |x | ≤ 1 and is supported
in a ball of radius 2. Above the constants α, β are determined by Ŵ0 and are not free
parameters that we choose as part of the data. The perturbation Ŵ0 will be assumed to
satisfy the following

∥∥Ŵ0
∥∥

C8
([

− Mε
2 , Mε

2

]) ≤ ε2 (2.3)

Ŵ (n)
0 (0) = 0, for n = 0, 1, 4, 5 (2.4)∣∣∣Ŵ (n)
0 (0)

∣∣∣ ≤ ε, for n = 2, 3. (2.5)

We also assume the following bounds on z0 and a0

‖z0‖C8 + ‖a0‖C8 ≤ ε2.

2.3. Main theorem. We now state our main theorem:

Theorem 2.1. Let γ > 1 be given and set λ = γ−1
2 . Then there are values κ0, M, ε,

0 < ε < 1, such that for any κ0 ∈ [κ0(λ),∞), M ∈ [M(λ, κ0),∞), and ε ∈
(0, ε(λ, κ0, M)], the following holds:

Let (w0, z0, a0) be initial data satisfying the assumptions stipulated in Sect. 2.2,
with the constants α and β are left to be chosen. Then, there exists α, β satisfying

|α| + |β| ≤ ε
9
10 and a corresponding solution (a, z, w) ∈ C([−ε, T∗); C8(T)) to (2.1)

satisfying the following properties:

• The solution forms a singularity at a computable time T∗ and angle θ∗.
• supt∈[−ε,T∗)

(‖a‖W 1,∞(T) + ‖z‖W 1,∞(T) + ‖w‖L∞(T)

) ≤ CM ,

• limt→T∗ ∂θw(ξ(t), t) = −∞ and 1
2(T∗−t) ≤ ‖∂θw(·, t)‖L∞ ≤ 2

T∗−t as t → T∗,

• w(·, T∗) has a cusp singularity of Hölder C
1/5 regularity
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Moreover, w blows up in an asymptotically self-similar manner described by the profile
W 2. Specifically, there exist a ν > 0 and κ∗ such that

lim
t→T∗

(T∗ − t)
1
4

(
w(x(T∗ − t)

5
4 + ξ∗, t) − κ∗

)
=

( ν

120

)− 1
4

W 2

(( ν

120

) 1
4

x

)
, (2.6)

where ν, κ∗, ξ∗ are explicitly computable, and satisfy the bounds |ν − 120| ≤ ε
3
4 ,

|κ0 − κ∗| ≤ ε, and |ξ∗| ≤ 4κ0ε. The variable x appearing in (2.6) can be thought
of as a self-similar spatial variable as t approaches T∗.

As a corollary, we show that Theorem 2.1 is stable modulo a two dimensional linear
subspace of initial data:

Corollary 2.2. There exists an open set � of initial data (w̌0, z0, a0) in the C8 for which
we have the following: for every (w̌0, z0, a0) ∈ � there exist α, β ∈ R such that if we
define w0 by (2.2) then the conclusion of Theorem 2.1 holds for initial data (w0, z0, a0).

2.4. Modulation variables and unstable ODEs at x = 0. In order to isolate the self-
similar profile, we will need to introduce modulated self-similar variables. These mod-
ulation variables allow one to control the time, location, and amplitude of the eventual
shock. The idea of using modulation variables is by now classical (cf. [16–18]). We
give the precise definitions of our self-similar variables and modulation variables in
Sect. 3.1, but to facilitate the forthcoming discussion, let us consider the self-similar
quantities (W, Z , A) defined through w(θ, t) = e− s

4 W (x, s) + κ(t), z(θ, t) = Z(x, s)
and a(θ, t) = A(x, s), where we rescale time via s = − log(τ − t) and space via
x = θ−ξ(t)

(τ−t)
5
4
.

In our case, we introduce the dynamical modulation variables τ, ξ, κ found in (3.1),
(3.2) to enable us to constrain

W (0, s) = 0, ∂x W (0, s) = −1, ∂4x W (0, s) = 0, (2.7)

where the final constraint is notably different than in the works [1–3], and reflects the
different structure of the Taylor coefficients at x = 0 of the self-similar profile W 2.

In so doing, we obtain from (2.1a) to (2.1c) the system that we ultimately analyze,
which

(∂s − 1

4
)W + (gW +

5

4
x)∂x W = −e− 3

4 s κ̇

1 − τ̇
+ FW , (2.8)

∂s Z + (gZ +
5

4
x)∂x Z = FZ , (2.9)

∂s A + (gA +
5

4
x)∂x A = FA. (2.10)

Above, the quantities gW , gZ , gA are transport speeds, and FW , FZ , FA are forcing terms
that we also leave unspecified for the purposes of this discussion. The reader may find
the precise definitions in (3.11)–(3.13) and (3.14)–(3.16).

In addition, we control the evolution of τ, ξ, κ through ODEs obtained by restricting
to the constrains, (2.7). Importantly the three modulation variables enable us to constrain
only the three quantities appearing in (2.7). However, a feature of (1.6) with i ≥ 2 is
that W (2)(0, s) and W (3)(0, s) need to be zero in the limit as s → ∞. This in turn
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cannot be enforced by the introduction of further modulation variables due to the lack
of further symmetries in the compressible Euler equations, and so must be enforced by
the choosing initial data on a codimension two manifold, M.

The equations describing the second and third derivatives of W at x = 0 are given
by

(∂s − 3

4
)W (2)(0, s) = rapidly decaying forcing terms, (2.11)

(∂s − 1

2
)W (2)(0, s) = rapidly decaying forcing terms. (2.12)

One can see the instability of the manifold due to the negative damping coefficients
appearing on the left-hand side of (2.11)–(2.12). Indeed, negatively damped ODEs such
as (2.11)–(2.12) generically grow as s → ∞, but certain data (as determined by the
right-hand side) can lead to decaying solutions.

In the context of the Euler equations, the right-hand sides above themselves depend
on other elements of the system (such as the modulation variables, and other derivatives
of (W, Z , A)). For this reason, we are led to develop a Newton scheme which identifies
M.

2.5. An iterative scheme to search for unstable solutions. In this subsection, we briefly
discuss the Newton scheme that can be used to identify a manifold of initial data which
leads to a globally decaying solution to (2.11)–(2.12). For the present discussion, we
focus on a model ODE problem. We consider

(∂s − 1

2
)uα = g + ε f (uα), uα(0) = α. (2.13)

We assume for now that the forcing, g, has sufficiently strong decay and the nonlinearity,
f , is an explicit quadratic nonlinearity via

|g| � e−γ s, f (u) = u2, γ > 0. (2.14)

For general data, α, writing the solution to (2.13) via the Duhamel formula yields

uα(s) = e
s
2 α + e

s
2

∫ s

0
e− s′

2 g(s′) ds′ + εe
s
2

∫ s

0
e− s′

2 uα(s′)2 ds′. (2.15)

From (2.15), it is that even under the assumption of g decaying exponentially one cannot
expect the solution uα to decay to zero as s → ∞ for generic data, α. Thus, to obtain
decaying solutions to (2.13), one needs to find a manifold of data (in this example,
a manifold of codimension one). In the case of this ODE, this amounts to finding a
particular value of α which ensures a globally decaying solution.

To illustrate how to find this choice of α, we now consider the linear version of (2.13)
(setting ε = 0 in (2.13)). Upon setting ε = 0 in (2.15), sending s → ∞, and demanding
the asymptotic behavior uα(s) → 0 as s → ∞, we obtain the following relation

α0 +
∫ ∞

0
e− s′

2 g(s′) ds′ = 0,

which links the choice of data,α0, to the forcing, g, and guarantees the solution |uα(s)| �
e−γ s inherits the decay of g.
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We would now like to modify the choice of data, α0, by an ε perturbation in order
to account for the nonlinear effects when ε > 0 in (2.13). The overall strategy will be
to fix a sequence of times {sn} for n ∈ N with the property that sn → ∞ as n → ∞,
and a corresponding sequence of data choices {αn} for n ∈ N so that uαn (sn) = 0. With
suitably strong estimates, wewill show thatαn → α∞ and correspondingly uα∞(s) → 0
as s → ∞. To compute the iterate ofαn+1 requires an application of the Implicit Function
Theorem, which in turn requires sufficiently strong estimates on the solution.

Let us now take the particular selection of times, sn = n. To initiate the induction, we
will choose α0 = 0, and u0(s) the corresponding solution (clearly, u0(s0) = u0(0) =
α0 = 0).We describe now the n → n+1 step of the iteration.We now assume inductively
that there exists a choice of αn so that uαn (sn) = 0 and describe the choice of αn+1, which
is achieved through the Implicit Function Theorem.

We define now the map Tn given by Tn(α) := uα(sn+1). We now seek an αn+1 in a
small neighborhood, Bn , of αn so that Tn(αn+1) = 0. According to a Taylor expansion
of Tn in α, we obtain for some α∗ satisfying |α∗ − αn| ≤ |αn − αn+1|,

Tn(αn+1) = Tn(αn) + (αn+1 − αn)
∂Tn

∂α
(αn) +

1

2
(αn+1 − αn)2

∂2Tn

∂α2 (α∗).

Accordingly, we may apply the Implicit Function Theorem to identify a αn+1 so that the
left-hand side is zero if we can obtain three estimates: an upper bound on |Tn(αn)|, a
lower bound on ∂Tn

∂α
(αn), and an upper bound over supα∗∈Bn

| ∂2Tn
∂α2 |.

We thus define the error at the next time scale created by this solution as En :=
uαn (sn+1), which the new choice of αn+1 must rectify in order to achieve the condition
uαn+1(sn+1) = 0. The first main estimate in the scheme is thus careful control of this
error, En , throughout the iteration. Specifically, using backwards integration from sn ,
we may obtain the decay estimate

|En| = |Tn(αn)| � e−γ sn .

Lower bounds on ∂Tn
∂α

are achieved by differentiating the forward integration formula,
(2.15) in α, as this formula importantly holds for all α. A simple inspection shows that

we may expect ∂Tn
∂α

∼ e
s
2 . Third, an upper bound of supα∗∈[αn ,αn+1] | ∂2Tn

∂α2 | can also be
computed by differentiating twice (2.15) in α.

2.6. Notational conventions. We now discuss some notational conventions that we will
be using throughout the analysis. First, for a function f = f (x, s), we use ‖ f ‖∞ =
supx | f (s, x)|, that is L∞ refers to in the x variable only. Next, we define the bracket
notation 〈x〉 := √

1 + x2. Lastly, we will often use A � B to mean A ≤ C B, where C
is a universal constant independent of M, ε, κ0. We will use A �M B to mean A ≤ C B
where C is a constant that can depend on M .

3. Preliminaries to the Analysis

3.1. Self-similar variables and derivation of equations. We will employ the notation

βτ = 1

1 − τ̇
, β1 = 1

1 + λ
, β2 = 1 − λ

1 + λ
, β3 = 1 − 2λ

1 + λ
, β4 = 3 + 2λ

1 + λ
, β5 = λ

2 + 2λ
.
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We now introduce the change of coordinates that we work in and the relevant mod-
ulation variables. We define our self-similar temporal and spacial variables as

s = − log(τ − t), x = θ − ξ(t)

(τ − t)
5
4

. (3.1)

We record the following identities

∂s

∂t
= (1 − τ̇ )es,

∂x

∂t
= 5

4
(1 − τ̇ )xes − ξ̇e

5
4 s,

∂x

∂θ
= e

5
4 s .

We now introduce the new unknowns, W, Z , A which are defined through the following
relations

w(θ, t) = e− s
4 W (x, s) + κ(t), z(θ, t) = Z(x, s), a(θ, t) = A(x, s). (3.2)

In order to solve for the three modulation variables κ , τ and ξ , we enforce the following
constraints

W (0, s) = 0, ∂x W (0, s) = −1, ∂4x W (0, s) = 0. (3.3)

We now record the following calculations

∂tw = −1 − τ̇

4
e
3
4 s W + (1 − τ̇ )e

3s
4 ∂s W + κ̇ +

5

4
(1 − τ̇ )xe

3
4 s∂x W − ξ̇es∂x W, (3.4)

∂θw = es∂x W. (3.5)

Next, we record the calculations

∂t z = (1 − τ̇ )es∂s Z + (
5

4
(1 − τ̇ )xes − ξ̇e

5
4 s)∂x Z , ∂θ z = e

5
4 s∂x Z . (3.6)

and similarly,

∂t a = (1 − τ̇ )es∂s A + (
5

4
(1 − τ̇ )xes − ξ̇e

5
4 s)∂x A, ∂θa = e

5
4 s∂x A. (3.7)

Then in self-similar variables (2.1a) becomes

(∂s − 1

4
)W +

(
5

4
x − βτ (ξ̇ − κ)e

1
4 s + βτ (β2e

1
4 s Z + W )

)
∂x W

= −βτ e− 3
4 s κ̇ − βτ e− 3

4 s A
(
β3Z + β4(e

− s
4 W + κ)

)
. (3.8)

Similarly, we rewrite (2.1b) as

∂s Z +

(
5

4
x + βτ (e

1
4 s(β2κ − ξ̇ + Z) + β2W )

)
∂x Z = −βτ e−s A

(
β3(e

− s
4 W + κ) + β4Z

)
,

(3.9)

and (2.1c) as

∂s A +

(
5

4
x + βτ (e

1
4 s(β1κ − ξ̇ + β1Z) + β1W )

)
∂x A

= −2βτβ1e−s A2 +
1

2
βτβ1e−s

(
e− s

4 W + κ + Z
)2 − βτβ5e−s

(
e− s

4 W + κ − Z
)2

.

(3.10)
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Wenowcompactify the above equations by introducing the following transport speeds

gW := βτ W − βτ (ξ̇ − κ)e
1
4 s + βτβ2e

1
4 s Z =: βτ W + GW , (3.11)

gZ := βτβ2W + βτ e
1
4 s(β2κ − ξ̇ + Z) =: βτβ2W + G Z , (3.12)

gA := βτβ1W + βτ e
1
4 s(β1κ − ξ̇ + β1Z) =: βτβ1W + G A, (3.13)

and forcing terms

FW := −βτ e− 3
4 s A

(
β3Z + β4(e

− s
4 W + κ)

)
, (3.14)

FZ := −βτ e−s A
(
β3(e

− s
4 W + κ) + β4Z

)
, (3.15)

FA := −2βτβ1e−s A2 +
1

2
βτβ1e−s

(
e− s

4 W + κ + Z
)2 − βτβ5e−s

(
e− s

4 W + κ − Z
)2

.

(3.16)

We note that the quantities GW , G Z , G A are defined through the second equalities in
(3.11)–(3.13).

With these definitions, our equations become

(∂s − 1

4
)W + (gW +

5

4
x)∂x W = −e− 3

4 s κ̇

1 − τ̇
+ FW , (3.17)

∂s Z + (gZ +
5

4
x)∂x Z = FZ , (3.18)

∂s A + (gA +
5

4
x)∂x A = FA. (3.19)

Further, it will be convenient to introduce the notation

VW := gW +
5

4
x, VZ := gZ +

5

4
x, VA := gA +

5

4
x .

so that we obtain

(∂s − 1

4
)W + VW ∂x W = −e− 3

4 s κ̇

1 − τ̇
+ FW , (3.20)

∂s Z + VZ∂x Z = FZ , (3.21)

∂s A + VA∂x A = FA. (3.22)

We define now the combination

μ := −βτ (ξ̇ − κ)e
s
4 + βτβ2e

1
4 s Z(0, s) = GW (s, 0). (3.23)
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3.2. An unstable self-similar solution to Burgers’ equation. Here we develop properties
of the self-similar Burgers profile, W := W 2, which solves the equation

−1

4
W + (W +

5

4
x)W x = 0. (3.24)

According to [10], (3.24) has an implicit solution

x = −W − W
5
. (3.25)

Differentiating yields

W
(1) = − 1

1 + 5W
4 . (3.26)

Hence W
(1) ≤ 0 and thus since W (0) = 0 we attain that W ≤ 0 for x ≥ 0. By Young’s

inequality and applied to (3.25), we have

x ≤ −W − W
5 ≤ − W

5

5x4
+ −W

5
+
4x

5
.

Rearranging, we obtain

−W
5 ≥ x5

5(5 + x4)
.

This lower bound combined with (3.26) yields∣∣∣W (1)
∣∣∣ ≤ (1 + x4)−

1
5 . (3.27)

Similarly, using Young’s inequality and (3.25) we have

−W
5 ≤ 5x + 1,

from which we obtain the estimate
∣∣W ∣∣ ≤ 3

2
(1 + x4)

1
20 .

Finally, differentiating (3.25) 5 times, we obtain

W (5)(0) = 120. (3.28)

We now define the weight function

ηγ := (1 + x4)γ , for any γ ∈ R. (3.29)

We now record the following lemma, which summarizes the properties of W that we
will be using

Lemma 3.1. Let � be sufficiently small relative to universal constants. For n = 2, 3, 4
at x = 0 we have

W (0) = 0, W
(1)

(0) = −1, W
(n)

(0) = 0, W
(5)

(0) = 120. (3.30)

Furthermore, for n ≥ 2, W satisfies the estimates

|W | ≤ 3

2
η 1

20
, |W (1)| ≤ η− 1

5
, |W (n)| ≤ Ckη− 1

5− n
4
, (3.31)

− 1 +
l7

50
≤ W

(1) ≤ 0 for |x | ≥ �. (3.32)
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3.3. Higher order x derivatives. In this section we list the higher order derivatives of
(W, Z , A). It will be convenient to introduce the notation:

f (n)(s, x) := ∂n
x f (s, x).

We will derive now up to eight derivatives of the above system.
(
∂s +

1

4
(−1 + 5n) + βτ (n + 1n>1)W (1)

)
W (n) + VW ∂x W (n) = FW,n, (3.33)

(∂s +
5n

4
+ nβτβ2W (1))Z (n) + VZ∂x Z (n) = FZ ,n, (3.34)

(∂s +
5

4
n + nβτβ1W (1))A(n) + VA∂x A(n) = FA,n, (3.35)

where the forcings are defined by

FW,n := F (n)
W − 1n≥3βτ

n−1∑
j=2

(
n

j

)
W ( j)W (n+1− j) −

n∑
j=1

(
n

j

)
G( j)

W W (n+1− j), (3.36)

FZ ,n := F (n)
Z − 1n≥2βτβ2

n∑
j=2

(
n

j

)
W ( j)Z (n+1− j) −

n∑
j=1

(
n

j

)
G( j)

Z Z (n+1− j), (3.37)

FA,n := F (n)
A − 1n≥2βτβ1

n∑
j=2

(
n

j

)
W ( j) A(n+1− j) −

n∑
j=1

(
n

j

)
G( j)

A A(n+1− j). (3.38)

For repeated future reference, we record here the following expressions which are
obtained by differentiating (3.14) (for n ≥ 1)

F (n)
W = −βτ e− 3

4 s
n∑

j=0

(
n

j

)
A( j)

(
β3Z (n− j) + β4(e

− s
4 W + κ)(n− j)

)
, (3.39)

F (n)
Z = −βτ e−s

n∑
j=0

(
n

j

)
A( j)

(
β3(e

− s
4 W + κ)(n− j) + β4Z (n− j)

)
, (3.40)

F (n)
A = −2βτβ1e−s

n∑
j=0

(
n

j

)
A( j) A(n− j)

+
1

2
βτβ1e−s

n∑
j=0

(
n

j

)
(e− s

4 W + κ + Z)( j)(e− s
4 W + κ + Z)(n− j)

− βτβ1e−s
n∑

j=0

(
n

j

)
(e− s

4 W + κ − Z)( j)(e− s
4 W + κ − Z)(n− j). (3.41)

By combining (3.36) with (3.39), we obtain the expression

FW,n = −βτ e− 3
4 s

n∑
j=0

(
n

j

)
A( j)

(
β3Z (n− j) + β4(e

− s
4 W + κ)(n− j)

)

− 1n≥3βτ

n−1∑
j=2

(
n

j

)
W ( j)W (n+1− j) −

n∑
j=1

(
n

j

)
G( j)

W W (n+1− j). (3.42)
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By combining (3.37) with (3.40), we obtain the final expression

FZ ,n = −βτ e−s
n∑

j=0

(
n

j

)
A( j)

(
β3(e

− s
4 W + κ)(n− j) + β4Z (n− j)

)

− 1n≥2βτβ2

n∑
j=2

(
n

j

)
W ( j)Z (n+1− j) −

n∑
j=1

(
n

j

)
G( j)

Z Z (n+1− j). (3.43)

We now derive the first five constrained ODEs. First, we introduce an important piece
of notation to describe the purely s-dependent quantities at x = 0,

q(n)(s) := W (n)(0, s). (3.44)

From the Eqs. (3.17) and (3.33) , evaluating W (n), for n = 0, . . . , 4 at x = 0 and using
the constraints (3.3), we obtain the following system of five ODEs in the s variable

− μ

βτ

+ e− 3
4 s κ̇ = 1

βτ

FW (0, s), (3.45)

τ̇ − 1

βτ

G(1)
W (0, s) +

μ

βτ

q(2)(s) = 1

βτ

F (1)
W (0, s), (3.46)

(∂s +
9

4
)q(2) − 3βτ q(2) + μq(3) + 2G(1)

W (0, s)q(2) = F (2)
W (0, s) + G(2)

W (0, s), (3.47)

(∂s +
14

4
)q(3) − 4βτ q(3) + 3G(1)

W (0, s)q(3) + 3βτ |q(2)|2

+
3∑

j=2

(
3

j

)
G( j)

W (0, s)q(4− j) = F (3)
W (0, s), (3.48)

q(5)μ + 10βτ q(2)q(3) +
4∑

j=2

(
4

j

)
G( j)

W (0, s)q(5− j) = F (4)
W (0, s). (3.49)

In addition, we will need the evolution equation of W (5) at x = 0, given by

∂sq(5) = −μq(6) + (1 − βτ )q
(5) − 10|q(3)|2 −

5∑
j=1

(
5

j

)
G( j)

W (0, s)q(6− j) + F (5)
W (0, s).

(3.50)

We also derive the following equation for the difference W̃ := W − W :

(∂s − 1

4
+ βτ W

(1)
)W̃ + VW ∂x W̃ = −βτ e− 3

4 s κ̇ + FW + ((βτ − 1)W − GW )∂x W := F̃W . (3.51)
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The equation for the higher order derivatives W (n) is given by

∂s W̃ (n) +
(1
4
(−1 + 5n) + βτ

(
W

(1)
+ nW (1)

) )
W̃ (n) + VW ∂x W̃ (n)

= F (n)
W − 1n≥2βτ

n−1∑
j=2

(
n

j

)
W ( j)W̃ (n+1− j) −

n∑
j=1

(
n

j

) (
βτ W

( j+1)
W̃ (n− j) + G( j)

W W̃ (n+1− j)
)

+ (βτ − 1)
n∑

j=0

(
n

j

)
W

( j)
W

(n+1− j) −
n∑

j=0

(
n

j

)
G( j)

W W
(n+1− j)

=: F̃W,n . (3.52)

3.4. ∇α,β derivatives. We introduce the following notation to compactify the forthcom-
ing equations

fc := ∂c f, c ∈ {α, β}, (3.53)

for any function f .

3.4.1. ∇α,β derivatives of Z We first take ∂c of Eq. (3.18) which produces

∂s Zc + VZ∂x Zc = ∂c FZ − Z (1)
(
τ̇cβ

2
τ β2W + βτβ2Wc + ∂cG Z

)
=: Fc

Z ,0. (3.54)

We now use (3.15) to evaluate the ∂c FZ term appearing above via

∂c FZ = τ̇cβτ FZ − βτ e−s Ac(β3(e
− s

4 W + κ) + β4Z) − βτ e−s A(β3(e
− s

4 Wc + κc) + β4Zc)

(3.55)

We next compute ∂n
x of Eq. (3.54) to obtain

(∂s +
5

4
n + nβτβ2W (1))Z (n)

c + VZ∂x Z (n)
c

= ∂c F (n)
Z −

n∑
j=0

(
n

j

)
τ̇cβ

2
τ β2Z ( j+1)W (n− j) −

n∑
j=0

(
n

j

)
βτβ2Z ( j+1)W (n− j)

c

−
n∑

j=0

(
n

j

)
Z (1+ j)∂cG(n− j)

Z − 1n≥1

n∑
j=1

(
n

j

)
G( j)

Z Z (n+1− j)
c

− 1n≥2

n∑
j=2

(
n

j

)
βτβ2W ( j)Z (n− j+1)

c =: Fc
Z ,n . (3.56)

We now compute the expression for ∂c F (n)
Z by computing ∂n

x of (3.55) which yields

∂c F (n)
Z = τ̇cβτ F (n)

Z − βτ e−s
n∑

j=0

(
n

j

)
A( j)

c

(
β3(e

− s
4 W + κ)(n− j) + β4Z (n− j)

)

− βτ e−s
n∑

j=0

(
n

j

)
A( j)

(
β3(e

− s
4 Wc + κc)

(n− j) + β4Z (n− j)
c

)
. (3.57)
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3.4.2. ∇α,β derivatives of A We compute ∂c of the basic equation for A, (3.22), which
yields

∂s Ac + VA∂x Ac = ∂c FA −
(
τ̇cβ

2
τ β1W + βτβ1Wc + ∂cG A

)
A(1) =: Fc

A,0. (3.58)

Computing now the expression ∂c FA by differentiating (3.16), we obtain

∂c FA = τ̇cβτ FA + βτβ1e−s
(

e− s
4 W + κ + Z

)(
e− s

4 Wc + κc + Zc

)

− 2βτβ5e−s
(

e− s
4 W + κ − Z

)(
e− s

4 Wc + κc − Zc

)
. (3.59)

We now compute ∂n
x of Eq. (3.58) which produces

(∂s +
5n

4
+ nβτβ1W (1))A(n)

c + VA∂x A(n)
c

= ∂c F (n)
A − 1n≥1

n∑
j=1

(
n

j

)
G( j)

A A(n+1− j)
c − 1n≥2

n∑
j=2

(
n

j

)
βτβ1W ( j) A(n+1− j)

c

−
n∑

j=0

(
n

j

)
τ̇cβ

2
τ β1W ( j) A(n+1− j) −

n∑
j=0

(
n

j

)
βτβ1W ( j)

c A(n+1− j)

−
n∑

j=0

(
n

j

)
∂cG( j)

A A(n+1− j) =: Fc
A,n . (3.60)

We now compute ∂n
x of the expression for ∂c FA in (3.59) which yields

∂c F (n)
A = τ̇cβτ F (n)

A + βτβ1e−s
n∑

j=0

(
n

j

)(
e− s

4 W + κ + Z
)( j)(

e− s
4 Wc + κc + Zc

)(n− j)

− 2βτβ5e−s
n∑

j=0

(
n

j

)(
e− s

4 W + κ − Z
)( j)(

e− s
4 Wc + κc − Zc

)(n− j)
. (3.61)

3.4.3. W quantities For the W equations, we separately write down the n = 0 system.
Differentiating (3.17) in c yields

(∂s − 1

4
+ βτ W (1))∂cW + VW ∂x∂cW

= −e− 3
4 sβτ ∂cκ̇ − e− 3

4 s κ̇∂cτ̇ β2
τ − ∂cGW W (1) − W (1)τ̇cβ

2
τ W + ∂c FW . (3.62)

By differentiating (3.14) in ∂c, we obtain

∂c FW = −∂c τ̇ β2
τ e− 3

4 s A
(
β3Z + β4(e

− s
4 W + κ)

)
− βτ e− 3

4 s∂c A
(
β3Z + β4(e

− s
4 W + κ)

)

− βτ e− 3
4 s A

(
β3∂c Z + β4(e

− s
4 ∂cW + ∂cκ)

)

= τ̇cβτ FW − βτ e− 3
4 s Ac

(
β3Z + β4(e

− s
4 W + κ)

)
− βτ e− 3

4 s A
(
β3Zc + β4(e

− s
4 Wc + κc)

)
.

(3.63)
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We combine with (3.62) to obtain

(∂s − 1

4
+ βτ W (1))∂cW + VW ∂x∂cW = Fc

W,0, (3.64)

where the forcing is given by

Fc
W,0 := τ̇cβτ FW − βτ e− 3

4 s Ac

(
β3Z + β4(e

− s
4 W + κ)

)
− ∂cGW W (1) − W (1)τ̇cβ

2
τ W

− βτ e− 3
4 s A

(
β3Zc + β4(e

− s
4 Wc + κc)

)
− e− 3

4 sβτ ∂cκ̇ − e− 3
4 s κ̇∂c τ̇ β2

τ .

(3.65)

We now take ∂n
x of Eq. (3.62). This produces, for n ≥ 1,

(∂s +
5n − 1

4
+ (n + 1)βτ W (1))∂cW (n) + VW ∂x∂cW (n)

= −1n≥1

n∑
j=1

(
n

j

)
βτ W (1+ j)∂cW (n− j) − 1n≥2

n−2∑
j=0

(
n

j

)
βτ W (n− j)∂cW ( j+1)

− 1n≥1

n−1∑
j=0

(
n

j

)
G(n− j)

W ∂cW ( j+1) −
n∑

j=0

(
n

j

)
∂cG( j)

W W (n− j+1)

− τ̇cβ
2
τ

n∑
j=0

(
n

j

)
W (1+ j)W (n− j) + ∂c∂

n
x FW =: Fc

W,n . (3.66)

We now use the expression (3.63) compute

∂c F (n)
W = τ̇cβτ F (n)

W −
n∑

j=0

(
n

j

)
βτ e− 3

4 s∂c A( j)
(
β3Z (n− j) + β4(e

− s
4 W + κ)(n− j)

)

−
n∑

j=0

(
n

j

)
βτ e− 3

4 s A( j)
(
β3∂c Z (n− j) + β4(e

− s
4 ∂cW + ∂cκ)(n− j)

)
. (3.67)

Combining now with the expression (3.66), we obtain

Fc
W,n := τ̇cβτ F (n)

W −
n∑

j=0

(
n

j

)
βτ e− 3

4 s∂c A( j)
(
β3Z (n− j) + β4(e

− s
4 W + κ)(n− j)

)

−
n∑

j=0

(
n

j

)
βτ e− 3

4 s A( j)
(
β3∂c Z (n− j) + β4(e

− s
4 ∂cW + ∂cκ)(n− j)

)

−
n∑

j=1

(
n

j

)
βτ W (1+ j)∂cW (n− j) − 1n≥2

n−2∑
j=0

(
n

j

)
βτ W (n− j)∂cW ( j+1)

− 1n≥1

n−1∑
j=0

(
n

j

)
G(n− j)

W ∂cW ( j+1) −
n∑

j=0

(
n

j

)
∂cG( j)

W W ( j+1)

− τ̇cβ
2
τ

n∑
j=0

(
n

j

)
W (1+ j)W (n− j). (3.68)
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3.5. ∇2
α,β derivatives.

3.5.1. ∇2
α,β derivatives of W We compute ∂c2 of (3.64) which results in

(∂s − 1

4
+ βτ W (1))Wc1c2 + VW ∂x Wc1c2

= ∂c1c2 FW − βτ W (1)
c2 Wc1 − β2

τ τ̇c2W (1)Wc1 −
(
β2

τ τ̇c2W + βτ Wc2 + ∂c2GW

)
W (1)

c1

− τ̇c1β
2
τ W W (1)

c2 − τ̇c1c2β
2
τ W W (1) − 2β2

τ τ̇c1 τ̇c2W W (1) − τ̇c1β
2
τ W (1)Wc2 − Mc1,c2

=: Fc1,c2
W,0 , (3.69)

where the modulation terms have been grouped into

Mc1,c2 := e− 3
4 s

(
βτ κ̇c1c2 + β2

τ (τ̇c2 κ̇c1 + κ̇c2 τ̇c1) + κ̇ τ̇c1c2β
2
τ + 2β2

τ κ̇ τ̇c1 τ̇c2

)
. (3.70)

Similarly we compute ∂n
x of (3.69) which results in the following system for n ≥ 1

(
∂s +

5n − 1

4
+ (n + 1)βτ W (1)

)
W (n)

c1,c2 + VW ∂x W (n)
c1,c2

= ∂c1c2 F (n)
W −

∑
i∈{1,2}

n∑
j=0

(
n

j

)
β2

τ τ̇ci W (1+ j)W (n− j)
ci ′ −

n∑
j=0

(
n

j

)
βτ W ( j)

c1 W (n+1− j)
c2

− 1n≥1

n∑
j=1

(
n

j

)
βτ W (1+ j)W (n− j)

c1c2 −
∑

i={1,2}

n∑
j=0

(
n

j

)
β2

τ τ̇ci ′ W
( j)W (n+1− j)

ci

−
n∑

j=0

(
n

j

)
βτ W (n+1− j)

c1 W ( j)
c2 − 1n≥2

n∑
j=2

(
n

j

)
βτ W ( j)W (n+1− j)

c1c2

−
n∑

j=0

(
n

j

)
∂c2G( j)

W W (n+1− j)
c1 − 1n≥1

n∑
j=1

(
n

j

)
G( j)

W W (n− j+1)
c1c2

−
n∑

j=0

(
n

j

) (
τ̇c1c2 + 2τ̇c1 τ̇c2

)
β2

τ W ( j)W (n+1− j) =: Fc1,c2
W,n . (3.71)

We shall now compute the following identity by differentiating (3.63)

∂c1c2 FW = −βτ e− 3
4 s

(
Ac1c2 (β3Z + β4(e

− s
4 W + κ)) + Ac1 (β3Zc2 + β4(e

− s
4 Wc2 + κc2 ))

)

− βτ e− 3
4 s

(
Ac2 (β3Zc1 + β4(e

− s
4 Wc1 + κc1 )) + A(β3Zc1c2 + β4(e

− s
4 Wc1c2 + κc1c2 ))

)

+ τ̇c2βτ ∂c1 FW + τ̇c1c2βτ FW + τ̇c1βτ ∂c2 FW . (3.72)
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Similarly, computing ∂n
x of the above expression, we record for n ≥ 1,

∂c1c2 F (n)
W = −βτ e− 3

4 s
n∑

j=0

(
n

j

)(
A( j)

c1c2(β3Z (n− j) + β4(e
− s

4 W + κ)(n− j))

+ A( j)
c1 (β3Z (n− j)

c2 + β4(e
− s

4 Wc2 + κc2)
(n− j))

)

− βτ e− 3
4 s

n∑
j=0

(
n

j

)(
A( j)

c2 (β3Z (n− j)
c1 + β4(e

− s
4 Wc1 + κc1)

(n− j))

+ A( j)(β3Z (n− j)
c1c2 + β4(e

− s
4 Wc1c2 + κc1c2)

(n− j))
)

+ τ̇c2βτ ∂c1 F (n)
W + τ̇c1c2βτ F (n)

W + τ̇c1βτ ∂c2 F (n)
W . (3.73)

3.5.2. ∇2
α,β derivatives of Z A calculation of ∂c2 of Eq. (3.54) results in

∂s Zc1c2 + VZ∂x Zc1c2 = ∂c1c2 FZ −
∑

i∈{1,2}
Z (1)

ci

(
τ̇ci ′ β

2
τ β2W + βτβ2Wci ′ + ∂ci ′ G Z

)

− Z (1)
(
τ̇c1c2β

2
τ β2W + 2τ̇c1 τ̇c2β

2
τ β2W +

∑
i∈{1,2}

τ̇ci β
2
τ β2Wci ′

+ βτβ2Wc1c2 + ∂c1c2G Z

)
=: Fc1,c2

Z ,0 . (3.74)

Computing ∂n
x we obtain

(
∂s +

5

4
n + nβτβ2W (1)

)
Z (n)

c1c2 + VZ∂x Z (n)
c1c2

= −1n≥2

n∑
j=2

(
n

j

)
βτβ2W ( j)Z (n− j+1)

c1c2 − 1n≥1

n∑
j=1

(
n

j

)
G( j)

Z Z (n− j+1)
c1c2

−
n∑

j=0

∑
i∈{1,2}

(
n

j

)
Z ( j+1)

ci

(
τ̇ci ′ β

2
τ β2W (n− j) + βτβ2W (n− j)

ci ′ + ∂ci ′ G
(n− j)
Z

)

−
n∑

j=0

(
n

j

)
Z ( j+1)

(
τ̇c1c2β

2
τ β2W (n− j) + 2τ̇c1 τ̇c2β

2
τ β2W (n− j) + βτβ2W (n− j)

c1c2

+
∑

i∈{1,2}
τ̇ci β

2
τ β2W (n− j)

ci ′ + ∂c1c2G(n− j)
Z

)

+ ∂c1c2 F (n)
Z =: Fc1,c2

Z ,n . (3.75)

We now record the expression for

∂c2c1 FZ = −βτ e−s
(

A(β3(e
− s

4 Wc1c2 + κc1c2 ) + β4Zc1c2 ) + Ac1c2 (β3(e
− s

4 W + κ) + β4Z)
)

− βτ e−s
∑

i∈{1,2}
Aci

(
β3(e

− s
4 Wci ′ + κci ′ ) + β4Zci ′

)
+ τ̇c1βτ ∂c2 FZ + τ̇c2βτ ∂c1 FZ

+ τ̇c1c2βτ FZ . (3.76)
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Next, we compute ∂n
x of the above expression to obtain

∂c2c1 F (n)
Z = −βτ e−s

n∑
j=0

(
n

j

)
A( j)

(
β3(e

− s
4 Wc1c2 + κc1c2)

(n− j) + β4Z (n− j)
c1c2

)

− βτ e−s
n∑

j=0

(
n

j

)
A( j)

c1c2

(
β3(e

− s
4 W + κ)(n− j) + β4Z (n− j)

)

− βτ e−s
n∑

j=0

∑
i∈{1,2}

(
n

j

)
A( j)

ci

(
β3(e

− s
4 Wci ′ + κci ′ )

(n− j) + β4Z (n− j)
ci ′

)

+ τ̇c1βτ ∂c2 F (n)
Z + τ̇c2βτ ∂c1 F (n)

Z + τ̇c1c2βτ F (n)
Z . (3.77)

3.5.3. ∇2
α,β derivatives of A We compute ∂c2 of Eq. (3.58) to obtain the equation to

obtain

∂s Ac1c2 + VA∂x Ac1c2 = ∂c1c2 FA −
∑

i={1,2}
A(1)

ci ′

(
τ̇ci β

2
τ β1W + βτβ1Wci + ∂ci G A

)

− A(1)
(
τ̇c1c2β

2
τ β1W + 2τ̇c1 τ̇c2β1β

3
τ W + βτβ1Wc1c2 + ∂c1c2G A

+
∑

i={1,2}
β2

τ β1τ̇ci Wci ′
)

=: Fc1,c2
A,0 . (3.78)

By computing ∂n
x of the above equation, we obtain

(
∂s +

5

4
n + nβτβ1W (1)

)
A(n)

c1c2 + VA∂x A(n)
c1c2

= −1n≥2

n∑
j=2

(
n

j

)
βτβ1W ( j) A(n− j+1)

c1c2 − 1n≥1

n∑
j=1

(
n

j

)
G( j)

A A(n− j+1)
c1c2

−
∑

i={1,2}

n∑
j=0

(
n

j

)
A( j+1)

ci ′
(
τ̇ci β

2
τ β1W (n− j) + βτβ1W (n− j)

ci + ∂ci G
(n− j)
A

)

−
∑

i={1,2}

n∑
j=0

(
n

j

)
A( j+1)

(
τ̇c1c2β

2
τ β1W (n− j) + 2τ̇c1 τ̇c2β1β

3
τ W (n− j) + βτβ1W (n− j)

c1c2

+
∑

i∈{1,2}
β2

τ β1τ̇ci W (n− j)
ci ′ + ∂c1c2G(n− j)

A

)
+ ∂c1c2 F (n)

A =: F (c1,c2)
A,n . (3.79)
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We next differentiate equation (3.59) to obtain

∂c1c2 FA = βτβ1e−s
(

e− s
4 Wc2 + κc2 + Zc2

)(
e− s

4 Wc1 + κc1 + Zc1

)

+ βτβ1e−s
(

e− s
4 W + κ + Z

)(
e− s

4 Wc1c2 + κc1c2 + Zc1c2

)

− 2βτβ5e−s
(

e− s
4 Wc2 + κc2 − Zc2

)(
e− s

4 Wc1 + κc1 − Zc1

)

− 2βτβ5e−s
(

e− s
4 W + κ − Z

)(
e− s

4 Wc1c2 + κc1c2 − Zc1c2

)

+ τ̇c1c2βτ FA + τ̇c2βτ ∂c1 FA + τ̇c1βτ ∂c2 FA. (3.80)

By computing ∂n
x of the above, we obtain

∂c1c2 F (n)
A = βτβ1e−s

n∑
j=0

(
n

j

)(
e− s

4 Wc2 + κc2 + Zc2

)( j)(
e− s

4 Wc1 + κc1 + Zc1

)(n− j)

+ βτβ1e−s
n∑

j=0

(
n

j

)(
e− s

4 W + κ + Z
)( j)(

e− s
4 Wc1c2 + κc1c2 + Zc1c2

)(n− j)

− 2βτβ5e−s
n∑

j=0

(
n

j

)(
e− s

4 Wc2 + κc2 − Zc2

)( j)(
e− s

4 Wc1 + κc1 − Zc1

)(n− j)

− 2βτβ5e−s
n∑

j=0

(
n

j

)(
e− s

4 W + κ − Z
)( j)(

e− s
4 Wc1c2 + κc1c2 − Zc1c2

)(n− j)

+ τ̇c1c2βτ F (n)
A + τ̇c2βτ ∂c1 F (n)

A + τ̇c1βτ ∂c2 F (n)
A . (3.81)

4. Initial Data

We assume the data is of the form

W0 = Wχ(ε
1
4 x) + Ŵ0 + αx2χ(x) + βx3χ(x), (4.1)

where χ is a smooth cut-off function satisfying χ(x) = 1 for |x | ≤ 1 and with support
contained in the ball of radius 2.

On the perturbation Ŵ0, we shall assume
∣∣∣η 1

5
Ŵ (n)

0 (x)

∣∣∣ ≤ ε, for |x | ≤ ε− 1
4 and n = 0, . . . , 8, (4.2)

|Ŵ (n)
0 (0)| ≤ ε, for n = 2, 3, (4.3)

Ŵ (n)
0 (0) = 0, for n = 0, 1, 4, 5. (4.4)

For Z0(x) := Z(s0, x), and A0(x) = A(s0, x), we assume

‖Z (n)
0 ‖∞ ≤ ε

3
2 , (4.5)

‖A(n)
0 ‖∞ ≤ ε

3
2 . (4.6)

for n = 0, . . . , 8.



Construction of Unstable Shocks 219

Furthermore, we will assume the following support assumption on the initial data
(W0, Z0, A0)

supp (W0) ∪ supp (Z0) ∪ supp (A0) ⊂ [− M

2
ε− 1

4 ,
M

2
ε− 1

4 ]. (4.7)

We will now describe the iteration.

Definition 4.1. The quantities Wα,β, Zα,β, Aα,β solve the system (3.17) - (3.19) with
initial data W0 given by (4.1) for Wα,β .

We now describe the inductive hypotheses. First, we define the time step via

sN := − log(ε) + N , N ∈ N. (4.8)

The inductive hypotheses we make are the following:

W (2)
αN ,βN

(sN ) = 0, W (3)
αN ,βN

(sN ) = 0, (4.9)

To initialize the induction, we take

α0 = −1

2
Ŵ (2)

0 (0), β0 = −1

6
Ŵ (3)

0 (0). (4.10)

Note that (4.9) is satisfied for N = 0, which is the first step of the iteration, according
to (4.10), due to (4.1) which implies that

W (2)
0,0(0, s0) = W

(2)
(0) + Ŵ (2)

0 (0) − Ŵ (2)
0 (0) = 0,

W (3)
0,0(0, s0) = W

(3)
(0) + Ŵ (3)

0 (0) − Ŵ (3)
0 (0) = 0.

5. Bootstrap Assumptions

In this section we delineate all of our bootstrap assumptions. First, recall the weight
function ηγ defined in (3.29). Let us also specify the hierarchy of three small parameters,
where ε is significantly smaller than any power of M−1, and in turn M−1 is significantly
smaller than any power of �. For the sake of precision, we make the following selections

�−1 = log log(M). (5.1)

5.1. Parameter assumptions. We will first specify bootstrap assumptions on the param-
eters, (α, β), appearing in the specification of the initial data in (4.1). Throughout the
analysis, our parameters (α, β)will be contained in the rectangle setBN , which is defined
via

BN =
{
(α, β) ∈ R

2 : |α − αN | ≤ M30ε− 3
4 e− 7

4 sN

+ε− 3
10 e− 3

2 sN , |β − βN | ≤ M30ε− 1
2 e− 3

2 sN
}

. (5.2)

In particular, since s0 = − log ε we have

|α| ≤ 2M30ε, |β| ≤ 2M30ε. (5.3)

Note that the bootstrap in this parameter region will be verified in (11.1)–(11.2). More-
over, notice that due to (2.5), (5.3) is valid for the initial choice of (α, β) = (α0, β0),
defined in (4.10).
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Remark 5.1 (Notation). We will now drop the subscript Wα,β as it is understood that
α, β are fixed, and arbitrary elements of the set BN (αN , βN ).

Note that we only assume (and therefore prove) the below bootstraps on the time
interval − log ε ≤ s ≤ sN+1. We now state the main inductive proposition we will be
proving using these bootstrap estimates. The proof of this proposition will take place in
Sect. 11.1.

Proposition 5.2. Fix N ∈ N, the parameters (ε, M, �) through (5.1). Let sN be given by
(4.8). Assume (αN , βN ) are given so that (4.9) is valid for choice of data (4.1), satisfying
conditions (4.2)–(4.7). Then there exists (αN+1, βN+1) so that (4.9) is valid for sN+1 for
data given again by (4.1).

5.2. Bootstrap estimates on (W (n), Z (n), A(n)) and modulation variables. We will as-
sume the following bootstraps on the support of the solutions:

supp W (s) ∪ supp Z(s) ∪ supp A(s) ⊂ B(Mεe
5
4 s) =: B f , (5.4)

where B(r) is the ball centered at the origin of radius r . We give the name B f to the
above ball to compactify notation, as we will frequently write indicator functions on this
ball.

We will assume the following global in x bootstrap assumptions on W :

|W | ≤ � log Mη 1
20

, (5.5)

|W (1)| ≤ � log Mη− 1
5
, (5.6)

|W (n)| ≤ Mn2η− 1
5

for n = 2, . . . , 8, (5.7)

As a consequence of (5.4) and (5.5), we have that

|W | ≤ � log(M)η 1
20

� � log(M)〈x〉 1
5 � � log(M)〈Mεe

5
4 s〉 1

5 � � log(M)(1 + M
1
5 ε

1
5 e

s
4 ),

and thus,

e− s
4 |W | ≤ 1, (5.8)

which we shall use repeatedly.
On Z and A we will assume the following bootstraps:

‖Z‖∞ ≤ ε
5
4 , ‖Z (n)‖∞ ≤ M2n2e− 5

4 s, (5.9)

‖A‖∞ ≤ Mε, ‖A(n)‖∞ ≤ M2n2e− 5
4 s, (5.10)

for n = 1, . . . 8.
For the difference, W̃ , we make the following bootstrap assumptions on W̃ and W̃ (1) in

the region |x | ≤ ε− 1
4

|W̃ | ≤ ε
3
20 η 1

20
, (5.11)

|W̃ (1)| ≤ ε
1
20 η− 1

5
. (5.12)
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For the higher order derivatives of W̃ , we will assume the following local in x bootstraps
in the region |x | ≤ �

|W̃ (n)| ≤ |x |6−n ε
1
5 + ε

1
2 ≤ 2 |�|6−n ε

1
5 , for 0 ≤ k ≤ 5 (5.13)

|W̃ (6)| ≤ ε
1
5 , (5.14)

|W̃ (7)| ≤ Mε
1
5 , (5.15)

|W̃ (8)| ≤ M3ε
1
5 (5.16)

We now make the following crucial bootstrap assumptions, which display decay in
s for the unconstrained quantities q(2), q(3) (recall the notation defined in (3.44)),

|q(2)| ≤ ε
1
10 e− 3

4 s, |q(3)| ≤ M40e−s, (5.17)

and the following smallness estimate

|W̃ (5)(0, s)| ≤ ε
1
2 for − log ε ≤ s ≤ sn+1, (5.18)

which in particular, when coupled with (3.28), ensures that

|q(5)| ≥ 120 − ε
1
2 ≥ 100. (5.19)

We also have crucially the following estimate
∣∣∣W (1)

∣∣∣ ≤ 1 + e− 3
4 s . (5.20)

Finally, we have the bootstraps on the modulation variables:

|μ| ≤ ε
1
6 e− 3

4 s, |τ̇ | ≤ ε
1
6 e− 3

4 s, |κ̇| ≤ ε
1
8 , (5.21)

|κ − κ0| ≤ ε, |ξ̇ | ≤ 3κ0. (5.22)

As a consequence we have

|1 − βτ | ≤ 2ε
1
6 e− 3

4 s, (5.23)

which will be employed repeatedly in the forthcoming estimates.

5.3. ∇α,β bootstraps. We now provide the bootstrap assumptions wemake on the (α, β)

derivatives of the quantities appearing in Sect. 5.2. The first bootstraps we provide are
for the modulation variables, for which we notably do not distinguish between α and β

derivative (recall ∂c ∈ {∂α, ∂β} from (3.53)).

|∂cμ| ≤ M33ε
1
2 e− s

4 , |∂cτ̇ | ≤ ε
1
2 , |∂cκ̇| ≤ ε

1
4 e

1
2 s, (5.24)

|∂cκ| ≤ ε
1
2 , |∂c ξ̇ | ≤ Mε

1
2 . (5.25)

Next, we provide the bootstrap assumptions on ∂α Z , ∂β Z , ∂α A, ∂β A, and higher deriva-
tives thereof. We again note that we do not distinguish between α and β derivatives for
these quantities.

‖∂c Z‖∞ ≤ ε
1
2 , ‖∂c A‖∞ ≤ ε

1
2 , (5.26)

‖∂c Z (n)‖∞ ≤ M2n2ε
1
2 e− 1

2 s, ‖∂c A(n)‖∞ ≤ M2n2ε
1
2 e− 1

2 s, (5.27)
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for n = 1, . . . , 7.
Next, we provide the bootstrap assumptions for the elements of the 2 × 2 s-dependent
matrix

(
∂αq(2)(s) ∂βq(2)(s)
∂αq(3)(s) ∂βq(3)(s)

)
.

For these quantities, we need to distinguish between α and β derivatives carefully, which
we do via

1

2
ε

3
4 e

3
4 s ≤ ∂αq(2) ≤ 4ε

3
4 e

3
4 s, |∂αq(3)| ≤ εe

s
2 , (5.28)

|∂βq(2)| ≤ εe
3
4 s,

1

2
ε

1
2 e

1
2 s ≤ ∂βq(3) ≤ 4ε

1
2 e

1
2 s . (5.29)

In addition, we will need the enhanced constrained bootstrap

|̃q(5)
c (s)| ≤ ε

3
8 e

1
8 s . (5.30)

Next, we will assume the following bootstrap bounds on ∂cW and higher derivatives
thereof.

‖∂cW‖∞ ≤ M4ε
3
4 e

3
4 s, (5.31)

‖∂cW (n)η 1
20

‖∞ ≤ M (n+2)2ε
3
4 e

3
4 s . (5.32)

for n = 1, . . . , 7. Finally, we assume the following localized bounds on the region
|x | ≤ � which are stronger than (5.31)–(5.32)

|W (n)
c | ≤ �

1
2 Mε

3
4 e

3
4 s for 0 ≤ n ≤ 6, (5.33)

|W (7)
c | ≤ Mε

3
4 e

3
4 s . (5.34)

5.4. ∇2
α,β bootstraps. We now provide the bootstrap assumptions on two parameter

(α, β) derivatives of the quantities in Sect. 5.2. For these highest order bootstraps, we do
not need to distinguish between α and β derivatives. Recall that ∂c1c2 means ci ∈ {α, β}.
We impose the following bootstrap assumptions for 0 ≤ n ≤ 6

‖∂c1c2 Z (n)‖∞ ≤ M2 j2ε
5
8 e

s
4 , (5.35)

‖∂c1c2 A(n)‖∞ ≤ M2 j2ε
5
8 e

s
4 , (5.36)

‖∂c1c2W (n)‖∞ ≤ M (k+5)2ε
3
2 e

3
2 s . (5.37)

We will also need bootstraps on the second derivative of the modulation variables

|μc1c2 | ≤ Mε
5
4 e

5
4 s, |κ̇c1c2 | ≤ M2ε

5
4 e2s, |τ̇c1c2 | ≤ εe

3
4 s, (5.38)

|κc1c2 | ≤ M3ε
5
4 es, |ξ̇c1c2 | ≤ M4ε

5
4 es . (5.39)
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6. Preliminary Estimates

In order to analyze the equations (3.20)–(3.22) and their higher order spatial derivative
counterparts, (3.33)–(3.35), as well as their higher order parameter derivative counter-
parts, we first provide estimates on the forcing terms appearing in (3.20)–(3.22). These
are performed in Sect. 6.2. Controlling these forcing terms requires in turn controlling
the transport speeds, GW , G Z , G A, which is achieved in Sect. 6.1. The final subsection
in this section, Sect. 6.3, collects estimates on the trajectories associated to the transport
structure of Eqs. (3.33)–(3.35).

6.1. Transport speed estimates. We now provide estimates on the transport speeds,
which are defined in (3.11)–(3.13). We begin with the following estimates.

Lemma 6.1. Let −1 ≤ r ≤ 0, and n ≥ 1. Then the following estimates are valid on the
transport speeds, (3.11)–(3.13).

‖GW η r
4
‖∞ � ε

1
6 e− 3

4 s + M3+rε(1+r)e
1+5r
4 s, ‖G(n)

W ‖∞ � M2n2e−s, (6.1)

‖G Z + (1 − β2)e
s
4 κ0‖∞ � e

s
4 , ‖G(n)

Z ‖∞ � M2n2e−s, (6.2)

‖G A + (1 − β1)e
s
4 κ0‖∞ � e

s
4 , ‖G(n)

A ‖∞ � M2n2e−s . (6.3)

Proof. We record the following identity:

GW (x, s) = μ(s) + GW,e(x, s), GW,e(x, s) := βτβ2e
s
4

∫ x

0
Z (1)(x ′, s) dx ′, (6.4)

where we have invoked definition (3.11) for GW and subsequently (3.23) for the quantity
μ(s). We estimate for j ≥ 1,

‖G( j)
W ‖∞ = ‖βτβ2e

1
4 s Z ( j)‖∞ ≤ 2e

1
4 s M2 j2e− 5

4 s . (6.5)

Using (6.4), we estimate

‖GW η r
4
‖∞ � |μ| + ‖GW,eη r

4
‖∞

� ε
1
6 e− 3

4 s + ‖〈x〉r
∫ x

0
∂x GW (x ′) dx ′‖∞

� ε
1
6 e− 3

4 s + ‖〈x〉r
∫ x

0
〈x ′〉−1−r∂x GW (x ′)〈x ′〉1+r dx ′‖∞

� ε
1
6 e− 3

4 s + ‖∂x GW 〈x〉1+r‖∞
� ε

1
6 e− 3

4 s + e
1
4 s‖Z (1)〈x〉1+r‖∞

� ε
1
6 e− 3

4 s + M3+rε(1+r)e
1+5r
4 s . (6.6)

Above, we have invoked estimate (5.21) for the estimate on μ, the definition (3.11) to
calculate ∂x GW , estimate (5.9) on Z (1), and the estimate (5.4) to translate spatial weights
to growth in s.

The above calculation, (6.6), works when r < 0, but at r = 0 does not quite work
due to having to integrate 〈x〉−1. However, in that case, we may estimate via

‖GW ‖∞ � |μ| + ‖GW,e‖∞ � ε
1
6 e− 3

4 s + ‖〈x〉G(1)
W ‖∞ � ε

1
6 e− 3

4 s + M2e−s(Mεe
5
4 s),
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where we have invoked (5.21) for the estimate on μ, (6.5) with j = 1, and the estimate
(5.4) on the support.

We now move to the transport speed G Z . First, for the lowest order quantity, we use
the definition (3.12) and the bootstrap assumptions (5.22) to estimate

‖G Z + (1 − β2)e
s
4 κ0‖∞ � e

s
4 (1 + ε + ε

5
4 ) � ε

s
4 .

According to the definition (3.12), we estimate

‖G(n)
Z ‖∞ � e

1
4 s‖Z (n)‖∞ � M2n2e−s,

where we have invoked the bootstrap, (5.9). For the transport speed G A, we invoke the
definition (3.13) to perform the exact same calculation. ��
Lemma 6.2. Let c ∈ {α, β}. For 0 < r ≤ 1 and 1 ≤ n ≤ 7, the following estimates are
valid on the transport speeds, (3.11)–(3.13)

‖∂cGW η− r
4
‖∞ � ε

1
2 + M3−rε

3
2−r e

4−5r
4 s, ‖∂cG(n)

W ‖∞ � M2n2ε
1
2 e− s

4 , (6.7)

‖∂cG Z‖∞ � ε
1
4 e

s
4 , ‖∂cG(n)

Z ‖∞ � M2n2ε
1
2 e− s

4 , (6.8)

‖∂cG A‖∞ � ε
1
4 e

s
4 , ‖∂cG(n)

A ‖∞ � M2n2ε
1
2 e− s

4 . (6.9)

Proof. We differentiate (6.4) in c to yield

∂cGW = ∂cμ + ∂cGW,e = ∂cμ + ∂c τ̇ β2
τ β2e

s
4

∫ x

0
Z (1)(x ′, s) dx ′ + βτ β2e

s
4

∫ x

0
∂c Z (1) dx ′. (6.10)

Multiplying now by a weight of η− r
4
, we obtain for every r > 0,

‖∂cGW η− r
4
‖∞ � |∂cμ| + |∂c τ̇ |e s

4 ‖Z (1)η 1−r
4

‖∞ + e
s
4 ‖∂c Z (1)η 1−r

4
‖∞

� M33ε
1
2 e− s

4 + ε
1
2 e

s
4 (M2e− 5

4 s)(Mεe
5
4 s)1−r + e

s
4 (M2ε

1
2 e− s

2 )(Mεe
5
4 s)1−r

� ε
1
2 + M3−r ε

3
2−r e

4−5r
4 s ,

where we have invoked (5.24) for the modulation variables, (5.9) and (5.27) for the Z
quantities, and (5.4) to estimate η 1−r

4
in the support of Z (1) and hence ∂c Z (1).

We first differentiate GW to order n ≥ 1 in x via (3.11) and then take ∂c of the result
to produce

∂cG(n)
W = ∂cτ̇ β2

τ β2e
s
4 Z (n) + β2βτ e

s
4 ∂c Z (n),

which upon estimating yields

‖∂cG(n)
W ‖∞ � |∂cτ̇ |e s

4 ‖Z (n)‖∞ + e
s
4 ‖∂c Z (n)‖∞

� M2n2ε
1
2 e−s + e

s
4 M2n2ε

1
2 e− s

2 � M2n2ε
1
2 e− s

4 ,

where we have invoked (5.24) for the modulation variables, (5.9) and (5.27) for the Z
quantities.
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By differentiating (3.12) in ∂c, we obtain the identities

∂cG Z = τ̇cβτ G Z + βτ e
s
4 (β2κc − ξ̇c + Zc)

= ∂c τ̇ β2
τ e

s
4 (β2κ − ξ̇ + Z) + βτ e

s
4 (β2∂cκ − ∂c ξ̇ + ∂c Z) (6.11)

∂cG(n)
Z = τ̇cβτ G(n)

Z + βτ e
s
4 Z (n)

c . (6.12)

By estimating (6.11) we obtain

‖∂cG Z‖∞ � |∂c τ̇ |e s
4 (|κ| + |ξ̇ | + ‖Z‖∞) + e

s
4 (|∂cκ| + |∂c ξ̇ | + ‖∂c Z‖∞)

� ε
1
2 e

s
4 (1 + ε

5
4 ) + e

s
4 (ε

1
4 + ε

1
4 + ε

1
2 ) � ε

1
4 e

s
4 ,

where we have invoked both (5.24)–(5.25) for the ∂c of themodulation variables, (5.21)–
(5.22) for the modulation variables themselves, and finally (5.9) and (5.27) for the Z
quantities, with j ≥ 1.

By estimating (6.12) we obtain for 1 ≤ n ≤ 7,

‖∂cG(n)
Z ‖∞ � |∂c τ̇ |e s

4 ‖Z (n)‖∞ + e
s
4 ‖∂c Z (n)‖∞

� e
s
4 ε

1
2 M2n2e− 5

4 s + e
s
4 M2n2ε

1
2 e− s

2 � M2n2ε
1
2 e− s

4 ,

where we have invoked (5.24) for the ∂c τ̇ term, and then (5.9) and (5.27) for Z (n) and
∂c Z (n), respectively.
For ∂cG A, we perform essentially the same estimate as for ∂cG Z . ��
Lemma 6.3 (Transport Estimates). Let ci ∈ {α, β} for i = 1, 2, and fix any 0 < r ≤ 1.
Then the following estimates are valid for the transport speeds

‖∂c1c2GW η− r
4
‖∞ � Mε

5
4 e

5
4 s + M3−rε

13
8 −r e

7−5r
4 s, ‖∂c1c2G(n)

W ‖∞ � M2n2ε
5
8 e

s
2 ,

(6.13)

‖∂c1c2G Z‖∞ � M4ε
5
4 e

5
4 s, ‖∂c1c2G(n)

Z ‖∞ � M2n2ε
5
8 e

s
2 , (6.14)

‖∂c1c2G A‖∞ � M4ε
5
4 e

5
4 s, ‖∂c1c2G(n)

A ‖∞ � M2n2ε
5
8 e

s
2 , (6.15)

for 1 ≤ n ≤ 7.

Proof. We differentiate (6.10) in ∂c2 which generates the identities

∂c1c2GW = μc1c2 + βτβ2e
s
4

∫ x

0
Z (1)

c1c2 + β2
τ β2τ̇ci e

s
4

∫ x

0
Z (1)

ci ′

+ (τ̇c1c2 + 2βτ τ̇c1 τ̇c2)β
2
τ β2e

s
4

∫ x

0
Z (1), (6.16)

∂c1c2G(n)
W = βτβ2e

s
4 Z (n)

c1c2 + β2
τ β2τ̇ci e

s
4 Z (n)

ci ′ + (τ̇c1c2 + 2βτ τ̇c1 τ̇c2)β
2
τ β2e

s
4 Z (n), (6.17)

for n ≥ 1. Estimating the right-hand side of (6.16) yields

‖∂c1c2GW η− r
4
‖∞ � |μc1c2 | + e

s
4 ‖Z (1)

c1c2η 1−r
4

‖∞ + |τ̇ci |e
s
4 ‖Z (1)

ci ′ η 1−r
4

‖∞

+ (|τ̇c1c2 | + |τ̇c|2)e s
4 ‖Z (1)η 1−r

4
‖∞

� Mε
5
4 e

5
4 s + M3−rε

13
8 −r e

7−5r
4 s + ε2−r e

s
4 M3−r e(1+ 5

4 r)s

+ (εe
3
4 s + ε)M3−rε1−r e− 1+5r

4 s .
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Above, we have used (5.38) for the μc1c2 , τ̇c1c2 terms, (5.35) for the Z (1)
c1c2 term, (5.27)

for the Z (1)
c term, (5.9) for the Z (1) term, (5.24) for the τ̇c terms, and finally (5.4) for the

estimation of η in the presence of Z .
Estimating the right-hand side of (6.17) yields for j ≥ 1,

‖∂c1c2G(n)
W ‖∞ � e

s
4 ‖Z (n)

c1c2‖∞ + |τ̇c|e s
4 ‖Z (n)

c ‖∞ + (|τ̇c1c2 | + |τ̇c|2)e s
4 ‖Z (n)‖∞ � M2n2ε

5
8 e

s
2 .

We have invoked (5.35) for the Z ( j)
c1c2 term, (5.24) for the τ̇c term, (5.27) for the Zc term,

(5.9) for the Z ( j) term, and (5.38) for the τ̇c1c2 term.
Next, we differentiate (6.11) - (6.12) in ∂c2 to arrive at

∂c1c2G Z = τ̇c1c2βτ G Z + τ̇ci βτ ∂ci ′ G Z + βτ e
s
4

(
β2κc1c2 − ξ̇c1c2 + Zc1c2

)
, (6.18)

∂c1c2G(n)
Z = τ̇c1c2βτ G(n)

Z + τ̇ci βτ ∂ci ′ G
(n)
Z + βτ e

s
4 Z (n)

c1c2 . (6.19)

Estimating the right-hand side gives (6.14) via

‖∂c1c2G Z‖∞ � |τ̇c1c2 |‖G Z‖∞ + |τ̇ |‖∂cG Z‖∞ + e
s
4

(
|κc1c2 | + |ξ̇c1c2 | + ‖Zc1c2‖∞

)

� εes + ε
3
4 e

s
4 + e

s
4

(
M3ε

5
4 es + M4ε

5
4 es + ε

5
8 e

s
4

)

Above we have invoked (6.2) and (6.8) for the G Z and ∂cG Z terms, respectively. We
have also invoked (5.38)–(5.39) for the second derivatives of the modulation variables
and (5.35) for the Zc1c2 term.

For the right-most estimate in (6.14), we estimate the right-hand side of (6.19),

‖∂c1c2G(n)
Z ‖∞ � |τ̇c1c2 |‖G(n)

Z ‖∞ + |τ̇c|‖∂cG(n)
Z ‖∞ + e

s
4 ‖Z (n)

c1c2‖∞

� M2n2εe− s
4 + M2n2εe− s

4 + M2n2ε
5
8 e

s
2 � M2n2ε

5
8 e

s
2 ,

where we have invoked (6.2) and (6.8) for the G(n)
Z and ∂cG(n)

Z terms, respectively.
A nearly identical estimate is valid for (6.15). ��

6.2. Forcing estimates. In this subsection, we will provide pointwise estimates on the
forcing terms FW , FZ , FA, defined in (3.14)–(3.16) as well as their various derivatives
(spatial and parameter).

6.2.1. Forcing estimates for (W, Z , A) and its derivatives We now provide estimates
on the forcing of (W, Z , A) and their spatial derivatives.

Lemma 6.4. For the forcing quantities defined in (3.14)–(3.16) and (3.52), the following
estimates are valid

‖FW ‖∞ ≤ ε
3
4 e− 3

4 s, ‖F (n)
W ‖∞ ≤ ε

3
4 e−s for 1 ≤ n ≤ 8 (6.20)

‖F̃W ‖∞ ≤ e− 3
4 s, ‖F̃W,1η 1

4
‖∞ ≤ ε

1
10 , (6.21)

‖FW,nη 1
5
‖∞ � Mn2−1 for 2 ≤ n ≤ 8, ‖F (1)

W η 1
4
‖∞ ≤ e− 1

2 s, (6.22)

‖FW,1η 1
5
‖∞ � e− 1

2 s (6.23)
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Proof. We use definition (3.14) to estimate

‖FW ‖∞ �e− 3
4 s‖A‖∞(‖Z‖∞ + ‖e− s

4 W + κ‖∞) � e− 3
4 s Mε(ε

5
4 + M) �M εe− 3

4 s,

which establishes the first inequality in (6.20).
We now want to estimate F̃W , for which we use definition (3.51) to bound

‖F̃W ‖∞ ≤ |βτ |e− 3
4 s |κ̇| + ‖FW ‖∞ + |βτ − 1|‖W∂x W‖∞ + ‖GW η− 1

5
‖∞‖∂x Wη 1

5
‖∞

� e− 3
4 sε

1
8 + ε

3
4 e− 3

4 s + ε
1
6 e− 3

4 s + M
11
5 ε

1
5 e− 3

4 s

� ε
1
8 e− 3

4 s,

which establishes the first inequality in (6.21). Above, we have invoked estimate (5.21)
for the κ̇ term, the previously established estimate on ‖FW ‖∞ in (5.23), (6.20) for the
βτ − 1 quantity, and estimate (6.1) for the GW term, with r = − 4

5 .
Estimating the expression (3.39), we obtain

‖F (n)
W ‖∞ � e− 3

4 s
n−1∑
j=1

‖A( j)‖∞
(
‖Z (n− j)‖∞ + e− s

4 ‖W (n− j)‖∞
)

+ e− 3
4 s‖A(n)‖∞‖e− s

4 W1B f + κ‖∞ + e− 3
4 s‖A‖∞(‖Z (n)‖∞ + e− s

4 ‖W (n)‖∞)

� Me−2s(e− 5
4 s + e− s

4 ) + e−2s + εe− 3
4 s(e− 5

4 s + e− s
4 ) �M εe−s, (6.24)

which establishes the second inequality in (6.20). To estimate (6.24), we have invoked
(5.4) and estimates (5.9)–(5.10).

We now turn to the second inequality in (6.22). For this, we appeal to the definition
(3.39)

‖F (1)
W η 1

4
‖∞ � e− 3

4 s‖A(1)η 1
4
‖∞

(
‖Z‖∞ + ‖e− s

4 W1B f + κ‖∞
)
+ e− 3

4 s‖A‖∞‖Z (1)η 1
4
‖∞

+ e− 3
4 s‖Aη 1

20
‖∞

(
‖W

(1)
η 1

5
‖∞ + ‖W̃ (1)η 1

5
‖∞

)

� M2e−2s(Mεe
5
4 s)(ε

5
4 + M) + M4ε2e− 3

4 s + Me− 3
4 sε

5
4 (Mεe

5
4 s)

1
5 � log M

� ε
1
8 e− 1

2 s, (6.25)

where above we have used the inequality η r
4

� (Mεe
5
4 s)r in the support of A, Z , as well

as estimates (5.9) - (5.10) and (5.12) and (3.31) for the spatial decay property of W
(1)
.

We now arrive at the second estimate in (6.21). An appeal to (3.52) gives

‖F̃W,1η 1
4
‖∞ � ‖F(1)

W η 1
4
‖∞ + ‖W

(2)
W̃η 1

4
‖∞ + ‖G(1)

W W̃ (1)η 1
4
‖ + |βτ − 1|

(
‖W W

(2)
η 1
4
‖∞

+ ‖W
(1)

η 1
8
|‖W

(1)
η 1
8
‖∞

)
+ ‖GW W

(2)
η 1
4
‖∞ + ‖G(1)

W W
(1)

η 1
4
‖∞

� ‖F(1)
W η 1

4
‖∞ + ‖W

(2)
η 9
20

‖∞‖W̃η− 1
20

‖∞ + (Mεe
5
4 s)

1
5 ‖G(1)

W ‖∞‖W̃ (1)η 1
5
‖∞

+ ε
1
6 e− 3

4 s + ‖W
(2)

η 9
20

‖∞‖GW η− 1
5
‖∞ + (Mεe

5
4 s)

1
5 ‖G(1)

W ‖∞‖W
(1)

η 1
5
‖∞

� ε
1
8 e− s

2 + ε
3
20 + ε

1
6 e− 3

4 s + ε
1
4 e− 3

4 s + ε
1
6 e− 3

4 s + M
11
5 ε

1
5 e− 3

4 s � ε
3
20 .
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Above, we have used the bootstrap estimates (5.11) and (5.12) on W̃ , the bound (3.31)

regarding the decay of W
(2)

, as well as estimate (6.22), which has already been estab-
lished. We have moreover invoked the previously established estimates (6.1) on the GW

quantity with r = − 4
5 and the G(1)

W quantity.
To prove (6.23), we first recall the definition (3.42), according to which if we pair

with estimate (6.25) yields

‖FW,1η 1
5
‖∞ ≤‖F (1)

W η 1
5
‖∞ + ‖G(1)

W ‖∞‖W (1)η 1
5
‖∞ � ε

1
8 e− 1

2 s + �M3 log Me−s � ε
1
8 e− 1

2 s ,

where we have also invoked estimate (6.1), and the bootstrap (5.6).
We now appeal to the definition (3.36) to perform the third estimate, (6.22). We

estimate also with the help of (6.24)

‖F (n)
W η 1

5
‖∞ � ε

3
4 e−s(Mεe

5
4 s)

4
5 = M

4
5 ε

7
4 ,

∥∥∥1n≥3βτ

n−1∑
j=2

(
n

j

)
W ( j)W (n+1− j)η 1

5

∥∥∥∞ �
n−1∑
j=2

M j2 M (n+1− j)2 � Mn2−1

∥∥∥
n∑

j=1

(
n

j

)
G( j)

W W (n+1− j)η 1
5

∥∥∥∞ �
n∑

j=1

M2 j2e−s M (n+1− j)2 ≤ ε
1
2 .

Above we have invoked the elementary inequality j2 + (n+1− j)2 ≤ −1+n2 for n ≥ 3,
and 2 ≤ j ≤ n − 1, as well as the estimates on G( j)

W in (6.1), and estimates (5.7) on
W (n). ��

We now state a lemma regarding localized estimates, on |x | ≤ �, which have an
enhanced scaling.

Lemma 6.5. The following estimates are valid:

sup
|x |≤�

|F̃W,6| � �ε
1
5 , sup

|x |≤�

|F̃W,7| ≤ ε
1
5 , sup

|x |≤�

|F̃W,8| � Mε
1
5 . (6.26)

Proof. We use the definition (3.52) to estimate via

sup
|x |≤�

|F̃W,6| � ‖F (6)
W ‖∞ +

5∑
j=2

sup
|x |≤�

|W̃ (7− j)| +
6∑

j=1

sup
|x |≤�

|W̃ (6− j)| + ε
1
2 ε

1
5

+ ε
1
6 e− 3

4 s +
6∑

j=1

M2 j2e−s + ε
1
2

� ε
3
4 e−s + �ε

1
5 + ε

1
2 ε

1
5 + ε

1
6 e− 3

4 s + ε
1
2 � �ε

1
5 ,

where we have invoked estimates (6.20) with n = 6, and (5.14).
The identical argument applies to the estimate of F̃W,7 and F̃W,8. ��
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Lemma 6.6. For FZ defined in (3.15), the following estimates are valid

‖FZ‖∞ ≤ ε
3
4 e−s, (6.27)

‖FZ ,1‖ ≤ ε
1
2 e− 5

4 s I (s) + e− 3
2 s, (6.28)

‖F (n)
Z ‖∞ ≤ ε

3
4 e− 5

4 s, (6.29)

‖FZ ,n‖∞ � M2n2−1e− 5
4 s . (6.30)

for 2 ≤ n ≤ 8, where I (s) is an integrable function of s satisfying the bound
∫ s

s0
|I (s′)|ds′

< 1.

Proof. For estimate (6.27), we use the definition (3.15) to estimate

‖FZ‖∞ � e−s‖A‖∞
(
‖e− s

4 W + κ‖∞ + ‖Z‖∞
)

� M2εe−s,

where we have invoked (5.10), as well as (5.8).
To estimate F (n)

Z , we recall definition (3.40), which requires us to estimate the fol-
lowing four types of terms

n∑
j=1

‖βτ e−s A( j)(e− s
4 W + κ)(n− j)‖∞ � e−s‖A( j)‖∞‖e− s

4 W1B f + κ‖ � Me−se− 5
4 s,

n∑
j=1

‖βτ e−s A( j)Z (n− j)‖∞ � e−s‖A( j)‖∞‖Z‖ � Mε
5
4 e− 9

4 s,

‖βτ e−s Aβ3e− s
4 W (n)‖∞ �M εe− 5

4 s,

‖βτ e−s Aβ4Z (n)‖∞ �M εe− 9
4 s .

Again, we have used estimates (5.9)–(5.10), as well as estimates (5.7) for derivatives of
W .

We now provide the estimate (6.30). Recall the definition (3.43). For this, when
coupled with (6.29), we need to estimate further the following two terms

‖1n≥2βτβ2

n∑
j=2

(
n

j

)
W ( j)Z (n+1− j)‖∞ � M2n2−11n≥2e− 5

4 s,

‖
n∑

j=1

G( j)
Z Z (n+1− j)‖∞ �M e− 9

4 s .

Above, we have invoked estimates (5.7) for derivatives of W , (5.9) for Z , as well as (6.2)
for the G( j)

Z terms.

For estimate (6.28), we estimate all of the terms above by e− 3
2 s with the exception of

|βτβ3e− 5
4 s AW (1) ◦ �Z | ≤ 10ε

5
4 e− 5

4 s |η− 1
5

◦ �Z | ≤ εe− 5
4 s I (s),

where we have invoked the trajectory estimate (6.60). ��
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Lemma 6.7. For FA defined in (3.16), the following estimates are valid

‖FA‖∞ � M
1
2 e−s, (6.31)

‖FA,1‖∞ ≤ e− 5
4 s I (s), (6.32)

‖F (n)
A ‖∞ � Mn2e− 5

4 s, for 2 ≤ n ≤ 8, (6.33)

‖FA,n‖∞ � M2n2−1e− 5
4 s for 2 ≤ n ≤ 8, (6.34)

where I (s) is an integrable function of s satisfying the bound
∫ s

s0
|I (s′)|ds′ < M.

Proof. First, we estimate FA via the definition in (3.16)

‖FA‖∞ � e−s‖A‖2∞ + e−s‖e− s
4 W + κ + Z‖2∞ + e−s‖e− s

4 W + κ − Z‖2∞ � M
1
2 e−s,

(6.35)

where we have used estimate (5.8), (5.9), (5.10), and (5.22), coupled with the fact that
M is large relative to κ0.

We now turn to (6.33), for n ≥ 1, for which we consider (3.41).

‖F (n)
A ‖∞ � e−s

n∑
j=0

‖A( j)‖∞‖A(n− j)‖∞ + e−s
n∑

j=0

(
‖(e− s

4 W + κ)( j)‖∞ + ‖Z ( j)‖∞
)

×
(
(‖(e− s

4 W + κ)(n− j)‖∞ + ‖Z (n− j)‖∞
)

� Mn2e− 5
4 s .

Above, we have invoked (5.9)–(5.10) as well as (5.7) and (5.8).
The remaining two estimates, (6.32) and (6.34), follow in the samemanner as (6.28)–

(6.30). ��

6.2.2. ∇a,b forcing estimates We now develop estimates regarding the ∂α and ∂β deriva-
tives of the forcing terms FW , FZ , FA. We start with the quantities ∂α FW and ∂β FW in
the following lemma.

Lemma 6.8. Let n ≥ 1. Then,

‖∂c FW ‖∞ � Mε
3
4 e− s

4 , ‖Fc
W,0‖∞ � ε

1
8 , (6.36)

‖∂c F (n)
W ‖∞ � ε

3
4 e− s

4 , ‖Fc
W,nη 1

20
‖∞ � M−1M (n+2)2ε

3
4 e

3
4 s . (6.37)
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Proof. First, we use Eq. (3.63) to estimate the first quantity in (6.37). We proceed in
order, starting with

‖∂c FW ‖∞ � ‖∂c τ̇ β2
τ e− 3

4 s A
(
β3Z + β4(e

− s
4 W + κ)

)
‖∞

+ ‖βτ e− 3
4 s∂c A

(
β3Z + β4(e

− s
4 W + κ)

)
‖∞

+ ‖βτ e− 3
4 s A

(
β3∂c Z + β4(e

− s
4 ∂cW + ∂cκ)

)
‖∞

� |∂c τ̇ |e− 3
4 s‖A‖∞

(
‖Z‖∞ + ‖e− s

4 W1B f + κ‖∞
)

+ e− 3
4 s‖∂c A‖∞

(
‖Z‖∞ + ‖e− s

4 W1B f + κ‖∞
)

+ e− 3
4 s‖A‖∞

(
‖∂c Z‖∞ + ‖e− s

4 ∂cW‖∞ + |∂cκ|
)

� Mε
3
2 e− 3

4 s
(
ε

5
4 + M

)
+ e− 3

4 sε
1
2

(
ε

5
4 + M

)
+ Mεe− 3

4 s
(
ε

1
2 + εe− 3

4 s + ε
3
8

)
.

Above, we have invoked repeatedly estimates (5.9)–(5.10), as well as (5.24)–(5.27).

Next, we use equation (3.65) to estimate the second quantity in (6.36) via

‖e− 3
4 sβτ ∂cκ̇ + e− 3

4 s κ̇∂c τ̇ β2
τ ‖∞ � e− 3

4 s |∂cκ̇| + e− 3
4 s |κ̇||∂cτ̇ | � ε

1
4 e− s

4 + e− 3
4 sε

5
8 ,

‖∂cGW W (1)‖∞ ≤ ‖∂cGW η− 1
5
‖∞‖W (1)η 1

5
‖∞ �M ε

1
2 ,

‖W (1)τ̇cW‖∞ ≤ |τ̇c|‖W (1)η 1
5
‖∞‖Wη− 1

20
‖∞ � ε

1
2 ,

where we have invoked the bootstrap bounds (5.21), (5.24), and for the second line above
we have invoked (6.7) with r = 4

5 .

Next, we use Eq. (3.67) to estimate the first quantity in (6.37). Specifically,

‖∂c F (n)
W ‖∞ �

∥∥∥
n∑

j=0

(
n

j

)
∂cτ̇ β2

τ e− 3
4 s A( j)

(
β3Z (n− j) + β4(e

− s
4 W + κ)(n− j)

)∥∥∥∞

+
∥∥∥

n∑
j=0

(
n

j

)
βτ e− 3

4 s∂c A( j)
(
β3Z (n− j) + β4(e

− s
4 W + κ)(n− j)

)∥∥∥∞

+
∥∥∥

n∑
j=0

(
n

j

)
βτ e− 3

4 s A( j)
(
β3∂c Z (n− j) + β4(e

− s
4 ∂cW + ∂cκ)(n− j)

)∥∥∥∞

=:O1 +O2 +O3.
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Bounding O1, we obtain

O1 �
n−1∑
j=1

|∂cτ̇ |e− 3
4 s‖A( j)‖∞

(
‖Z (n− j)‖∞ + ‖e− s

4 W (n− j)‖∞
)

+ |∂c τ̇ |e− 3
4 s‖A‖∞

(
‖Z (n)‖∞ + ‖e− s

4 W (n)‖∞
)
+ |∂c τ̇ |e− 3

4 s‖A(n)‖∞

×
(
‖Z‖∞ + ‖e− s

4 W1B f + κ‖∞
)

�M ε
1
2 e−2s(e− 5

4 s + e− s
4 ) + ε

3
2 e− 3

4 s(e− 5
4 s + e− s

4 ) + ε
1
2 e−2s(ε

5
4 + 1)

�M ε
5
4 e−s,

where we have invoked estimates (5.9)–(5.10), as well as (5.24).
We now bound O2

O2 �
n−1∑
j=1

e− 3
4 s‖∂c A( j)‖∞

(
‖Z (n− j)‖∞ + e− s

4 ‖W (n− j)‖∞
)

+ e− 3
4 s‖∂c A‖∞

(
‖Z (n)‖∞ + e− s

4 ‖W (n)‖∞
)
+ e− 3

4 s‖∂c A(n)‖∞

×
(
‖Z‖∞ + ‖e− s

4 W1B f + κ‖∞
)

�M ε
1
2 e− 5

4 s(e− 5
4 s + e− s

4 ) + e− 3
4 sε

1
2 (e− 5

4 s + e− s
4 ) + ε

1
2 e− 5

4 s(ε
5
4 + 1)

�M ε
3
4 e−s .

We have invoked estimates (5.9)–(5.10), as well as (5.27).
Finally, we estimate O3

O3 �
n−1∑
j=1

e− 3
4 s‖A( j)‖∞

(
‖∂c Z (n− j)‖∞ + e− s

4 ‖∂cW (n− j)‖∞
)

+ e− 3
4 s‖A‖∞

(
‖∂c Z (n)‖∞ + e− s

4 ‖∂cW (n)‖∞
)
+ e− 3

4 s‖A(n)‖∞

×
(
‖∂c Z‖∞ + e− s

4 ‖∂cW‖∞ + |∂cκ|
)

�M e−2s(ε
1
2 e− 1

2 s + ε
3
4 e

s
2 ) + e− 3

4 sε(ε
1
2 e− s

2 + ε
3
4 e

s
2 ) + e−2s(ε

1
2 + ε

3
4 e

3
4 s + ε

3
8 )

�M εe− s
4 .

We have used the bootstrap bounds (5.9)–(5.10), as well as (5.25) and (5.26)–(5.27).
We now remark that, according to (5.4),

‖∂c F (n)
W η 1

20
‖∞ � ε

3
4 e− s

4 (Mεe
5
4 s)

1
5 = M

1
5 ε

19
20 . (6.38)

Finally, we use equation (3.66) to estimate the second quantity in (6.37). In addition
to estimate (6.38), we need to estimate the following two quadratic quantities in W

‖
n∑

j=1

(
n

j

)
βτ W (1+ j)∂cW (n− j)η 1

20
‖∞ � M (1+ j)2 M (n− j+2)2ε

3
4 e

3
4 s � M−1M (n+2)2ε

3
4 e

3
4 s,

(6.39)
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and similarly

‖1n≥2

n−2∑
j=0

(
n

j

)
βτ W (n− j)∂cW ( j+1)η 1

20
‖∞ � 1n≥2

n−2∑
j=0

‖W (n− j)η 1
20

‖∞‖∂cW ( j+1)‖∞

� M (n− j)2 M ( j+3)2ε
3
4 e

3
4 s � M−1M (n+2)2ε

3
4 e

3
4 s . (6.40)

For both of the above estimates, (6.39) and (6.40), we have invoked (5.7) and (5.31)–
(5.32).

Next, using again (3.66), we need to estimate the following two quantities

‖1n≥1

n−1∑
j=0

(
n

j

)
G(n− j)

W ∂cW ( j+1)η 1
20

‖∞ � 2M2(n− j)2e−s M ( j+2)2ε
3
4 e

3
4 s �M ε

3
4 e− s

4 ,

(6.41)

‖
n∑

j=0

(
n

j

)
∂cG( j)

W W (n− j+1)η 1
20

‖∞ �
n∑

j=0

‖∂cG( j)
W η− 3

20
‖∞‖W (n− j+1)η 1

5
‖∞ �M ε

9
10 e

s
4 .

(6.42)

Above, we have appealed to estimates (6.1) with r = 3
5 and (6.7) on GW and ∂cGW .

Finally, according to (3.66), we need to estimate

‖
n∑

j=0

(
n

j

)
τ̇cβ

2
τ

n∑
j=0

(
n

j

)
W (1+ j)W (n− j)η 1

20
‖∞ �M ε

1
2 . (6.43)

Above, we have used the elementary inequality

(1 + j)2 + (n − j + 2)2 ≤ −1 + (n + 2)2 for n ≥ 1, 1 ≤ j ≤ n,

and we have invoked estimates (5.5), (5.31), (5.32). Combining (6.38)–(6.43), we obtain
the right-most estimate in (6.37). ��

We now establish enhanced localized estimates for the bottom order derivatives.

Lemma 6.9. The following estimates are valid

sup
|x |≤�

|Fc
W,7| ≤ M�

1
5 ε

3
4 e

3
4 s . (6.44)

Proof. An inspection of the proof Lemma 6.8 shows that only terms (6.39) and (6.40)
need to be estimated, with n = 7. Accordingly, we estimate

‖
7∑

j=1

(
7

j

)
βτ W (1+ j)∂cW (7− j)η 1

20
‖∞ + ‖

5∑
j=0

(
n

j

)
βτ W (7− j)∂cW ( j+1)η 1

20
‖∞ � �

1
2 Mε

3
4 e

3
4 s ,

upon invoking the localized bootstraps (5.13) and (5.33). ��
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Lemma 6.10. The following estimates are valid

‖∂c FZ‖∞ ≤ ε
3
4 e− s

2 , ‖Fc
Z ,0‖∞ ≤ ε

1
2 e− s

2 , (6.45)

‖∂c F (n)
Z ‖∞ � ε

3
4 e− s

2 , ‖Fc
Z ,n‖∞ � M2n2−1ε

1
2 e− s

2 , (6.46)

for 1 ≤ n ≤ 7

Proof. First, we use expression (3.55) to estimate

‖∂c FZ‖∞ � |τ̇c|‖FZ‖∞ + e−s‖Ac‖∞
(
‖e− s

4 W + κ‖∞ + ‖Z‖∞
)

+ e−s‖A‖∞
(

e− s
4 ‖Wc‖∞ + |κc| + ‖Zc‖∞

)

�M ε
5
4 e−s + ε

1
2 e− 3

2 s
(
1 + ε

5
4

)
+ εe−s

(
ε

3
4 e

s
2 + ε

3
8 + ε

1
2

)
�M ε

7
8 e− s

2 .

(6.47)

where above we have also invoked estimate (6.27) for the FZ term together with the
bootstrap estimates (5.5), (5.9), (5.10), (5.22), (5.25), (5.27) and (5.32). The first estimate
in (6.45) follows from (6.47) upon bringing ε small relative to M .

Next, we use the identity (3.54) to estimate

‖Fc
Z ,0‖∞ �M ‖Z (1)‖∞

(
|∂cτ̇ |‖W‖∞ + ‖∂cW‖∞ + ‖∂cG Z‖∞

)
+ ‖∂c FZ‖∞

�M e− 5
4 s

(
ε

1
2 e

s
4 + ε

3
4 e

3
4 s + ε

1
2 e

s
4

)
+ ε

3
4 e− s

2 �M ε
3
4 e− s

2 ,

from which the second estimate in (6.45) follows again by bringing ε small relative to
M .

We now use expression (3.57) to estimate the first quantity in (6.46) via

‖∂c F (n)
Z ‖∞ � |τ̇c||βτ |‖F (n)

Z ‖∞ + |βτ |e−s
n∑

j=0

‖A( j)
c

(
β3(e

− s
4 W + κ)(n− j) + β4Z (n− j)

)
‖∞

+ |βτ |e−s
n∑

j=0

‖A( j)
(
β3(e

− s
4 Wc + κc)

(n− j) + β4Z (n− j)
c

)
‖∞

� ε
3
2 e− 5

4 s + ε
1
4 e−s + εe− s

2 ,

where above we have invoked the forcing estimate, (6.29).
Next, in order to complete the estimate of the quantity ‖Fc

Z ,n‖∞, we need to estimate
the remaining five terms in (3.56). The second, third, and sixth terms from the right-side
of (3.56) are estimated via

n∑
j=0

|τ̇c|‖Z ( j+1)‖∞‖W (n− j)‖∞ �
n∑

j=0

M2( j+1)2ε
1
2 e− 5

4 s M (n− j)2e
s
4 ,

n∑
j=0

‖Z ( j+1)‖∞‖W (n− j)
c ‖∞ �

n∑
j=0

M2( j+1)2e− 5
4 s M (n− j)2ε

3
4 e

3
4 s,

n∑
j=2

‖W ( j)‖∞‖Z (n− j+1)
c ‖∞ � M j2ε

1
2 M2(n− j+1)2e− s

2 � M−1+2n2ε
1
2 e− s

2 .
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Above, we have invoked (5.24), (5.27), and (5.32).
The fourth and fifth terms from the right-side of (3.56) are estimated via

n∑
j=0

‖Z ( j+1)‖∞‖∂cG(n− j)
Z ‖∞ �

n∑
j=0

M2( j+1)2ε
1
2 e−s

n∑
j=1

‖G( j)
Z ‖∞‖Z (n+1− j)

c ‖∞ � M2 j2 M (n+1− j)2εe− 3
4 s,

where we have invoked the estimates on G Z and ∂cG Z from (6.2) and (6.8). Above we
have also used the elementary inequality

j2 + 2(n + 1 − j)2 ≤ −1 + 2n2 for n ≥ 2 and 2 ≤ j ≤ n. (6.48)

��
Lemma 6.11. The following estimates are valid

‖∂c FA‖∞ ≤ ε
1
2 e− s

2 , ‖Fc
A,0‖∞ ≤ ε

1
2 e− s

2 , (6.49)

‖∂c F (n)
A ‖∞ ≤ ε

1
2 e− s

2 , ‖Fc
A,n‖∞� M2n2−1ε

1
2 e− s

2 , (6.50)

for 1 ≤ n ≤ 7

Proof. We appeal to the expression (3.59) to estimate

‖∂c FA‖∞ � |τ̇ |‖FA‖∞ + e−s
(
‖e− s

4 W + κ‖∞ + ‖Z‖∞
)(

‖e− s
4 Wc + κc‖∞ + ‖Zc‖∞

)

� M
1
2 ε

1
6 e− 7

4 s + e−s(M4ε
3
4 e

1
2 s + ε

1
2 + ε

1
2 ).

Above, we have invoked (5.21), (5.8), (5.9), (5.25), (5.24), (5.31) and finally (6.31) for
the FA contribution.

Next, we appeal to the expression (3.58) to estimate

‖Fc
A,0 ◦ �

x0
A ‖∞ � ‖∂c FA ◦ �

x0
A ‖∞ + ‖A(1)‖∞

(
|τ̇c|‖W‖∞ + ‖Wc‖∞ + ‖∂cG A‖∞

)

� ε
1
2 e− s

2 + M2e− 5
4 s

(
ε

1
2 e

s
4 + M4ε

3
4 e

3
4 s + ε

1
4 e

s
4

)
,

where we have appealed to estimates (6.49), as well as bootstrap assumptions (5.8),
(5.10), (5.24), (5.31), and (6.9) for the ∂cG A contribution.

Next, we appeal to the expression of (3.61) to estimate

‖∂c F (n)
A ‖∞ � |τ̇c|‖F (n)

A ‖∞ + e−s
n∑

j=0

(‖(e− s
4 W ( j) + κ)( j)‖∞ + ‖Z ( j)‖∞)

× (‖(e− s
4 Wc + κc)

(n− j)‖∞ + ‖Z (n− j)
c ‖∞)

�M ε
1
2 e−s + e−s(1 + ε

1
2 + ε

5
4 )(ε

3
4 e

s
2 + ε

1
2 e− s

2 ) �M ε
3
4 e− s

2 ,

where we have invoked estimates (5.7), (5.8), (5.24), (5.21)–(5.22), as well as (5.27).
The final estimate in (6.50) requires an estimate of the remaining terms in (3.60),

which is identical to that of Lemma 6.10. ��
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6.2.3. ∇2
a,b forcing estimates

Lemma 6.12. For 1 ≤ n ≤ 6, the following estimates are valid

‖∂c1c2 FW ‖∞ ≤ ε
1
2 e

s
2 , ‖Fc1,c2

W,0 ‖∞ ≤ M14ε
3
2 e

3
2 s, (6.51)

‖∂c1c2 F (n)
W ‖∞ � ε

1
2 e

s
2 , ‖Fc1,c2

W,n ‖∞ ≤ M (n+5)2−1ε
3
2 e

3
2 s . (6.52)

Proof of (6.51). For the computation of ∂c1c2 FW , we recall the definition of (3.72), and
proceed to estimate systematically

‖βτ e− 3
4 s Ac1c2(β3Z + β4(e

− s
4 W + κ))‖∞

� e− 3
4 s‖Ac1c2‖∞(‖Z‖∞ + ‖e− s

4 W + κ‖∞) �M ε
5
8 e− s

2 (ε
5
4 + 1) �M ε

5
8 e− s

2 ,

and next

‖βτ e− 3
4 s Ac1 (β3Zc2 + β4(e

− s
4 Wc2 + κc2 ))‖∞

� e− 3
4 s‖Ac‖∞(‖Zc‖∞ + e− s

4 ‖Wc‖∞ + |κc|) �M ε
1
2 e− 3

4 s(ε
1
2 + ε

3
4 e

s
2 + ε

1
4 ) �M ε

3
4 e− s

4 .

Above, we have invoked bootstrap assumptions (5.35) as well as (5.26)–(5.27), and
(5.9)–(5.10).

The first term on the second line of (3.72) is estimated in an identical fashion, while
the second term is estimated via

‖βτ e− 3
4 s A(β3Zc1c2 + β4(e

− s
4 Wc1c2 + κc1c2))‖∞

� e− 3
4 s‖A‖∞(‖Zc1c2‖∞ + e− s

4 ‖Wc1c2‖∞ + |κc1c2 |)
�M εe− 3

4 s(ε
5
8 e

s
4 + ε

3
2 e

5
4 s + ε

5
4 es) �M εe

s
2 ,

where again we have invoked bootstrap assumptions (5.35) as well as (5.26)–(5.27), and
(5.9)–(5.10).

Finally, the last line of (3.72) is estimated via

‖τ̇c2βτ ∂c1 FW + τ̇c1c2βτ FW + τ̇c1βτ ∂c2 FW ‖∞
� |τ̇c|‖∂c FW ‖∞ + |τ̇c1c2 |‖FW ‖∞ �M ε

5
4 e− s

4 + ε
3
2 �M ε,

where we have invoked the estimates (6.20) and (6.36).
Next, to estimate the remaining quantity in (6.51), we recall definition (3.69), ac-

cording to which we define the following two auxiliary quantities:

L1 := βτ W (1)
c2 Wc1 − β2

τ τ̇c2W (1)Wc1 −
(
β2

τ τ̇c2W + βτ Wc2 + ∂c2GW

)
W (1)

c1

L2 := −τ̇c1β
2
τ W W (1)

c2 − τ̇c1c2β
2
τ W W (1) − 2β2

τ τ̇c1 τ̇c2W W (1) − τ̇c1β
2
τ W (1)Wc2 ,

so that we have the identity

Fc1,c2
W,0 = ∂c1c2 FW + L1 + L2 − Mc1,c2 ,

where Mc1,c2 has been defined in (3.70).



Construction of Unstable Shocks 237

We first estimate L1 via

‖L1‖∞ � (1 + |τ̇c|)‖W (1)
c ‖∞‖Wc‖∞ + |τ̇c|‖W‖∞‖W (1)

c ‖∞ + ‖∂cGW η− 1
20

‖∞‖W (1)
c η 1

20
‖∞

� (1 + ε
1
2 )M13ε

3
2 e

3
2 s + ε

1
2 M4ε

3
2 e

3
2 s + M12ε

41
20 e

3
2 s+M9ε

5
4 e

3
4 s

� M13ε
3
2 e

3
2 s .

Note that for the estimation of the final term above, we have used crucially the spatial
decay of W (1)

c , as guaranteed by the bootstrap assumption (5.32), and we have also
applied estimate (6.7) with r = 1

5 .
Next, we estimate L2 via

‖L2‖∞ � |τ̇c|‖W‖∞‖W (1)
c ‖∞ + (|τ̇c1c2 | + |τ̇c|2)‖Wη− 1

20
‖∞‖W (1)η 1

20
‖∞ + |τ̇c|‖W (1)‖∞‖Wc‖∞

�M ε
1
2 e

s
4 + (εe

3
4 s + ε) + ε

5
4 e

3
4 s �M εe

3
4 s ,

where we invoke the bootstrap assumptions (5.5) - (5.6), (5.24) - (5.25), (5.32), and
(5.38).

Next, we estimateMc1,c2 via

|Mc1,c2 | � e− 3
4 s

(
|κ̇c1c2 | + |κ̇c||τ̇c| + |κ̇||τ̇c1c2 | + |κ̇||τ̇c|2

)

�M e− 3
4 s

(
ε

5
4 es + ε

3
4 + ε

9
8 e

3
4 s + ε

5
8

)
�M ε

5
8 e

s
4 ,

where we have invoked the bootstrap assumptions on the second (parameter) derivatives
of the modulation variables, (5.38)–(5.39). ��
Proof of (6.52). We now move to the 1 ≤ n ≤ 6 estimates, for which we first recall the
expression of ∂c1c2 F (n)

W from (3.73). The estimate of this is identical to the estimate of
∂c1c2 FW (the n = 0 case above), and so we omit it. We now proceed to estimate all of
the remaining terms in (3.71).

‖
n∑

j=1

β2
τ τ̇ci W (1+ j)W (n− j)

ci ′ ‖∞ �
n∑

j=1

|τ̇c|‖W (1+ j)‖∞‖W (n− j)
c ‖∞ �M ε

5
4 e

3
4 s ,

‖
n∑

j=0

(
n

j

)
βτ W ( j)

c1 W (n+1− j)
c2 ‖∞ �

n∑
j=0

‖W ( j)
c ‖∞‖W (n+1− j)

c ‖∞ �
n∑

j=0

M ( j+2)2 M (n− j+3)2ε
3
2 e

3
2 s .

We have invoked the bootstrap assumptions (5.7) on derivatives of W , (5.24), as well as
(5.32). We now appeal to the elementary inequality

( j + 1)2 + (n − j + 3)2 ≤ (n + 5)2 − 1 for 0 ≤ j ≤ n, n ≥ 1.

We continue with

‖
n∑

j=1

(
n

j

)
βτ W (1+ j)W (n− j)

c1c2 ‖∞ �
n∑

j=1

‖W (1+ j)‖∞‖W (n− j)
c1c2 ‖∞ �

n∑
j=1

M (1+ j)2 M (n− j+5)2ε
3
2 e

3
2 s ,

and again appeal to an elementary inequality

(1 + j)2 + (n − j + 5)2 ≤ −1 + (n + 5)2 for 1 ≤ j ≤ n, n ≥ 1.
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The fifth term on the right-hand side of (3.71) is formally the same as the second
term, with the exception of the j = 0 case, which we estimate via

‖β2
τ τ̇ci ′ W W (n+1)

ci
‖∞ �M ε

1
2 e

s
4 e

3
4 (s−s0) �M ε

5
4 es .

We now move to the term

‖
n∑

j=0

(
n

j

)
∂c2G( j)

W W (n+1− j)
c1 ‖∞ �

n∑
j=0

‖∂c2G( j)
W η− 1

20
‖∞‖W (n+1− j)

c1 η 1
20

‖∞

�M ε
33
20 e

3
2 s + ε

5
4 e

3
4 s .

Above we have invoked (6.7) with r = 1
5 .

We now move to the final three terms, which are easily estimated via

‖
n∑

j=1

G( j)
W W (n− j+1)

c1c2 ‖∞ �M ε
3
2 e

s
2 ,

‖
n∑

j=0

β2
τ (τ̇c1c2 + 2τ̇c1 τ̇c2)W ( j)W (n+1− j)‖∞ �M εe

3
4 s + ε,

where we have invoked (5.7) for derivatives of W , (6.1) for j ≥ 1 for the GW contribu-
tion, and (5.24), (5.38) for ∂c and ∂2c of τ̇ . ��

Lemma 6.13. For 1 ≤ n ≤ 6, the following estimates are valid

‖∂c1c2 FZ‖∞ ≤ εe
s
4 , ‖Fc1,c2

Z ,0 ‖∞ ≤ εe
1
4 s, (6.53)

‖∂c1c2 F (n)
Z ‖∞ ≤ εe

s
4 , ‖Fc1,c2

Z ,n ‖∞ � M2n2−1ε
5
8 e

1
4 s . (6.54)

Proof. First, we turn to the estimation of ∂c1c2 F (n)
Z , for whichwe appeal to the expression

given in (3.77) and estimate term by term via

‖βτ e−s
n∑

j=0

(
n

j

)
A( j)

(
β3(e

− s
4 Wc1c2 + κc1c2)

(n− j) + β4Z (n− j)
c1c2

)
‖∞

� e−s
n∑

j=0

‖A( j)‖∞
(
‖e− s

4 Wc1c2 + κc1c2)
(n− j)‖∞ + ‖Z (n− j)

c1c2 ‖∞
)

�M εe−s
(
ε

3
2 e

5
4 s + ε

5
4 es + ε

5
8 e

s
4

)
�M ε

5
4 e

s
4 .

Above, we have invoked estimates (5.10), (5.35), (5.37), and (5.39).
Next, the second term from (3.77) is estimated via

‖βτ e−s
n∑

j=0

(
n

j

)
A( j)

c1c2

(
β3(e

− s
4 W + κ)(n− j) + β4Z (n− j)

)
‖∞

� e−s
n∑

j=0

‖A( j)
c1c2‖∞

(
e− s

4 ‖W (n− j)‖∞ + |κ| + ‖Z (n− j)‖∞
)

�M ε
5
8 e− 3

4 s(1 + ε
5
4 ),
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where we have invoked (5.7), (5.8), (5.9) (5.22), and (5.36).
Next, the third term from (3.77) is estimated via

‖βτ e−s
n∑

j=0

∑
i∈{1,2}

(
n

j

)
A( j)

ci

(
β3(e

− s
4 Wci ′ + κci ′ )

(n− j) + β4Z (n− j)
ci ′

)
‖∞

� e−s
n∑

j=0

‖A( j)
c ‖∞

(
e− s

4 ‖W (n− j)
c ‖∞ + |κc| + ‖Z (n− j)

c ‖∞
)

�M ε
1
2 e−s

(
ε

3
4 e

s
2 + ε

1
4 + ε

1
2

)
�M εe− s

2 ,

where we have invoked (5.25), (5.26)–(5.27), and (5.32)
We now move to the final terms from (3.77) which evaluate to

‖τ̇c1βτ ∂c2 F (n)
Z + τ̇c2βτ ∂c1 F (n)

Z + τ̇c1c2βτ F (n)
Z ‖∞

� |τ̇c||∂c F (n)
Z | + |τ̇c1c2 |‖F (n)

Z ‖∞ � ε
5
4 e− s

2 + ε2e− s
4 ,

where we have invoked the estimates (6.45) - (6.46), as well as estimates (6.27) and
(6.29).

We now turn to equation (3.75) for the form of Fc1,c2
Z ,n . We will estimate term by term,

starting with

‖1n≥2

n∑
j=2

(
n

j

)
βτβ2W ( j)Z (n− j+1)

c1c2 ‖∞ � 1n≥2M j2 M2(n− j+1)2ε
5
8 e

s
4 � M−1+2n2ε

5
8 e

s
4 ,

‖1n≥1

n∑
j=1

(
n

j

)
G( j)

Z Z (n− j+1)
c1c2 ‖∞ �M ε

5
8 e− 3

4 s,

where for the first estimate above we have invoked the elementary inequality (6.48), and
for the second estimate we have invoked (6.2).

Next, we continue by estimating

‖
n∑

j=0

∑
i∈{1,2}

(
n

j

)
Z ( j+1)

ci

(
τ̇ci ′ β

2
τ β2W (n− j) + βτβ2W (n− j)

ci ′ + ∂ci ′ G
(n− j)
Z

)
‖∞

�
n∑

j=0

‖Z ( j+1)
c ‖∞

(
|τ̇c|‖W (n− j)‖∞ + ‖W (n− j)

c ‖∞ + ‖∂cG(n− j)
Z ‖∞

)

�M ε
1
2 e− s

2

(
ε

1
2 e

s
4 + ε

3
4 e

3
4 + ε

1
4 e

s
4

)
�M ε

5
4 e

s
4 ,

where we have invoked the bootstrap assumptions (5.7), (5.24), (5.26)–(5.27), (5.32), as
well as (6.8) on the ∂cG Z term.
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We return to (3.75), and address the third and fourth lines by estimating

‖
n∑

j=0

(
n

j

)
Z ( j+1)

(
τ̇c1c2β

2
τ β2W (n− j) + 2τ̇c1 τ̇c2β

2
τ β2W (n− j) + βτβ2W (n− j)

c1c2

+
∑

i∈{1,2}
τ̇ci β

2
τ β2W (n− j)

ci ′ + ∂c1c2G(n− j)
Z

)
‖∞

�
n∑

j=0

‖Z ( j+1)‖∞
(
|τ̇c1c2 |‖W (n− j)‖∞ + |τ̇c|2‖W (n− j)‖∞ + ‖W (n− j)

c1c2 ‖∞

+ |τ̇c|‖W (n− j)
c ‖∞ + ‖∂c1c2G(n− j)

Z ‖∞
)

�M e− 5
4 s

(
εes + εe

s
4 + ε

3
2 e

3
2 s + ε

5
4 e

3
4 s + ε

5
4 e

5
4 s

)
�M ε

5
4 e

s
4 .

Above, we have invoked (5.7), (5.9), (5.24), (5.32), (5.37), (5.38), as well as (6.15) for
the ∂c1c2G Z contribution.

This concludes the treatment of the terms from (3.75) and hence the proof of the
lemma. ��
Lemma 6.14. For 1 ≤ n ≤ 6, the following estimates are valid

‖∂c1c2 FA‖∞ ≤ εe
s
4 , ‖Fc1,c2

A,0 ‖∞ ≤ εe
1
4 s, (6.55)

‖∂c1c2 F (n)
A ‖∞ ≤ εe

s
4 , ‖Fc1,c2

A,n ‖∞ � M2n2−1ε
5
8 e

1
4 s . (6.56)

Proof. First, we use expression (3.80) to produce the estimates

‖βτβ1e−s
(

e− s
4 Wc2 + κc2 + Zc2

)(
e− s

4 Wc1 + κc1 + Zc1

)
‖∞ ≤ ε

3
2 e

s
4 ,

‖βτβ1e−s
(

e− s
4 W + κ + Z

)(
e− s

4 Wc1c2 + κc1c2 + Zc1c2

)
‖∞ ≤ ε

5
4 e

s
4 ,

where we have invoked estimates (5.8), (5.25), (5.26), (5.31), (5.35), (5.37), and (5.38).
For the last line from expression (3.80), we have

‖τ̇c1c2βτ FA + τ̇c2βτ ∂c1 FA + τ̇c1βτ ∂c2 FA‖ � |τ̇c1c2 |‖FA‖∞ + |τ̇c|‖∂c FA‖∞ � Mεe− s
4 + εe− s

2 ,

where we have invoked the forcing estimates (6.33) and (6.50). This contribution is

clearly bounded by ε
3
4 e− s

4 by bringing ε small relative to M .
Next, wemove to the second estimate in (6.55), for which we appeal to the expression

(3.78). However, these estimates are exactly analogous to those of Lemma 6.13, estimate
(6.53), and so we omit repeating these estimates. The estimates for general n, (6.56) also
follow analogously to Lemma 6.13. ��

6.3. Trajectory estimates. In this subsection, we provide estimates on the trajectories
associated with the transport structure of the Eqs. (3.17)–(3.19). We now define these
trajectories via

∂s�
x0
W (s) = VW ◦ �

x0
W , �

x0
W (s0) = x0,

∂s�
x0
Z (s) = VZ ◦ �

x0
Z , �

x0
Z (s0) = x0,

∂s�
x0
A (s) = VA ◦ �

x0
A , �

x0
A (s0) = x0.
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Lemma 6.15. Let �(s) denote either �
x0
W , �

x0
Z (s) or �

x0
A , then for |x0| ≤ M

2 ε− 1
4 we

have

|�x0(s)| ≤ 2M

3
e
5
4 s . (6.57)

As a consequence we obtain

supp W (s) ∪ supp Z(s) ∪ supp A(s) ⊂ B

(
3

4
Mεe

5
4 s

)
, (6.58)

which verifies the bootstrap assumption (5.4)

Proof. We restrict to the case � = �
x0
W . The cases � = �

x0
Z and � = �

x0
A will follow

in an analogous fashion. Recall that for � = �
x0
W we have

∂s� = 5

4
� + βτ W ◦ � + GW ◦ �.

As a consequence of (5.4), (5.5) and (6.1), we have

‖W‖∞ + ‖GW ‖∞ � M
1
5 ε

1
5 e

s
4 + e

s
4 � e

s
4 . (6.59)

Thus by Grönwall we obtain we obtain (6.57).
The support bound (6.58) follows directly from (4.7), the defining Eqs. (3.17)–(3.19),

together with (6.57). ��
Lemma 6.16. Let �(s) denote either �

x0
Z (s) or �

x0
A , then for |x0| ≤ M

2 ε− 1
4 we have

|�x0(s)| ≥ min(e
s
4 , e

s
4 − e

s∗
4 ) for some s∗ ≥ s0. (6.60)

Proof. We first show that if �(s) ≤ e
s
4 , then we have the inequality

∂

∂s
�(s) ≤ −e

s
4 . (6.61)

For notational purposes, we set ( j, G Z) = (2, G Z ) or ( j, G Z) = (1, G A) for the cases
�(s) = �

x0
Z (s) or �(s) = �

x0
A , respectively. We then have the ODE

∂s� = 5

4
� + βτβ j W ◦ � + G ◦ �.

Note that since α > 1, then
∣∣β j

∣∣ < 1. Assuming ε to be sufficiently small (dependent

on α), then applying (5.23) yields βτβ j ≤ 1. Then if �(s) ≤ e
s
4 , we have from (5.5),

(6.2) and (6.3)

∂

∂s
�(s) ≤ 5

4
e

s
4 + 2η 1

20
◦ �(s) − (1 − β j )κ0e

s
4 + ε

1
2 e

s
4

≤ 5

4
e

s
4 − (1 − β j )κ0e

s
4 + ε

1
2 e

s
4 ,

where we used (6.60). Since (1 − β j ) > 0, then assuming κ0 is sufficiently large,
dependent of α, we obtain (6.61).

We now split the proof of (6.60) into two subcases:
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1. Either �(s) > e
s
4 for all s ∈ [s0,∞), or x0 ≤ 0.

2. We have x0 > 0 and there exists a smallest s1 ∈ [s0,∞) such that 0 < �(s1) ≤ e
s1
4 .

Consider first Case 1. Note that �1(s) > e
s
4 directly implies (6.60). If x0 ≤ 0, then

(6.61) implies that �(s) ≤ −e
s
4 + ε− 1

4 and hence (6.60) is satisfied for s∗ = − log ε.
Now consider Case 2. The estimate (6.61) implies that d

ds �(s) ≤ −e
s
4 for all s ≥ s0.

Thus by continuity, there exists a unique s∗ > s0 such that �(s∗) = 0. By continuity,
there exists s∗ > s1 such that �(s∗) = 0. Then as a consequence of (6.60), by following
trajectories forwards and backwards in time from s∗ we conclude that

|�(s)| ≥
∣∣∣e s

4 − e
s∗
4

∣∣∣ ,

for all s ∈ [s1,∞). For the case s1 �= s0, then if s ∈ [s0, s1) we have by definition that
|�(s)| ≥ e

s
4 . Thus we have (6.61). ��

Lemma 6.17. For any |x0| ≥ � and s0 ≥ − log ε we have

�
x0
W ≥ |x0|ε 1

5 e
s
5 . (6.62)

Proof. Using W (0, s) = 0, (5.23), (5.20), (5.21) and (6.1) we obtain

VW x = 5

4
x2 + xβτ W + GW x

≥ x2
(
5

4
− βτ

∥∥∥W (1)
∥∥∥∞ −

∣∣∣G(1)
W

∣∣∣
)

− |μ|

≥ x2
(
1

4
− 2e− 3

4 s
)

− ε
1
6 e− 3

4 s ≥ 1

5
,

where inequality we used that |x | ≥ � ≥ ε
1
4 and s0 is taken to be sufficiently large.

Thus we obtain
d

ds

(
�

x0
W

)2 = 2VW (�
x0
W )�

x0
W ≥ 2(�x0

W )2

5
. (6.63)

and hence (6.62) follows by Grönwall. ��

7. Analysis of Modulation Variables

In this section we close all bootstraps related to the modulation variables κ , ξ and τ ,
together with the quantity μ.

7.1. Modulation variables and their time derivatives. The following lemma verifies the
bootstraps (5.22).

Lemma 7.1. The following estimates are valid

|κ − κ0| � ε
9
8 , |ξ̇ − κ0| � ε. (7.1)
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Proof. We integrate

|κ(t) − κ0| ≤
∫ t

1−ε

|κ̇| dt ′ � ε
9
8 ,

where we have invoked (5.21).
For ξ̇ , we rearrange (3.23) to obtain

βτ ξ̇ = βτκ − e− s
4 μ + βτβ2Z(0, s).

Estimating the right-hand side and using that βτ ≥ 1
2 on the left-hand side yields

|ξ̇ − κ0| � |κ − κ0| + e− s
4 |μ| + ‖Z‖∞ � ε

9
8 + ε

1
6 e−s + ε

5
4 ,

where we have invoked the bootstrap bounds (5.21) and (5.9). ��
The following lemma verifies the bootstraps on τ̇ , the second estimate of (5.21).

Lemma 7.2 (τ̇ Estimate). The following estimates are valid,

|τ̇ | � M2e−s .

Proof. We rearrange the first ODE equation, (3.45), to obtain the following estimate

|τ̇ | ≤ |(1 − τ̇ )||G(1)
W (s, 0)| − |(1 − τ̇ )||μ||W (2)(s, 0)| + |(1 − τ̇ )||F (1)

W (s, 0)|
� M2e−s + ε

4
15 e− 32

s + ε
3
4 e−s,

where we have invoked the second estimate in (6.1), the bootstrap bounds (5.21), (5.17),
and the second estimate in (6.20) to estimate the forcing. ��

The following verifies the bootstraps on μ, the first estimate on (5.21).

Lemma 7.3 (μ Estimate). The following estimates are valid,

|μ| �M e−s .

Proof. We rearrange (3.49) for μ(s), yielding

q(5)μ(s) = −10βτ q(2)q(3) −
4∑

j=2

(
4

j

)
G( j)

W (0, s)q(5− j) + F (4)
W (s, 0). (7.2)

We use the bootstrap that |q(5)(s)| ≥ 1
2 , (5.19), to estimate from below the denominators.

We then estimate the right-hand side via

|μ| � |q(2)||q(3)| +
3∑

j=2

(
4

j

)
|G( j)

W (0, s)||q(5− j)| + |G(4)
W (0, s)| + |F (4)

W (0, s)|

�M e− 3
2 s + e− 7

4 s + e−s + ε
3
4 e−s �M e−s,

where we have invoked (6.1) with j = 4, and (6.20) for the F (4)
W term, as well as the

decay bootsraps (5.17) on q(2), q(3). ��



244 T. Buckmaster, S. Iyer

The following lemma verifies the bootstrap (5.21) on κ̇ .

Lemma 7.4 (κ̇ Estimate). The following estimates are valid,

|κ̇| ≤ ε
1
8

2
.

Proof. We rearrange Eq. (3.45) to obtain

|κ̇| ≤ |(1 − τ̇ )|e 3
4 s |μ| + |(1 − τ̇ )|e 3

4 s |FW (0, s)| ≤ 2ε
1
6 + ε

3
4 ≤ Mε

1
6 ,

where we have invoked bootstrap (5.21) for the μ estimate, and (6.20) for the estimate
on FW . ��

7.2. ∇α,β derivatives of modulation variables. The following lemma verifies the boot-
straps in (5.25).

Lemma 7.5. Let c ∈ {α, β}. Then the following estimates are valid

|κc| � ε
3
4 , |ξ̇c| ≤ M

2
ε

1
2 . (7.3)

Proof. First, we have for every −ε ≤ t ≤ 0,

|∂cκ(t)| = |
∫ t

−ε

∂cκ̇(t ′) dt ′| ≤
∫ t

−ε

ε
1
4 e

1
2 s(t ′) dt ′ ≤

∫ ∞

s0
ε

1
4 e

1
2 s′

e−s′
ds′ � ε

3
4 ,

where we have used that ds = e−s dt , and the bootstrap assumption on κ̇c in (5.24).
We now compute ∂c of Eq. (3.23) to obtain the identity

μc = τ̇cβτμ − e
s
4 ξ̇cβτ + e

s
4 κcβτ + βτβ2e

s
4 Zc(s, 0), (7.4)

which upon rearranging for ξ̇c, we obtain

|ξ̇c| � e− s
4 |μc| + e− s

4 |τ̇c||μ| + |κc| + ‖Zc‖∞ � M33ε
1
2 e− s

2 + ε
2
3 e−s + ε

1
2 + ε

1
2 ≤ M

2
ε

1
2 ,

where above we have invoked the bootstrap assumptions (5.24) for ∂c of the modulation
variables, and (5.26) for ∂c Z . ��

The following verifies the first bootstrap in (5.24).

Lemma 7.6. Let c ∈ {α, β}. Then the following estimates are valid

|μc| ≤ M33

2
ε

1
2 e− s

4 .
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Proof. We take ∂c of Eq. (7.2) which produces the identity

q(5)μc = −q(5)
c μ − 10τ̇cβ

2
τ q(2)q(3) − 10βτ (q

(2)
c q(3) + q(2)q(3)

c )

−
4∑

j=2

(
4

j

)
(G( j)

W (0, s)q(5− j)
c + ∂cG( j)

W (0, s)q(5− j)) + ∂c F (4)
W (0, s), (7.5)

where we recall that q( j)(s) := W ( j)(0, s), according to (3.44). We now estimate each
of the terms on the right-hand side above.

|μc| � |q(5)
c ||μ| + |τ̇c||q(2)||q(3)| + |q(2)

c ||q(3)| + |q(2)||q(3)
c |

+
4∑

j=2

(|G( j)
W (s, 0)|‖q(5− j)

c ‖∞ + ‖∂cG( j)
W ‖∞|q(5− j)|) + ‖∂c F (4)

W ‖∞

� ε
13
24 e− 5

8 s + ε
1
2 e− 3

2 s + M40ε
3
4 e− s

4 + ε
3
5 e− s

4 + M18ε
3
4 e− 1

4 s

+ M32ε
1
2 e− s

4 + ε
3
4 e− s

4 � M32ε
1
2 e− s

4 ,

where we have invoked estimates (6.1), (6.7) for the G( j)
W contributions, and (6.37) for

the forcing term, (5.21) and (5.24) to estimate μ and τ̇c, as well as the estimates (5.17),
(5.28), (5.29), (5.30) to bound the terms involving q. We have also invoked bootstrap
(5.32). ��

The following verifies the second bootstrap in (5.24).

Lemma 7.7. Let c ∈ {α, β}. Then the following estimates are valid

|τ̇c| ≤ 1

2
ε

1
2 .

Proof. We take ∂c of Eq. (3.46) to obtain

βτ (1 + βτ τ̇ )τ̇c = ∂cG(1)
W (0, s) − μcq(2) − μq(2)

c + ∂c F (1)
W (0, s). (7.6)

We now estimate the right-hand side above via

|(7.6)| � ‖∂cG(1)
W ‖∞ + |μc||q(2)| + |μ||q(2)

c | + ‖∂c F (1)
W ‖∞

� M2 j2ε
1
2 e− s

4 + M33ε
3
5 e−s + ε

11
12 + ε

3
4 e− s

4 �M ε
3
4 ,

where above, we have invoked estimate (6.8) for the ∂cG(1)
W contribution, bootstraps

(5.21), (5.24) for the μ,μc estimates respectively, bootstraps (5.17), (5.28) for the
q(2), q(2)

c contributions respectively, and finally (6.37) for the ∂c F (1)
W estimate.

Finally, to conclude, we estimate the prefactor on the left-hand side of (7.6) from
below

βτ (1 + βτ τ̇ ) ≥ 7

8
(1 − βτ |τ̇ |) ≥ 3

4
.

��
The following verifies the third bootstrap in (5.24).



246 T. Buckmaster, S. Iyer

Lemma 7.8. Let c ∈ {α, β}. Then the following estimates are valid

|κ̇c| <
1

2
ε

1
4 e

s
2 .

Proof. We compute ∂c of Eq. (3.45) to obtain the identity

βτ κ̇c = e
3
4 sμc − κ̇β2

τ τ̇c + e
3
4 s∂c FW (0, s), (7.7)

upon which estimating yields

|κ̇c| � e
3
4 s |μc| + |κ̇||τ̇c| + e

3
4 s‖∂c FW ‖∞ � M33e

1
2 sε

1
2 + ε

5
8 + Mε

3
4 e

s
2 �M ε

1
2 e

s
2 ,

where we have invoked the bootstraps on the modulation variables, (5.21), (5.24), as
well as the forcing estimate (6.36). ��

7.3. ∇2
α,β derivatives of modulation variables. The following verifies the bootstraps in

(5.39).

Lemma 7.9. Let ci ∈ {α, β} for i = 1, 2. Then the following estimates are valid

|κc1c2 | ≤ M
5
2 ε

5
4 es, |ξ̇c1c2 | ≤ M

7
2 ε

5
4 es .

Proof. We have to integrate

|κc1c2 | = |
∫ t

1−ε

κ̇c1c2 | �
∫ s

s0
M2ε

5
4 e2s′

e−s′
ds′ = M2ε

5
4 (es − es0),

where above we have invoked the bootstrap assumption (5.38) on κ̇c1c2 .
Next, we want to obtain an expression for ξ̇c1c2 . For this, we differentiate the expres-

sion (3.23) which produces the identity

μc1c2 = βτ τ̇c2μc1 + βτ τ̇c1μc2 + τ̇c1c2βτμ − e
s
4 βτ ξ̇c1c2 + e

s
4 βτ κc1c2 + βτβ2e

s
4 Zc1c2(s, 0),

which rearranging for ξ̇c1c2 gives

|ξ̇c1c2 | � e− s
4 (|μc1c2 | + |τ̇c||μc| + |τ̇c1c2 ||μ|) + |κc1c2 | + ‖Zc1c2‖∞

� e− s
4 (Mε

5
4 e

5
4 s + M33εe− s

4 + ε
7
6 ) + M3ε

5
4 es + M2 j2ε

5
8 e

s
4

� M3ε
5
4 es,

where above we have invoked (5.38)–(5.39) for the second derivatives of the modula-
tion variables, (5.24) for the τ̇c term, (5.21) for the μ term, and (5.35) for the Zc1c2
contribution. ��

The following verifies the bootstraps in (5.38) on μ.

Lemma 7.10. Let ci ∈ {α, β} for i = 1, 2. Then the following estimates are valid

|μc1c2 | ≤ M

2
ε

5
4 e

5
4 s .
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Proof. We differentiate equation (7.5) in ∂c2 to get

q(5)μc1c2

= −q(5)
c2 μc1 − q(5)

c1c2μ − 10(τ̇c1c2 + 2τ̇c1 τ̇c2 )β
2
τ q(2)q(3) − 10β2

τ τ̇ci ′ (q
(2)
ci q(3) + q(2)q(3)

ci )

(7.8)

− 10βτ (q(3)
ci q(2)

ci ′ + q(2)
c1c2q(3) + q(2)q(3)

c1c2 ) −
4∑

j=2

(
4

j

)
(∂c2G( j)

W (s, 0)q(5− j)
c1 (7.9)

+ G( j)
W (s, 0)q(5− j)

c1c2 + ∂c1G( j)
W (s, 0)q(5− j)

c2 + ∂c1c2G(5− j)
W (s, 0)q(5− j)) + ∂c1c2 F(4)

W (s, 0).
(7.10)

We now estimate all of the terms above, line by line, starting with

|(7.8)| � ‖W (5)
c ‖∞|μc| + ‖W (5)

c1c2‖∞|μ|
+ (|τ̇c1c2 | + |τ̇c|2)|q(2)||q(3)| + |τ̇c|(|q(2)

c ||q(3)| + |q(2)||q(3)
c |)

�M ε
5
4 e

s
2 + ε

5
3 e

3
4 s + (εe

3
4 s + ε)ε

1
10 e− 7

4 s + ε
1
2 (ε

3
4 e− s

4 + ε
3
5 e− s

4 ) �M ε
5
4 e

3
4 s .

Above, we have invoked (5.32), (5.37) for the W (5)
c , W (5)

c1c2 contributions, respectively,
(5.21), (5.24) and (5.38) for the estimates on the modulation variable, (5.17) for the
decay estimates on q(2), q(3), and finally (5.28) and (5.29) for q(2)

c , q(3)
c estimates.

Next, we bound the terms in (7.10)

|(7.10)| � |q(3)
c ||q(2)

c | + |q(3)||q(2)
c1c2 | + |q(2)||q(3)

c1c2 | +
4∑

j=2

|∂cG( j)
W (s, 0)|‖W (5− j)

c ‖∞

� ε
5
4 e

5
4 s + ε

3
2 e

s
2 + ε

8
5 e

3
4 s + M18ε

5
4 e− s

2 � ε
5
4 e

5
4 s,

where above we have invoked estimate (6.7) for the transport term, as well as the boot-
straps (5.17), (5.28), (5.29), (5.37) for the q(2), q(3) quantities (and their derivatives in
c).

Lastly, we estimate the terms in (7.10)

‖(7.10)‖∞ �
4∑

j=2

(‖G( j)
W ‖∞‖q(5− j)

c1c2 ‖∞ + ‖∂cG( j)
W ‖∞‖W (5− j)

c ‖∞ + ‖∂c1c2G( j)
W ‖∞)

+ ‖∂c1c2 F (4)
W ‖∞

�M ε
3
2 e

s
2 + ε

5
4 e

s
2 + ε

5
8 e

s
2 + εe

s
2 ,

where we have invoked estimates (6.1), (6.7), (6.13), and (6.52). ��
The following verifies the bootstraps (5.38) on τ̇c1c2 .

Lemma 7.11. Let ci ∈ {α, β} for i = 1, 2. Then the following estimates are valid

|τ̇c1c2 | ≤ 1

2
εe

3
4 s .
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Proof. We take ∂c2 of Eq. (7.6) to obtain the identity

βτ (1 + βτ τ̇ )τ̇c1c2 = −β2
τ (1 + βτ τ̇ )τ̇c1 τ̇c2 − β3

τ τ̇ τ̇c2 τ̇c1 − β2
τ τ̇c2 τ̇c1 − ∂c1c2G(1)

W (0, s)

− μc1c2q(2) − μci q
(2)
ci ′ − μq(2)

c1c2 + ∂c1c2 F (1)
W (0, s). (7.11)

We now estimate each of the terms on the right-hand side above via

|τ̇c1c2 | � |τ̇c|2 + (|τ̇ | + 1)|τ̇c|2 + ‖∂c1c2G(1)
W ‖∞ + |q(2)||μc1c2 | + |μc||q(2)

c |
+ |μ|‖W (2)

c1c2‖∞ + ‖∂c1c2 F (1)
W ‖∞

�M ε + ε
5
8 e

s
2 + ε

5
4 e

s
2 + ε

5
4 e

s
2 + ε

5
4 e

3
4 s + εe

s
2 ,

where we have invoked estimates (6.13) for the G(1)
W term above and (6.52) for the

F (1)
W term. We have also invoked (5.24), (5.38)–(5.39) for the modulation variables, and

(5.37). ��
The following verifies the bootstraps on κ̇c1c2 , the second estimate in (5.38).

Lemma 7.12. Let ci ∈ {α, β} for i = 1, 2. Then the following estimates are valid

|κ̇c1c2 | ≤ M2

2
ε

5
4 e2s .

Proof. We compute ∂c2 of Eq. (7.7) to get to

|βτ κ̇c1c2 | = | − β2
τ τ̇ci κ̇ci ′ + e

3
4 sμc1c2 − 2κ̇β2

τ τ̇c1 τ̇c2 + e
3
4 s∂c1c2 FW (0, s)|

� ε
3
4 e

s
2 + Mε

5
4 e2s + ε

5
4 e

s
2 + ε

1
2 e

5
4 s � Mε

5
4 e2s,

wherewehave invoked estimates (5.24) for thefirst derivative of themodulation variables
in c, (5.38) for the μc1c2 term, and estimate (6.51) for the ∂c1c2 FW term. ��

8. Analysis of Z and A

For this section, we consider the equations for Z and A given by (3.9) and (3.10). We
begin with the lowest order estimate, for which there is no damping, in which we verify
the first bootstrap assumption in (5.9).

Lemma 8.1. The quantities (Z , A) satisfy the following bounds

‖Z‖∞ ≤ 3

4
ε

5
4 , ‖Z (n)‖∞ ≤ M2n2

2
e− 5

4 s for 1 ≤ n ≤ 8, (8.1)

‖A‖∞ ≤ 3

4
Mε, ‖A(n)‖∞ ≤ M2n2

2
e− 5

4 s for 1 ≤ n ≤ 8, (8.2)

which thereby verifies the bootstraps (5.9) and (5.10).
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Proof. An application of the Grönwall lemma coupled with estimate (6.27) yields the
estimate

‖Z(�Z (s, x), s)‖∞ ≤ ‖Z(x, s0)‖∞ +
∫ s

s0
‖FZ (�Z (s′, x), s′)‖∞ds′

≤ 1

2
ε

5
4 +

∫ s

s0
ε

3
4 e−s′

ds′ ≤ 3

4
ε

5
4 ,

which establishes the desired bound upon invoking that �Z (·, x) is a diffeomorphism
for all s ≥ s0.

According to (3.34), we calculate

e
− ∫ s

s0

(
5n
4 +nβτ β2W (1)

)
◦�Z ds′

= e− 5n
4 (s−s0)e

− ∫ s
s0

nβτ β2W (1)◦�Z

≤ e
−nβτ β2

∫ s
s0

η− 1
5
◦�Z

e− 5n
4 (s−s0)

≤ Cne− 5n
4 (s−s0).

Using this estimate, coupled with (6.30), the Grönwall lemma, we estimate for n ≥ 2,

|Z (n)(�Z (x, s), s)| ≤ Cn|e− 10
4 (s−s0)Z (n)(s0, x)| + Cn

∫ s

s0
|e− 10

4 (s−s′)FZ ,n ◦ �Z | ds′

≤ Cnε
5
4 e− 5

4 (s−s0) + Cn

∫ s

s0
e− 10

4 (s−s′)M2n−1e− 5
4 s′

ds′

≤ M2n

2
e− 5

4 s .

We now perform a similar calculation for n = 1, using estimate (6.28) in place of
(6.30). For the A estimates, the identical arguments apply using Lemma 6.7. ��
Lemma 8.2. For 1 ≤ n ≤ 7, we have the following estimates on Z and A

‖∂c Z‖∞ ≤ 1

2
ε

1
2 , ‖∂c Z (n)‖∞ ≤ 1

2
M2k2ε

1
2 e− s

2 ,

‖∂c A‖∞ ≤ 1

2
ε

1
2 , ‖∂c A(n)‖∞ ≤ 1

2
M2k2ε

1
2 e− s

2 ,

which thereby verifies the bootstraps (5.26)–(5.27).

Proof. This follows immediately from Grönwall, upon invoking the two right-most
estimates in (6.45)–(6.46) for Z , and similarly (6.49)–(6.50) for A. ��
Lemma 8.3. For 0 ≤ n ≤ 6,

‖∂c1c2 Z (n)‖∞ ≤ 1

2
M2n2ε

5
8 e

s
4 , ‖∂c1c2 A(n)‖∞ ≤ 1

2
M2n2ε

5
8 e

s
4 ,

which therefore verifies the bootstrap assumptions (5.35)–(5.36).

Proof. This follows immediately from Grönwall, upon invoking the two right-most
estimates in (6.53)–(6.54) for Z , and similarly (6.55)–(6.56) for A.
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9. Analysis of W at x = 0

In this section, we analyze W and higher order derivatives of W at x = 0. While
q(0)(s), q(1)(s), q(4)(s) are constrained from (3.3), the quantities q(2), q(3) and q(5) are
not constrained and therefore must be determined through ODEs in s that they obey.

9.1. ODE analysis of q(2), q(3). In this series of estimates, we use the crucial inductive
assumption, (4.9), in order to integrate backwards the flow. First, we rewrite the ODEs
in the following way:

(∂s − 3

4
)q(2) = F (2)(s), (∂s − 1

2
)q(3) = F (3)(s). (9.1)

where

F (2) := 3(βτ − 1)q(2) − μq(3) − 2G(1)
W (0, s)q(2) − G(2)

W (0, s) + F (2)
W (0, s), (9.2)

F (3) := 4(βτ − 1)q(3) − 3G(1)
W (0, s)q(3) − 3βτ |q(2)|2 − 3G(2)

W (0, s)q(2) − G(3)
W (0, s) + F (3)

W (0, s).
(9.3)

and we recall the notation q(n) = W (n)(0) specified in (3.44).
We first prove lemmas for the particular quantities W (2)

αN ,βN
(0, s) and W (3)

αN ,βN
(0, s).

Lemma 9.1. Assume that W (2)
αN ,βN

(0, sN ) = 0 and W (3)
αN ,βN

(0, sN ) = 0. Then, for all
s0 ≤ s ≤ sN+1, the following estimates hold:

|F (2)| � M8e−s, |F (3)| ≤ M18e−s, s0 ≤ s ≤ sN+1, (9.4)

and in particular, this implies that

|W (2)
αN ,βN

(0, s)| ≤ M9

2
e−s, |W (3)

αN ,βN
(0, s)| ≤ M19

2
e−s, s0 ≤ s ≤ sN+1. (9.5)

Proof. The decay estimates (9.5) follow upon writing the Duhamel formula associated
to the evolution of (3.47), and crucially using the vanishing at sN :

W (2)
αN ,βN

(0, s) =
∫ s

sN

e
3
4 (s−s′)F (2)(s′) ds′, W (3)

αN ,βN
(0, s) =

∫ s

sN

e
1
2 (s−s′)F (3)(s′) ds′.

(9.6)

We will thus focus on proving estimates (9.4), starting with

|F (2)| � |βτ − 1||q(2)| + |μ||q(3)| + ‖G(1)
W ‖∞|q(2)| + ‖G(2)

W ‖∞ + ‖F (2)
W ‖∞

� ε
4
15 e− 3

2 s + M40ε
1
6 e− 7

4 s + M2ε
1
10 e− 7

4 s + M8e−s + ε
3
4 e−s � M8e−s,

where above we have used estimates (6.1) for the transport terms GW , and the estimates
(6.20) for the F (2)

W term. We have also invoked (5.17), (5.21), and (5.23).
We now move to

|F (3)| � |βτ − 1||q(3)| + ‖G(1)
W ‖∞|q(3)| + |q(2)|2 + ‖G(2)

W ‖∞|q(2)| + ‖G(3)
W ‖∞ + ‖F (3)

W ‖∞
� M40ε

1
6 e− 7

4 s + M42e−2s + ε
1
5 e− 3

2 s + M8ε
1
10 e− 7

4 s + M18e−s + ε
3
4 e−s

� M18e−s,
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wherewe have invoked estimates (5.17) for the q(2), q(3) quantities, (5.23) for the |βτ −1|
estimate, (6.1) for the estimate of G(1)

W , G(2)
W , G(3)

W , and (6.20) for the forcing estimate.
To establish (9.5), we appeal to (9.6) (which holds for all values of s)

|W (2)
αN ,βN

(0, s)| �
∫ s

sN

e
3
4 (s−s′)M8e−s′

ds′ � M8e
3
4 s

(
e− 7

4 s + e− 7
4 sN

)
� M8e−s,

for all s0 ≤ s ≤ sN+1, where we have used that sN+1−sN = 1 to estimate esN+1e−sN ≤ e.
A similar argument applies to W (3)

αN ,βN
(s, 0). ��

We now verify the bootstrap assumptions (5.17), which apply to every (α, β) ∈
BN (αN , βN ).

Lemma 9.2. The following estimates are valid uniformly in the parameter set BN given
by (5.2)

|W (2)(0, s)| ≤ 1

2
ε

1
10 e− 3

4 s, |W (3)(0, s)| ≤ M40

2
e−s,

Proof. We use the fundamental theorem of calculus in the space of parameters via

|W (2)
α,β(0, s)| ≤ |W (2)

αN ,βN
(0, s)| + |α − αN | sup

α∈BN

|∂αW (2)(0, s)| + |β − βN | sup
β∈BN

|∂β W (2)(0, s)|

≤ M9e−s +
(

M30e−sN e− 3
4 (sN −s0) + ε

1
5 e−sN e− 1

2 (sN −s0)
)
4e

3
4 (s−s0)

+ M30e−sN e− 1
2 (sN −s0)ε

1
4 e

3
4 (s−s0)

≤ 1

2
ε

1
10 e− 3

4 s ,

where above we have used that sN+1 − sN = 1, coupled with the particular estimates
(9.5), the two left-most bootstrap bounds in (5.28)–(5.29), and the assumed size of the
parameter rectangle in (5.2).

Similarly, for the quantity W (3)
α,β , we have

|W (3)
α,β(0, s)| ≤ |W (3)

αN ,βN
(0, s)| + |α − αN | sup

α∈BN

|∂αW (3)(0, s)| + |β − βN | sup
β∈BN

|∂β W (3)(0, s)|

≤ M19e−s +
(

M30e−sN e− 3
4 (sN −s0) + ε

1
5 e−sN e− 1

2 (sN −s0)
)
ε
1
2 e

1
2 (s−s0)

+ M30e−sN e− 1
2 (sN −s0)4e

1
2 (s−s0)

≤ M40

2
e−s .

Again, we have invoked the particular bound (9.5), the two right-most estimates in
(5.28)–(5.29), as well as the size of the parameter rectangle in (5.2). ��

Finally, we are left at estimating W (5)(0, s), and in particular to verify the bootstrap
assumption (5.18). As a result, we write the ODE evolution for this quantity, Eq. (3.50),
as

∂s q̃(5) = F (5), (9.7)
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where

F (5) := −μq(6) + (1 − βτ )q
(5) − 10|q(3)|2 −

5∑
j=1

(
5

j

)
G( j)

W (0, s)q(6− j) + F (5)
W (0, s).

(9.8)

We now verify the bootstrap assumptions (5.18).

Lemma 9.3. The following estimate is valid for the quantity q̃(5)(s)
∣∣∣̃q(5)

∣∣∣ � ε
7
8 . (9.9)

Proof. We use (9.7) to integrate

q̃(5)(s) = q̃(5)(s0) +
∫ s

s0
F (5)(s′) ds′, (9.10)

and we estimate the F (5) term on the right-hand side via

|F (5)| � ε
11
30 e− 3

4 s′
+ ε

1
8 e− 3

4 s′
+ 10M36e−2s′

+ e− 9
10 s′

+ ε
3
4 e−s′ � ε

1
8 e− 3

4 s′
. (9.11)

Above, we have used the bootstraps (5.21) on μ, invoked estimate (6.20) to control the
forcing term, (6.1) to control the transport terms, G( j)

W , (5.23) to estimate the 1−βτ term,
estimates (5.17) for the q(2), q(3) terms, and finally (5.14) for the q(6) term, coupled with

the fact that W
(6)

(0) = 0 so q(6) = q̃(6).
Next, we estimate the initial data via appealing to the specific form of (4.1) and also

the parameter bootstraps, (5.3)

|̃q(5)(s0)| = |Ŵ (5)
0 (0) + α∂5x (x2χ(|x |))(0) + β∂5x (x3χ(|x |))(0)| � |α| + |β| �M ε.

��

9.2. ODE analysis of ∇α,βq(n) for n = 2, 3, 5. We start with the two formulas, which
importantly, are valid for all values of the parameters (α, β) ∈ Bn :

q(2)(s) = W (2)(0, s) = e
3
4 (s−s0)α +

∫ s

s0
e
3
4 (s−s′)F (2)(s′) ds′, (9.12)

q(3)(s) = W (3)(0, s) = e
1
2 (s−s0)β +

∫ s

s0
e
1
2 (s−s′)F (3)(s′) ds′, (9.13)

where the forcing terms are defined in (9.2), (9.3).We differentiate the above expressions
in α, recalling the notation that qα := ∂αq and qβ := ∂βq

q(2)
α = e

3
4 (s−s0) +

∫ s

s0
e
3
4 (s−s′)∂αF (2)(s′) ds′, (9.14)

q(3)
α =

∫ s

s0
e
1
2 (s−s′)∂αF (3)(s′) ds′. (9.15)
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Similarly, differentiating in β yields the expressions

q(2)
β =

∫ s

s0
e
3
4 (s−s′)∂βF (2)(s′) ds′, (9.16)

q(3)
β = e

1
2 (s−s0) +

∫ s

s0
e
1
2 (s−s′)∂βF (3)(s′) ds′. (9.17)

Third, by integrating (9.7)–(9.8) we have

q̃(5)
c = q̃(5)

c (s0) +
∫ s

s0
∂cF (5)(s′) ds′.

We now write the expressions:

∂cF (2) = 3τ̇cβ
2
τ q(2) + 3(βτ − 1)q(2)

c − μcq(3) − μq(3)
c − 2∂cG(1)

W (0, s)q(2)

− 2G(1)
W (0, s)q(2)

c + ∂c F (2)
W (0, s) + ∂cG(2)

W (0, s), (9.18)

and

∂cF (3) = 4β2
τ q(3)τ̇c + 4(βτ − 1)q(3)

c − 3∂cG(1)
W (0, s)q(3) − 3G(1)

W (0, s)q(3)
c

− 3β2
τ τ̇c|q(2)|2 − 6βτ q(2)q(2)

c − 3∂cG(2)
W (0, s)q(2) − 3G(2)

W (0, s)q(2)
c

+ ∂cG(3)
W (0, s) + ∂c F (3)

W (0, s), (9.19)

for c ∈ {α, β}. We also record, by differentiating (9.7), the expression

∂cF (5) = −μcq(6) − μq(6)
c − β2

τ τ̇cq(5) + (1 − βτ )q
(5)
c − 20q(3)q(3)

c

−
4∑

j=1

(
5

j

)
(∂cG( j)

W (0, s)q(6− j) + G( j)
W (0, s)q(6− j)

c ) + ∂cG(5)
W (0, s) + ∂c F (5)

W (0, s).

(9.20)

Lemma 9.4. The following estimates are valid on the quantities defined in (9.18), (9.19),
(9.20)

|∂cF (2)| ≤ ε
5
8 , |∂cF (3)| ≤ ε

5
8 , |∂cF (5)| ≤ ε

3
8 . (9.21)

Proof. We now estimate each of the terms in the forcing above in (9.18):

|∂cF (2)| � |τ̇c||q(2)| + |βτ − 1||q(2)
c | + |μc||q(3)| + |μ||q(3)

c | + |∂cG(1)
W (0, s)||q(2)|

+ |G(1)
W (0, s)||q(2)

c | + |∂c F(2)
W (0, s)| + |∂cG(2)

W (0, s)|
�M ε

1
2 e− 3

4 s + ε
1
6 e− 3

4 s + ε
1
2 e− 5

4 s + ε
11
12 + ε

1
2 e−s + ε

3
4 e− s

4 + ε
3
4 e− s

4 + ε
1
2 e− s

4 �M ε
3
4 ,

(9.22)

and similarly, we estimate

|∂cF (3)| � |q(3)||τ̇c| + |βτ − 1||q(3)
c | + ‖∂cG(1)

W ‖∞|q(3)| + ‖G(1)
W ‖|q(3)

c | + |τ̇c||q(2)|2
+ |q(2)||q(2)

c | + ‖∂cG(2)
W ‖|q(2)| + ‖G(2)

W ‖|q(2)
c | + ‖∂cG(3)

W ‖ + ‖∂c F (3)
W ‖

�M ε
1
2 e−s + ε

11
12 + ε

1
2 e− 5

4 s + ε
3
4 e− s

4 + ε
1
2 e− 3

2 s

+ ε
3
4 + ε

1
2 e− 5

4 s + ε
3
4 e− 1

4 s + ε
1
2 e− s

4 + ε
3
4 e− s

4

�M ε
3
4 . (9.23)
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In both estimates above we have invoked the bootstrap estimate (5.21) onμ, the estimate
(5.23) on |1−βτ |, the bootstraps (5.24) on the τ̇c, μc terms, (5.17) for the decay estimates
on q(2), q(3), (5.28)–(5.29) for the estimates on q(2)

c , q(3)
c , and finally (6.7) and (6.37)

for the transport and forcing terms, respectively.
From (9.22) and (9.23), we can take ε small relative to the implicit constant which

depends on M to conclude that

|∂cF (2)| ≤ ε
5
8 , |∂cF (3)| ≤ ε

5
8 .

Finally, estimating ∂cF5 yields

|∂cF5| � |μc|‖W (6)‖∞ + |μ|‖W (6)
c ‖∞ + |τ̇c||q(5)| + |1 − βτ ||q(5)

c | + |q(3)||q(3)
c |

+
4∑

j=1

(‖∂cG( j)
W ‖∞|q(6− j)| + ‖G( j)

W ‖∞‖W (6− j)
c ‖∞) + ‖∂cG(5)

W ‖∞ + ‖∂c F (5)
W ‖∞

�M ε
1
2 e− s

4 + ε
11
12 + ε

1
2 + ε

1
6 e− 3

4 s(1 + ε
3
8 e

s
8 ) + ε

3
4 e− s

4 + ε
1
2 e− s

4 + ε
3
4 e− s

4

+ ε
1
2 e− s

4 + ε
3
4 e− s

4

�M ε
1
2 ,

from which we can conclude |∂cF (5)| ≤ ε
3
8 , establishing the final estimate of (9.21).

We invoke the same set of bootstraps as in the estimate of ∂cF (2), ∂cF (3) above, and in
addition we invoke (5.30) on the estimate of q(5)

c and (5.32) on the W (n)
c quantities. ��

Corollary 9.5. The following estimates are valid

|q(2)
α − ε

3
4 e

3
4 s | ≤ ε

5
4 e

3
4 s, |q(2)

β | ≤ 1

2
ε

5
4 e

3
4 s, (9.24)

|q(3)
α | ≤ 1

2
εe

1
2 s, |q(3)

β − ε
1
2 e

s
2 | ≤ εe

1
2 s, (9.25)

|̃q(5)
c | ≤ 1

2
ε

3
8 e

1
8 s . (9.26)

In particular, this verifies the bootstrap estimates (5.28)–(5.29), and (5.30).

Proof. For (9.24)–(9.25), this follows immediately upon combining estimates (9.21)
with the expressions (9.14)–(9.17). For the estimate on q̃(5)

c , we need to use that

q̃(5)
α (s0) = ∂5x |x=0

(
x2χ(x)

)
= 0,

q̃(5)
β (s0) = ∂5x |x=0

(
x3χ(x)

)
= 0,

according to (4.1). ��
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10. Estimates for W

In this section we will verify various pointwise bootstrap estimates on W , solving (3.8),
and derivatives thereof. The main objective is to verify the bootstrap assumptions (5.5)–
(5.7), (5.20), (5.13)–(5.16), (5.31)–(5.34), as well as (5.37).

The following lemma verifies the bootstrap (5.20).

Lemma 10.1. The following estimate is valid on W (1)

|W (1)| ≤ 1 +
�

2
M40e−s,

which in particular verifies (5.20).

Proof. We subdivide into three regions |x | ≤ �, � ≤ |x | ≤ ε− 1
4 and |x | ≥ ε− 1

4 . In the

middle region � ≤ |x | ≤ ε− 1
4 , we have

|W (1)(x, s)| ≤ |W (1)
(x)| + |W̃ (1)(x, s)| ≤ 1 − �7

50
+ |W̃ (1)(x, s)| ≤ 1 − �7

50
+ ε

1
5 < 1,

where we have invoked (3.32) to bound |W (1)| above in this region, and the bootstrap
(5.12) which is also valid in this region.

In the far-field region, |x | ≥ �, we use

|W (1)(x)| ≤ Mη− 1
5
(x) �M (ε− 1

4 )
4
5 .

In the region |x | ≤ �, we obtain by a Taylor expansion of W (1) for some |x∗| ≤ �.

W (1)(x, s) = −1 + W (2)(0, s)x + W (3)(0, s)
x2

2
+ W (5)(x∗, s)

x4

24

= −1 + W (2)(0, s)x + W (3)(0, s)
x2

2
+ W

(5)
(x∗)

x4

24
+ W̃ (5)(x∗, s)

x4

24

≥ (−1 + W
(5)

(x∗)
x4

24
− |W̃ (5)(x∗, s)

x4

24
|) + W (2)(0, s)x + W (3)(0, s)

x2

2

≥ −1 + �M40e−s + �2
M40

2
e−s .

Above, we have used property (3.30) to assert that W
(5)

(x∗) > 1
2 via a further Taylor

expansion:

W
(5)

(x∗) > W
(5)

(0) − |x∗|‖W
(6)‖∞ > W

(5)
(0) − C� >

1

2
.

in which case we use (9.9) to bound

x4

24

(
W

(5)
(x∗) − |W̃ (5)(x∗, s)|

)
≥ 1

2
− ε ≥ 1

4
.

��
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We now collect various estimates on damping terms. To do so, we first make the
following definitions.

Dn := 1

4
(−1 + 5n) + βτ (n + 1n>1)W (1), (10.1)

D̃n := 1

4
(−1 + 5n) + βτ

(
W

(1)
+ nW (1)

)
, (10.2)

Dc
n := 5n − 1

4
+ (n + 1)βτ W (1), (10.3)

Dn,r := Dn − η− r
4
VW ∂xη r

4
= 1

4
(−1 + 5n) + βτ (n + 1n>1)W (1) − η− r

4
VW ∂xη r

4
,

(10.4)

D̃n,r := D̃n − η− r
4
VW ∂xη r

4
= 1

4
(−1 + 5n) + βτ

(
W

(1)
+ nW (1)

)
− η− r

4
VW ∂xη r

4
,

(10.5)

Dc
n,r := Dc

n − η− r
4
VW ∂xη r

4
= 5n − 1

4
+ (n + 1)βτ W (1) − η− r

4
VW ∂xη r

4
. (10.6)

We now state various estimates on these damping terms.

Lemma 10.2. Let |x0| ≥ �. Then, for D ∈ {D̃6, Dc
7}, D ∈ {D̃1, 45

, D̃0,− 1
5
}, and for

n ≥ 2, j ≥ 1, the following estimates are valid

D ≥ 1

8
, (10.7)

−
∫ s

s0
D ◦ �

x0
W ≤ 1

50
log M, (10.8)

−
∫ s

s0
Dn, 45

◦ �
x0
W ≤ −1

9
(s − s0) +

1

50
log M, (10.9)

−
∫ s

s0
W (1) ◦ �

x0
W ≤ 1

50
log M, (10.10)

−
∫ s

s0
Dc

j, 15
◦ �

x0
W ≤ 1

50
log M. (10.11)

Proof. First, for (10.7),

D̃6 = 1

4
(−1 + 30) + βτ

(
W

(1)
+ 6W (1)

)
≥ 1

4
− 6 |1 − βτ | ≥ 1

8
. (10.12)

where we have used that W
(1) ≥ −1, (5.20) and (5.21). An analogous estimate applies

for the Dc
7 term.

We turn now to (10.8). By a simple calculation, we have

D̃0,− 1
5

= βτ W
(1)

+
1

4
η−1 +

x3

5
η−1gW ,

D̃1, 45
= βτ (W

(1)
+ W (1)) − η−1 − 4x3

5
η−1gW .
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Observe, that for either the case Dq = D̃0,− 1
5
, D̃1, 45

, we have from (5.5), (5.6), (5.23),
(6.1)

∣∣Dq
∣∣ ≤ 3� log Mη− 1

5
+ η−1(1 + |x | (|W | + |GW |))

≤ 4� log Mη− 1
5
+ |x | η−1(

1

1000
log Mη 1

20
+ η 1

4
)

≤ 6� log M.

Thus, using in addition (6.62), we have

−
∫ s

s0
Dq ◦ �

x0
W (s′) ds′ ≤ 6� log M

∫ s

s0

(
η− 1

5
(�ε

1
5 e

1
5 s) + e−s

)
ds′

≤ 6� log M(20 log �−1) ≤ 1

50
log M. (10.13)

The same calculation establishes estimate (10.9), (10.10), (10.11), with minor modifi-
cations. ��

10.1. Transport estimates for W . We now prove a uniform estimate on W̃ (6) in the
region |x | ≤ �. We will prove the estimates along trajectories originating at |x0| ≤ �.
Note that no trajectory originating outside the ball of radius �may enter the ball of radius
�. This is a consequence of (6.62). The following establishes the bootstrap bounds (5.14)
- (5.16).

Lemma 10.3. The following localized estimates hold in the region |x | ≤ �

|W̃ (n)| ≤ 1

2
(|x |6−k ε

1
5 + ε

1
2 ) ≤ |�|6−n ε

1
5 , for n = 0, . . . , 5, (10.14)

|W̃ (6)| ≤ 1

2
ε

1
5 , (10.15)

|W̃ (7)| ≤ M

2
ε

1
5 , (10.16)

|W̃ (8)| ≤ M3

2
ε

1
5 . (10.17)

Proof. Composing with the flow we have

d

ds

(
W̃ (6) ◦ �

x0
W

)
+

(
D̃6 ◦ �

x0
W

) (
W̃ (6) ◦ �

x0
W

)
= F̃W,n ◦ �

x0
W .

Hence, applying Grönwall, (6.26) and the lower bound (10.12), we obtain
∣∣∣W̃ (6) ◦ �

x0
W

∣∣∣ �
∣∣∣W̃ (6)(x0,− log ε)

∣∣∣ + �ε
1
5 � �ε

1
5 .

The same argument applies for (10.16) and (10.17) using the latter two estimates in
(6.26).

From the constraints (3.3) and the estimate (5.14), we have

W̃ (x) = W̃ (2)(0)

2! x2 +
W̃ (3)(0)

3! x3 +
W̃ (5)(0)

5! x5 +O(ε
1
5 |x |6) .

Then applying (9.5) and (9.9), we obtain (10.14). ��
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Lemma 10.4. For � ≤ |x | ≤ ε− 1
4 we have

|W̃ | ≤ 1

2
ε

3
20 η 1

20
, (10.18)

|W̃ (1)| ≤ 1

2
ε

1
20 η− 1

5
, (10.19)

which thus verifies the bootstraps (5.11)–(5.12).

Proof. We write

(∂s + D̃0,− 1
5
)(η− 1

20
W̃ ) + VW ∂x (η− 1

20
W̃ ) = η− 1

20
F̃W,0, (10.20)

(∂s + D̃1, 45
)(η 1

5
W̃ (1)) + VW ∂x (η 1

5
W̃ (1)) = η 1

5
F̃W,1. (10.21)

We now fix any |x0| ≥ �. We will consider trajectories starting with (s∗, x0 = ±�)

or (s0, x0) for |x0| > �. Writing the solution to (10.20) we obtain

η− 1
20

W̃ ◦ �
x0
W = η− 1

20
W̃ (s∗, �

x0
W (s∗))e

− ∫ s
s∗ D̃

0,− 1
5
◦�

x0
W

+
∫ s

s∗
e
− ∫ s

s′ D̃
0,− 1

5
◦�

x0
W

η− 1
20

F̃W ◦ �
x0
W ds′.

We now estimate both sides to produce

|η− 1
20

W̃ ◦ �
x0
W | ≤ (ε

3
4 + 2�6ε

1
5 )M

1
50 +

∫ s

s∗
M

1
50 e− 3

4 s′
ds′ ≤ 1

2
ε

3
20 .

Above, we have invoked estimate (6.21) on the forcing term and (10.8) for the damping
term. We have moreover estimated the initial data by using (4.1) to write

W̃ (x, s0) = Ŵ0 + αx2χ + βx3χ − W (1 − χ(ε
1
4 x)). (10.22)

When |x | ≤ ε− 1
4 , the last term above is zero, and so we estimate, for |x | ≤ ε− 1

4 ,

|W̃ (x, s0)η− 1
20

| ≤ ‖Ŵ0η− 1
20

‖∞ + |α| + |β| ≤ ε
3
4 ,

by the estimates (4.2) and (5.3).
Writing the solution to (10.21) yields

η 1
5
W̃ (1) ◦ �

x0
W = η 1

5
W̃ (1)(s∗, x0)e

− ∫ s
s∗ D̃

1, 45
◦�

x0
W +

∫ s

s∗
e
− ∫ s

s′ D̃
1, 45

◦�
x0
W

η 1
5

F̃W,1 ◦ �
x0
W ds′.

We now estimate the right-hand side via

|η 1
5
W̃ (1) ◦ �

x0
W | ≤ (ε

3
4 + 2�5ε

1
5 )M

1
50 + ε

1
10 M

1
50

∫ s

s∗
|η− 1

20
(x0e

1
5 (s′−s0)) ds′ ≤ 1

2
ε

1
20 ,

where above we have invoked estimate (10.8) for the damping term, and (6.21) for the
forcing term. For the initial data, we differentiate (10.22) to obtain

W̃ (1)(x, s0) = Ŵ ′
0 + ∂x

(
αx2χ + βx3χ

)
− ∂x

(
W (1 − χ(ε

1
4 x))

)
,

which upon noting that the latter term is identically zero on |x | ≤ ε− 1
4 , we obtain

|W̃ (1)(x, s0)η 1
5
| ≤ ‖η 1

5
Ŵ ′

0‖∞ + |α| + |β| ≤ ε
3
4 ,

upon invoking estimates (4.2) and (5.3). ��
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Lemma 10.5. For |x | ≥ � we have

|W | ≤ �

2
log Mη 1

20
, (10.23)

|W (1)| ≤ �

2
log Mη− 1

5
, (10.24)

∣∣∣W (n)
∣∣∣ ≤ 1

2
Mk2η− 1

5
for n = 2, . . . , 8, (10.25)

which verifies the bootstraps (5.5)–(5.7).

Proof. We write, for n ≥ 1,

(∂s + Dn, 45
)η 1

5
W (n) + VW ∂x (η 1

5
W (n)) = η 1

5
FW,n, (10.26)

(∂s + D0,− 1
5
)(η− 1

20
W ) + VW ∂x (η− 1

20
W ) = η− 1

20
FW,0. (10.27)

We will treat the cases n = 0, n = 1, and n ≥ 2 cases separately.
Writing Grönwall for (10.26) gives

η 1
5
W (n) ◦ �

x0
W = η 1

5
W (n)(s∗, x0)e

− ∫ s
s∗ D

n, 45
◦�

x0
W +

∫ s

s∗
e
− ∫ s

s′ D
n, 45

◦�
x0
W

η 1
5

FW,n ◦ �
x0
W ds′.

(10.28)

Estimating both sides for n ≥ 2 gives

|η 1
5
W (n) ◦ �

x0
W | ≤ (M + 10ε

1
5 )e− 1

9 (s−s∗)M
1
50 + M

1
50

∫ s

s∗
e− 1

9 (s−s′)M− 9
10 Mn2 ds′,

where we have appealed to estimate (10.9) for the damping term and estimate (6.22) for
the forcing.

For the n = 0, 1 cases, it suffices to prove estimates (10.23) and (10.24) in the region

|x | ≥ ε− 1
4 due to (10.18)–(10.19). In this case, we select |x0| ≥ ε− 1

4 and s∗ ≥ s0 such
that (s∗, x0) is the origin of the trajectories consider. More specifically, we take either

|x0| > ε− 1
4 and s∗ = s0 or |x0| = ε− 1

4 and any s∗ ≥ s0. In this case, (10.28) continues
to hold for n = 1, and we estimate via

|η 1
5

W (1) ◦ �
x0
W | ≤ |η 1

5
W (1)(x0, s∗)||e− ∫ s

s∗ D
1, 45

◦�
x0
W | +

∫ s

s∗
|e− ∫ s

s′ D
1, 45

◦�
x0
W |‖η 1

5
FW,1‖∞ ds′

�
(

sup

|x |≥ε
− 1

4

|η 1
5

W (1)(x, s0)| + |η 1
5

W (1)(ε− 1
4 , s∗)|

)
+

∫ s

s∗
e− 1

2 s′
ds′ (10.29)

�
(
1 + |η 1

5
W

(1)
(ε− 1

4 )| + |η 1
5

W̃ (1)(ε− 1
4 , s∗)|

)
+

∫ s

s∗
e− 1

2 s′
ds′

≤ �

2
log M. (10.30)

To evaluate the size of the initial data, from (10.29) to (10.30), we have used (4.1) to
compute

|η 1
5

W (1)(x, s0)| =
∣∣∣
(

W
(1)

χ(ε
1
4 x) + Wε

1
4 χ ′(ε 1

4 x) + Ŵ ′
0 + ∂x

(
αx2χ(x) + βx3χ(x)

))
η 1
5

∣∣∣ � 1.
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Above, we have invoked the choice (5.1) to ensure that � log M can be selected
larger than the implicit constants appearing in the above estimate. We have also invoked
bootstrap (5.12) to control the W̃ (1) term above. We have also invoked (6.23) to control
the forcing term, and used the fact that

exp
(

−
∫ s

s0
D1, 45

◦ �
x0
W

)
≤ 10 for |x0| ≥ ε− 1

4 .

An analogous series of estimates applies to (10.23). ��

10.2. Transport estimates of ∇cW . Wenowverify the bootstrap estimates (5.33)–(5.34).

Lemma 10.6. For n = 0, . . . , 6 and |x | ≤ � we have the following estimates

|W (n)
c | ≤ M�

3
4 ε

3
4 e

3
4 s, (10.31)

|W (7)
c | ≤ M

2
ε

3
4 e

3
4 s . (10.32)

Proof. The first inequality above follows for n = 0 upon Taylor expanding and noting
that Wc(0, s) = 0 via

|Wc| ≤ � sup
|x |≤�

|W (1)
c | ≤ �M�

1
2 e

3
4 (s−s0).

The exact same argument works for the n = 1 inequality. For the n = 2 inequality, we
also Taylor expand, but must factor in the value at x = 0 via

|W (2)
c | ≤ |W (2)

c (0, s)| + � sup
|x |≤�

|W (3)| ≤ 4e
3
4 (s−s0) + �Me

3
4 (s−s0).

Finally, for the n = 7 case, we directly apply Grönwall to integrate which gives

W (7)
c (�W (x, s), s) = W (7)

c (x, s)e
− ∫ s

s0
Dc
7◦�W +

∫ s

s0
e− ∫ s

s′ Dc
7◦�W Fc

W,7 ◦ �W ds′.

We note that (10.7) implies that

e
− ∫ s

s0
Dc
7◦�

x0
W ≤ e− 1

8 (s−s0).

Thus, we have

|W (7)
c ◦ �

x0
W | ≤ 2W (7)

c (x0, s0)e
− 1

8 (s−s0) +
∫ s

s0
e− 1

8 (s−s′)‖Fc
W,7 ◦ �W ‖ ds′

≤ 2e− 1
8 (s−s0) +

∫ s

s0
e− 1

8 (s−s′)M�
1
5 e

3
4 (s′−s0) ds′

≤ 2e− 1
8 (s−s0) + 2M�

1
5 e

3
4 (s−s0),

where we have invoked the enhanced localized estimate, (6.44). ��
We now verify (5.31)–(5.32).
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Lemma 10.7. For n = 1, . . . , 7 and |x | ≤ � we have the following estimates

|Wc| ≤ M4

2
ε

3
4 e

3
4 s, (10.33)

|W (n)
c η 1

20
| ≤ M (n+2)2

2
ε

3
4 e

3
4 s . (10.34)

Proof. Consider equation (3.62) for ∂cW . First, define the rescaled quantity Q :=
∂cW e− 1

4 (s−s0), which satisfies

(∂s + βτ W (1))Q + VW ∂x Q = e− 1
4 (s−s0)Fc

W,0

By Grönwall, we have

|Q ◦ �
x0
W | ≤ |Q(x0, s∗)|e− ∫ s

s∗ βτ W (1)◦�
x0
W +

∫ s

s∗
e− ∫ s

s′ βτ W (1)◦�
x0
W |e− 1

4 (s′−s0)Fc
W,0 ◦ �

x0
W | ds′

� (‖Wc(·, s0)‖∞ + �
1
2 Me

1
2 (s∗−s0))M

1
50 + M

1
50

∫ s

s∗
e− 1

4 (s′−s0)ε
1
8 ds′,

where we have invoked (10.10) for the estimate on the damping term, and estimate (6.36)

for the forcing term. Multiplying through by e
1
4 (s−s0) and using that s∗ ≤ s generates

the desired bound.
For (10.34), we again use Grönwall to estimate

|η 1
20

W (n)
c ◦ �

x0
W | ≤ |W (n)

c (x0, s∗)|e
− ∫ s

s∗ Dc
n, 15

◦�
x0
W

+
∫ s

s∗
e
− ∫ s

s′ Dc
n, 15

◦�
x0
W |η 1

20
Fc

W,n ◦ �
x0
W | ds′

� (‖W (n)
c (·, s0)‖∞ + Me

3
4 (s∗−s0))M

1
50 + M

1
50

∫ s

s0
M−1M(n+2)2e

3
4 (s′−s0) ds′

� Me
3
4 (s∗−s0)M

1
50 + M

1
50 M(n+2)2 M−1e

3
4 (s−s0),

where we have invoked the estimate (10.11) on the damping term, and estimate (6.37)
to estimate the forcing term. This concludes the proof of the lemma. ��

10.3. Transport estimates for ∇2
c W . The following verifies the bootstraps (5.37).

Lemma 10.8. Let 0 ≤ n ≤ 6.

‖∂c1c2W (n)‖∞ ≤ M (n+5)2

2
ε

3
4 e

3
4 s .

Proof. Using equation (3.71), we write via Grönwall upon noting that Wc1c2(s0, x) = 0,

|W (n)
c1c2 ◦ �

x0
W | ≤

∫ s

s0
e− ∫ s

s′ Dc
n◦�

x0
W |Fc1,c2

W,n ◦ �
x0
W | ds′

�
∫ s

s0
e
11
8 (s−s′)M (n+5)2−1e

3
2 (s′−s0) ds′ � M (n+5)2−1e

3
2 (s−s0),

where above we have used the definition (10.3) to produce the trivial bound

Dc
n ≥ −11

8
,

and estimate (6.51)–(6.52) for the forcing. ��
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11. Proof of Main Theorem

We are now ready to establish all of the assertions in Theorem 2.1. While the bootstrap
estimates put forth in Sect. 5 have all been verified, the first task is to now establish the
inductive proposition, Proposition 5.2.

11.1. Newton iteration. Wenow prove themain theorem by designing aNewton scheme
on appropriately defined maps TN .

Proof of Proposition 5.2. First, we will define the map TN : BN (αN , βN ) ⊂ R
2 → R

2

by

TN (α, β) := (W (2)
α,β(0, sN+1), W (3)

α,β(0, sN+1)).

Define now the error quantities via

E (2)
N := W (2)

αN ,βN
(0, sN+1) = T (1)

N (αN , βN ),

E (3)
N := W (3)

αN ,βN
(0, sN+1) = T (2)

N (αN , βN ).

An immediate consequence of (9.5) is the estimate

|E (2)
N | + |E (3)

N | ≤ M25e−sN .

We now compute the matrix

∇α,βTN =
(

∂αW (2)
α,β(0, sN+1) ∂β W (2)

α,β(0, sN+1)

∂αW (3)
α,β(0, sN+1) ∂β W (3)

α,β(0, sN+1)

)
,

which, when we evaluate at the point (αN , βN ) produces

∇α,β |αN ,βN TN =
(

∂αW (2)
αN ,βN

(0, sN+1) ∂β W (2)
αN ,βN

(0, sN+1)

∂αW (3)
αN ,βN

(0, sN+1) ∂β W (3)
αN ,βN

(0, sN+1)

)
.

The bootstrap assumptions (5.28)–(5.29), coupled with the estimates on the second
derivatives, (5.37) enable us to apply the Implicit Function Theorem on TN in a neigh-
borhood BN (αN , βN ) of (αN , βN ), defined in (5.2), to conclude that

|αN+1 − αN | ≤ M25e− 3
4 (sN −s0)e−sN + ε

1
4 e−sN e− 1

2 (sN −s0), (11.1)

|βN+1 − βN | ≤ 2M25e− 1
2 (sN −s0)e−sN , (11.2)

which in particular verifies the bootstraps (5.2). More specifically, we have used that in
the neighborhood BN (αN , βN ), we have uniform bounds on the (α, β) Hessian of TN .
Estimating ∂ααTN yields

sup
α,β∈BN

|∂ααTN ||α − αN | �M e
3
2 (sN+1−s0)

(
e− 3

4 (sN −s0)e−sN + ε
1
5 e−sN e− 1

2 (sN −s0)
)

�M e−sN
(

e
3
4 (sN −s0) + ε

1
5 esN −s0)

)
� ∂α|αN ,βN TN .
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Similarly, for ∂αβTN we have

sup
α,β∈BN

|∂αβTN ||α − αN | �M e
3
2 (sN+1−s0)

(
e− 3

4 (sN −s0)e−sN + ε
1
5 e−sN e− 1

2 (sN −s0)
)

�M e−sN
(

e
3
4 (sN −s0) + ε

1
5 e(sN −s0)

)
� ∂β |αN ,βN TN ,

and

sup
α,β∈BN

|∂αβTN ||β − βN | �M e
3
2 (sN+1−s0)

(
e−sN e− 1

2 (sN −s0)
)

� ∂α|αN ,βN TN .

Finally, estimating ∂ββTN yields

sup
α,β∈BN

|∂ββTN ||β − βN | �M e
3
2 (sN+1−s0)

(
e−sN e− 1

2 (sN −s0)
)

� ∂β |αN ,βN TN .

��
We can now send N → ∞ to obtain our limiting profiles. To make matters precise,

we define the following norm, specific to a given s∗ ∈ [s0,∞).

∥∥∥(W, Z , A)

∥∥∥
X

:=
∥∥∥‖Wη− 1

20
‖L∞

∥∥∥
L∞(s0,s∗)

+
6∑

j=1

∥∥∥‖W ( j)η 1
5
‖L∞

∥∥∥
L∞(s0,s∗)

+
∥∥∥e

3
4 s W (2)(0, s)

∥∥∥
L∞(s0,s∗)

+
∥∥∥e

3
4 s W (3)(0, s)

∥∥∥
L∞(s0,s∗)

+ ε− 5
4

∥∥∥‖Z‖∞
∥∥∥

L∞(s0,s∗)
+ ε− 3

4

∥∥∥‖A‖∞
∥∥∥

L∞(s0,s∗)

+
6∑

j=1

∥∥∥e
5
4 s‖Z ( j)‖L∞

∥∥∥
L∞(s0,s∗)

+
6∑

j=1

∥∥∥e
5
4 s‖A( j)‖L∞

∥∥∥
L∞(s0,s∗)

,

(11.3)

and the corresponding Banach space

X := Closure of C∞([s0, s∗],R)3 with respect to ‖ · ‖X .

We also define the following norms in which we measure the modulation variables

‖(μ, τ, κ, ξ)‖Y := ε− 1
7 ‖e

3
4 sμ‖L∞(s0,s∗) + ε− 1

7 ‖e
3
4 s τ̇‖L∞(s0,s∗) + ε− 1

8 ‖κ̇‖L∞(s0,s∗)

+
1

κ0
‖ξ̇‖L∞(s0,s∗),

and the corresponding Banach space

Y := Closure of C∞([s0, s∗])4 with respect to ‖ · ‖Y .
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Corollary 11.1. There exist values (α∞, β∞) so that the data W0 given according to
(4.1) yields a global solution, (W, Z , A) ∈ X and (μ, τ, κ, ξ) ∈ Y on s0 ≤ s < ∞
which satisfies

‖(W, Z , A)‖X + ‖(μ, τ, κ, ξ)‖Y �M 1 for all s∗ ∈ [s0,∞), (11.4)

the constraints

W (0, s) = 0, W (2)(0, s) = −1, W (4)(0, s) = 0,

the following asymptotic behavior for the second and third derivatives:

|W (2)(0, s)| � e− 3
4 s, |W (3)(0, s)| � e− 3

4 s .

Finally, for the fifth derivative W (5)(0, s), there exists a number ν such that

W (5)(0, s) → ν, |ν − 120| � ε
7
8 . (11.5)

Proof. Fix any s∗ satisfying s0 ≤ s∗ < ∞, and consider the sequences

{WαN ,βN , ZαN ,βN , AαN ,βN }N≥�s∗�+1 =: {WN , Z N , AN }N≥�s∗�+1,
{μαn ,βn , τ̇αN ,βN , κ̇αN ,βN , ξ̇αN ,βN }N≥�s∗�+1 =: {μN , τ̇N , κ̇N , ξ̇N }N≥�s∗�+1.

Our assertion will be that these sequences are Cauchy in the spaces X and Y , respeec-
tively. Let now s0 ≤ s ≤ s∗. Recall from the definition of BN in (5.2), that

|αN+1 − αN | �M e−sN e− 1
2 (sN −s0), |βN+1 − βN | �M e−sN e− 1

2 (sN −s0).

Considering the first term in definition of (11.3), we now estimate

‖(WN+1 − WN )η− 1
20

‖L∞ �M e−sN e− 1
2 (sN −s0) sup

(α,β)∈BN

‖∂cWη− 1
20

‖L∞

�M e−sN e− 1
2 (sN −s0)e

3
4 (s−s0), (11.6)

where we have invoked the estimate (5.31). Second, for k ≥ 1, we have a nearly identical
estimate using (5.32). Third, we estimate using (5.28)–(5.29)

e
3
4 s |W (2)

N+1(0, s) − W (2)
N (0, s)| �M e

3
4 se−sN e− 1

2 (sN −s0) sup
(α,β)∈BN

|∂cW (2)(0, s)|

�M e
3
4 se−sN e− 1

2 (sN −s0)e
3
4 (s−s0).

An analogous estimate applies to the fourth quantity in (11.3).
For the quantities in the third and fourth lines of (11.3), we use (5.9)–(5.10), coupled

with (5.26)–(5.27), in essentially the identical manner to the quantities above. Similarly,
for the quantities in Y , we couple the estimates (5.21)–(5.22), with the estimates (5.24)–
(5.25).

As s ≤ s∗ ≤ sN → ∞, the estimates above clearly imply that {WN , Z N , AN } is a
Cauchy sequence in the normX and {μN , τ̇N , κ̇N , ξ̇N }N≥�s∗�+1 form a Cauchy sequence
in Y , upon taking supremum in s ∈ [s0, s∗]. We conclude by sending s∗ → ∞.
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For the final step, we note that the norms X and Y are clearly strong enough to pass to
the limit in the Eqs. (3.20)–(3.22). Furthermore, applying (9.10) and (9.11) yields that

ν = lim
s→∞ W (5)(0, s),

exists, and by (9.9) we have

|ν − 120| � ε
7
8 .

��

11.2. Consequential quantitative properties for (w, a, z). We finish by providing a
proof of the following consequence of our construction.

Lemma 11.2 (Holder 1/5Regularity).The solutionw(θ, s) satisfies the following Holder
1/5 regularity estimate uniformly in t up to the shock time T∗

sup
t∈[−ε,T∗]

[w(·, t)] 1
5

� 1. (11.7)

Proof. Due to bootstrap bounds (5.11), (5.12) on W̃ , and properties (3.27) on W we
obtain the following on W = W + W̃ ,

|∂x W (x, s)| � 〈x〉− 4
5 ,

where the implicit constant is uniform, and in particular, independent of s. Using this,
we write

[W (·, x)] 1
5

= sup
(x,x ′)

|W (x, s) − W (x ′, s)|
|x − x ′| 15

= sup
(x,x ′)

1

|x − x ′| 15
|
∫ x ′

x
∂x W (y, s) dy|

� sup
(x,x ′)

1

|x − x ′| 15
∫ x ′

x
〈y〉− 4

5 dy = sup
x

1

|x | 15
∫ x

0
〈y〉− 4

5 dy � 1. (11.8)

Finally, we use (3.1) to argue as follows. Select any (θ, θ ′) ∈ T. Then there exists a
corresponding (x, x ′) determined through (3.1) so that

|w(θ, t) − w(θ ′, t)|
|θ − θ ′| 15

= |W (x, s) − W (x ′, s)|
|x − x ′| 15

.

From here, we take supremum over θ and apply estimate (11.8) to reach (11.7). ��
Lemma 11.3. The following estimates hold for a constant CM that depends on M,

sup
t∈[−ε,T∗)

sup
θ∈T

|∂θa(·, t)| ≤ CM ,

sup
t∈[−ε,T∗)

sup
θ∈T

|∂θ z(·, t)| ≤ CM ,

sup
t∈[−ε,T∗)

sup
θ∈T

|w(θ, t)| ≤ 2κ0.



266 T. Buckmaster, S. Iyer

Proof. This follows upon pulling back to the original coordinate system via (3.6) and
(3.7) which gives

sup
t

sup
θ

|∂θa| = sup
s

sup
x

e
5
4 s |A(1)| ≤ M2,

sup
t

sup
θ

|∂θ z| = sup
s

sup
x

e
5
4 s |Z (1)| ≤ M2,

upon invoking bootstraps (5.9) and (5.10), and upon invoking Corollary 11.1 to ensure
that these bootstraps are satisfied globally.

We now arrive at the pointwise estimate for w(θ, t). For this, we use the bootstraps
(5.5), (5.4), and (5.22) to obtain

|w| ≤ e− s
4 |W | + |κ| � e− s

4 sup
− log(ε)≤s<∞

x∈B f

〈x〉 1
5 + |κ0| + ε

� e− s
4 (Mεe

5
4 s)

1
5 + |κ0| + ε ≤ 2|κ0|.

��
We now provide a final lemma to obtain the shock dynamics of ∂θw(x, t).

Lemma 11.4. The following asymptotic behavior is valid for w(x, t),

lim
t→T∗

∂θw(ξ(t), t) = − 1

T∗ − t
. (11.9)

Proof. First, (11.9) follows upon using (3.5), evaluating at x = 0, and using the con-
straint W (1)(s, 0) = −1 which yields

∂θw(ξ(t), t) = − 1

τ(t) − t
. (11.10)

We now note that, while τ̇ (t) satisfies the bootstrap (5.21), τ(t) is itself uniquely defined
upon enforcing

τ(T∗) = T∗.

Thus, we may take the limit of (11.10) to get (11.9). ��
We now establish the following pointwise asymptotic stability result.

Lemma 11.5. Let W be the global solution from Corollary 11.1 and let ν be as in (11.5).
Then, for any fixed x ∈ R, the following asymptotic behavior holds

lim
s→∞ W (n)(x, s) = W

(n)

ν (x), n = 0, . . . , 5, (11.11)

where W ν is the exact, self-similar Burgers profile

W ν(x) :=
( ν

120

)− 1
4

W

(( ν

120

) 1
4

x

)
. (11.12)

Remark 11.6. We note that the parameter ν in (11.12) is directly related to the spatial
rescaling invariance of Burgers’ equation, listed in Sect. 3.2.
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Proof. Let (W, Z , A) be the global solution defined in Corollary 11.1. First, it is easily
verified that W ν is an exact solution to the self-similar Burgers’ equation (3.24), and
that the first 5 Taylor coefficients of W ν are given by

Wν(0) = W (2)
ν (0) = W (3)

ν (0) = W (4)
ν (0) = 0, W (1)

ν (0) = −1 and W (5)
ν (0) = ν.

In particular, at the limit s → ∞, the first 5 Taylor coefficients of W and W ν match. Let
us define the difference

W̃ν = W − W ν .

Hence, by definition

lim
s→∞ W (n)

ν (0) = 0, (11.13)

for all n = 0, . . . , 5. By a similar calculation to (3.51)—although we will rearrange the
terms on the left-hand-side and right-hand-side—we obtain

(∂s − 1

4
+ W

(1)
ν )W̃ν + (W +

5

4
x)∂x W̃ν = −βτ e− 3

4 s κ̇ + FW + ((1 − βτ W ) − GW )∂x W := F̃ν .

Using (5.21), (6.1) and (6.20), we have that for any fixed x∗ that
∫ ∞

s0

∣∣F̃ν(x∗, s)
∣∣ ds < ∞. (11.14)

Now fix δ > 0, x∗ ∈ R and s∗ ≥ − log ε. Then as a consequence of (11.13) and (5.7)
we have ∣∣W̃ (x∗, s∗)

∣∣ �M |x∗|6 + δ, (11.15)

assuming that s∗ is taken sufficiently large dependent on the choice of δ. Now define �

to be the trajectory

∂s�(s) =
(

W +
5

4
x

)
◦ �, �(s∗) = x∗.

If we in addition define q = e− 5
4 (s−s∗)W̃ν , then q ◦ � satisfies the equation

(∂s + 1 + W
(1)
ν )(q ◦ �) = e− 5

4 (s−s∗) F̃ν ◦ �.

Since W
(1)
ν ≥ −1, then by Grönwall and (11.14), it follows that

|q ◦ �(s)| ≤ |q ◦ �(s∗)| + δ (11.16)

for s ≥ s∗, assuming that s∗ is taken to be sufficiently large, dependent on δ. Combining
(11.15) and (11.16) we obtain that for s∗ ≤ s ≤ s∗ − 23

5 log |x∗| and assuming δ ≤ |x∗|6
∣∣W̃ν ◦ �(s)

∣∣ �M e
5
4 (s−s∗)(|x∗|6 + δ) �M |x∗| 14 . (11.17)

Let us restrict to the case x∗ > 0 and assume the lower bound

�

(
s∗ − 23

5
log |x∗|

)
≥ �. (11.18)
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In particular, by continuity, (11.18) implies that for any x∗ ≤ x ≤ �, there exists an
s∗ ≤ s ≤ (s∗ − 23

5 log |x∗| such that �(s) = x and hence by (11.17)

∣∣W̃ν(x, s)
∣∣ �M |x∗| 14 .

By taking the limit s∗ → ∞, this implies

lim
s→∞

∣∣W̃ν(x, s)
∣∣ �M |x∗| 14 , (11.19)

for any x∗ ≤ x ≤ �.
It remains to prove a x∗ dependent lower bound on � that increases as x∗ → 0. First

note that by (5.20) and the Fundamental Theorem of Calculus

W +
5

4
x ≥ x

(
5

4
−

∥∥∥W (1)
∥∥∥∞

)
≥ 2

9
x .

Thus by Grönwall �(s) ≥ e
1
5 (s−s∗)s∗, which implies

�

(
s∗ − 23

5
log |x∗|

)
≥ |x∗|− 1

45 ,

and hence we can take � = |x∗|− 1
45 . Thus by taking x∗ → 0, from (11.19) we obtain

lim
s→∞

∣∣W̃ν(x, s)
∣∣ = 0, (11.20)

for all x > 0. An analogous argument yields (11.20) for the case x < 0. The case x = 0
is trivial since W̃ν(0, s) = 0 for all s. Thus, W converges pointwise to W μ. The proof
for n = 1, . . . , 5 works in an analogous manner. ��
Remark 11.7. We remark that the asymptotic profile that is picked out in (11.11) is
consistent with our estimates (5.11). Indeed, by using estimate (11.5), we can estimate

‖(W ν − W )η− 1
20

‖∞ � ε
7
8 ,

which shows that W can simultaneously lie in a ball of size ε
3
20 within W (in theweighted

norm above) and converge pointwise to W ν .

It is now possible to prove asymptotic stability in a much stronger sense. To do so,
we define the slightly weaker weighted space by first fixing a 0 < δ � 1,

‖W‖X−δ
:= ‖Wη− 1

20−δ‖∞ +
5∑

j=1

‖W ( j)η 1
5−δ‖∞. (11.21)

Lemma 11.8. For any δ > 0,
∥∥∥W − W ν

∥∥∥
X−δ

→ 0 as s → ∞. (11.22)
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Proof. This is a standard consequence of pointwise convergence (11.11), uniform es-
timates on six derivatives, guaranteed by the specification of the norm X , (11.3), and
finally, the compactness afforded by the weaker weight of 〈x〉−δ in our norm (11.21).
For the purpose of completeness, we include the argument for the lowest order part of
the X−δ norm, while the higher order components work in an exactly analogous fashion.

To prove (11.21), specifically‖(W −W ν)η− 1
20−δ‖∞ → 0,wewill first fix an arbitrary

ε̃ > 0, and demonstrate the existence of S = S(̃ε) large, such that s > S implies
‖(W − W ν)η− 1

20−δ‖∞ ≤ ε̃.

First, there exists X = X (̃ε, δ) so that

‖(W − W ν)η− 1
20−δ‖L∞(|x |≥X) ≤ ε̃

10
,

according to the estimate (11.4) on W and (3.31) on W (and hence, W ν).
We thus restrict to the compact interval |x | ≤ X , which we now subdivide into

N = N (̃ε, M) sub-intervals with centers xk , k = 0, . . . , N . N will be selected according
to the rule:

(‖W (1)‖∞ + ‖W
(1)
ν ‖∞)

1

N
<

ε̃

10
.

By the pointwise convergence guaranteed by (11.11), there exists an sk so that

|W (sk, xk) − W ν(xk)| ≤ ε̃

10
.

Define now S := maxk sk . Estimating, we have

|W (s, x) − W ν(x)| ≤ |W (s, x) − W (s, xk)| + |W (s, xk) − W ν(xk)|
+ |W ν(xk) − W ν(x)|

≤ (‖W (1)‖∞ + ‖W
(1)
ν ‖∞)|x − xk | + ε̃

10

≤ ε̃

10
+

ε̃

10
,

for s > S. Taking supremum over |x | ≤ X gives the desired conclusion. ��
Proof of Corollary 2.2. We note that the proof follows in a very similar manner to the
proof of Corollary 4.7 of [2].

By finite speed of propagation, the strict support properties imposed in Sect. 2.2,
can be replaced by the condition that (w0, z0, a0) satisfy the conditions modulo a small
perturbation in the C8 topology.

The conditions (2.4) for the cases n = 0, 1 impose no obstruction to w̌0 been chosen
within an open set since the conditions may be enforced by choosing ε and κ0 appropri-
ately (it should be noted that these two parameters are free to be chosen from an open
set). In order to weaken the condition (2.4) for the case n = 4, we note that by a Taylor
expansion

∂4θ w0(θ) = ∂4θ w0(0) + θ∂5θ w0(0) +O(ε− 29
4 θ2)

= ∂4θ w0(0) + 120ε−6θ + θ(∂3θ w0(0) − 120ε−6) +O(ε− 29
4 θ2) ,
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here implicitly we used (2.3) and that
∥∥∥∂6θ ε

1
4 W

(
ε− 5

4 θ
)∥∥∥∞ � ε− 29

4 .

By continuity, given ε, then assuming ∂4θ w0(0) and ∂5θ w0(0)− 120ε−6 to be sufficiently
small, there exists a θ ∈ (−ε, ε) such that ∂4θ0w0(θ) = 0. Thus, up to a coordinate

translation θ �→ θ + θ0, and under the assumptions ∂4θ w0(0) and ∂5θ w0(0) − 120ε−6 are
both sufficiently small, we can remove the assumption (2.4) for the case n = 4. The
strict assumption (2.4) for the case n = 5 may be removed by applying the rescaling

ã(θ, t) = μ−1a(μθ, t), w̃(θ, t) = μ−1w(μθ, t), z̃(θ, t) = μ−1z(μθ, t),

for μ sufficiently close to 1. As was noted in [2], such a rescaling would modify the
domain; however, since by finite-speed of propagation we restrict our analysis to a strict
subset of the domain, such a rescaling does not impose any problem. ��
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