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Abstract: In this paper we construct unstable shocks in the context of 2D isentropic
compressible Euler in azimuthal symmetry. More specifically, we construct initial data
that when viewed in self-similar coordinates, converges asymptotically to the unstable

C5 self-similar solution to the Burgers’ equation. Moreover, we show the behavior is
stable in C® modulo a two dimensional linear subspace. Under the azimuthal symmetry
assumption, one cannot impose additional symmetry assumptions in order to isolate the
corresponding manifold of initial data leading to stability: rather, we rely on modulation
variable techniques in conjunction with a Newton scheme.
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1. Introduction

1.1.

Setup of compressible Euler under azimuthal symmetry. In this paper we study

asymptotically self-similar formation of unstable shocks for the 2D isentropic com-
pressible Euler equations under azimuthal symmetry. The 2D isentropic compressible
Euler equations take the form

0:(pu) +div(pu ® u) + Vp(p) =0, (1.1a)
op +div (pu) =0, (1.1b)
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where u : R? x R — R? is the velocity of the fluid, p : R> x R — R, is the density,
and p : R? x R — R, is the pressure defined by the ideal gas law

p(p) == 1p", y>1.

The associated sound speed o is given by 0 = p* where A = qu

It was shown in [2], that if one imposes the following azimuthal symmetry

x xt 2
u(x,t)- |—| =ra(@,t), u(x,t)- ﬁ =rb@,t), p=rr1P@O,1), (1.2)
X X
where (r, 6) are the usual polar coordinates, then the Eq. (1.1) reduce to the 1D system
of equations

0, +bdg)a+a> —b*+17'PP =0 (1.32)
(0; +bdg) b +2ab+ PP 19yP =0 (1.3b)
(3 +bd) P+LaP + Pdgb=0. (1.3¢)

An important difference between Euler under azimuthal rather than radial symmetry
is that azimuthal symmetry allows for the presence of non-trivial vorticity. We remark
that it was shown in [2], that the system (1.3) is locally well-posed in C" for any n > 1.

In order to avoid issues regarding the irregularity at the origin r = 0 (created by the
azimuthal symmetry), and in order to ensure finite kinetic-energy, following [2], we can
exploit locality and restrict the solution (1.2) to the push forward of an annulus under
the flow induced by u. To be more precise, define A, 7 to be the annular region

Arr=1{x eR%*:r < |x| <7}

Fixing 0 < ro < ry; then, if 7, is the solution to d;n, = u o n, for r > to with
Ny (x, to) = x, define the time dependent domain
Q@) = nu(Arg,ry» D). (1.4

Now set0 < Rgp < ro < r1 < Ry and let K > 0. Assuming that |u| < K for all
(x,1) € ARy, R, X [t0, T%), then it follows that

Q(t) C Agy,r, for t e[ty Ti],

so long as | T — to| is assumed to be sufficiently small (depending or rg, 71, Ry, R; and
K). Then given a solution (a, b, P) to the system (1.3), we relate these to solutions to
(1.1) via the transformation (1.2), restricted to the domain €2 given in (1.4).

1.2. Brief historical overview. The formation of shocks is a classical problem in hyper-
bolic PDE. The first rigorous proof of shock formation is due to the pioneering work of
Lax [12] that employed invariants devised by Riemann [22] and the method of charac-
teristics. The work of Lax was further generalized and refined by John [11], Liu [13],
and Majda [15] (cf. [9]).

In the multi-dimensional setting, Sideris in [23] demonstrated using a virial type argu-
ment the existence of solutions that form singularities in finite time. The method of proof
does not however lead to a classification of the type of singularity produced. The first
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proof of shock formation in the multi-dimensional setting was given by Christodoulou
[4], whereby he proved shock formation in the irrotational, relativistic setting. The work
was later generalized to non-relativistic, irrotational setting [5], and then further ex-
tended by Luk and Speck to the 2D setting with non-trivial vorticity [14]. It is important
to note that while the cited work are capable of proving shock formation (or simply
singularity formation in the case of Sideris), the methods of proof are incapable of dis-
tinguishing precise information on the shock’s profile. For example, none of the cited
work determine whether the shock occurs at one specific location or whether multiple
shocks occur simultaneously. In the recent work by the first author, Shkoller and Vicol
[2], it was shown than in 2D under the azimuthal symmetry (1.2) one can prove the ex-
istence of stable shocks (stable with respect to perturbations that preserve the azimuthal
symmetry) whose self-similar profile can be precisely described. This work in [1] was
extended to 3D in the absence of any symmetry assumption, and further extended to
the non-isentropic case in [3]. In a different direction, we would like to also bring to
attention of the remarkable recent works of Merle et al. [19,20], which demonstrated the
existence of radially symmetric imploding solutions to the isentropic Euler equation—a
completely new form of singularity for the Euler equations.

1.3. Unstable shocks for the Burgers’ equation. Before we state a rough version of the
main theorem, let us first review the concept of an unstable shock in the context of the
1D Burgers’ equation:

w+wdyw =0 foryeR. (1.5)

The Burgers’ equation satisfies the following four invariances:

1. Galilean symmetry: If w(y, ) is solves (1.5) then w(y — v, t) + v solves (1.5) for
any v € R.

2. Temporal rescaling: If w(y, ) is solves (1.5) then Aw(y, At) solves (1.5) for any
A > 0.

3. Translation invariance: If w(y, ) is solves (1.5) then w(y — yo, t) solves (1.5) for
any yo € R.

4. Spatial rescaling: If w(y, t) is solves (1.5) then A~ lw(ry, 1) solves (1.5) for any
A > 0.

Any initial data wo with a negative slope at some point yy will shock in finite time. Let
us assume that wg has a global minimum slope. By temporal rescaling and translation
invariance, without loss of generality, we may assume the global minimum slope is —1,
occurring at y = 0. Let us take the initial time to be t = —1. By Galilean symmetry,
without loss of generality, we may further assume w(0) = 0, then by methods of
characteristics that the solution w will shock at (y, r) = (0, 0).

If in addition w('(0) = v > 0, then the solution w will converge asymptotically at

the blow up to a self-similar profile W1; in particular, we have
1

tli_r)r})(—t)%w(x(—t)*%,t) - (%)_%Wl <(g)2x>, (1.6)

for any x € R, where

Wi = -2+ (LX) 3 L(LLE (1.7)
=72 277 27 \277 4 ' ‘

=
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Remark 1.1. Note one can fix v by making use of the spacial rescaling invariance of
Burgers’ equation.

The shock profile is stable in the sense that given any initial data in a suitably small
ct neighborhood of wy, the resulting solution will satisfy (1.6) modulo the invariances
of Burgers’ equation. The profile W (together its v rescaling given on the right hand
side of (1.6)) satisfy the following self-similar Burgers’ equation

1— 3 — _
_EWI + <§x+W1> oW1 =0.

In addition to W defined above, the Burgers’ equation admits a countable family of
smooth self-similar profiles [10]. Foreachi € N, there exists a unique non-trivial analytic
profile W; satisfying the ODE

l— [(Qi+Dx —\ . —
——Wi+|———+W;)oW; =0.
2i 2i

such that
L— i+l
wi(x, 1) = ()2 Wi(x(=1) 2),

defines a self-similar solution to the Burgers’ equation. Unlike W1, the solutions W; for
i > 1areunstable: generic small perturbations of initial data w; (-, 0) lead to singularities
described by the stable self-similar profile W. Indeed a generic smooth perturbation of
w; (x, 0) leads to initial data with a global minimum at a point where the third derivative
is positive, which by the discussion above leads to a shock with asymptotic profile W .

The profiles W; for i > 1 are nevertheless stable modulo a finite co-dimension of
initial data: Suppose we are given initial data wg with a global minimum, as a con-
sequence of the invariances of Burgers’ equation, we may further assume wg(0) = 0

and w((0) = —1. If we further assume that w(()")(O) = 0forn = 2,...,2i and that
w(()2l+l)(0) =v > 0, then

li 0 N5 ) = Y _%W~ Y g 1.8
ng(l)(_) w(x(—1) )—(m) i (m) X, (1.8)

for all x € R. Thus the initial data leading to the unstable shock profiles W; for i > 1
are described by a manifold of finite codimension.

We note that in the paper [7], the authors study stable and unstable self-similar solu-
tions to the Burgers equation in order to investigate the Burgers equation with transverse
viscosity.

Our main objective in this work is to identify an analogous manifold, M, for the
compressible Euler equations which lead to unstable blowup dynamics according to the
profile W». Unlike the case for Burgers described above, the specification of M is not
as explicit as that described above, and must be found via very careful Newton scheme.
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1.4. Rough statement of main theorem. In this paper, we prove the existence of asymp-
totically self similar solutions to 2D isentropic compressible Euler equations under az-
imuthal symmetry that under the appropriate self-similar transformations are described
by the self-similar Burgers’ profile W:

Theorem 1.2. There exists initial data (ag, by, Py) in C 8 for which the corresponding
solutions (a, b, P) to (1.3) develop a C%-cusp singularity in finite time. At blow-up, the
solutions (a, b, P) form singularity at a unique angle; moreover, the singularities may
be described in terms of the self-similar Burgers’ profile W, in a manner made precise
in Theorem 2.1. The behavior described is stable in C® with regards to the initial data
modulo a two dimensional linear subspace.

‘We note that analogous results exist for the Burger’s equation with traversal viscosity
[7], the Prandtl equations [6,8] and the Burgers—Hilbert equation [24]. We also note
that the formation of unstable shocks (defined and discussed below) in the context of
Bourgain—Wang solutions to NLS was obtained in [21] through virial type identities
and backwards integration techniques. These papers however rely on a symmetry to
constrain the position of the singularity which leads to a comparatively simple classi-
fication of initial data leading to unstable blow up profiles. Isentropic Euler does not
satisfy analogous symmetries leading us to develop a new shooting method in order to
describe initial data leading to unstable blowup. We believe that techniques developed
are suitably malleable and could find potential use in proving the existence of unstable
blowup for other PDE.

2. Statement of Main Theorem

2.1. Riemann invariants. Before we can state our main theorem, we must first introduce
the concept of Riemann invariants, since it is our aim to show that we can prescribe initial
data such that one of the Riemann invariants shocks according to the self-similar profile
Ws.

As was done in [2], in order to diagonalize the system (1.3a)—(1.3c) and isolate the
Burgers-like behavior of the shock development, we will rewrite (1.3a)—(1.3c) in terms
of the Riemann invariants

1 1
w=b+XPk, z=b— —P*

and the wave speeds

1—A 1+A L+ 1—2
A=b—P'=—"w+——z, Ay=b+P'=—w+
2 2 2 2

Z.

With these substitutions we obtain the following system of nonlinear transport equations

1—A 1-2) 2M

dw + (w+ 1572) dow = —a (FFF 2+ TFw), (2.1a)
1—-A 1-2) 2)

hz+ (z+ 5Fw) dpz = —a (52w + 3227) (2.1b)

dra+ Tz (W +2)ha = — 156" + 515 (W +2)7 — 5ty (w — 27 (2.1¢)
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2.2. Initial data assumptions. In this section we will describe the initial data used to
construct unstable shock solutions. We introduce a large constant M which will be used
to bound certain implicit constants appearing in the paper. We also let ¢ > 0 be a small
constant which will parameterize the slope of the initial data.

We will denote the initial data at initial time t = —¢ by

w(0, —&) = wo, 2(0,—&) =z0, a(f,—&)=ao.
The initial will be assumed to satisfy the follow support assumptions

Me Ms}

supp (wo — ko) U supp (zo) U supp (ap) C [—7, >

where ko > 0 will be a predetermined constant.
We will further decompose wy as a sum

1—( _s . 1~ s 1 5 5 5 3 _s
wo=K0+84W2(8 40))((8 0)+ &% Wo(e 40)+84<a(8 102+ 8" 10) )X(s 1),

=g (0)

2.2)

for some smooth fixed cut-off, x, satisfying x (x) = 1 for |x| < 1 and is supported
in a ball of radius 2. Above the constants «, 8 are determined by Wy and are not free
parameters that we choose as part of the data. The perturbation Wy will be assumed to
satisfy the following

” WO”CS([—%%]) < &2 2.3)
WP ©0) =0, for n=0,1,4,5 2.4)
’Wg”)(O)’ <&, for n=23. (2.5)

We also assume the following bounds on zp and ag

2
lzolles + llaollcs =< &”.

2.3. Main theorem. We now state our main theorem:

Theorem 2.1. Let y > 1 be given and set ). = VTfl Then there are values ko, M, ¢,
0 < & < 1, such that for any ko € [ko(X),00), M € [M(A, ko), 00), and & €
(0, (A, ko, M)], the following holds:

Let (wo, zo, ap) be initial data satisfying the assumptions stipulated in Sect. 2.2,
with the constants o and B are left to be chosen. Then, there exists «, B satisfying
loe] + 8] < eT and a corresponding solution (a, z, w) € C([—e, T,); C¥(T)) to (2.1)
satisfying the following properties:

e The solution forms a singularity at a computable time T, and angle 0,.

o sup, (.1, (lallwrocer) + Izllwicey + lwlizoe(m) < Curs

o limy7, dpw(E(1), 1) = —00 and 57— < [Bpw( D= < 7 ast > T,

o w(-, Ty) has a cusp singularity of Hélder C'" regularity
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Moreover, w blows up in an asymptotically self-similar manner described by the profile
Wa. Specifically, there exist av > 0 and k. such that

1

Jim (7. 1 (w(x(T* —nitELD —K*) - (%)_‘I‘Wz ((%)H) . (2.6)

where v, k., &, are explicitly computable, and satisfy the bounds |v — 120| < 8%,
ko — k«| < &, and |&x| < 4koe. The variable x appearing in (2.6) can be thought
of as a self-similar spatial variable as t approaches T.

As a corollary, we show that Theorem 2.1 is stable modulo a two dimensional linear
subspace of initial data:

Corollary 2.2. There exists an open set E of initial data (1o, zo, ao) in the C® for which
we have the following: for every (Wo, o, ap) € & there exist o, § € R such that if we
define wg by (2.2) then the conclusion of Theorem 2.1 holds for initial data (wo, 2o, ao).

2.4. Modulation variables and unstable ODEs at x = 0. In order to isolate the self-
similar profile, we will need to introduce modulated self-similar variables. These mod-
ulation variables allow one to control the time, location, and amplitude of the eventual
shock. The idea of using modulation variables is by now classical (cf. [16-18]). We
give the precise definitions of our self-similar variables and modulation variables in
Sect. 3.1, but to facilitate the forthcoming discussion, let us consider the self-similar
quantities (W, Z, A) defined through w(8, t) = e 1 Wx,s)+k(t),z0,t) = Z(x,s)
and a(f,t) = A(x,s), where we rescale time via s = —log(r — ) and space via
0]
@i

In our case, we introduce the dynamical modulation variables t, &, k found in (3.1),

(3.2) to enable us to constrain

W@©,s) =0, 3 W(O,s)=—1, 3*W(,s)=0, 2.7)

where the final constraint is notably different than in the works [1-3], and reflects the
different structure of the Taylor coefficients at x = 0 of the self-similar profile W5.

In so doing, we obtain from (2.1a) to (2.1c) the system that we ultimately analyze,
which

1 5 3y K
(05 — Z)W +(gw + Zx)BXW = —¢ ¢4 = + Fy, (2.8)
5
0sZ + (g7 + Zx)BXZ = Fy, (2.9)
5
8SA+(gA+Zx)8xA = Fyu. (2.10)

Above, the quantities gw, gz, g4 are transport speeds, and Fy, Fz, F4 are forcing terms
that we also leave unspecified for the purposes of this discussion. The reader may find
the precise definitions in (3.11)—(3.13) and (3.14)—(3.16).

In addition, we control the evolution of 7, &, ¥ through ODEs obtained by restricting
to the constrains, (2.7). Importantly the three modulation variables enable us to constrain
only the three quantities appearing in (2.7). However, a feature of (1.6) with i > 2 is
that W® (0, s) and W (0, s) need to be zero in the limit as s — oo. This in turn
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cannot be enforced by the introduction of further modulation variables due to the lack
of further symmetries in the compressible Euler equations, and so must be enforced by
the choosing initial data on a codimension two manifold, M.

The equations describing the second and third derivatives of W at x = 0 are given
by

3

(05 — Z)W(z) (0, s) = rapidly decaying forcing terms, (2.11)
1

(05 — z)W(z) (0, s) = rapidly decaying forcing terms. (2.12)

One can see the instability of the manifold due to the negative damping coefficients
appearing on the left-hand side of (2.11)—(2.12). Indeed, negatively damped ODEs such
as (2.11)—(2.12) generically grow as s — oo, but certain data (as determined by the
right-hand side) can lead to decaying solutions.

In the context of the Euler equations, the right-hand sides above themselves depend
on other elements of the system (such as the modulation variables, and other derivatives
of (W, Z, A)). For this reason, we are led to develop a Newton scheme which identifies

M.

2.5. An iterative scheme to search for unstable solutions. In this subsection, we briefly
discuss the Newton scheme that can be used to identify a manifold of initial data which
leads to a globally decaying solution to (2.11)—(2.12). For the present discussion, we
focus on a model ODE problem. We consider

(3 — e = g+ ), 1a(0) = 2.13)

We assume for now that the forcing, g, has sufficiently strong decay and the nonlinearity,
[, 1s an explicit quadratic nonlinearity via

gl e, faw =u*, y>0. (2.14)

For general data, «, writing the solution to (2.13) via the Duhamel formula yields
s / s S M
Uy (s) = eZa+e2 / e"2g(s')ds’ +ge2 / e Tuy(s)*ds’. (2.15)
0 0

From (2.15), it is that even under the assumption of g decaying exponentially one cannot
expect the solution u, to decay to zero as s — oo for generic data, «. Thus, to obtain
decaying solutions to (2.13), one needs to find a manifold of data (in this example,
a manifold of codimension one). In the case of this ODE, this amounts to finding a
particular value of o which ensures a globally decaying solution.

To illustrate how to find this choice of o, we now consider the linear version of (2.13)
(setting ¢ = 01in (2.13)). Upon setting ¢ = 0 in (2.15), sending s — 00, and demanding
the asymptotic behavior uy(s) — 0 as s — oo, we obtain the following relation

o0 s
ap + / e 2g(s"hds’ =0,
0

which links the choice of data, «g, to the forcing, g, and guarantees the solution |uy (s)| <
e~V inherits the decay of g.
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We would now like to modify the choice of data, «g, by an & perturbation in order
to account for the nonlinear effects when ¢ > 0 in (2.13). The overall strategy will be
to fix a sequence of times {s,} for n € N with the property that s, — 0o asn — o0,
and a corresponding sequence of data choices {«,} for n € N so that ug, (s,) = 0. With
suitably strong estimates, we will show that o, — oo and correspondingly u, (s) — 0
ass — oo. To compute the iterate of «,,+1 requires an application of the Implicit Function
Theorem, which in turn requires sufficiently strong estimates on the solution.

Let us now take the particular selection of times, s, = n. To initiate the induction, we
will choose ap = 0, and uq(s) the corresponding solution (clearly, ug(sg) = up(0) =
oo = 0). We describe now the n — n+1 step of the iteration. We now assume inductively
that there exists a choice of «, so that g, (s,) = 0 and describe the choice of «;,+1, which
is achieved through the Implicit Function Theorem.

We define now the map 7,, given by 7, () := ug(sp+1). We now seek an o4 in a
small neighborhood, B,,, of «,, so that 7, («,+1) = 0. According to a Taylor expansion
of 7, in o, we obtain for some «, satisfying |o, — o] < |y, — o411,

7, 1 %7,
Tn(tns1) = To(@n) + (@ns1 — 0tn) (@) + = (@1 — otn)* ——5 (@),
do 2 do
Accordingly, we may apply the Implicit Function Theorem to identify a «;,+1 so that the

left-hand side is zero if we can obtain three estimates: an upper bound on |7, ()|, a

lower bound on d Z, (), and an upper bound over sup,, g, | 330?271 l.

We thus define the error at the next time scale created by this solution as E,
Ug, (Sp+1), which the new choice of o+ must rectify in order to achieve the condition
Ugyy; (Sn+1) = 0. The first main estimate in the scheme is thus careful control of this
error, E,, throughout the iteration. Specifically, using backwards integration from s,,,
we may obtain the decay estimate

|E,| = T ()] S e 7,

Lower bounds on 3370[71
(2.15) in «, as this formula importantly holds for all «. A simple inspection shows that
92 Tn

we may expec da? | can also be

computed by differentiating twice (2.15) in «.

Elan,on+1] |

2.6. Notational conventions. We now discuss some notational conventions that we will
be using throughout the analysis. First, for a function f = f(x,s), we use || f|loco =
sup, | f (s, x)| that is L° refers to in the x variable only. Next, we define the bracket
notation (x) := ~/1 + x2. Lastly, we will often use A < Btomean A < CB, where C
isa unlversal constant independent of M, ¢, k. We W111 use A <)y Btomean A < CB
where C is a constant that can depend on M.

3. Preliminaries to the Analysis
3.1. Self-similar variables and derivation of equations. We will employ the notation

PR B ﬂ_l—/\ﬂ_1—2x _3+2Aﬂ_k
T PP T PO BT BT BT 2o
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We now introduce the change of coordinates that we work in and the relevant mod-
ulation variables. We define our self-similar temporal and spacial variables as

0 — &t
s =—log(t —1), x= —5(5) 3.1
(t —1)4
We record the following identities
d . Gl
8_“; = (1-1)e, a_): = S —bxe s £ — e

We now introduce the new unknowns, W, Z, A which are defined through the following
relations

w(,t) = e_%W(x, s)+«x(t), zO,t)=Z(x,s), a(@,t)=A(x,s). 3.2)

In order to solve for the three modulation variables , T and &, we enforce the following
constraints

W(0,5) =0, 9,W(@O,s)=—1, 392W(0,s)=0. (3.3)

We now record the following calculations

T3 L3 - ! :
e4SW+(1—r)e48SW+K+Z(1—r)xe438xW—$eS8xW, (3.4)

8tw = —
dpw = e*o, W. (3.5
Next, we record the calculations
s 5 s & 3 S
oz =1 —1)e BSZ+(Z(1—r)xe —£e4°)0Z, gz =e%0,Z. (3.6)
and similarly,
s 5 s s S £
dra = (1 —1)e’ 95 A + (Z(l —1T)xe’ —&e?’)0, A, Oga = ed 0, A. 3.7

Then in self-similar variables (2.1a) becomes

@ — i)w ¥ (Zx — Be 6 — )e? + B (Bt Z + W)) 0 W

— B 1% —ﬁ,e*%SA<ﬁgz+,34(e*%W+K)). (3.8)

Similarly, we rewrite (2.1b) as

0Z+ Gx +Belet (P~ +2) +ﬂ2W)) 0.2 = —pee " A(BreIW +0) + BiZ)),
(3.9
and (2.1c¢) as

0sA + (Zx +Be(eF (Bik — & + B12) +,31W)) 0x A

1 s 2 s 2
= —2B:pre A2+ e (e—zw P z) — Bufse™ (e—ZW ti— z) .

(3.10)
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‘We now compactify the above equations by introducing the following transport speeds

gw = B W — 5T(é _ K)e%s +131,32e%SZ = B:W+Gw, (3.11)
97 = BePaW + Bre® (Bac — £ +2) = B W + Gz, (3.12)
gA = ﬂfﬂ1W+ﬂf€%S(,31K _é+:31Z) =: B 1W +Ga, (3.13)

and forcing terms

Fiv = —pee P A(BsZ + fate™ T W +6)), (3.14)
Fy o= _5,e—SA(ﬁ3(e—f¢W+K)+ﬁ4z), (3.15)
Fpi= —2B.fre A%+ %ﬂrﬁle’s (fiw N 2)2 — BePse” (e*%W +r— Z)z.

(3.16)

We note that the quantities Gy, Gz, G 4 are defined through the second equalities in
(3.11)—(3.13).
With these definitions, our equations become

1 5 L3y K
(95 — Z)W +(gw + Zx)axW =—e 4 T + Fy, 3.17)
5
0sZ +(gz + Zx)axZ = Fz, (3.18)
5
OsA+(ga+ Zx)BxA = F4. (3.19)

Further, it will be convenient to introduce the notation
5 5 5
Vy = +-x, Vzi=gz7+-x, Vpa:=ga+—x.
w 8w 1 zZ 8z 1 A 8A 1

so that we obtain

1

(8 = DW + Vi, W = —e—%sl X L Fw, (3.20)
— 7T

9Z+Vy0.Z = Fy. (3.21)

G A+ V40 A= Fy. (3.22)

We define now the combination

1= —Be(E — K)ed + BepreiSZ(0,5) = G (s, 0). (3.23)
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3.2. Anunstable self-similar solution to Burgers’ equation. Here we develop properties
of the self-similar Burgers profile, W := Wz, which solves the equation

1— — _

—ZW+(W+Zx)WX =0. (3.24)

According to [10], (3.24) has an implicit solution
x=-W-W. (3.25)

Differentiating yields
—(1) 1

W= (3.26)

1+5W"

Hence W(l) < 0 and thus since W(O) = 0 we attain that W < 0 for x > 0. By Young’s
inequality and applied to (3.25), we have

— —5 W —5 4x
x<-—-W-W <——+-W +—.
5x4 5
Rearranging, we obtain
5
. —
5(5+x%)

This lower bound combined with (3.26) yields

“)‘ < (1+x%75. (3.27)

W
Similarly, using Young’s inequality and (3.25) we have
—W <5x+1,

from which we obtain the estimate

W

W] < 5(1+x4)71().

Finally, differentiating (3.25) 5 times, we obtain

w®(0) = 120. (3.28)
We now define the weight function
ny =1 +xY7, forany y € R. (3.29)

We now record the following lemma, which summarizes the properties of W that we
will be using

Lemma 3.1. Let £ be sufficiently small relative to universal constants. Forn = 2,3,4
at x = 0 we have

wo)=0, W

(n) w7

O =-1, W7 0)=0, W70 = (3.30)
Furthermore, forn > 2, W satisfies the estimates

w7

Wi Sng, W1 <0y, (W) < Cony s, (331
l7
1+ %<W Y <0 for|x| > ¢. (3.32)
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3.3. Higher order x derivatives. In this section we list the higher order derivatives of
(W, Z, A). It will be convenient to introduce the notation:

F™ (s, x) =" £ (s, x).

We will derive now up to eight derivatives of the above system.

1
(as + o (-L45m) + Be(n+ 1,,>1)W(1))W(”) + VW = Fy,, (3.33)
5
(85 + T” +nB: oW D)ZW 1 V,0. 2™ = Fy (3.34)
5
(8 + 3+ nfe WA £ V48, A" = Fy ,, (3.35)
where the forcings are defined by
n—1 n - - n n ) -
Fwn = Fy) = 1u=3pe Y < ) WD w =i 3" ( ,)G(V{,)W(”“_”, (3.36)
= / =1
n
Fow = B~ liafefy (”) Wz %" (".)G(Z”z<"“—f>, (337)
=N =1
Fan=Fy" —1Li=2Bef1 Y < ) WD plet=D 3" < ,)G§(>A<"+1J>. (3.38)
— \ j — \J
j=2 j=1

For repeated future reference, we record here the following expressions which are
obtained by differentiating (3.14) (forn > 1)

FU = —pemi Z (",)AU) (,932("—/) +BaleIW +/<)<”—f>), (3.39)
J
]—0
) _ —s LAWAD) -5 (GE) (GE)
FJ = —Be Z NAD (B3(e™TW + k) +BuZ , (3.40)
J
j=0

n

FO = g e Y (’f)A(/’)A(n—n
j
j=0

1 . s : s .
+ BBy <n) (e iW+k+2)D(e IW +k+2)" D
2 J

J=0

—BeBre™ Y C) (e iW+k—2) D TW+—2)" ). (341

j=0
By combining (3.36) with (3.39), we obtain the expression

n
Fiyn = —fre 3y (’”f)A(f)(ﬁaz(”—f) +BaleTW 1))
=0
n—1 n n n )
— 1381 Z (]) wwetrl=j) _ Z <j>G§,{,)W(n+l_"). (3.42)

j=2 j=1
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By combining (3.37) with (3.40), we obtain the final expression

n
Fzn=—Bee™ Y (’T)A“') (Ba(e™ W 410" 4+ gy 2070
; J
j=0

n

n
—1i=2B:B2 ) <;’> WDz =i 3™ <’;>G(Z])Z(”+l_~/). (3.43)

j=2 j=1

We now derive the first five constrained ODEs. First, we introduce an important piece
of notation to describe the purely s-dependent quantities at x = 0,

g™ (s) == W0, s). (3.44)

From the Egs. (3.17) and (3.33) , evaluating W@ forn=0,...,4atx =0 and using
the constraints (3.3), we obtain the following system of five ODEs in the s variable

I LI (3.45)
B Br
~ LW, 5+ Ly = LED 0.5 (3.46)
g VT B B T

9
@+ 4% =364 + g™ +263) 0,99 = FP0.9) + Gy 0.5). (3.47)

14
s+ )Y —4BeqgD + 3G4)(0, )¢ +38,1¢??

3
3 . .
+y ( ,)G(vy(o, g4 = FP 0, ), (3.48)
=2
L /4
‘ B .y
¢V u+108:P¢P + (J) W (0.4 = FP(0.5). (3.49)
j=2

In addition, we will need the evolution equation of W at x = 0, given by
2. (5
‘ —j 5
0y = —uq® + (1 = B)g® - 101gP PP = > (J.)G%Ro, g+ FP0,5).

j=I
(3.50)

We also derive the following equation for the difference W:=W-—W:

(@ — i + BWVW + Vo, W = —Bre™ % + Fy + (B: — DW — Gw)d, W := Fyy.  (3.51)
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The equation for the higher order derivatives W is given by

. 1 = 7 v
8 W + (Z(_1+5n)+ﬂr (W(1)+nw(l)))W('1)+VW8XW()1)

n—1 n
—FY — 1eafe Y (”) WO 3 (’1) <ﬁ,W("+1)W("‘j) N G(VJV)W<,1+1_j))
=N =N
n n . 1—i n n . 1—i
fB-DY ( ) W) oy ( .>G%>W(n+ -
j=0 J Jj=0 J
=: Fy .. (3.52)

3.4. Vg, g derivatives. We introduce the following notation to compactify the forthcom-
ing equations

fe:=0cf, cela, B} (3.53)

for any function f.
3.4.1. Vg g derivatives of Z We first take o, of Eq. (3.18) which produces

0 Ze + V0. Ze = 0. F7 — z“)(fcﬂfﬂzw + B fa W, + BCGZ) = F5,  (3.54)
We now use (3.15) to evaluate the d. Fz term appearing above via

dcFz = tcfrFz — Bre ™ Ac(B3(e™TW +i0) + B4 Z) — Bre ™  A(B3(e™ 3 We + k) + BaZc)
(3.55)

We next compute 97 of Eq. (3.54) to obtain

5
(8 + Jn+ nBe oW ZM + V8,72

n n

n\. . . n . o

=0 Fy) = (j>rcﬂ3ﬁzz<f”>w<” 2 <j>ﬂr/322(’+l)Wc(" 2
j=0

Jj=0
= ( .)Z(1+J)BCG(Z”—J) e Y ( .)G(ancgnﬂ—n
=0 M =1
n n ' )
—la=2 Y ( .)ﬂrﬂzW‘”Zﬁ”’”) = F5 . (3.56)
=2
We now compute the expression for d, F' én) by computing 07 of (3.55) which yields

n
n i s . .
86Fén) = fcﬂrFén) - ,Bre_s Z (])AEJ) <ﬂ3(€_ZW +K)(n_]) + ,34Z(n_])>

j=0

— ety (';.)A(-” (Bre W k) ™= 4 puz" ). (3.57)

J=0
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3.4.2. Vy g derivatives of A We compute 9. of the basic equation for A, (3.22), which
yields

9 Ac + VadyAp = 3. Fp — (r’C,BTZ,Blw + B B We + BCGA)A(I) = F5, (358)
Computing now the expression d. F4 by differentiating (3.16), we obtain
0.Fa = t.B:Fa + B:f1e* (e_% W+ + Z) (e_%Wc + Ko+ ZC)
— 2B, Bse (fi*W +i— z) (e*% W, + ko — ZC>. (3.59)

We now compute 97 of Eq. (3.58) which produces

5n
@+ +np WAL + Va0, AL
= BLFIgn) — 1}121 Z (])GEAJ)ASL-FI_]) - anZ Z <J)ﬂfﬂ1 W(])A£n+l_])
j=1 j=2

n n
-y (;’) tB2B W A=) 3 ( )ﬂfﬂl W) A1)
=0

n
j=0
n n ) _
-3 ( ) 0GP A=) = F§ (3.60)
j=o ™

We now compute 97 of the expression for d. F4 in (3.59) which yields

n . .
n s ) s (n—j)
0 F" =i F +Befre™ ) <]) (e*ZW i+ z) (e*z W, + i, + zc)
=0

n

— 2B Bse ™Y <’;> (e*%W +r— Z)(j) (e*i*wc +ie — zc)("_j). 3.61)

J=0

3.4.3. W quantities For the W equations, we separately write down the n = 0 system.
Differentiating (3.17) in ¢ yields

1
@ =7+ BWDYOW + Vi, 0. W
= —e Bk — e PRk TPE— Gy WD — WD B2W + 8. Fy.  (3.62)

By differentiating (3.14) in 9., we obtain

L0 3 _s _3y _s
3 Fy = —3.1p2e 1 A(ﬂ3Z+ﬂ4(e 4W+K)) — B i 3CA<,63Z+/34(e 4W+K))
—ﬂ,e*%YA(ﬁgaCzﬂm(e*%acw+acx))

= tefeFy — Bee P A(BZ+ BaleTIW +1)) = Bre™HA(BoZe + BaleTIWe+ic0).
(3.63)
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We combine with (3.62) to obtain
(8 — % + B W)W + Va0 W = Fyy ., (3.64)
where the forcing is given by
Fiyg = tBeFw — Bre ¥ Ac(BsZ + Bale W +1)) = aGw W — WOz p2W

= Bre HA(BaZe + BaleTI W+ ko)) = €7 Brik — e kDB
(3.65)
We now take 97 of Eq. (3.62). This produces, forn > 1,

S5n—1

(95 + +(m+DBWD WD £ Va9, w

n—2

n
= —l=1 Z <j>/gr w+Dg W= _ Ly=2 Z <j>/gr W=Dy . wU+D
j=1

Jj=0
n—1 n
n\ ~(n—j) j+1 n () —j+1
. Z (j)GW 3cw(J+ ) Z (j)acGW W =i+
Jj=0 Jj=0

n
— 1. Z <'Jl) WD W =D 4 9.9 Fy = Fy, . (3.66)
j=0

We now use the expression (3.63) compute

n
8. Fy) = tcpeFy — Y <”.>ﬂre—3sacA<f> (83207 + Bate™5 W +1000 )

—\j
j=0

" n 3 . . .

-3 ( ,)ﬁ,e—ﬂAW (B302"=D + Bae™30.W + 20" =7). (3.67)
—~\j
=0

Combining now with the expression (3.66), we obtain

n
n 3 . . s .
Fiy, =t Py = ( j>ﬂ,e—4facA<f> (832077 + Bae™5 W 1000 7)
j=0

n
-2 (';)ﬂre-imm (83027 + Bate ™50, W + k)"
j=0

n n—2
- (?)ﬂrw(“f)acw("‘f) —ly=2 Y <n>ﬂIW("—1)acw(./+l)
j=1 ;

Jj=0 J
n—1 n ) ‘ n n ) ‘
=1y < ,)G@’;‘”acvv(f“) -y ( _)BCG(V{,)W(J“)
j=0 ™ j=0 N

n
_ -,36133 Z (j) wA+D =i (3.68)
j=0
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3.5 v2 wp derivatives.

3.5.1. Vozl’ 8 derivatives of W We compute 9., of (3.64) which results in

1
(05 — Z +,31W(1))W0102 + Vw o We e,
= Beyes Fw — Be WO W,y — B2, WOW,, — (ﬁfz‘czw + B We, + BCZGW) wh
— e BIWWY) — 2, BFWW D — 2827 1, WWDD — 2. ZW D W, — M2

= FOE, (3.69)

where the modulation terms have been grouped into

.
1,02 . _3 . 2. . .o .. 2 2. .
MOV = ¢3S (ﬁ,xm + B2 (feyke, + keyte,) + Kteyey B2 + 282k %0, rcz). (3.70)

Similarly we compute 97 of (3.69) which results in the following system for n > 1

S5n—1
(ax + +(n+ 1);8,W“>)Wj"{2 +Vwd W
n
. n j —j
= e P~ Y Z() praaw g =3 () s wet
ie{l,2} j=0 j=0 J
—1n>1Z< )ﬁ WD W — 3 Z( >ﬂ i, WO W)
i={1,2} j=0
n
n 1—i i n ; 1—j
-y ( .),31' WD WD 1, Z ( .>’3.tw(J)WC(:1€‘; i
—~\J S\
j_ =
" n
j 1—j 1
(D o e
=0
n n . .
-y (J) (fere +2te Tey) BrW I WOHIZD = i, (3.71)

We shall now compute the following identity by differentiating (3.63)

3 s s
acwz Fy = _ﬂre_ZS (Aclcz (ﬁ3z + ﬂ4(e_Z W+ K)) + AL'I (ﬂ3zc'2 + ﬁ4(e_Z Wcz + KL'Z)))

3 s s
— B (Acy (BaZe, + Bale™ Wey + k) + AP Zeyes + Ba(e™  Worgy + ki)

+icg/3'rachW+fclczﬂrFW+iclﬁraczFW- (372)
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Similarly, computing 97 of the above expression, we record for n > 1,

n

n i s _s o
deses Py = —Pre” “Z()(Aéflz(ﬂgz(" D 4 Bu(e™FW +10)0=D)

j=0
+ AL BZE 4 Bale I Wy +5) "))
n
— e Y (") (AL B2 + Bale™ T Wey + k)" )
=0 ™
+ AD (B 285D + Ba(e™ Wer + Keye) "))

+ Ty Brde Fyy + Teyer B BN+ Tey Brdes FU (3.73)
3.5.2. Vﬁq 8 derivatives of Z A calculation of 9., of Eq. (3.54) results in

aszclcz + VZachlcz = aclcz FZ - Z Z£3)<tci/ﬂ$ﬁ2w + ﬁfﬁzWCil + 8ci/GZ>
ie{l,2}

_ z(1)<ch2 BIBaW + 2t ey BrBaW + Y te BrPaWe,
ie{1,2}

+ BeBoWere, + ac]CZGZ) — FJ (3.74)

Computing 9] we obtain

cic

1 1
= n>zz< )ﬁ BaW DNz D 1,,>1Z (J)G(”zﬁ’;/”

J=1

5
(as + g n,BT,BZW“)) z0 +V70, 2"

_Z Z ( >Z(]+l)(l’c,,3 ﬁZW(n j)+,3 '32WC(’,1 ])+ac/G(n ]))

j=0ie{1,2}

n
—Z(])z(f“)( o BEBW D 4 22 1, BB WD 4 B B WS
j=0

> fciﬂfﬂzwc(i'f*“+aclch(Z”*”)
ie(1,2)

+0eye, Fy =1 F3li2. (3.75)
We now record the expression for
Beser Fz = —Bee™ (A3 Weyer +Kere) + BaZer)) + Acrea (Ba(e W +1) + 42))

- ﬂteis Z Aci (;83(37%Wci/ +Kc,-/) +ﬂ4zci/) + iclﬁracz Fz + fcz,Bracl Fz
ie{l,2}

i Bz, (3.76)
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Next, we compute 9} of the above expression to obtain

n

—s n i _s i —j
Bese Fy = —Pre™ ) <j>Am</33(e Weye +here) " + ﬁ4Z§?czl)>

j=0

n
— B Y (';) AL (Bae™FW 410D 4y 20D

j=0
e 5 (1) AD (B ) 4 2
j=0ie{l1,2}
. (n) | -+ (n) | -+ (n) 377
+‘EC1,31302FZ +TczﬂrachZ +Tc102/31FZ . (3.77)

3.5.3. V2 wp derivatives of A We compute 9., of Eq. (3.58) to obtain the equation to
obtain

8sAclcz + VAaxAclcg = 86162FA - Z Agl.l,) (i'ciﬂgﬁlw + IBIIBI Wc,- + 301- GA)
i={1,2}

= A (G B2BW + 20 T PIBIW + BB Weey + 8 G a

+ Y BB W)

i={1,2}
= F§. (3.78)

By computing 9} of the above equation, we obtain

cicn

1 1
=—1y>2 Z < )/3 /31W(])A(n ) _ Ly>1 Z (J)G(’)Agfcz” )

j=1

n j+1) ([ - —j —J —J
- Z Z<J>A£{/+)(T61ﬁ‘?ﬂlw(n j)+ﬁfﬁ1W§in ll)+aCiG.(An j))

-y Z( )A”*“( BB2BIWOT) 124 0, B BIW D) + BB WET

i={1,2} j=0

3 BBt Wi 40,665 ”) ey P =1 FL), (3.79)
ie{1,2}

5
(as + Zn+nﬂ,ﬂlw<“) M Va0, A
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We next differentiate equation (3.59) to obtain
de;c,Fa = PeBre™ (e—% W, + ke, + zcz) (e—fi W, + ke, + ch)
+ B Bre”* <e_fT W +k + Z) (e_% Weier +Kepey + chz)
— 2B Bse”* (e_i We, +Kkey — ZCZ) (e_%WCI + ke — ZC,)
—2B:Bse”* (e_% W+ — Z) (e_% Weier + Keyey — chz)
+TeyeyBr Fa + Ty Br0c) Fa + Te) BrOc, Fa. (3.80)

By computing 9! of the above, we obtain

n

_ n s )y s (n—j)
aclcz FXl) = B:B1e s Z (]) (e FWe, + ke, + Zcz) (e SWey +Key + ch)
=0

o\ [ s @Dy s (n—J)
+ B:Bie Z j (e 4W+K+Z) (e 4WC1€2+KCIC2+ZC1C2)

j=0

o=/ s DNy s (n—J)
- Q’ﬁ‘[ﬁse Z ] (6 4 WC2 + Key — Zcz) <€ 4 WCI +KCI - ch)

j=0
n . .
s n _s Dy _s (n—=J)
— 2B: Bse Z . (e IW+k — Z) (e AWeiey T Keper — chcz)
=0 N
‘ F 4%, 8.0, F" + . Brde, F 3.81
+ Te1en Be A + Te, B 0cy A + Tey Br e, A - (3.81)

4. Initial Data
‘We assume the data is of the form
Wo=Wx(skx)+Wo+ozx2x(x)+ﬁx3x(x), 4.1)

where x is a smooth cut-off function satisfying x (x) = 1 for |x| < 1 and with support
contained in the ball of radius 2.
On the perturbation Wy, we shall assume

\néwgm(x)] <&, for [x|<e fandn=0,...,8, 42)
WP ©0) <&, for n=2,3, 4.3)
W) =0, for n=0,1,4,5. (4.4)
For Zo(x) := Z(s9, x), and Ag(x) = A(sp, x), we assume
125" oo < €2 (4.5)
14§ oo < £2. (4.6)

forn =0,...,8.
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Furthermore, we will assume the following support assumption on the initial data
(Wo, Zo, Ao)
Mot Moy 4.7)
2 2

)

supp (Wo) U supp (Zo) U supp (Ap) C [~

‘We will now describe the iteration.

Definition 4.1. The quantities Wy g, Zy g, Aw,g solve the system (3.17) - (3.19) with
initial data Wy given by (4.1) for Wy g.

We now describe the inductive hypotheses. First, we define the time step via

sy = —log(e) + N, N eN. 4.8)
The inductive hypotheses we make are the following:
WD, (sn) =0, WS4 (sy) =0, 4.9)
To initialize the induction, we take
1~ 1 ~
ay = —Ewg” ), Bo= _gwg3>(0). (4.10)

Note that (4.9) is satisfied for N = 0, which is the first step of the iteration, according
to (4.10), due to (4.1) which implies that

W0, 50) = W0 + W (0) - W2 ©) =0,

W0, 50) = W 0) + WS ©0) — WP 0) =0

5. Bootstrap Assumptions

In this section we delineate all of our bootstrap assumptions. First, recall the weight
function 1, defined in (3.29). Let us also specify the hierarchy of three small parameters,
where ¢ is significantly smaller than any power of M !, and in turn M ~! is significantly
smaller than any power of £. For the sake of precision, we make the following selections

¢! = loglog(M). (5.1)

5.1. Parameter assumptions. We will first specify bootstrap assumptions on the param-
eters, (o, B), appearing in the specification of the initial data in (4.1). Throughout the
analysis, our parameters (o, ) will be contained in the rectangle set 3, which is defined
via

By = {(a, B) € R : ja — ay| < MOs— o= 1W

+e~ eIV |8 — Byl < M308*%e*%w} . (5.2)
In particular, since s) = — log & we have
la| <2M%, |B] <2M. (5.3)

Note that the bootstrap in this parameter region will be verified in (11.1)—(11.2). More-
over, notice that due to (2.5), (5.3) is valid for the initial choice of (&, 8) = (o, Bo),
defined in (4.10).
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Remark 5.1 (Notation). We will now drop the subscript Wy g as it is understood that
a, B are fixed, and arbitrary elements of the set By (an, Bn).

Note that we only assume (and therefore prove) the below bootstraps on the time
interval —loge < s < sy41. We now state the main inductive proposition we will be
proving using these bootstrap estimates. The proof of this proposition will take place in
Sect. 11.1.

Proposition 5.2. Fix N € N, the parameters (¢, M, £) through (5.1). Let sy be given by
(4.8). Assume (an, Bn) are given so that (4.9) is valid for choice of data (4.1), satisfying
conditions (4.2)—(4.7). Then there exists (dn+1, BN+1) S0 that (4.9) is valid for sy 41 for
data given again by (4.1).

5.2. Bootstrap estimates on WMz AWy and modulation variables. We will as-
sume the following bootstraps on the support of the solutions:

supp W (s) U supp Z(s) U supp A(s) C B(Mse%s) =: By, 5.4)

where B(r) is the ball centered at the origin of radius r. We give the name B to the
above ball to compactify notation, as we will frequently write indicator functions on this
ball.

We will assume the following global in x bootstrap assumptions on W:

W] < €log My, (5.5)
W] < 2log Mn_y, (5.6)
NARI M"Zn_% forn=2,...,8, (5.7)

As a consequence of (5.4) and (5.5), we have that

1

W] < Clog(M)n s S Llog(M)(x)5 < Llog(M)(Meed*)5 < Llog(M)(1+MFesed),
and thus,
W< 1, (5.8)

which we shall use repeatedly.
On Z and A we will assume the following bootstraps:

1Zlloo < &7, 120 ]l < M¥ ™35, (5.9)
IAlloo < Me, [[A® |0 < M> 735, (5.10)

forn=1,...8.
For the difference, W, we make the following bootstrap assumptions on W and W in

the region |x| < e™ 4

1W< e, (5.11)

L
20

WO <emp ;. (5.12)

wil—
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For the higher order derivatives of W, we will assume the following local in x bootstraps
in the region |x| < £

WO < x[0e5 +2 <2165, for 0<k<5 (5.13)
WOl < e, (5.14)
WD) < Me3, (5.15)
WO | < M3e5 (5.16)

We now make the following crucial bootstrap assumptions, which display decay in
s for the unconstrained quantities q?, ¢ (recall the notation defined in (3.44)),

L

3
lg?| < emema®, gD < M¥e, (5.17)

and the following smallness estimate

W0, 5) <e? for —loge <s < susl, (5.18)

which in particular, when coupled with (3.28), ensures that

1g®] > 120 — 2 > 100. (5.19)

We also have crucially the following estimate
WO < 14 e, (5.20)

Finally, we have the bootstraps on the modulation variables:

13 . 13 . 1
|| <ese 2%, 7] <egbe 4%, |k| < e¥, (5.21)

lkk — Kol <&, €] < 3ko. (5.22)

As a consequence we have
1= Bel < 26873, (523)
which will be employed repeatedly in the forthcoming estimates.

5.3. Vg g bootstraps. We now provide the bootstrap assumptions we make on the (o, )
derivatives of the quantities appearing in Sect. 5.2. The first bootstraps we provide are
for the modulation variables, for which we notably do not distinguish between « and 8
derivative (recall 9. € {0y, dg} from (3.53)).

0cit] < MBeZe™3, (9.7 <eZ, |9k| < eder”, (5.24)
lock| <2, |E| < Me?. (5.25)

Next, we provide the bootstrap assumptions on 9, Z, dg Z, d4 A, dg A, and higher deriva-
tives thereof. We again note that we do not distinguish between « and S derivatives for
these quantities.

1 1

[3cZllcc < €2, [0cAlloo < €2, (5.26)

1 1 1 1
1027 oo < M2 e2e7 25, 0.A™ |l < MP g7 7", (5.27)
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forn=1,...,7.
Next, we provide the bootstrap assumptions for the elements of the 2 x 2 s-dependent
matrix

dqP(s)  3pqP(s)
dq® () 9590 (s))"

For these quantities, we need to distinguish between « and § derivatives carefully, which
we do via

%8%e%x = aaq(Z) = 48%€%S, |aaq(3)| = 86%’ (5.28)
195 ?| < gel”, %s%e%s < 95q® < g1’ (5.29)

In addition, we will need the enhanced constrained bootstrap

7D )| < ees. (5.30)

Next, we will assume the following bootstrap bounds on d. W and higher derivatives
thereof.

10:W lloo < Meted, (5.31)
10W 0 1 llog = MO g, (5.32)
forn = 1,...,7. Finally, we assume the following localized bounds on the region

|x| < £ which are stronger than (5.31)—(5.32)

W) < 02Meied® for 0 <n <6, (5.33)
(WD| < Meieis. (5.34)

5.4. Vi P bootstraps. We now provide the bootstrap assumptions on two parameter
(o, B) derivatives of the quantities in Sect. 5.2. For these highest order bootstraps, we do
not need to distinguish between o« and B derivatives. Recall that 9., means ¢; € {«, B}.
We impose the following bootstrap assumptions for 0 < n < 6

191, 20 [loo < M2 R e, (5.35)
196,6, A® [l < M2 g5 e, (5.36)
10, W [lop < ME 6335 (5.37)

We will also need bootstraps on the second derivative of the modulation variables

3 5S¢ . 2 3 9 . 3
[eiey] < Meded”, Kol S MTede™,  |Tee,| < €2, (5.38)

5 . 5
lkerey] < MPe¥e®,  |Eqer| < MAete’. (5.39)
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6. Preliminary Estimates

In order to analyze the equations (3.20)—(3.22) and their higher order spatial derivative
counterparts, (3.33)—(3.35), as well as their higher order parameter derivative counter-
parts, we first provide estimates on the forcing terms appearing in (3.20)—(3.22). These
are performed in Sect. 6.2. Controlling these forcing terms requires in turn controlling
the transport speeds, Gw, Gz, G 4, which is achieved in Sect. 6.1. The final subsection
in this section, Sect. 6.3, collects estimates on the trajectories associated to the transport
structure of Eqgs. (3.33)—(3.35).

6.1. Transport speed estimates. We now provide estimates on the transport speeds,
which are defined in (3.11)—(3.13). We begin with the following estimates.

Lemma 6.1. Let —1 <r < 0, and n > 1. Then the following estimates are valid on the
transport speeds, (3.11)—(3.13).

1 3 14+5r

IGwizlloo S €873+ MM e 5 160l < M e, (6.1)
s s 2 _

IGZ + (1 = Betnolloc S ety 1GY oo S M e, (6.2)
s s 2 _

1G A+ (1= Betiollos S e, 16 loo S M? e, (6.3)

Proof. We record the following identity:

Gw(x,s) = u(s) + Gwe(x,s), Gwelx,s) :=ﬂrﬂze%/ ZWW s)ydx',  (6.4)
0

where we have invoked definition (3.11) for Gy and subsequently (3.23) for the quantity
w(s). We estimate for j > 1,

1GP lloo = 1B fre* 2V oo < 207 M ™35, (6.5)
Using (6.4), we estimate

1Gwizlloe S lial + 1Gw.en llo
13 X
Sebedoy ||<x>r/ 0, Gy () A loc
0
1 _3 * N—1— / 1+ /
<ebe 4S+||<x>’/ ()0, Gw () ()T 4 oo
0

3
£6e” 1 + 0, Gw ()" [loo

1 _3 145r
e 4s+M3+r8(1+r)e TS

™

S

3 1
Sevem i 4420 () o
S (6.6)

Above, we have invoked estimate (5.21) for the estimate on u, the definition (3.11) to
calculate 8, Gw, estimate (5.9) on Z(1, and the estimate (5.4) to translate spatial weights
to growth in s.

The above calculation, (6.6), works when r < 0, but at » = 0 does not quite work
due to having to integrate (x)~!. However, in that case, we may estimate via

1 3 1 3 5
1GWlloo < 112+ 1Gw.elloo S €873 + [(X)GY lloo S 573 + M%e™* (Meed),
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where we have invoked (5.21) for the estimate on u, (6.5) with j = 1, and the estimate
(5.4) on the support.

We now move to the transport speed G z. First, for the lowest order quantity, we use
the definition (3.12) and the bootstrap assumptions (5.22) to estimate

1Gz+ (1 = Boetrolloo S e¥ (1 +e+e7) S e,
According to the definition (3.12), we estimate

16 oo S X112 oo S M 6™

~

where we have invoked the bootstrap, (5.9). For the transport speed G 4, we invoke the
definition (3.13) to perform the exact same calculation. O

Lemma 6.2. Let ¢ € {«, B}. For0 <r < 1and 1 < n <7, the following estimates are
valid on the transport speeds, (3.11)—(3.13)

1 3 4-—5r 1 s
10:Gwn_zlloo S €2 +M>Te1 e 5", ||a GWllo S M ete™3, (6.7
10:G zlloo S £8et, [3.G 0o < M* e2e7 5, (6.8)

IS

10:G alloo S £5e%, [3.GP 0o < M¥ 2675

~ ~

(6.9)
Proof. We differentiate (6.4) in c to yield

X X
aCGW=a(,.u+a(.GW,L,=a(,u+acfﬂ,2ﬂ2e1/ z(“(x’,s)dx’ﬂs,,szeZ/ 3.ZzWdx’. (6.10)
0 0

Multiplying now by a weight of n-z, we obtain for every r > 0,

10cGwn_: lloo S 18cil + 10 1e 120y 1 ||oo+e4||a zM®

N1=r lloo
7

K S 1 s 5
< M3BeTe i +sm(M2e—ﬂ)(Msezs)1—f +el(M2eTe2)(Meei®)l "

1 R B
<e2+M3Ter e d S

where we have invoked (5.24) for the modulation variables, (5.9) and (5.27) for the Z
quantities, and (5.4) to estimate Lr in the support of Z() and hence d.Z"

We first differentiate Gy to order n > 1in x via (3.11) and then take 9. of the result
to produce

.G = 8,1 B2BreT 2" + pofret . 2™,
which upon estimating yields

18:G % 100 < 1011312 [loo + €3 182 ||

2 1 s 2 1 s 2 1
<M ele ™ vei MM e2em2 < MY g2 4,

PSS

where we have invoked (5.24) for the modulation variables, (5.9) and (5.27) for the Z
quantities.
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By differentiating (3.12) in d,., we obtain the identities

0:Gz =1.p:Gz + ,Bre% (Bake — é_c +Z)
= 0187t (Pokc — & + Z) + e’ (Badox — 0 +0.2)  (6.11)
3G = .GV + preiz™. 6.12)
By estimating (6.11) we obtain
19:Gzlloo < 10ctled (k| + €] + 1 Zlloo) + e ([8ek | + [8E | + 19 Z | o0)

1 s 5 s 1 1 1 1 s

Seled(l+e%)+ed(e?+e4 +e2) Sgied,
where we have invoked both (5.24)—(5.25) for the d,. of the modulation variables, (5.21)—
(5.22) for the modulation variables themselves, and finally (5.9) and (5.27) for the Z

quantities, with j > 1.
By estimating (6.12) we obtain for 1 <n <7,

10:G5 oo S 10ct 1312 oo + € 02" [l
S eI MM eI w i MM eded S Mo,
where we have invoked (5.24) for the 3,7 term, and then (5.9) and (5.27) for Z™ and
8. Z™, respectively.
For 9.G 4, we perform essentially the same estimate as for 9.G 7. |
Lemma 6.3 (Transport Estimates). Let ¢; € {«, B} fori = 1,2, and fix any 0 <r < 1.
Then the following estimates are valid for the transport speeds

505 3., 1B, 1-s5r 205 s
191, Gwi—zlloo S Meted® + MP e e 5 %, e, G lloo S MP" e e,

(6.13)
19e16sG zlloo S M*e3€3 . 0016,G P o0 < MP g3, (6.14)
5 5 5 s
19e,6,G alloo < M*e3e3, [10,6,G P oo < MP g5 e, (6.15)
forl <n<T.
Proof. We differentiate (6.10) in 9., which generates the identities
il * 1 2 s * 1
de1e;GwW = [heres + PrPoe / Z{)), + BBt et / z{)
0 0
X
t ey + 2Bete, te) B2 Bre / Z0, 6.16)
0

Derer Gy = BuPoe 20, + B2Bate et ZU) + (ieyey +2Brte ter) BEBae s 27, (6.17)

cie2
for n > 1. Estimating the right-hand side of (6.16) yields

s 1 . [ 1
18cic,Gwi—glloo S litereal + €I ZE 2 M1r lloo + T e 11 280 1r oo

. c2y % 1
+ ([Teyl + 17120 12 oo

5 5 _, B_ . 1-5r s _ 5
§M84E4S+M3 Teg e d S+82 re4M3 re(l+4r)s

3 1+5.
+ (ge?® + 8)M3_r81_re_%“
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Above, we have used (5.38) for the 1i¢,¢,, Teic, terms, (5.35) for the Zggz term, (5.27)
for the Zgl) term, (5.9) for the ZW term, (5.24) for the 7, terms, and finally (5.4) for the
estimation of 7 in the presence of Z.
Estimating the right-hand side of (6.17) yields for j > 1,
s .8 . . s 25 s
19¢16,G W oo S €T 1280 lloo + 12l TN ZE oo + (e + [7e)eT 127 0o S MPP 6563
We have invoked (5.35) for the Zé{ 22 term, (5.24) for the 7. term, (5.27) for the Z. term,

(5.9) for the Z\) term, and (5.38) for the 7.,c, term.
Next, we differentiate (6.11) - (6.12) in 9, to arrive at

8clchZ = ":—clcz,BrGZ + i'cl- lgracl-/ Gz + ,BrefT (,BZKclcg - é_clcg + chcz>7 (6.18)

aclch(Zn) = i’clcz,BrG(Zn) + i'c,-,Br 8cl-/G(Zn) + ﬁrgiz(”)

cier”

(6.19)

Estimating the right-hand side gives (6.14) via

. . s .
10c16,Gzlloo S 1Terer G zlloo + [T110cG z oo + €% <|Kclcz| + 18| + ”chz“oo)
3 s , 5 5 5 s
< et +eded +e%(M3eZes + MAeiel +e§e%)

Above we have invoked (6.2) and (6.8) for the Gz and 9.G 7 terms, respectively. We
have also invoked (5.38)—(5.39) for the second derivatives of the modulation variables
and (5.35) for the Z,, term.

For the right-most estimate in (6.14), we estimate the right-hand side of (6.19),

196,6,G 9 oo S 1t G o + 213G S lloo + €T 11 ZE, oo

< M g5 + MPgem i + Mznzsge% < Mznzege%,
where we have invoked (6.2) and (6.8) for the G(Z") and BCG(Z") terms, respectively.
A nearly identical estimate is valid for (6.15). O

6.2. Forcing estimates. In this subsection, we will provide pointwise estimates on the
forcing terms Fy, Fz, Fa, defined in (3.14)—(3.16) as well as their various derivatives
(spatial and parameter).

6.2.1. Forcing estimates for (W, Z, A) and its derivatives We now provide estimates
on the forcing of (W, Z, A) and their spatial derivatives.

Lemma 6.4. For the forcing quantities defined in (3.14)—(3.16) and (3.52), the following
estimates are valid

3 3 3
IFwlloo < e¥e™ 8, |IFy llo <efe™ forl<n<3 (6.20)
~ _3 ~ 1
IFwlloe < e %, I Fwany lloo < e, (6.21)
1
| Fwanylloo S M" 7" for2=n <8, [Fgnylleo <2, (6:22)

1
1Ew,1m1 lloo Se 2! (6.23)
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Proof. We use definition (3.14) to estimate

3 s 3 5 3
[Fwlloo Se” # 1 Alloc(I1Zlloc + lle™* W + klloo) S e 3 Me(e® + M) Sy ce +°,

which establishes the first inequality in (6.20).
‘We now want to estimate Fyy, for which we use definition (3.51) to bound

~ 3. [ — —
IFwlloo < 1Bele™ Ik + 1 Fwlloo + 1Br = HIW: Wlloo + 1Gwn_ 1 llocllox Wi 1 lloo

3. 3 3 1 3 1 1 3.
Se 38 +gde ¥ rebe A+ M5 g5 4

which establishes the first inequality in (6.21). Above, we have invoked estimate (5.21)

for the k term, the previously established estimate on || Fyy || in (5.23), (6.20) for the

B: — 1 quantity, and estimate (6.1) for the Gy term, with r = —
Estimating the expression (3.39), we obtain

Wl

1P oo S e Z 1AD oo (17 oo + 751 W =l

~

+e 4S||A<">|| le i Wlp, +Kllos + e F [ Allao(IZ™ floo + e~ H W™l )
< Me_%(e_z‘ +e_1) +e > +se_1S(e_1‘ +e_1) Smee’, (6.24)

which establishes the second inequality in (6.20). To estimate (6.24), we have invoked
(5.4) and estimates (5.9)—(5.10).

We now turn to the second inequality in (6.22). For this, we appeal to the definition
(3.39)

1 _3 _s
IFy'nlloo S e 4S||A“>n%||oo(||2||oo+||e 4WILBf+K||oo)+e 4S||A||oo||z<“n1||oo

_3 —(1) ~
+e 4S||Am||oo(||w Milloo + 17Oyl )
< M2e3 (Meed®) (e + M) + M*e2e™ 35 4 Me 3563 (Meei*)30log M
1 1
SeBe 2%, (6.25)
where above we have used the inequality n: <M se%S)’ in the support of A, Z, as well

as estimates (5.9) - (5.10) and (5.12) and (3.31) for the spatial decay property of Wm
‘We now arrive at the second estimate in (6.21). An appeal to (3.52) gives

1Fw.1mlloo S 1 1y loo + 1W Way lloo + 16 T Dy 1+ 182 = 1(1W W20 oo
W0 W01 lloo) + 16w Wy lloo + 16 W11 1o
SUE oo+ WP 5 oo IWn_ oo + (MeeT)S1GY oo IV o
rebe B4 TP oo Gwn_ oo + (Mee?*) G oo [Ty 1

Io_s 3 1 30 1 30 1 3. a1 3. 3
SeB8e 2 +620 +g6e” 4% +gde” 40 +gbe” A+ M3 e5e” 40 g0,
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Above, we have used the bootstrap estimates (5.11) and (5.12) on ﬁ/, the bound (3.31)

regarding the decay of Wa), as well as estimate (6.22), which has already been estab-
lished. We have moreover invoked the previously established estimates (6.1) on the Gy
quantity with r = —% and the Gw quantity.

To prove (6.23), we first recall the definition (3.42), according to which if we pair
with estimate (6.25) yields

1 1 1 1
I Fwanylloe <1 1 oo + 1Y ool W n 1 lloo S e5¢72 + €M log Me™ S eve 2,

~

where we have also invoked estimate (6.1), and the bootstrap (5.6).

We now appeal to the definition (3.36) to perform the third estimate, (6.22). We
estimate also with the help of (6.24)

3 5.4 4 7
IFS 01 lloo S 67e™ (Meed)s = M3,
5

n—1
n . .
luz3Be Y ( ) ww iy
=™
n
n ; .
5o
; J S
j=1

n—1

:2 2 2
<Y MMt gyt
~ 2 S

n
< ZMije—sM(nH—j)z < 67,
o0
j=1

Above we have invoked the elementary inequality j> +(n+l—j )2 < —1+n?forn > 3,
and 2 < j < n — 1, as well as the estimates on GE,{,) in (6.1), and estimates (5.7) on

w, o

We now state a lemma regarding localized estimates, on |x| < ¢, which have an
enhanced scaling.

Lemma 6.5. The following estimates are valid:

~ 1 ~ ~
sup |Fiwel < Ces, sup |Fygl <e5, sup |Fwsl < Mes.  (6.26)

lx|<¢ lx|<t lx|<¢

Proof. We use the definition (3.52) to estimate via

5 6
sup | Fiw 6l S I1Fy lloo + > sup (W14 sup (WO +p2e5
[x|<¢ j=2 lx|<¢ j=1 [x|<¢

<E8%

D=

1113
+e2g5 +goe ' +¢

’

where we have invoked estimates (6.20) withn = 6, gvnd (5.14);
The identical argument applies to the estimate of Fy 7 and Fyy g. O
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Lemma 6.6. For Fz defined in (3.15), the following estimates are valid

3

[Fzlloo < e%e’, (6.27)
IFz1ll < re I (s)+e 3, (6.28)
IFS |l < eTe™ 3, (6.29)
1Fznlloo S M2 ~Tem 3, (6.30)

for2 < n < 8, where I (s) is an integrable function of s satisfying the bound fsf) [1(s")|ds’
< 1.

Proof. For estimate (6.27), we use the definition (3.15) to estimate
1Fzlloo S €™ I Alloo (¥ W + koo + 1 Zlloc ) S M2ee™,

where we have invoked (5.10), as well as (5.8).

To estimate F. é"), we recall definition (3.40), which requires us to estimate the fol-
lowing four types of terms

n
: s . . s S
Z ”ﬁte_SA(J)(e_ZW+K)(n_])||oo 5 e—S”A(J)”OOHe—Z W]le +K|| 5 Me_se_ﬁs,

j=1
" 5 9
D 1B AV ZO oo S e AV |l 2] S MeFe %,
Jj=1
K 5
1Bre™ ABse™ TW ™ log Sur g™,

_ _9
IBre ™ ABsZ ™ oo Spr g€ 7.

Again, we have used estimates (5.9)—(5.10), as well as estimates (5.7) for derivatives of
w.

We now provide the estimate (6.30). Recall the definition (3.43). For this, when
coupled with (6.29), we need to estimate further the following two terms

n
n . X ) s
||1n22,31—,32 Z ( > W(J)Z(n+]7])||oo S M2n 1 1’1226712
; J
Jj=2

n
1Y G20 oo Sap 3
j=1

Above, we_have invoked estimates (5.7) for derivatives of W, (5.9) for Z, as well as (6.2)
for the G(Z]) terms.

For estimate (6.28), we estimate all of the terms above by =3 with the exception of
_3y 1) 5 _5¢ _3g
|BrBze” 3"AW "o 7] < 10ede#[n_1 o @z| < ee” 471 (s),

where we have invoked the trajectory estimate (6.60). O
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Lemma 6.7. For F4 defined in (3.16), the following estimates are valid

IFallo S M2e™, 6.31)
[Fa1lloo < eI (), (6.32)
IFM o S M e, for 2<n <38, (6.33)
1Fanlloo S M ~'e™3 for 2<n <38, (6.34)

where I (s) is an integrable function of s satisfying the bound fsf) |[1(s)|ds" < M.

Proof. First, we estimate F4 via the definition in (3.16)

e A2 +e e W i+ ZI2 + e e IW 4k — Z)% S MPe,
(6.35)

IFalloo S

~

where we have used estimate (5.8), (5.9), (5.10), and (5.22), coupled with the fact that
M is large relative to k.

We now turn to (6.33), for n > 1, for which we consider (3.41).

n

n
1P oo S €™ Y NAD ool AP g + 275 D (||<e*% W+ 1) o + ||Z<f>||oo)
j=0 Jj=0

X ((EEW 40P+ 120 )

< MM,

Above, we have invoked (5.9)—(5.10) as well as (5.7) and (5.8).

The remaining two estimates, (6.32) and (6.34), follow in the same manner as (6.28)—
(6.30). O

6.2.2. Vg, p forcing estimates We now develop estimates regarding the d, and dg deriva-
tives of the forcing terms Fy, Fz, F4. We start with the quantities d, Fy and dg Fy in
the following lemma.

Lemma 6.8. Let n > 1. Then,

3 s 1
10 Fivlloo S Mede™ . [|Fiyglloo S &7, (6:36)
3 s 2 3 3
l0cFyy oo S e¥e™ . Iy lloe S MM eleds (6.37)
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Proof. First, we use Eq. (3.63) to estimate the first quantity in (6.37). We proceed in
order, starting with

18 Fwllso S 13:2B2e™ 3 A(BZ+ Ba(e™ T W +10) )1
+1Bee™ 0 A(BZ + Bale™IW +0) ) oo
+1Bre™ A(B30:Z + Pale™HOW + 001 ) 1
S 10213 N Alloo (1 Z oo + lle™ Wp, + Kl )
+ e A oo (1 Z oo + le™ T Wp, + o)
+ ¢ Alloo (10 Z oo + lle™ F0W oo + 12

3 3./ s 3, 1/ s _3g/ L _3, 3
S Me2ze 3 (et + M) +e Fe2(et + M)+ Mse #°(e2 +ge™ #° +88>.

Above, we have invoked repeatedly estimates (5.9)—(5.10), as well as (5.24)—(5.27).
Next, we use equation (3.65) to estimate the second quantity in (6.36) via

3 . _3.. . 1 _s _3, 5
S e #|0k| +e B k||0.T] Sede 4 +e 48,

3 3
le™ % Brock + ™4 kcd: |
1
18:Gw WP lloo < 13:Gwn_yllool W1 lloo Sur &7,
. . 1
WD 2eWloo < [ lIW V0 llooIWn_ 1 lleo S €2,

where we have invoked the bootstrap bounds (5.21), (5.24), and for the second line above
we have invoked (6.7) with r = %‘.

Next, we use Eq. (3.67) to estimate the first quantity in (6.37). Specifically,

n
19cF oo S | 3 (’;)acr'ﬂ,e_isA(j) (B2 + pate™ W 41000
j=0

HOO

HOO

n
> (rf)ﬁ,eifacA(f) (B2 + Ba(e™ i W 41007
—\j
Jj=0

9]

n
+ H 3 (”.)ﬁre—iSA(i) (B38e2 + pate iAW + 00" ) H
— \ j
j=0

2101 +02+O3.
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Bounding O, we obtain
n—1 s
O1 S Y 11 AP oo (1207 o + 5 WD)
j=1

o3 _s . 3
+ 1017 Alloo (127 oo + e W oo ) + 0217314
x (1Zlloo + ™5 W, +xlloc)

1 5 s 3 3 5 K 1 5
Syele B re i) vele (e ve ) vele P (et +1)

5 _
SM c4e s,

where we have invoked estimates (5.9)—(5.10), as well as (5.24).
We now bound O,

n—1
0r S Y e 10 AD oo (127 oo + e 7HIW )l
j=1

3 s 3
+ e N Alloo (127 oo + €W oo ) +€7310:4 o
x (1Zlloo + €™ WLg, + 10

1 s 5 s 3.1 _s s I 5. s
Syele (e B e re (eI re i) 4eZe (e 4 1)

3
Smere .

We have invoked estimates (5.9)—(5.10), as well as (5.27).
Finally, we estimate O3

n—1
3 : . s .
03 5 3 e FIAD oo (182 oo + €™ H 0. W7 )
j=1

3 _s _3
+ € Alloo (182 Nloo + €™ F 10 WP 1o ) + €™ 4™ g
_s
x (10 Zloo + €510 W lloo + [0k
1 1 3 s 3 1 S 3 s 1 3 3 3
<pye B(e2e P teled)re Pe(ele I +etel) e Xl +etet’ +68)
<pee i,

We have used the bootstrap bounds (5.9)—(5.10), as well as (5.25) and (5.26)—(5.27).
We now remark that, according to (5.4),

3 s 5 1 1 19
||aCFv(§)%||oo <ele i(Meed®)s = M3em. (6.38)

Finally, we use equation (3.66) to estimate the second quantity in (6.37). In addition
to estimate (6.38), we need to estimate the following two quadratic quantities in W

n
I Z (’f)mw(lﬂ)acw(n—j)n;()“oo < MD? ppn=j+27% .3 o3 < M—lM(n+2)28%e%s’
1 \J
j=1
(6.39)
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and similarly

n—2 n—2
n . . » .
"> (j)ﬁ,W(” Do WU oo < 1nzzzo||w<” ST TR
j:
< MO=IP U il < Mo MR gl ol (6.40)

For both of the above estimates, (6.39) and (6.40), we have invoked (5.7) and (5.31)—
(5.32).
Next, using again (3.66), we need to estimate the following two quantities

n—1
s

a1 Z( )G(" DacW D) flog S 2M20=17 e MU eieds <y eded,
(6.41)

” Z( >8 G(/)w(ﬂ ]+1) < Z ”8 G(J) 3 ”OO”W(H ]+1)nl ”oo <wu 8% %
(6.42)

Above, we have appealed to estimates (6.1) with r = % and (6.7) on Gw and 0.Gw.
Finally, according to (3.66), we need to estimate

n n
"\ B2 "\ w D =i 3
1> (j)rcﬂf > (J.)W WD 4o S €2 (6.43)
Jj=0 Jj=0
Above, we have used the elementary inequality
A+ ) +n—j+22 <—1+m+2)%forn>1,1<j <n,

and we have invoked estimates (5.5), (5.31), (5.32). Combining (6.38)—(6.43), we obtain
the right-most estimate in (6.37). O

‘We now establish enhanced localized estimates for the bottom order derivatives.

Lemma 6.9. The following estimates are valid
3

sup |F§y 5l < MESsieds, (6.44)

[x|<¢

Proof. An inspection of the proof Lemma 6.8 shows that only terms (6.39) and (6.40)
need to be estimated, with n = 7. Accordingly, we estimate

I Z( >,3 w0, w 7= /)nl loo + I Z( )ﬂ w7=Dy, W(f+1)n1 loo < €7 Mededs,
j
j=0

upon invoking the localized bootstraps (5.13) and (5.33). |
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Lemma 6.10. The following estimates are valid

3 s s
10cFzlloo < €7e™3, [IF5glloo <8773, (6.45)
10 F oo S ste™3, [IFS Moo S M " le3em s, (6.46)

forl <n <7

Proof. First, we use expression (3.55) to estimate
19 Fzlloo S el Fzlloo + €7 ||Ac||oo(||fZ W+ illoo + ||Z||oo)

— -
+ € Alloo (€751 Welloo + kel + 11 Ze o)

3 s

5 13 5 e 3 s 3 1 7
Syered+ele 23<1+84)+8e ‘Y(84e2 +¢8 +82> <y ese 2.
(6.47)

where above we have also invoked estimate (6.27) for the Fz term together with the
bootstrap estimates (5.5), (5.9), (5.10), (5.22), (5.25), (5.27) and (5.32). The first estimate
in (6.45) follows from (6.47) upon bringing ¢ small relative to M.

Next, we use the identity (3.54) to estimate

17 olloe Sat 12 oo (1062 IW oo + W oo + ||aCGz||oo) + 10 Fzlloc

s

<m e 38 (s%e% +elels +ete %) +efe? <m eie™ 2,
from which the second estimate in (6.45) follows again by bringing ¢ small relative to
M.

We now use expression (3.57) to estimate the first quantity in (6.46) via

n
1S oo S Vel IBe I FS oo + 1Bele™ D 1AL (Ba(e™3W 4107 4 B4 2= ) o
j=0

n
F1Bele™ Y 1AD (B Wt k) + 28
j=0
S 1 S

3
Se2e ¥ +ere  +ee 2,
where above we have invoked the forcing estimate, (6.29).
Next, in order to complete the estimate of the quantity || F5 , |0, We need to estimate
the remaining five terms in (3.56). The second, third, and sixth terms from the right-side
of (3.56) are estimated via

n n
Z 7| ||Z(j+1)”Oonw(n*j)”OO < Z Mz(j*'])zg%e*%SM(”*j)ze%,

j=0 j=0

" i - 2 5 2 3 3
D NZI e W o £ Y7 MPUH TR M ek,
j=0 j=0

n

j —7j 2 r s
an(/)”OOHZE" j+1)||oo§M’ 82M2(” J*D? = P <M 1+2n2 ?e 5
j=2
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Above, we have invoked (5.24), (5.27), and (5.32).
The fourth and fifth terms from the right-side of (3.56) are estimated via

n n
> 129186y o S D MU gz
j=0 j=0

n

/ =J 2 .2 3
S UG Mool 28 oo S M M1 g,
j=1

where we have invoked the estimates on Gz and 9.G z from (6.2) and (6.8). Above we
have also used the elementary inequality

P24+2m+1— )2 <—1+2n> forn>2and2 < j <n. (6.48)
O

Lemma 6.11. The following estimates are valid

1 s N 1 s
[0cFalle < €2e72, [[Fjyplloo <&%e2, (6.49)

L A

1 . 1 s
10 F M oo < 8273, [IFS oo M2 le3e73, (6.50)
forl <n<7

Proof. We appeal to the expression (3.59) to estimate

. — s 3
19cFallos S 1211 Falloo + €™ (€™ FW + kclloo + 1Zllo0 ) (€™ We + kelloo + 11 Ze oo
11 7. e 3 1 1 1
S M2g6e 4 +e S(M*s3e2® +£2 + 7).

Above, we have invoked (5.21), (5.8), (5.9), (5.25), (5.24), (5.31) and finally (6.31) for
the F4 contribution.
Next, we appeal to the expression (3.58) to estimate

1 .
[1F00 @) lloo S 110cFa 0 @Y lloo + IA¢ )||oo<|fc|||W||oo + I Welloo + ||3cGA||oo)
Se%e*% +M2e*%3<e%e% +M48%€%S+8%e%>,

where we have appealed to estimates (6.49), as well as bootstrap assumptions (5.8),
(5.10), (5.24), (5.31), and (6.9) for the .G 4 contribution.
Next, we appeal to the expression of (3.61) to estimate

n
18 Fi oo < 1l oo + €7 Y (e 3WD 41D [l + 129 00)
j=0
x (1€ FWe + k)" oo + 128 100)

<m £2e + e (1 + 7 + 8%)(8%6‘% + 8%6_%) <m 8%6_%,
where we have invoked estimates (5.7), (5.8), (5.24), (5.21)—(5.22), as well as (5.27).
The final estimate in (6.50) requires an estimate of the remaining terms in (3.60),

which is identical to that of Lemma 6.10. O
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6.2.3. Vgﬁ p forcing estimates

Lemma 6.12. For 1 < n < 6, the following estimates are valid

1 s 3 3

19cres Fwlloo < €23, [[Fyi62lloo < Me2e2%, (6.51)
1 s 3 3

10eres A oo S €763, I FS? o < MO g3 035, (6.52)

Proof of (6.51). For the computation of 9., ., Fw, we recall the definition of (3.72), and
proceed to estimate systematically
3 _s
1Bre”™ 4" Aiey (B3Z + Bale™ 3 W +1)) o
S e B A lloc(1Zlloo + 1l W+ kllo) Sar e¥e 3 (eF +1) Sy efe2,
and next

3 _s
1Bre™ 3" Ac, (B3 Ze, + Pale™ # We, +kcy))lloo

_3, _s 131 31 3
Se P Aclloo(lZelloo + ™ F | Welloo + k) S e2e 47 (e2 +e%e2 +6%) Sy ete

s
4 .

Above, we have invoked bootstrap assumptions (5.35) as well as (5.26)—(5.27), and
(5.9—(5.10).

The first term on the second line of (3.72) is estimated in an identical fashion, while
the second term is estimated via

_3 _s
|Bre 4&A(ﬁ320102 + Ba(e 4 Wclcz + chg))”oo
_3 _s
Se P Alloo(1Ze1eslloo + €™ [ Weyey lloo + 1kere, )
30005 305 5 s
<m ce i (e3ed +e2eit +oied) <m ge?,

where again we have invoked bootstrap assumptions (5.35) as well as (5.26)—(5.27), and
(5.9—(5.10).
Finally, the last line of (3.72) is estimated via
e, Br ey Fw + Tejey Br Fw + Tey Br Oy Fw ll oo

. . 5 _s 3
S 1Tl Fwlloo + 1Teier 1 Fwlloo S e%e™ % +62 Sp e,
where we have invoked the estimates (6.20) and (6.36).

Next, to estimate the remaining quantity in (6.51), we recall definition (3.69), ac-
cording to which we define the following two auxiliary quantities:

L:

BWIW,, — B2, WOW,, — (,Bfi'QW + B W, + achW) wh
Ly ==t BEWWD — i 0, pWWD — 2822 i, WW D — 2. gZW W,

so that we have the identity

Fyb6? = eyey Fw + L1+ Lo — M2,

where M€1:¢2 has been defined in (3.70).
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We first estimate £ via

. 1 . 1 1
L1000 S (1 +12DIWE ool Welloo + 12l IW oo I WS floo + ||acGWn_Tlo||oo||W£ )n%noo
1 3 3 1 3 3 41 3 5 3.
< (L+e2)MBeied® 1M eie2s + M 2eWe25+M i3
3 3
§M13aieis.

Note that for the estimation of the final term above, we have used crucially the spatial
decay of WC(I), as guaranteed b?f the bootstrap assumption (5.32), and we have also

applied estimate (6.7) with r = 5
Next, we estimate £, via
12010 S 1ZlIW lloolIWED oo + (Ieres | + 12l IW0_ 1 lloollW D0 1 lloo + 12l IW D oo | We oo
1 s 3 5 3 3
SmeZed +(cet’ +e)+eded’ Sy eed’,

where we invoke the bootstrap assumptions (5.5) - (5.6), (5.24) - (5.25), (5.32), and
(5.38).
Next, we estimate M€1:€2 via

, _3 . . Cpe e 2
M2 S e 4S<|Kc1cz|+|/<c||Tc|+|/<||Tclcz|+|i€||Tc|

Bl

~

_3( 5 3093 5 5
<ue 4‘Y(84es+84 +8364S+83>§M e8ed,

where we have invoked the bootstrap assumptions on the second (parameter) derivatives
of the modulation variables, (5.38)—(5.39). |
Proof of (6.52). We now move to the 1 < n < 6 estimates, for which we first recall the
expression of 9, ¢, F‘(; ) from (3.73). The estimate of this is identical to the estimate of
0¢,c, Fw (the n = 0 case above), and so we omit it. We now proceed to estimate all of
the remaining terms in (3.71).

n n
. i —j . i —j 5 3
1Y B2 WP WS oo S 3 12l W ol WE ™o S £ e,
j=1

j=1
- n i i " i i - 2 2 3 3
12 ( .)ﬂz WEWE oo S DIV Mool WE oo S 37 MU M=+ e3¢5,
; J ; ;
Jj=0 j=0 Jj=0

We have invoked the bootstrap assumptions (5.7) on derivatives of W, (5.24), as well as
(5.32). We now appeal to the elementary inequality

G+1D)2+m—j+3)?<m+5%>—1for0<j<n, n=>1.
We continue with
n n X n . n 2 ) 3 3
122 ( J.)ﬂfW“*”Wé,”c?)uoc S Y IW D WS oo 32 MU M= e,
j=1 j=1 j=1

and again appeal to an elementary inequality

A+ )+n—j+52 <—1+m+5%*forl<j<n, n>1l.
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The fifth term on the right-hand side of (3.71) is formally the same as the second
term, with the exception of the j = 0 case, which we estimate via
1 s 30 5 .
||,312‘L"Ci,WWC(,.n+1)||oo <wu glede1(5—50) Sy ede’.

‘We now move to the term

n n
n )y (n+1=J) () (n+1=J)
12 (j.)achW Wel™ oo S D 106Gy n_ g ool Wey™ " 1 ll
=0 j=0
<m eMedS 4 giels,
Above we have invoked (6.7) with r = 1.

‘We now move to the final three terms, which are easily estimated via

n
() yy (1= +1) 1
1Y G WS oo Sm e,
Jj=1

n
. . 3.
1Y " B2 (Gerey + 2ty o) WO W=D g <y 203 4,
j=0

where we have invoked (5.7) for derivatives of W, (6.1) for j > 1 for the Gw contribu-
tion, and (5.24), (5.38) for o, and 862 of 7. O

Lemma 6.13. For 1 < n < 6, the following estimates are valid

S c,c 1
||8c'1czFZ”oo < e, ”FZI,()ZHOO < ged’, (6.53)
s 2 5 1
18eres Y oo < €%, ISP oo S M ~gRets, (6.54)

Proof. First, we turn to the estimation of 9., ¢, F’ é”) , for which we appeal to the expression
given in (3.77) and estimate term by term via

n

— n ; s . .
1Bre™ Z <J~>A('l)<:33(e “Weie +Kclcz)(n D+ /3425'116‘2]))”00

Jj=0
n .
Set Y ||A<J>||oo(||e—z Were +keren) " lloo + 1281, ||oo)
Jj=0
<m se_s<£%e%5 + S%ES + S%e%> <wu s%e%.
Above, we have invoked estimates (5.10), (5.35), (5.37), and (5.39).

Next, the second term from (3.77) is estimated via

n
_ n . _s o o
IBee ‘Z(.)AE{ZZ(W W)+ 820D
=0 ™
n . o
S e Y NAL oo (e TFIWO ™ oo + el + 12777 o)
j=0

5 3 5
Sy ede (1 +e9),
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where we have invoked (5.7), (5.8), (5.9) (5.22), and (5.36).
Next, the third term from (3.77) is estimated via

I Bre _SZ Z < )AE{)(m(e 4Wc/+Kc Y= 4 By Z(n J))Hoo

j=0ie{1,2}

Y 1A oo (¢S NWE oo + el + 128 o)
j=0

3 s s

1 3 s
Sy €le S( ie2 + ¢4 +82) <p ce 2,

where we have invoked (5.25), (5.26)—(5.27), and (5.32)
‘We now move to the final terms from (3.77) which evaluate to

I7e, ﬂfa@Fgl) + Tey Br Ocy Fé") + fc1c2,3r én)”oo

. . 2 s
S Vell0eF ) + e 1 F oo S £de™8 46274

~ ?

where we have invoked the estimates (6.45) - (6.46), as well as estimates (6.27) and
(6.29).

We now turn to equation (3.75) for the form of F ? ;fz. We will estimate term by term,
starting with

5 s
||1n>zz< )ﬂ ﬂzW(J)Z(nCZJH)HOO < 1n>2M/ Mz(" j+D? ,9864 < M_1+2” e8ed,
53
”]">1 Z < )GU)ZE’[ZQJH)HOO ,SM g8e” 4%,

where for the first estimate above we have invoked the elementary inequality (6.48), and
for the second estimate we have invoked (6.2).

Next, we continue by estimating

539> ( )Z(H)(Tc/ﬂfﬁzW(" Dt Be W™ 406,65 Yl

j=0ie{l1,2}

j+1 . iy —j —j
§Z||Z£’”||oo(lrc|||w<" Moo + IWE oo +18:G% oo
j=0

< s/ 1 s 3 3 1 s < 5 s
SMEre 2(82e4+84e4 +84e4) M Eded,

~

where we have invoked the bootstrap assumptions (5.7), (5.24), (5.26)—(5.27), (5.32), as
well as (6.8) on the .G 7 term.
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We return to (3.75), and address the third and fourth lines by estimating
n
n i . —j .. —j —j
B (J.)zw (rqczﬂfﬁzwm D 4280, 1, 2B W O + B W
s

YY) (n—j) (n—j)
+ Z Tc,-,Br,BZWci/ ! +8c102GZ ! )”oo
ie{l,2}
n
j+1 : —j . 2 —J (n—j)
§Z||Z<f+>||oo(|rclcz|||w<n Moo + [P IW O oo + [ Were,” oo
Jj=0
. (n—j) (n—j)
+ 12l IWe" oo + 1001e,Gy ||oo)
M e_%s(ses teei +eledt eied +8%€%S) <M elei.

Above, we have invoked (5.7), (5.9), (5.24), (5.32), (5.37), (5.38), as well as (6.15) for
the d.,¢, G z contribution.

This concludes the treatment of the terms from (3.75) and hence the proof of the
lemma. O

Lemma 6.14. For 1 < n < 6, the following estimates are valid

EX LC 1.
19cic; Falloo < g€¥, [IF5 57 oo < £€7°, (6.55)
s 2_ 51
18eyes F oo < ge¥, [ FE2 og S M2~ gRets, (6.56)

Proof. First, we use expression (3.80) to produce the estimates

where we have invoked estimates (5.8), (5.25), (5.26), (5.31), (5.35), (5.37), and (5.38).
For the last line from expression (3.80), we have

. . . . . _s _s
||Tc1cz,3tFA +Tcz,3tac1FA + fclﬂraczFA” S |Tc1cz|||FA||oo + 17|10 Falloo S, Mee % +¢ce 2,

where we have invoked the forcing estimates (6.33) and (6.50). This contribution is

clearly bounded by ¢ femd by bringing & small relative to M.

Next, we move to the second estimate in (6.55), for which we appeal to the expression
(3.78). However, these estimates are exactly analogous to those of Lemma 6.13, estimate
(6.53), and so we omit repeating these estimates. The estimates for general n, (6.56) also
follow analogously to Lemma 6.13. O

6.3. Trajectory estimates. In this subsection, we provide estimates on the trajectories
associated with the transport structure of the Eqgs. (3.17)—(3.19). We now define these
trajectories via

AP (s) =Vw o @Y, Dy (s0) = xo,
A DPF () =Vz0d7, DY (s0) = xo,
AP (s) =Vao @), @Y (s0) = xo.
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Lemma 6.15. Let ®(s) denote either &), O3 (s) or @, then for |xo| < %&‘_% we

have

[

2M s,
@70 s)] < e 6.57)

As a consequence we obtain
3
supp W(s) U supp Z(s) Usupp A(s) C B (ZMseZS> , (6.58)

which verifies the bootstrap assumption (5.4)

Proof. We restrict to the case ® = ®1). The cases ® = &3 and ® = @7 will follow
in an analogous fashion. Recall that for ® = @} we have

5
0, = Z<D+/3TWod>+GWod>.
As a consequence of (5.4), (5.5) and (6.1), we have

IWilao + 1GW e < M5eSed +ef < et (6.59)

~

Thus by Gronwall we obtain we obtain (6.57).
The support bound (6.58) follows directly from (4.7), the defining Egs. (3.17)-(3.19),
together with (6.57). |

Lemma 6.16. Let ®(s) denote either CDEO (s) or CIDX’, then for |xg| < %8_% we have
|®*0(s)| > min(e%, ed — e%)for some sy > 0. (6.60)
Proof. We first show that if ®(s) < el , then we have the inequality
0 s
—D(s) < —ed. (6.61)
as

For notational purposes, we set (j, GZ) = (2, Gz) or (j, GZ) = (1, G 4) for the cases
D (s) = P (s) or D(s) = P, respectively. We then have the ODE

5
0P = Zd>+,8r,3jWo<I>+God>.
Note that since o > 1, then |,8 j] < 1. Assuming ¢ to be sufficiently small (dependent
on «), then applying (5.23) yields B;8; < 1. Then if ®(s) < e, we have from (5.5),
(6.2) and (6.3)
i+ 201 0 ®(s) = (1— Bi)koet +s2ed
et — (1 — ,Bj)K()e% +8%€%,

where we used (6.60). Since (1 — ;) > 0, then assuming ko is sufficiently large,
dependent of «, we obtain (6.61).
We now split the proof of (6.60) into two subcases:
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1. Either ®(s) > et foralls € [s0, 00), or xg < 0.
2. We have xo > 0 and there exists a smallest s; € [sg, o0) suchthat 0 < ®(s1) < et

Consider first Case 1. Note that ®(s) > el directly implies (6.60). If xo < 0, then
(6.61) implies that ®(s) < —el + 8’% and hence (6.60) is satisfied for s, = —loge.

Now consider Case 2. The estimate (6.61) implies that % D(s) < —ei forall s > S0-
Thus by continuity, there exists a unique s, > so such that ®(s,) = 0. By continuity,
there exists s, > s1 such that ®(s,) = 0. Then as a consequence of (6.60), by following
trajectories forwards and backwards in time from s, we conclude that

|®(s)| =

’

for all s € [s1, 00). For the case s; # so, then if s € [s0, s1) we have by definition that
|®(s)| > ei. Thus we have (6.61). O

Lemma 6.17. For any |xo| > £ and so > —log e we have
X0 1 s
Dy > |xoledes. (6.62)

Proof. Using W(0, s) = 0, (5.23), (5.20), (5.21) and (6.1) we obtain

5
Vwx = sz +xB: W+ Gwyx

5

2 | (M)

2 (3wl o)
1
5

1 3 13
zxz(Z—Ze_‘*s —gbe ¥ > —,

where inequality we used that |x| > £ > et and so is taken to be sufficiently large.
Thus we obtain

d 2(P3)2
- (D10)7 = 2V (P10 D0 > ( 5w) . (6.63)
and hence (6.62) follows by Gronwall. |

7. Analysis of Modulation Variables

In this section we close all bootstraps related to the modulation variables «, & and 7,
together with the quantity .

7.1. Modulation variables and their time derivatives. The following lemma verifies the
bootstraps (5.22).

Lemma 7.1. The following estimates are valid

Ik — kol S &%, | —kol Se. (7.1)
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Proof. We integrate

t
. 9
() = kol < / Kl < et

1—e

where we have invoked (5.21).
For &, we rearrange (3.23) to obtain

Br€ = Pric — e T+ B rZ (0, 5).

Estimating the right-hand side and using that 8, > % on the left-hand side yields

€ — kol S Ik — w0l + e Hul +11Zlloo S €3 +ee™ +ed,
where we have invoked the bootstrap bounds (5.21) and (5.9). |

The following lemma verifies the bootstraps on 7, the second estimate of (5.21).

Lemma 7.2 (7 Estimate). The following estimates are valid,
1] < M2e™.
Proof. We rearrange the first ODE equation, (3.45), to obtain the following estimate
7] < 1(1 = DIIGY (5. 0] = [(1 = D[l WP(s, 0)] + (1 — D)[|Fy (5, 0)]
< M?e™ + 8%€_¥ + s%e_s,
where we have invoked the second estimate in (6.1), the bootstrap bounds (5.21), (5.17),
and the second estimate in (6.20) to estimate the forcing. |
The following verifies the bootstraps on u, the first estimate on (5.21).

Lemma 7.3 (u Estimate). The following estimates are valid,

N

|l Sme.
Proof. We rearrange (3.49) for 1(s), yielding

4

AN . 4
g u(s) = —108:4Pq® -y (j)G(VJV)(o, g5 + F (s, 0). (7.2)
j=2

We use the bootstrap that |¢ ) (s)| > % (5.19), to estimate from below the denominators.
We then estimate the right-hand side via

3
4 j _j 4 4
1l S 1g@1g@ 1+ > (J.)|G%§)<o, gC =P +1G 0, 9)] + [ F 0, 5)]
Jj=2

N N

<wu Pt LINDRL LIPS S<me?,
where we have invoked (6.1) with j = 4, and (6.20) for the F‘S;) term, as well as the

decay bootsraps (5.17) on ¢, g . O
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The following lemma verifies the bootstrap (5.21) on «.

Lemma 7.4 (x Estimate). The following estimates are valid,

Proof. We rearrange Eq. (3.45) to obtain

3 3 3
| < (1= )led* || + (1 — D)]e | Fw (0, s)| < 266 +£7 < Mes,

where we have invoked bootstrap (5.21) for the u estimate, and (6.20) for the estimate
on Fy. a

7.2. Vy g derivatives of modulation variables. The following lemma verifies the boot-
straps in (5.25).

Lemma 7.5. Let ¢ € {«, B}. Then the following estimates are valid

lw

. M 1
kel S €%, |‘§c|§?82‘ (7.3)

Proof. First, we have for every —e <t <0,
t

t
) = | [ dek(ydr'| < f

—& —&

L oLoahy g N VAV 3
gre2’dt < e’ e ds’ S g1,
50

where we have used that ds = ¢~ dr, and the bootstrap assumption on k. in (5.24).
We now compute 9. of Eq. (3.23) to obtain the identity

fe = TPt — e3EcPe + etk P + PePret Ze(s, 0), (7.4)

which upon rearranging for &., we obtain

D=

. s s, 1 _s 2 1 FY
Bl S e el + e H Tl + kel + 1 Zelloo S MPPeZe 2 + e3¢5 +62 +62 < —e2,

M 1

—e

2

where above we have invoked the bootstrap assumptions (5.24) for d. of the modulation

variables, and (5.26) for 0. Z. |
The following verifies the first bootstrap in (5.24).

Lemma 7.6. Let ¢ € {«, B}. Then the following estimates are valid

M33

Bl

1
g2e

el <
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Proof. We take o, of Eq. (7.2) which produces the identity

g ue = —qPn —107.2¢%q® - 108: (¢ + 4?4

4
4 . . . .
-3 (J.)(Gif,)(o, 998 +8.G 0.4 ) + 0. FP0.5),  (15)
j=2

where we recall that q(j )(s) 1= W0, s), according to (3.44). We now estimate each
of the terms on the right-hand side above.

el S 19Nl +12:1g@11gP 1 +1g2 19D + 1142

4
() 5-7) () 5—j 4)
+> UG 5. 0l1ge oo + 106G Noolg 1) + 10 Fyp lloo
Jj=2
< efe™3 4 etem 3 4 MWeie i 4eled 4 MIBeiom 1
1 S 3 k 1 S
+ MPele i teie s < M32e2e i,

where we have invoked estimates (6.1), (6.7) for the G(v{}) contributions, and (6.37) for
the forcing term, (5.21) and (5.24) to estimate p and 7., as well as the estimates (5.17),
(5.28), (5.29), (5.30) to bound the terms involving q. We have also invoked bootstrap
(5.32). O

The following verifies the second bootstrap in (5.24).

Lemma 7.7. Let ¢ € {«, B}. Then the following estimates are valid

. 11
|Te] < 582
Proof. We take 9, of Eq. (3.46) to obtain
Br(1+ Bet)te = 3.GY) (0, 5) — 1eg® — ug® + 9. F (0, ). (7.6)

We now estimate the right-hand side above via

1 2 2 IWI o0
1(7.6)] < IIBCG(W)Iloo + leellg @1+ 1llg? |+ 119e vl
2 1 s 3 s 4 Tem i i
S M eiem i+ MPe3e™S 4ol e Su et

where above, we have invoked estimate (6.8) for the 0.G (ul,) contribution, bootstraps
(5.21), (5.24) for the u, . estimates respectively, bootstraps (5.17), (5.28) for the
q?, qéz) contributions respectively, and finally (6.37) for the o, F’ ‘5‘}) estimate.

Finally, to conclude, we estimate the prefactor on the left-hand side of (7.6) from

below

W

7
Be(1+B:T) > g(l = Bl =

The following verifies the third bootstrap in (5.24).



246 T. Buckmaster, S. Iyer

Lemma 7.8. Let ¢ € {«, B}. Then the following estimates are valid

. 1 s
|ke| < 58462.

Proof. We compute 9. of Eq. (3.45) to obtain the identity
3 3
Beke = e’ e — kBric+ e 0. Fiy (0, 5), (7.7)
upon which estimating yields
. 3 s 3 33 g 108 3 s Lo
kel S e lpel + [klITe] + e [0 Fwlloo S M7 e2’e2 + 68 + Mete? Sy e2e?,

where we have invoked the bootstraps on the modulation variables, (5.21), (5.24), as
well as the forcing estimate (6.36). |

7.3. Vi 8 derivatives of modulation variables. The following verifies the bootstraps in
(5.39).

Lemma 7.9. Let ¢; € {«, B} fori = 1, 2. Then the following estimates are valid
305 : 75
lkcie,| < M2e%e’, [Ecic,| < M2eie’.

Proof. We have to integrate
t : 2.3 25’ —s' 2.3 5 K
[keyer| = | Keyey| S | M7eie™ e ds' = M g4 (e’ — e'),
1—¢ S0

where above we have invoked the bootstrap assumption (5.38) on k¢,c, .
Next, we want to obtain an expression for &, .,. For this, we differentiate the expres-
sion (3.23) which produces the identity

. . B s S s S
Mcic, = /ST‘CCZMC] + ,Brfcl ey + tC]CzﬂTI’L - 34,31‘50162 +e4/3‘L'KC1C2 + ,3113264Z6102(ss 0),

which rearranging for &, gives

. _s . .
ey, | Se A teyer | + 1 Telltee] + [ Terer 1D + lkeres | + 11 Zeyes lloo
s 5 5 s 7 5 22 5 s
Se 4 (Mgies® + MPBee 5 +66) + M3sie® + MY g8ed
5
< M3gies,

where above we have invoked (5.38)—(5.39) for the second derivatives of the modula-
tion variables, (5.24) for the 7. term, (5.21) for the u term, and (5.35) for the Z.,
contribution. O

The following verifies the bootstraps in (5.38) on u.

Lemma 7.10. Let ¢; € {«, B} fori = 1, 2. Then the following estimates are valid

M s s
|Mclcz| =< ?8454 .
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Proof. We differentiate equation (7.5) in 9., to get

q(s)ﬂclcz
5 5 . . . 2 3
= —48 tey — a8 1 = 10ie p + 2, i) 820 Pa D — 1082, (4P g™ +4Pg$)
(7.8)
3) (@2 2 3 4 () (5-j
- IOﬁz(qc(;)qgi,) +404 +qPq8)) — > (j>(3chv{/ (s, 00g5 " (7.9)

j=2
. i . i S B )
+GP65,0085" 496,69 (5,045 +00,6,65 7 (5,005 D) + 8,0, FY (5, 0.
(7.10)

We now estimate all of the terms above, line by line, starting with
17.8)] S W2 oo ltel + W lloo 2]
: . 3 :
+ (el + 12 1gP1g® 1+ 12:110gP 11g D1+ 1P 119D
5 s 5 3 3 1 _7 1 3 _s 3 _s 5 3
Sy ere2 +e3ed’ +(ce?’ +e)el0e 4% +e2(gde 4 +e5e 4) Sy eded’,

Above, we have invoked (5.32), (5.37) for the WC(S), Wc(l5 c)z contributions, respectively,

(5.21), (5.24) and (5.38) for the estimates on the modulation variable, (5.17) for the

decay estimates on g?®,¢®, and finally (5.28) and (5.29) for qéz), q£3) estimates.

Next, we bound the terms in (7.10)

4

| .

171001 < g 1P 1 +1aD1a 2,1+ 1P 11a8, 1+ D 10:6 (5. ONWE oo
j=2

< eiels 1 eled v
where above we have invoked estimate (6.7) for the transport term, as well as the boot-
straps (5.17), (5.28), (5.29), (5.37) for the ¢, ¢® quantities (and their derivatives in
c).

Lastly, we estimate the terms in (7.10)

4

. . . . .

17100 £ Y UGH ool oo + 183G oo IWE ™ lloo + 18¢1¢, G lloo)
j=2

4
+ 19eres Fy lloo
3 s 5 s 5 s K
Smele? +ere? +e8e2 +ge?,
where we have invoked estimates (6.1), (6.7), (6.13), and (6.52). |
The following verifies the bootstraps (5.38) on 7./, .

Lemma 7.11. Let ¢; € {a, B} fori = 1, 2. Then the following estimates are valid

1 3
|fclcz| S _geZS_
2
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Proof. We take 9., of Eq. (7.6) to obtain the identity

Br(l+ Bet)teic, = —B2(1+ Brt)ie Ty — Bitterte) — Boterte) — 8e1eaG i (0, 8)

1
— teresq® = 1eq2) = 1 E), + Berer Fiy (0, 5). (7.11)
We now estimate each of the terms on the right-hand side above via

. C 2 e ) 1 2 2
terenl S 12l + (1] + DIz + 186, G W oo + 1P N itere0] + 11l 1g 2]

2 1
+1IW2 oo + 106162 Fy lloo

cier
5 s 5 s 5 s 3 3¢ s
Sy e+eBel +edel +ede? +eded +gel,

where we have invoked estimates (6.13) for the G 541/) term above and (6.52) for the

F é‘} ) term. We have also invoked (5.24), (5.38)—(5.39) for the modulation variables, and
(5.37). O

The following verifies the bootstraps on K¢, , the second estimate in (5.38).
Lemma 7.12. Let ¢; € {«, B} fori = 1, 2. Then the following estimates are valid

2

. M= s 2
|Kc‘162| S 7846 S~
Proof. We compute 9., of Eq. (7.7) to get to
. 2. . 3¢ N ST 3
|IBTKL‘|L‘2| =|- lgrfc,-’(ci/ +e4 Ueie, — ZKﬁrTc'|Tcz +e4 aqczFW(Oy )|

3 s 5 Sso 1S 5
Selel + MeTe™ +ee2 48275 < MeTe™,

where we have invoked estimates (5.24) for the first derivative of the modulation variables
in c, (5.38) for the ¢, term, and estimate (6.51) for the 9., Fw term. |

8. Analysis of Z and A

For this section, we consider the equations for Z and A given by (3.9) and (3.10). We
begin with the lowest order estimate, for which there is no damping, in which we verify
the first bootstrap assumption in (5.9).

Lemma 8.1. The quantities (Z, A) satisfy the following bounds

2n? 5
e % for 1<n <8, (8.1

2

1Zlloo < 263, [ZM]lo <

AW W

M2 5
[Alloo < =Me, A < e for 1 <n <S8, (8.2)

which thereby verifies the bootstraps (5.9) and (5.10).
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Proof. An application of the Gronwall lemma coupled with estimate (6.27) yields the
estimate

A

S
1Z(Pz(s,x), $)lloo < 1Z(x, 50) 0 +/ | Fz(®z(s", x), ) loods’
50

IA
()

ls (s o, 35
—ed + gde " ds’ < —¢4,
. 4

S0

which establishes the desired bound upon invoking that ®z(-, x) is a diffeomorphism
for all s > s9.
According to (3.34), we calculate

s Sn 1) ’
- w Pzd s 1
. L0(4+"ﬂrﬁz ) 2 =R 5=s0) g Sy B2 W Doz
s
— [
<e "lgrﬁ2fx0 7)_%0 Zeisil(sim)
e
< C,,e 7 (s so)-

Using this estimate, coupled with (6.30), the Gronwall lemma, we estimate forn > 2,

10 s 10 ,
1ZM(D7(x, 5), 5)| < Cple™ 2020 (50, x)| + C, / le” 76 Fy, 0 dz|ds’
S0

IA

3 _3(s—s0) ’ W0y g 2m—1 =35 3
Cpede 4 +Cy, e 4 M e 4 ds
S0

MZn

e 4%,

IA

We now perform a similar calculation for n = 1, using estimate (6.28) in place of
(6.30). For the A estimates, the identical arguments apply using Lemma 6.7. O

Lemma 8.2. For 1 < n <7, we have the following estimates on Z and A

A

1
10:Zlloo < =£2, 8.2

IA

1
e2, [0:A™oo

A
=N =

119 Alloo

IA

which thereby verifies the bootstraps (5.26)—(5.27).

Proof. This follows immediately from Gronwall, upon invoking the two right-most
estimates in (6.45)—(6.46) for Z, and similarly (6.49)—(6.50) for A. |

Lemma 8.3. For 0 <n <6,
1 s 1 s
1906 2" lls0 < 5MP eRet. JaeA® oo < MP edel,

which therefore verifies the bootstrap assumptions (5.35)—(5.36).

Proof. This follows immediately from Gronwall, upon invoking the two right-most
estimates in (6.53)—(6.54) for Z, and similarly (6.55)—(6.56) for A.
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9. Analysis of W atx =0

In this section, we analyze W and higher order derivatives of W at x = 0. While
q(o) (s), q(l) (s), q(4) (s) are constrained from (3.3), the quantities q(z), q(3) and q(s) are
not constrained and therefore must be determined through ODEs in s that they obey.

9.1. ODE analysis of ¢, ¢®. In this series of estimates, we use the crucial inductive
assumption, (4.9), in order to integrate backwards the flow. First, we rewrite the ODEs
in the following way:

3 1
0 =P =FO), 05— 9% =FIGs). ©.1)
where
FO =38, — 1)q<2> —1g® 2630, 5)¢? =G 0,5+ F 0, 5), 9.2)
FO = 4B, — g™ =360, 59 = 3B:19P > =3G7(0,5)¢® — G (0,5) + FS (0, 5).
9.3)

and we recall the notation ¢ = W (0) specified in (3.44).

We first prove lemmas for the particular quantities W( ) By (0, s) and W(SV) By

0, s).

Lemma 9.1. Assume that WQN) ©,sy) = 0 and W

s By 0, sy) = 0. Then, for all
S0 <5 < SN+1, the following estzmates hold:

IFOI < MBe™, |FOI<MBe™, 5o <5 <snii (9.4)

and in particular, this implies that
M9 3 M19
O.9)] = e Wyl s (0.9)] < ——e™ so =5 <syar. (95

an,BN

|W(2)

an,BN
Proof. The decay estimates (9.5) follow upon writing the Duhamel formula associated
to the evolution of (3.47), and crucially using the vanishing at sy:
S o3 / S ’
W, 0.5) = / AOFD(as', W, (0.5) = f 0 FO () ds'
SN SN
(9.6)
We will thus focus on proving estimates (9.4), starting with
1 2 2
IFN S 1B = Hg@ 1+ 11llg D1+ 161 lloclg @1+ 16 lloo + 13 o
< £15e72% + M¥Vsse™15 4 M2eT0e™ 75 4 MBe™ 4o < MBes,

where above we have used estimates (6.1) for the transport terms Gy, and the estimates

(6.20) for the F‘g) term. We have also invoked (5.17), (5.21), and (5.23).
‘We now move to

1 2 3 3
IFO < 18: — 1]1g®] + G )||oo|q<3>| +1gP)% + ||G( )||oo|q<2>| 1 lloo + I1FS lloo

1 7 1 7 _ 3 _
< MPesema8 4 MPe? S 4 eSem2 ¢ MBeToe 15 ¢ M1Be™ 4 gie

5 M]Sefs’
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where we have invoked estimates (5.17) for the g @, q G quantities, (5.23) for the | 8; — 1|

estimate, (6.1) for the estimate of Gg/‘l,), GE)‘Z,), G(u3,), and (6.20) for the forcing estimate.
To establish (9.5), we appeal to (9.6) (which holds for all values of s)

S o3 / , 3 7 7

|WO(“2V) gy (0.9)] Sf eI M ds’ < MBeds (e_ﬁs +e_ISN> < MBS,
’ SN

forallsg < s < sy+1, Wwhere we have used that sy,; —sy = 1 toestimate e*N+le 7N < e,

A similar argument applies to W(SV), By (s, 0). O

We now verify the bootstrap assumptions (5.17), which apply to every («, ) €
By (en, BN)-

Lemma 9.2. The following estimates are valid uniformly in the parameter set By given
by (5.2)

1 ; M40
W0, 5)] < zs%e—%& WO O.) < e,

Proof. We use the fundamental theorem of calculus in the space of parameters via

2 2
IWéfg(O,s)l5|W§;,ﬂN(0,s)l+|a—aN| sup |9 W@ (0, 5)[+ 18— Byl sup [95WP (0, 5)]
’ acBy BeBy

< M%S + (M3Oe*SNe*%(SN*SO) + 8%efszv67%(swfso))4e%(5'750)
+ M0V =5 (5N =50) . ] o3 (5—50)

I 13
< —gToe™ 4%,
-2
where above we have used that sy+; — sy = 1, coupled with the particular estimates
(9.5), the two left-most bootstrap bounds in (5.28)—(5.29), and the assumed size of the
parameter rectangle in (5.2).

Similarly, for the quantity Wf) , we have

3 3
W50, 9)] < WS

ay, By

0,9+l —ay| sup 18 WS 0, 5)+18— Byl sup 195w, 5)]

O[EBN ﬁEBN
3 1 1 1 1
< M% & <M30e_‘we_1(‘w_s0) +gge—sNe—f(sN—so))ejej(S—X())
+ M30o—5N o= 3 (5N =50) 43 (s—50)
M40
< —e .

2

Again, we have invoked the particular bound (9.5), the two right-most estimates in
(5.28)—(5.29), as well as the size of the parameter rectangle in (5.2). |

Finally, we are left at estimating W (0, 5), and in particular to verify the bootstrap
assumption (5.18). As a result, we write the ODE evolution for this quantity, Eq. (3.50),
as

05 = F©, 9.7)



252 T. Buckmaster, S. Iyer

where
5 /5 4 ‘
FO = —ug® + (1= pg® — 10lg@ P = Y (j>G(v{/)(0’ g+ FJ 0, 5).
- (9.8)
We now verify the bootstrap assumptions (5.18).
Lemma 9.3. The following estimate is valid for the quantity § (s)
79| < e, 9.9)
Proof. We use (9.7) to integrate
79 (s) = 7 (s0) + / " FOW) ds, 9.10)
S0

and we estimate the F term on the right-hand side via

IFO| < el 4683 4 10M30e™ e~ 4ede™ <efe 1. (9.11)
Above, we have used the bootstraps (5.21) on p, inyoked estimate (6.20) to control the
forcing term, (6.1) to control the transport terms, G%{,), (5.23) to estimate the 1 — B, term,
estimates (5.17) for the ¢ @), q(3) terms, and finally (5.14) for the g ©) term, coupled with
the fact that W' (0) = 0 50 ¢© = §©.

Next, we estimate the initial data via appealing to the specific form of (4.1) and also
the parameter bootstraps, (5.3)

17 (s0)| = W (0) +@d (22 x (1xD)(0) + B3 x (Ix ) (O)] < la| + 18] Ss e

9.2. ODE analysis of V. pq"™ for n = 2,3,5. We start with the two formulas, which
importantly, are valid for all values of the parameters («, 8) € B,:

N

¢@(s) = W (0, 5) = ¢TS50y 4 / 16— F@ (1) dy, 9.12)
50
N

gD (s) = WR(0,5) = 2608 4 / 26~ FO (5 s, (9.13)
50

where the forcing terms are defined in (9.2), (9.3). We differentiate the above expressions
in o, recalling the notation that g, := dyq and gg := dggq

)
g = 360 4 [ 3679, FO (s ds', (9.14)
S0

N
® = / 269, FO (s ds’. (9.15)
N

50
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Similarly, differentiating in § yields the expressions

N
qéz) 2/ 163, FO (5 ds’, (9.16)
50
N
‘1,(33) — ¢2(5=50) +[ e%(sfsl)aﬂfm(s/) ds’. ©.17)
50

Third, by integrating (9.7)—(9.8) we have

s
G =G (s0) + / 3 FO (s ds'.

S0

We now write the expressions:
0. F? =3t.p29P +3(B: — DN — peq® — pg® - 20.G) (0. 5)¢?
2G4)(0,5)g +3:Fy (0, 5) +8.GY (0, 5), (9.18)
and
9. FD =4p2¢D ¢, + 4B, — g —30.G)(0,5)¢® —3G)(0, )¢

— 3872l = 6.9 = 30.G) 0,59 = 3G (0. 5)¢
+3.G5)(0,5) + 3. F(0, 5), (9.19)

for ¢ € {«, B}. We also record, by differentiating (9.7), the expression

0FD = —peq® — ugl® - B7ieq® + (1 = Br)g® =204V
- Z( )(a GP 0,999 + G (0,59°7) + 8.6 (0, 5) + 8. FS (0, 5).

(9.20)

Lemma 9.4. The following estimates are valid on the quantities defined in (9.18), (9.19),
(9.20)

5 5 3
0. FP| <68, [0.FV| <65, [3.F| <es. (9.21)
Proof. We now estimate each of the terms in the forcing above in (9.18):
. 2 1
18 F D1 < liellg@ 1+ 182 — 11821+ 1ellg® 1 + nllgS 1 +10:GY) 0, )11 @)
1 2 2 2
1600, 911gP1+10.FL 0, )1 +13.62 0, 9)]
e A odg L 3p o Losg AL Lo 3 s 3 s lo_s 3
SpmeZe 3 +ebe 4% +e2e 40 + 612 +g2e” +ede 4 +ede 4 +e2e 4 Sy ed,
(9.22)

and similarly, we estimate
. 1 1 .
10:FD] S g zel + 18 — UIgP ]+ 110:G 0olg @1+ 1G 11621 + 12c11g P2

2 2 3 3
+1g@1g@ 1+ 186 21Mg® 1+ 1GP 1121+ 10.G) 11 + 18 FS |
1 11 1 5 3 s 1 3
Spye2e +el2 +e2e¢ 4 +gre 4 +g2¢ 2°

s

3001 53 1o 1 _s 3 _
+et+g2e ¥ 4l 4 tg2e T +gheTd

Sum £3. (9.23)
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In both estimates above we have invoked the bootstrap estimate (5.21) on u, the estimate
(5.23) on |1 — B;|, the bootstraps (5.24) on the 7., i, terms (5.17) for the decay estimates

on ¢@, ¢®, (5.28)~(5.29) for the estimates on ¢.>, ¢*>’, and finally (6.7) and (6.37)
for the transport and forcing terms, respectively.

From (9.22) and (9.23), we can take ¢ small relative to the implicit constant which
depends on M to conclude that

0. FP| <3, [9.FO| < et
Finally, estimating 9. Fs yields

10:F5) S 1itellW Ol + 1lIWO lloo + 1211g DT+ 11 = B 11651+ 1¢P11gS|

4
j —j j 6—j 5 5
+ 318G lloolg ® 1+ 1G5 100 W™ lloo) + 110G lloo + 18 F lloo
,'—1

11 3 s

1 1 _3 3 s 3 s L s 3 _

<m 828 T4eT 462 +ebe (1 +e8e8)+ede 4 +gle 4 +g4e 4
s 3 s

+82€ S P

1
Swme2,

from which we can conclude |9.F (5)| < S%, establishing the final estimate of (9.21).
We invoke the same set of bootstraps as in the estimate of d.F @, 0. F ©) above, and in

addition we invoke (5.30) on the estimate of qc(s) and (5.32) on the WC(") quantities. 0O

Corollary 9.5. The following estimates are valid

4@ —etebs| < eleds, 4@ < %g%e%s, 9.24)
1 ,

|q(3)| < 25653, |q;33) — s%ei| < ee%s, (9.25)
131,

701 < 5e gieds. (9.26)

In particular, this verifies the bootstrap estimates (5.28)—(5.29), and (5.30).

Proof. For (9.24)—(9.25), this follows immediately upon combining estimates (9.21)

with the expressions (9.14)—(9.17). For the estimate on q( ). we need to use that

38 (s0) = 8li=o(x*x ) =0,

35 60) = 03lumo (¥ x ) = 0,

according to (4.1). O
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10. Estimates for W

In this section we will verify various pointwise bootstrap estimates on W, solving (3.8),
and derivatives thereof. The main objective is to verify the bootstrap assumptions (5.5)—
(5.7), (5.20), (5.13)—(5.16), (5.31)—(5.34), as well as (5.37).

The following lemma verifies the bootstrap (5.20).

Lemma 10.1. The following estimate is valid on WV
o € a0 —s
(W <1+ §M e,

which in particular verifies (5.20).

o . 1 _1
Proof. We subdivide into three regions |x| < £, £ < |x| < ¢” 4 and |x| > ¢ 4. In the

. . _1
middle region ¢ < |x| < & 4, we have

. - £7 - 67
WO, )] < W)+ WD @, s) < 1— STV =1 - o +es <1,

where we have invoked (3.32) to bound |W(1)| above in this region, and the bootstrap
(5.12) which is also valid in this region.
In the far-field region, |x| > ¢, we use
WO = M) Sur (6795,

In the region |x| < ¢, we obtain by a Taylor expansion of W1 for some |x,| < £.

2 4

WO (x,5) = =1+ W0, 5)x + W0, s)% + WO (x,, s);—4
WO 9x WO 95 TV ) 4 O (e ) 5
2 24 24

(—1+ W )ﬁ WO x s)£|)+ w® 0, s)x + W0 s)ﬁ
*04 7004 ’ )

A%

M4O
> —1 +EM40€_S +EZT€_S.

Above, we have used property (3.30) to assert that w® (xx) > % via a further Taylor
expansion:

) w7

—5 —5 —6 1
W ) = W 0) = el [W oo > WP0) — €t > >

in which case we use (9.9) to bound

x (—(5)
24

W () — WO (x,, s>|) >
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We now collect various estimates on damping terms. To do so, we first make the
following definitions.

1

D, = Z(—1+5n)+/3t(n+1,,>1)W(1), (10.1)

~ 1 —

Dy = Z(_l +35n) + B¢ (W(l) + VlW(l)) , (10.2)
Sn—1

D¢ = ”4 +(n+ 1B WD, (10.3)

1
Dy i= Dy = n_g Vg = 2 (=145m) + Be (1 + L)W —n_s Vs,
(10.4)

~ 1 —(1
Bur = Dy —n_gVwdiny = ;(=1+5m + B; (W( ) +nW(”) — 1 Vs,
(10.5)

. . S5n—1
Dy, = Dy —n_tVwd: = o+ DB WD — n_tVwdn:. (10.6)

We now state various estimates on these damping terms.

Lemma 10.2. Let |xo| > €. Then, for D € {Dg, D5}, D € {D, %,50_%}, and for
n > 72, j > 1, the following estimates are valid

1
D> —, 10.7
Z 3 (10.7)
S _ 1
—/ Do @y < %logM, (10.8)
S0
D P < 1( )+11 M (10.9)
— . n’%o W_—9S—S0 50 og , .
N ]
—/ W o @l < —log M, (10.10)
s 50
y c X0 1
_ /SO D,-,g o @y < < log M. (10.11)
Proof. First, for (10.7),
Be = L(—1+30)+ p (W‘“+6W“>)>1—6|1—,3|>l (10.12)
4 T =2 Tl = 8' .

where we have used that W(l) > —1,(5.20) and (5.21). An analogous estimate applies
for the DS term.
We turn now to (10.8). By a simple calculation, we have

~ —) 3

=W "+ ! + a
= pr -1t n-18w,
3

—(1) 4x
4= Be(W "+ Wy —p_y — < 18w

=

=
u4>
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Observe, that for either the case D, = 50,_% , 51’%, we have from (5.5), (5.6), (5.23),
6.1 \

|Dy| < 3tlog Mn_1 +n-1(1+ x| (IW[+|Gwl)

54610gMn_%+IXIn—1( logMn 1 +n1)

1000
< 6llogM.

Thus, using in addition (6.62), we have

5 K
_/ Dq e} q)/;‘(}(s/) ds/ < (Y4 IOgM/ (n_%(ggéeés) +e—s> dS/
K s

0

1
§6ﬂlogM(ZOlog€_1) < %logM. (10.13)

The same calculation establishes estimate (10.9), (10.10), (10.11), with minor modifi-
cations. O

10.1. Transport estimates for W. We now prove a uniform estimate on W© in the
region |x| < £. We will prove the estimates along trajectories originating at |xo| < £.
Note that no trajectory originating outside the ball of radius £ may enter the ball of radius
£. This is a consequence of (6.62). The following establishes the bootstrap bounds (5.14)
- (5.16).

Lemma 10.3. The following localized estimates hold in the region |x| < £

~ 1
W < 5(|x|"’—’ﬂe% +e2) < €55, forn=0,...,5, (10.14)
~ 1

WO < 58%, (10.15)
-~ M

W7 < 78%, (10.16)
o < ML

WO < -, (10.17)

Proof. Composing with the flow we have

d [~ ~ ~ ~

75 ( © 4 CD)‘;‘}) + (D6 o <1>);8) (W(6) o Cb)&}) =Fy,o dD);‘().
Hence, applying Gronwall, (6.26) and the lower bound (10.12), we obtain

7 (6) X0
‘W o Dy

< ‘W(G)(xo, —logs)‘ +£<~3é < Eeé.

The same argument applies for (10.16) and (10.17) using the latter two estimates in
(6.26).
From the constraints (3.3) and the estimate (5.14), we have

W(Z) 0 W(3) 0 W(5) 0
2'( )x2 + 3‘( )x3 + 5'( )x5 +(’)(€%|x|6).

Then applying (9.5) and (9.9), we obtain (10.14). O

W(x) =
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Lemma 10.4. For £ < |x| < &% we have

W) < ey, (10.18)
~ 1
WO < Sy, (10.19)
2 5
which thus verifies the bootstraps (5.11)—(5.12).
Proof. We write
(05 +D D1 W) + Vi (n_ i W)= ﬂ_LFWO, (10.20)
(@ + D]é)(’léwm) +vwax<néw< ") =niFw.. (10.21)

We now fix any |xg| > £. We will consider trajectories starting with (s, xo = ££)
or (sg, xo) for |xo| > £. Writing the solution to (10.20) we obtain

~ ~ —[2 D, 1o®}) S —[5D, 1o®}) -
o Wo @ =n_1 Wi @p(se ™ 73 W+/ ¢ Py Yn_ 1 Fywodjds’.
Sk 20

N‘_
=

We now estimate both sides to produce
N
n_s Wodpl < (7 +20%3)M % + / M1 ds’ < %8%.
Sx
Above, we have invoked estimate (6.21) on the forcing term and (10.8) for the damping
term. We have moreover estimated the initial data by using (4.1) to write

W (x,50) = Wo +axy +Bx3x — W(l — x(e5x)). (10.22)
When |x| < a_%, the last term above is zero, and so we estimate, for |x| < &7 %,

~ ~ 3
IW(x,So)n_zl,Ol < [[Won_ ||oo +lal + 8] < €3,

by the estimates (4.2) and (5.3).
Writing the solution to (10.21) yields

TIS

~ ~ —f‘r D 40d0 S _/v/b' éo(bxo ~
Wl)ocbxo—nlW(l)(s*,xo)e s e s Yy Fy 10 ®ypds
5
Sx

J|

We now estimate the right-hand side via
I, W o dl| < (1 +20565)M% +810M50/ n_ (xpe5 ) ds’ <

where above we have invoked estimate (10.8) for the damping term, and (6.21) for the
forcing term. For the initial data, we differentiate (10.22) to obtain

~ ~ — 1
WO (x, s0) = W)+ 8y (otxz)( +Brx) - 8X<W(1 - X(six))),
which upon noting that the latter term is identically zero on |x| < 8_%, we obtain
3
(WO G som| < g Wolloo + lerl + 18] < 4,

upon invoking estimates (4.2) and (5.3). O
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Lemma 10.5. For |x| > £ we have

¢
W] < EloganLO, (10.23)
¢
W < 5 log Mn_y, (10.24)
1
‘W(”) < EMkzn_% forn=2,....8, (10.25)

which verifies the bootstraps (5.5)—(5.7).

Proof. We write, forn > 1,

(&+Dgﬁuwm+vwmwlww)=nuwﬁ, (10.26)
(@5 + Dy _)(n_ 1 W)+ Vwde(n_1 W) =1_1 Fw.o. (10.27)

We will treat the cases n = 0, n = 1, and n > 2 cases separately.
Writing Gronwall for (10.26) gives

—[2D 400 —[5D 400
n%W(") o dy) = n%W(")(s*,xo)e L n§ +/ e Wy n3 anw,,, o ®pds’.
S

(10.28)

Estimating both sides for n > 2 gives

s
1 W 0 @] < (M +10e%)e 365 M5 + M f e 36— =10 ™ d
5 5
where we have appealed to estimate (10.9) for the damping term and estimate (6.22) for
the forcing.
For the n = 0, 1 cases, it suffices to prove estimates (10.23) and (10.24) in the region

|x] > a_% due to (10.18)—(10.19). In this case, we select |xg| > s_% and s, > sg such
that (sx, xo) is the origin of the trajectories consider. More specifically, we take either

1 1 . .
|xo| > €73 and s, = 59 or |xg| = ¢~ % and any s, > s¢. In this case, (10.28) continues
to hold for n = 1, and we estimate via

W o &) < Iny W xo, slle S Prge? |+/ P |||n1FWI||oods

<

~

/N

S
sup In%W“’(x,so)l+|rz%W“)(s*%,s*)|)+/ 5 dy (10.29)

_1
lx|>e" 4

N
—~

— 1 ~ 1 S 1.
1+|néw“)(a*1)|+|néw<1>(a*1,s*)|) +/ =25 ds’
S

~

< Llogm. (10.30)

[\

To evaluate the size of the initial data, from (10.29) to (10.30), we have used (4.1) to
compute

— 1 — 1 1 ~
s WO, so)l = (W (e + Wed x5+ W o+ 0 (cox () + ¥ x0) )y | S 1.
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Above, we have invoked the choice (5.1) to ensure that £log M can be selected
larger than the implicit constants appearlng in the above estimate. We have also invoked
bootstrap (5.12) to control the WO term above. We have also invoked (6.23) to control
the forcing term, and used the fact that

N
exp(—/ Dl,% o @"2‘9) <10 for |xg| > g1,
N

0

An analogous series of estimates applies to (10.23). O

10.2. Transport estimates of V. W. We now verify the bootstrap estimates (5.33)—(5.34).

Lemma 10.6. Forn =0, ..., 6 and |x| < £ we have the following estimates
(W] < Meieiei®, (10.31)
M 3 :
WP < Eews, (10.32)

Proof. The first inequality above follows for n = 0 upon Taylor expanding and noting
that W, (0, s) = 0 via

(Wl < € sup [WD| < 0Me2edG—s0),

lx|<¢

The exact same argument works for the n = 1 inequality. For the n = 2 inequality, we
also Taylor expand, but must factor in the value at x = 0 via

3 3
(W2 < W20, )| +€ sup [W| < 4e3C750) 4 gpgeit—0),

lx]<¢

Finally, for the n = 7 case, we directly apply Gronwall to integrate which gives

S peo s s .
WD ( @y (x,s),s) = W (x, s)eifxo Diodw +/ e v D7°¢WF§V’7 o Oy ds’.

S0

We note that (10.7) implies that
_IYODCO(D < _%(S_SO)‘
Thus, we have

1 S 1 ’
W o @70 < 2W 7 (xg, s)e” 80650 +/ e ST FY 0 Dyl ds’
50

< 286750 4 / P Rl VT P {CE O
=< .
< 27070 L Mg e,
where we have invoked the enhanced localized estimate, (6.44). O

We now verify (5.31)—(5.32).
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Lemma 10.7. Forn = 1,...,7 and |x| < £ we have the following estimates
M* 3 s
[We| < 78464 ) (10.33)
M+2)? 3
Wyl < = gieds, (10.34)

Proof. Consider equation (3.62) for d.W. First, define the rescaled quantity Q :=
0 We’%(s’“’), which satisfies

@ +BWID)O + Vi, 0 = e 1670 FG

By Gronwall, we have

s (D™ S g W™, 1
1000301 = 1000, suyle” e PV 4 [7 e ool ke g o 0

Si
3 3 (54=50) =5 I L' =so) L 4
§(||Wc(',so)||oo+€2MeZ *S0Y M50 + M50 e 4 0)e¥ dy’,
Sk
where we have invoked (10.10) for the estimate on the damping term, and estimate (6.36)

for the forcing term. Multiplying through by 7650 and using that s, < s generates
the desired bound.
For (10.34), we again use Gronwall to estimate

— [ D o0 ps —[5 D¢ od)

(n) X0 (n) IS* LTTw K 1 w N X0 ,

1 We' o @yl < W™ (x0, s)le TS e S g By, 0 @yl ds
N

S

S !
< WS 50)lloo + Med =50 30 4 M5 / M= 2?36 0 g
50

< Me%(s**SO)M% +M5*10M(n+2)2M*1e%(5*50),

where we have invoked the estimate (10.11) on the damping term, and estimate (6.37)
to estimate the forcing term. This concludes the proof of the lemma. O

10.3. Transport estimates for Vf W. The following verifies the bootstraps (5.37).
Lemma 10.8. Ler 0 <n < 6.

M(n+5)2 5,
e4”.

]

18616, W™ oo <

&

Proof. Using equation (3.71), we write via Gronwall upon noting that W, ¢, (so, x) = 0,

s s 0oL,
W™ o @70 5/ e [ Dio®w | e o %0 d’
Si

cic2
S0
! Wis—s"y 2 p(n+5)2—1 3 (s'— / 5)2—1 3(s—
S e =) ezl so)ds SM(VH) ez(s so),
S0

where above we have used the definition (10.3) to produce the trivial bound

11
DZ 2 - ? )
and estimate (6.51)—(6.52) for the forcing. |



262 T. Buckmaster, S. Iyer

11. Proof of Main Theorem

We are now ready to establish all of the assertions in Theorem 2.1. While the bootstrap
estimates put forth in Sect. 5 have all been verified, the first task is to now establish the
inductive proposition, Proposition 5.2.

11.1. Newton iteration. We now prove the main theorem by designing a Newton scheme
on appropriately defined maps 7y .

Proof of Proposition 5.2. First, we will define the map Ty : By (ay, By) C R? — R?
by

Tn(a, B) = (W50, sn41), R0, sn41))

Define now the error quantities via

2 2 1

EY =W 5,0 sne0) = Ty (an. By,
3 3 2

EY =W o 0.sve) = Ty (an. By).

An immediate consequence of (9.5) is the estimate
IEQI+IES | < MPe™Y,
We now compute the matrix

Vo = aawozg(o,sw) aﬁW;?,(O,SNH)
’ 0a WO, sy41)  BpWELO0. sw41)

which, when we evaluate at the point (ay, Sy) produces

2 2
aawég,m(o, SN+1) aﬂwoég}m(o, JENY
0 W, (0, sn+1)  9pW, 0, sn+1)

ay,BN an,BN

Vaglay.pnIN = <

The bootstrap assumptions (5.28)—(5.29), coupled with the estimates on the second
derivatives, (5.37) enable us to apply the Implicit Function Theorem on 7 in a neigh-
borhood By (ay, Bn) of (an, Bn), defined in (5.2), to conclude that

lansl — an| < M25e= N30 g=5N 4 o1 =N g=3(N=50) (11.1)
Byt — By < 2MPem 20N S0 =5, (11.2)
which in particular verifies the bootstraps (5.2). More specifically, we have used that in

the neighborhood By (ay, Bn), we have uniform bounds on the («, 8) Hessian of 7y .
Estimating 0447y yields

3 _ 3y — _ 1 _ I
sup  |0uaTille —an| <y e 2 (SN+1=50) (e TON=30) ,=SN 4 05 oSN o2 (N So))
a,BeBy

3 1
SM SN (eZ(SN*SO) + 8§esNisO)) K Oy |0!N,/3NTN’
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Similarly, for 3,47y we have

3 3 (gn— — Loy — L=
sup  [dap T llot — oy | as ej(SNH*SO)(e*z(SN 50)p=SN 4 g3 =N p=3 (SN So))
a,ﬂGBN

Sye N (53%(31"_50) + eée(w_m)) < 8/3|O[Na,BNTN’
and

3 1
sup |dup T 118 — B | Sy e2 V41750 (e_s"’e_f(‘w_‘m)) L Oolay . pyIN-
D(,ﬂEBN

Finally, estimating dgg7n yields

3 1
sup 195wl — vl S €117 (e 0) gl T
a,BeBy

O

We can now send N — oo to obtain our limiting profiles. To make matters precise,
we define the following norm, specific to a given s, € [sg, 00).

6
R KRS S
[ov.z | = fiwn_p e peay 2 MW Pl
j=1
+ ’ W0, s)” + ‘ eBW (0, s)H
L (50,5%) L°(s0,5%)
_3 _3
+e 1 1Zlo o734l
L(s0.5%) L (s0,54)

5. .
SR VLTS
L2 (s0,5%)

(11.3)

6 6
5 .

+ e ZW || oo H + ‘
.Z | Il L (s0,54) Z
Jj=1 Jj=1

and the corresponding Banach space

X := Closure of C*([s0, Sx1, R)3 with respectto || - || x.
We also define the following norms in which we measure the modulation variables
_lo3 _Lo3 _L
(e, 7ok, E)lly ==& Tlle*” wllLoo(sg,s) + € 7€ TllLoo(sg,s) + € BIIK N L (50,50
1 .
+ EHSHLOC(SO,S*%
and the corresponding Banach space

Y := Closure of C*°([so, s*])4 with respectto || - ||y.



264 T. Buckmaster, S. Iyer

Corollary 11.1. There exist values (0so, Boo) SO that the data Wy given according to
(4.1) yields a global solution, (W,Z,A) € X and (u,t,k,E) € Y onsyg < s < 00
which satisfies

(W, Z, Dllx + 1w, T. 6. &)y Sm 1 forall sy € [s0, 00), (11.4)
the constraints
W©0,5) =0, W?0,5)=-1, wW®(0,s) =0,
the following asymptotic behavior for the second and third derivatives:
W20.9)] S e, WO, e .

Finally, for the fifth derivative W (0, s), there exists a number v such that

7
8

W(S)(O, s) > v, |v—120] <es. (11.5)
Proof. Fix any s, satisfying so < s, < 00, and consider the sequences

{Wan.Bv> Zay.Bys Aay By IN=1sxj+1 = AWN, ZN, ANIN= 50415

{Moz,l,ﬂn ) i—OlN,ﬂNa kO{N,,BN’ éotN,ﬂN}NZLS*j+1 = {MNv "':N7 I.CN’ éN}NZLS*J+1 .

Our assertion will be that these sequences are Cauchy in the spaces X and Y, respeec-
tively. Let now 5o < s < s,. Recall from the definition of By in (5.2), that

1 1
laye1 —an| Spy e Ve 26N By — By | Spp e SN e 2V TS0,

Considering the first term in definition of (11.3), we now estimate

_ _1 _
I(Waar — Wan_ 1 llzee Spe Ve 268750 qup 9. Wn_ 1 ||z
20 (ot,,B)EBN 20

<y e—SNe—%(Szv—So)e%(s—So)7 (11.6)
where we have invoked the estimate (5.31). Second, for k > 1, we have a nearly identical
estimate using (5.32). Third, we estimate using (5.28)—(5.29)

e W20, 5) = W20, 5)] Sar edte™Ne 2600 qup 9, WP (0, )]
(a,p)eBy

3
<4y 15N ¢~ 1N =50) o3 (s=50)
< .

An analogous estimate applies to the fourth quantity in (11.3).

For the quantities in the third and fourth lines of (11.3), we use (5.9)—(5.10), coupled
with (5.26)—(5.27), in essentially the identical manner to the quantities above. Similarly,
for the quantities in Y, we couple the estimates (5.21)—(5.22), with the estimates (5.24)—
(5.25).

As s < s, < sy — 00, the estimates above clearly imply that {Wy, Zy, Ay} is a
Cauchy sequence in the norm X and {u y, Ty, KN, éN} N=>ls,]+1 form a Cauchy sequence
in Y, upon taking supremum in s € [sp, s.]. We conclude by sending s, — oo.
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For the final step, we note that the norms X and Y are clearly strong enough to pass to
the limit in the Eqs. (3.20)—(3.22). Furthermore, applying (9.10) and (9.11) yields that

v = lim W®(0,s),
§—> 00
exists, and by (9.9) we have

v —120] < &F.

11.2. Consequential quantitative properties for (w, a, z). We finish by providing a
proof of the following consequence of our construction.

Lemma 11.2 (Holder 1/5 Regularity). The solution w(0, s) satisfies the following Holder
1/5 regularity estimate uniformly in t up to the shock time T,

sup [w(, t)]1 <1 (11.7)
te[—e, Tyl

Proof. Due to bootstrap bounds (5.11), (5.12) on W, and properties (3.27) on W we
obtain the followingon W = W + W,

IS

[0 W(x, ) S (x)73,

where the implicit constant is uniform, and in particular, independent of s. Using this,
we write

W0, = sup 09 Z WO |[ 8. W (y. 5) dy|

> (x,X’) |x — x’|5 (x.x) |x — x| 3

1 x 4 x 4
< sup —f ()~¥ dy = sup 1/<y>—§dy51. (11.8)
X

(x.x) |x —x'|5 x o |x|5

Finally, we use (3.1) to argue as follows. Select any (8, 0") € T. Then there exists a
corresponding (x, x’) determined through (3.1) so that

lw@,1) —w®', 0] [Wix,s) — W', s)|

- =
|6 — 0|5 |x—x/|5

From here, we take supremum over 6 and apply estimate (11.8) to reach (11.7). O

Lemma 11.3. The following estimates hold for a constant Cyy that depends on M,
sup sup|dga(-,1)| < Cp,
te[—e,Ty) 0T

sup sup|dpz(-, )| < Cu,
te[—e,Ty) €T

sup sup|w(@, )| < 2ko.
te[—e,Ty) 6T
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Proof. This follows upon pulling back to the original coordinate system via (3.6) and
(3.7) which gives

s a(D) 2
supsup |dgpa| = supsuped’|AY| < M-,
t %] K X
5
sup sup |dpz| = supsupeZS|Z(1)| < M?,
t % N X

upon invoking bootstraps (5.9) and (5.10), and upon invoking Corollary 11.1 to ensure
that these bootstraps are satisfied globally.

We now arrive at the pointwise estimate for w(6, ¢). For this, we use the bootstraps
(5.5), (5.4), and (5.22) to obtain

s s 1
lw| < e #|W[+k| Se 4 sup  (x)5 +[ko| + €
—log(g)<s<oo
xXeBy

s 5 1
Se 4 (Meed®)s + |ko| + & < 2|ko.

We now provide a final lemma to obtain the shock dynamics of dgw (x, t).

Lemma 11.4. The following asymptotic behavior is valid for w(x, t),

lim dpw(&(2), 1) = (11.9)
t—Tx

CT.—t

Proof. First, (11.9) follows upon using (3.5), evaluating at x = 0, and using the con-
straint W (s, 0) = —1 which yields

dow(&(1),1) = —

s (11.10)

We now note that, while 7 (¢) satisfies the bootstrap (5.21), t(¢) is itself uniquely defined
upon enforcing

t(Ty) = Ts.
Thus, we may take the limit of (11.10) to get (11.9). |
We now establish the following pointwise asymptotic stability result.

Lemma 11.5. Let W be the global solution from Corollary 11.1 and let v be as in (11.5).
Then, for any fixed x € R, the following asymptotic behavior holds

lim W, s) = W), n=0,....5, (11.11)
§—> 00

where W, is the exact, self-similar Burgers profile

W,(x) = (%0)‘3‘W<(1Lm)3‘x>. (11.12)

Remark 11.6. We note that the parameter v in (11.12) is directly related to the spatial
rescaling invariance of Burgers’ equation, listed in Sect. 3.2.
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Proof. Let (W, Z, A) be the global solution defined in Corollary 11.1. First, it is easily
verified that W, is an exact solution to the self-similar Burgers’ equation (3.24), and
that the first 5 Taylor coefficients of W, are given by

W, (0) = WP ©0) = wP©0) = w0y =0, wWP©0) =-1 and W) =v.

In particular, at the limit s — oo, the first 5 Taylor coefficients of W and W, match. Let
us define the difference

Wy =W —W,.
Hence, by definition

lim wm(0) =0, (11.13)
foralln =0, ..., 5. By asimilar calculation to (3.51)—although we will rearrange the

terms on the left-hand-side and right-hand-side—we obtain

1 —1). ~ 5 ~ 3 ~
(s = 3+ W)W+ (W 4 200 Wy = —Bre™ ¥k + Fy + (1= B W) = Gy W o= F.

Using (5.21), (6.1) and (6.20), we have that for any fixed x, that
S ~
/ |Fy(xs, 8)| ds < oo. (11.14)
50

Now fix § > 0, x, € R and 5, > —loge. Then as a consequence of (11.13) and (5.7)
we have -~
W (e, 52| Sar 12l +6, (11.15)

assuming that s, is taken sufficiently large dependent on the choice of 6. Now define ®
to be the trajectory

I D(s) = <W+ zx) o®d, D(54) = Xxy.

If we in addition define g = P () W,, then ¢ o ® satisfies the equation
@+ 1+ W )(god) = e 169E, 0 0.
Since W' > —1, then by Gronwall and (11.14), it follows that
lg o ®(s)| < lg o P(s:)+6 (11.16)

for s > s,, assuming that s, is taken to be sufficiently large, dependent on §. Combining
(11.15) and (11.16) we obtain that for s, < s < s, — 25—3 log | x| and assuming § < I)c>,<|6

Wy 0 (s)| Sar 367 (12,16 +8) g Il (11.17)

Let us restrict to the case x, > 0 and assume the lower bound

23
¢<s*—?log|x*|) >T. (11.18)
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In particular, by continuity, (11.18) implies that for any x, < x < I, there exists an
S <8 < (54 — 25—3 log | x| such that ®(s) = x and hence by (11.17)

~ 1
Wy (x,9)] S el 7
By taking the limit s,, — o0, this implies
lim W, ()| Sar el (11.19)
§—>00
forany x, <x <T.

It remains to prove a x, dependent lower bound on I" that increases as x,, — 0. First
note that by (5.20) and the Fundamental Theorem of Calculus

5 ) 2
W+-x>x HW H —X.
4 9

Thus by Gronwall ®(s) > e3¢5, which implies
23 _1
P S*_?loglxﬂ > X475,

and hence we can take I' = |x, |’%. Thus by taking x, — 0, from (11.19) we obtain

lim |W,(x,s)| =0, (11.20)
§—> 00

forall x > 0. An analogous argument yields (11.20) for the case x < 0. The case x =0
is trivial since W,, (0, s) = 0 for all s. Thus, W converges pointwise to W . The proof
forn =1,...,5 works in an analogous manner. O

Remark 11.7. We remark that the asymptotic profile that is picked out in (11.11) is
consistent with our estimates (5.11). Indeed, by using estimate (11.5), we can estimate

OO\\I

I(Wy =Wy llee S @
which shows that W can simultaneously lie in a ball of size & 20 0 within W (in the weighted
norm above) and converge pointwise to W .

It is now possible to prove asymptotic stability in a much stronger sense. To do so,
we define the slightly weaker weighted space by first fixinga 0 < § < 1,

5
Wiy = IWn_1 _sllec +2 W1 loo- (11.21)
]:

Lemma 11.8. For any § > 0,

”W —w,] S0 ass— o (11.22)

-5
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Proof. This is a standard consequence of pointwise convergence (11.11), uniform es-
timates on six derivatives, guaranteed by the specification of the norm X, (11.3), and
finally, the compactness afforded by the weaker weight of (x)~% in our norm (11.21).
For the purpose of completeness, we include the argument for the lowest order part of
the X _5 norm, while the higher order components work in an exactly analogous fashion.

To prove (11.21), specifically ||[(W — Wv)n,%,(s lloo = 0, we will first fix an arbitrary

€ > 0, and demonstrate the existence of S = S(¢) large, such that s > S implies
W =Won_s_yllee <%
First, there exists X = X (g, §) so that

~

(W — Wv)n 5||L°O(\x|>X) = 10

according to the estimate (11.4) on W and (3.31) on w (and hence, W,).

We thus restrict to the compact interval |x| < X, which we now subdivide into
N = N(g, M) sub-intervals with centers x;, k = 0, ..., N. N will be selected according
to the rule:

AW D oo + W

lloo)

< —.
N 10
By the pointwise convergence guaranteed by (11.11), there exists an s so that

&
|W (s, xk) — W (xx)| < o

Define now S := maxy si. Estimating, we have
(W (s, x) = Wo(0)] < [W(s, x) = W(s, x0)| + W (s, xx) — W)l
+ Wy (xp) — Wy (x)]

~

1 &
WD o + T o) — i) + —

<
- 10
g 7
< — 4 —,
—10 10
for s > §. Taking supremum over |x| < X gives the desired conclusion. O

Proof of Corollary 2.2. We note that the proof follows in a very similar manner to the
proof of Corollary 4.7 of [2].

By finite speed of propagation, the strict support properties imposed in Sect. 2.2,
can be replaced by the condition that (wy, zg, ag) satisfy the conditions modulo a small
perturbation in the C® topology.

The conditions (2.4) for the cases n = 0, 1 impose no obstruction to wg been chosen
within an open set since the conditions may be enforced by choosing ¢ and k¢ appropri-
ately (it should be noted that these two parameters are free to be chosen from an open
set). In order to weaken the condition (2.4) for the case n = 4, we note that by a Taylor
expansion

dwo(0) = dgwo(0) +635wo(0) + O(s™ 7 67)
= 93wp(0) + 1206700 + 0(83wo(0) — 1206 76) + O(e~ 7 62)
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here implicitly we used (2.3) and that

29

Hage%W (6‘7%9) H Se 9.
o0

By continuity, given g, then assuming 8g wo(0) and 895 wo(0) — 120& % to be sufficiently
small, there exists a & € (—¢g, g) such that 85‘0 wo(#) = 0. Thus, up to a coordinate

translation 6 +— 6 + 6y, and under the assumptions Bg' wp(0) and 83 wo(0) — 120e° are
both sufficiently small, we can remove the assumption (2.4) for the case n = 4. The
strict assumption (2.4) for the case n = 5 may be removed by applying the rescaling

1

a0 =untawo,n, WO, 0 =p wwo,n, 20,1 =pnz2uo, 1),

for p sufficiently close to 1. As was noted in [2], such a rescaling would modify the
domain; however, since by finite-speed of propagation we restrict our analysis to a strict
subset of the domain, such a rescaling does not impose any problem. O
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