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Abstract. We present a central limit theorem for stationary random fields
that are short-range dependent and asymptotically independent. As an appli-
cation, we present a central limit theorem for an infinite family of interacting
Itô-type diffusion processes.

1. Introduction

Let ζ = {ζk}k∈Zd be a stationary random field, centered and normalized so that
E(ζ0) = 0 and Var(ζ0) < ∞. The principal aim of this article is to: (1) Prove the
following central limit theorem for dependent random variables; and (2) Present an
application of this theorem to interacting diffusion processes.

Theorem 1.1. If the random field ζ = {ζk}k∈Zd is short-range dependent [see
(2.1)], asymptotically independent [see Condition (AI)], and satisfies a minimal
integrability condition [see (2.5)], then the distribution of n−d/2

∑
k∈{1,...,n}d ζk is

asymptotically normal as n → ∞.

Short-range dependence and asymptotic independence will be recalled in due
time. For now, it suffices to say that these are both natural conditions and both
arise abundantly in the literature on time-series analysis (see for example Lahiri
[16] and its references).

Our main application of Theorem 1.1 is a result about infinite systems of inter-
acting diffusions. Before we describe that application, let us make two brief remarks
that explain how Theorem 1.1 might relate to parts of a vast body of central limit
theorems that already exist in the literature.

Remark 1.2. One can prove that if ζ is strongly mixing in the sense of Rosenblatt
[20], then ζ is asymptotically independent; see Corollary 1.12 of Bradley [3, Vol.
1] for example when d = 1. It follows from this that Theorem 1.1 implies a well-
known central limit theorem of Ibragimov [12] for strongly mixing sequences though;
usually, the latter is cast when d = 1. A noteworthy difference between the proof
of Theorem 1.1 and the proofs of CLTs for strongly mixing sequences is that the
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proof of Theorem 1.1 is non technical, and relies only on compactness arguments
together with Paul Lévy’s classical characterization of standard Brownian motion
as the unique mean-zero, continuous Lévy process with variance one at time one
(this is in fact an immediate consequence of the Lévy-Khintchine formula; see,
for example Bertoin [1]). The detailed bibliography of the three-volume book by
Bradley [3] contains a very large number of pointers to the vast literature on CLT
for stationary dependent sequences. See also the survey articles by Bradley [4] and
Merlevède, Peligrad, and Utev [17].

Remark 1.3. It is easy to see that if ζ is an associated sequence of random variables
in the sense of Esary, Proschan, and Walkup [10], then Theorem 1.1 reduces to the
central limit theorem of Newman and Wright [18] for associated random variables
(again, usually stated for d = 1).

The preceding remarks describe how Theorem 1.1 reduces to well-known theo-
rems in specific settings. Next we describe a setting where we do not know whether
there is association or strong mixing.

Consider the following infinite system of interacting Itô-type stochastic differen-
tial equations:

dut(x) = (Lut)(x) dt + Φ(ut(x)) dBt(x) for all t > 0 and x ∈ Zd,

subject to u0(x) = 1 for all x ∈ Zd,
(1.1)

for a field B = {B(x)}x∈Zd of i.i.d. one-dimensional Brownian motions. Here, L
denotes the generator of a continuous-time random walk on Zd, and the diffusion
coefficient Φ : R $→ R is assumed to be Lipschitz continuous. Shiga and Shimizu
[21] have shown that (1.1) has a unique adapted solution under these conditions.

Theorem 1.4. For every Lipschitz-continuous function g and all t ≥ 0,




n−d/2
∑

x∈Zd

(g(ut(x)) − E[g(ut(0)])ϕ(x/n); ϕ ∈ C





fdd−−→ {σg,tW (ϕ); ϕ ∈ C },

(1.2)

where σ2
g,t =

∑
x∈Zd Cov[g(ut(0)) , g(ut(x))] is finite, in fact absolutely convergent.

In the above theorem, and throughout the paper, “
fdd−−→” refers to the weak

convergence of all finite-dimensional distributions. Moreover C denotes the class of
all piecewise-continuous functions with compact support on Rd.1

Earlier, Deuschel [9] proved a version of Theorem 1.4 – where L is replaced by a
more general nonlinear operator and Φ a less general function – using a martingale
central limit theorem in place of Theorem 1.1. The present formulation of Theorem
1.4 includes the important special case of the “parabolic Anderson model.” That
is when Φ(z) = const × z for all z ∈ R; see Carmona and Molchanov [5].

Theorem 1.4 can also be generalized to cover many other noise models; see Ref.
[6–8] for analogous results in the continuous setting of SPDEs. Here, we will not
study such more general results to maintain brevity.

The remainder of this paper is devoted to the proof of Theorems 1.1 and 1.4,
which are proved in §2 and §3, respectively.

1Piecewise continuous means functions which are continuous except on a finite number of
hyperplanes.
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We close this section with a brief description of the notation of this paper.
Throughout we write ‖Z‖k instead of (E[|Z|k])1/k. We denote by Lipf the Lipschitz
constant of every function f : R → C; that is,

Lipf := sup
−∞<a<b<∞

|f(b) − f(a)|
|b − a| .

Rademacher’s theorem (see Federer [11, Theorem 3.1.6]) ensures that if Lipf < ∞,
then the weak derivative of f exists and is bounded almost everywhere in modulus
by Lipf .

2. A CLT for dependent variables

In this section we first recall the undefined terminology of Theorem 1.1, and then
state and prove a more general theorem (Theorem 2.2) than Theorem 1.1 which
turns out to be easier to prove directly.

2.1. Two definitions. We start with a general definition.

Definition 2.1. A sequence of N -dimensional random vectors (X1,n, . . . , XN,n),
N ≥ 2, is asymptotically independent as n → ∞ if for all real numbers ξj , 1 ≤ j ≤ N ,

lim
n→∞

∣∣∣∣∣∣
E




n∏

j=1

eiξjXj,n



−
N∏

j=1

E
[
eiξjXj,n

]
∣∣∣∣∣∣
= 0.

Recall that a stationary random field ζ = {ζk}k∈Zd is said to be short-range
dependent when

(2.1) σ̄2 :=
∑

k∈Zd

| Cov(ζ0 , ζk)| < ∞.

It will be helpful to first introduce some notation before we define the remain-
ing undefined term in Theorem 1.1. We endow the collection C of all piecewise-
continuous functions ϕ : Rd → R that have compact support with the L2(Rd)
norm. Let U ⊂ C denote the collection of all linear combinations of indicator
functions of upright boxes Q ⊂ Rd of the form Q = (a1 , b1] × · · · × (ad , bd], where
a1 < b1, . . . , ad < bd are real numbers. We always let supp[ϕ] denote the support
of the function ϕ ∈ C . Moreover, the separation of two sets A and B is defined as

sep(A , B) = inf

{
max
1≤i≤d

|xi − yi| : x ∈ A, y ∈ B

}
for A, B ⊂ Rd.(2.2)

For every ϕ ∈ C we consider the sequence of random variables

(2.3) Sn(ϕ) := n−d/2
∑

k∈Zd

ζk ϕ(k/n) [n ∈ N].

Now we are ready to introduce the assumption of asymptotic independence.

(AI) For every δ > 0 and all ϕ1,ϕ2 ∈ U such that sep(supp[ϕ1] , supp[ϕ2]) ≥ δ,
the random variables Sn(ϕ1) and Sn(ϕ2) are asymptotically independent as
n → ∞; that is,

(2.4)

lim
n→∞

∣∣∣E
[
eiaSn(ϕ1)+ibSn(ϕ2)

]
− E

[
eiaSn(ϕ1)

]
E
[
eibSn(ϕ2)

]∣∣∣ = 0 for all a, b ∈ R.
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We conclude this section with a CLT for dependent variables. Let W = {W (ϕ);
ϕ ∈ L2(Rd)} denote the usual isonormal Gaussian process that is associated with
white noise on Rd. That is, W is a mean-zero Gaussian process with

Cov[W (ϕ1) , W (ϕ2)] = 〈ϕ1 ,ϕ2〉L2(Rd) for every ϕ1,ϕ2 ∈ L2(Rd).

Theorem 2.2. If ζ = {ζk}k∈Zd is a stationary random field that satisfies (2.1) and
(AI), and if

n $→ S2
n(1(0,1]d) = n−d

( ∑

k∈{1,...,n}d

ζk

)2

is uniformly integrable,(2.5)

then {Sn(ϕ); ϕ ∈ C } fdd−−→ {σW (ϕ); ϕ ∈ C } as n → ∞, where

(2.6) σ2 :=
∑

k∈Zd

Cov(ζ0 , ζk).

Let ϕ = 1(0,1]d in order to deduce the following precise form of Theorem 1.1
from Theorem 2.2.

Corollary 2.3. If ζ = {ζk}k∈Zd is a stationary random field that satisfies (2.1),

(AI), and (2.5), then n−d/2
∑

k∈{1,...,n}d ζk
d−→ N(0 ,σ2) as n → ∞, where σ2 is

defined in (2.6).

Lemma 2.4. Condition (2.5) implies that n $→ S2
n(1Q) is uniformly integrable for

every Q ∈ U .

Proof. A finite sum of uniformly integrable (denoted by UI) random variables is
UI. Therefore, by stationarity, it suffices to prove that n $→ S2

n(1Q) is UI for Q =∏d
k=1(0 , rk], where 0 < rk ≤ 1. We will prove this for Q = (0 , r] × (0 , 1]d−1 since

this is all we will need later on; the same arguments can be applied to prove the
uniform integrability for more general Q ∈ U . To simplify the notation, we assume
without loss of much generality that d = 2.

Choose and fix some r ∈ (0 , 1), and define Q(α) := (0 ,α] × (0 , 1] for every α ∈
(0 , 1]. One can check from first principals that if {S2

n(1Q(α))}n∈N is UI for some α ∈
(0 , 1], then {S2

n(1 1
2 Q(α))}n∈N is UI also. Hence, it follows from condition (2.5) and

stationarity that n $→ {S2
n(1(0,1/2]+(0,1/2]2)}n∈N is UI. And because Q(1/2) is the

disjoint union of (0 , 1/2]2 and (0 , 1/2) + (0 , 1/2]2, it follows that n $→ S2
n(1Q(1/2))

is UI. By induction, we may deduce that n $→ S2
n(1Q(1/2k)) is UI for any k ∈ N.

Again, we use the fact that a finite sum of UI random variables is UI to see that
n $→ S2

n(1Q(q)) is UI for every real number q ∈ (0 , 1) of finite dyadic expansion,
that is, q of the form

∑m
i=1 xi/2i where x1, . . . , xm ∈ {0 , 1}.

For every ε > 0 there exists a number q ∈ (0 , 1), with a finite dyadic expansion,
such that ‖1Q(|r−q|)‖L2(R2) < ε. Thus, the following is valid for all K, L > 0 and
n ∈ N:

E
[
S2

n(1Q(r)); |Sn(1Q(r))|>L
]
=E

[∣∣Sn(1Q(q))+Sn(1Q(r)−1Q(q))
∣∣2 ; |Sn(1Q(r))|>L

]

≤2E
[
S2

n(1Q(q)); |Sn(1Q(r))| > L
]
+ 2E

[
S2

n(1Q(|r−q|))
]

≤2E
[
S2

n(1Q(q)); |Sn(1Q(q))| > K
]
+

2K2

L2
sup
n∈N

E
[
S2

n(1Q(r))
]
+2E

[
S2

n(1Q(|r−q|))
]
,
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thanks to Chebyshev’s inequality. We borrow in advance from Lemma 2.5 – see
(2.7) – to see that2

lim
L→∞

lim sup
n→∞

E
[
S2

n(1Q(r)) ; |Sn(1Q(r))| > L
]

≤ 2 lim sup
n→∞

E
[
S2

n(1Q(q)) ; |Sn(1Q(q))| > K
]
+ 2σ2ε2.

Let K → ∞, using the fact that n $→ S2
n(1Q(q)) is UI, to conclude the uniform

integrability of n $→ S2
n(1Q(r)) from the fact that ε is arbitrary. !

2.2. Tightness and weak convergence. Before we prove Theorem 2.2, we make
some comments, by way of three lemmas, about tightness and weak convergence.
The proof of Theorem 2.2 will be carried out in the next subsection.

Lemma 2.5. For every ϕ ∈ C and all n ∈ N,
(2.7)

E
(
|Sn(ϕ)|2

)
≤ σ̄2n−d

∑

k∈Zd

|ϕ(k/n)|2 and lim
n→∞

E
(
|Sn(ϕ)|2

)
= σ2‖ϕ‖2

L2(Rd),

where σ and σ̄ are defined respectively in (2.6) and (2.1).

Proof. A change of variables shows that

E
(
|Sn(ϕ)|2

)
= n−d

∑

j∈Zd

Cov(ζ0 , ζj)
∑

k∈Zd

ϕ(k/n)ϕ((j + k)/n).

This implies the first assertion of (2.7), since the Cauchy–Schwarz inequality for
the counting measure implies that

n−d
∑

k∈Zd

|ϕ(k/n)ϕ((j + k)/n)| ≤ n−d
∑

k∈Zd

|ϕ(k/n)|2.

Moreover, since ϕ is piecewise continuous with compact support,

lim
n→∞

n−d
∑

k∈Zd

ϕ(k/n)ϕ((j + k)/n) = ‖ϕ‖2
L2(Rd) boundedly, for every j ∈ Zd.

(2.8)

Therefore, the remaining assertion of (2.7) follows from the dominated convergence
theorem. !

Lemma 2.6. Let D be a dense subset of C in L2(Rd), and suppose Sn(ψ)
d−→

σW (ψ), as n → ∞, for every ψ ∈ D . Then, {Sn(ϕ); ϕ ∈ C } fdd−−→ {σW (ϕ); ϕ ∈ C }
as n → ∞.

Proof. Choose and fix an arbitrary function ϕ ∈ C . We aim to prove that Sn(ϕ)
d−→

W (ϕ) as n → ∞. The convergence of finite-dimensional distributions follows from
this and the linearity of ϕ $→ Sn(ϕ) and ϕ $→ W (ϕ). For every ε > 0 there exists

ψ ∈ D such that ‖ϕ − ψ‖2
L2(Rd) < ε. Since Sn(ψ)

d−→ σW (ψ) as n → ∞, we can

2Lemma 2.5 and its proof do not refer to the present lemma. So this application of Lemma
2.5 is logically sound.
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write, for all ξ ∈ R,

lim sup
n→∞

∣∣∣EeiξSn(ϕ) − EeiξσW (ϕ)
∣∣∣
2

≤ 3 lim sup
n→∞

∣∣∣EeiξSn(ϕ) − EeiξSn(ψ)
∣∣∣
2

+ 3
∣∣∣EeiξσW (ϕ) − EeiξσW (ψ)

∣∣∣
2

≤ 3ξ2 lim sup
n→∞

E
(
|Sn(ϕ) − Sn(ψ)|2

)
+ 3ξ2σ2E

(
|W (ϕ) − W (ψ)|2

)
,

since |eiz − eiy| ≤ |z − y| for all z, y ∈ R. Property (2.7) now ensures that, for all
ξ ∈ R,

lim sup
n→∞

∣∣∣EeiξSn(ϕ) − EeiξσW (ϕ)
∣∣∣
2
≤ 6ξ2σ2ε for every ξ ∈ R.

This completes the proof since the left-hand side does not depend on ε. !

Lemma 2.7. Let δ > 0, and suppose that (Sn(ψ1) , Sn(ψ2)) are asymptotically
independent as n → ∞ for all ψ1,ψ2 ∈ U such that sep(supp[ψ1] , supp[ψ2]) ≥ δ
[see (2.2)]. Then, (Sn(ϕ1), . . . , Sn(ϕN )) are asymptotically independent as n → ∞
[see Definition 2.1] for all ϕ1, . . . ,ϕN ∈ U that satisfy

sep(supp[ϕi] , supp[ϕj ]) ≥ δ for 1 ≤ i -= j ≤ N and integers N ≥ 2.

Proof. Set Φm := ϕ1+ · · ·+ϕm for all m = 1, . . . , N . For every n ∈ N, let D1,n := 0
and define

Dm,n :=

∣∣∣∣E
[ m∏

j=1

eiSn(ϕj)

]
−

m∏

j=1

EeiSn(ϕj)

∣∣∣∣ =

∣∣∣∣EeiSn(Φm) −
m∏

j=1

EeiSn(ϕj)

∣∣∣∣,

for m = 2 , . . . , N . The linearity of Sn and the triangle inequality together imply
that for every n ∈ N and m = 2, . . . , N ,

Dm,n =
∣∣∣EeiSn(Φm) − EeiSn(Φm−1)EeiSn(ϕm)

∣∣∣

+

∣∣∣∣EeiSn(Φm−1)EeiSn(ϕm) −
m∏

j=1

EeiSn(ϕj)

∣∣∣∣

≤
∣∣∣Cov

[
eiSn(Φm−1) , e−iSn(ϕm)

]∣∣∣ + Dm−1,n.

Subtract Dm−1,n from both sides and sum over m to find that

DN,n ≤
N∑

m=2

∣∣∣Cov
[
eiSn(Φm−1) , eiSn(−ϕm)

]∣∣∣ .

The separation condition on the ϕj ’s implies that sep(supp[Φm−1] , supp[−ϕm]) ≥ δ
for all m = 2, . . . , N , and hence limn→∞ DN,n = 0 by asymptotic independence [see
(2.4)]. Now relabel ϕj as ξjϕj , where ξ1, . . . , ξN are arbitrary nonzero constants, in
order to deduce that Sn(ϕ1), . . . , Sn(ϕN ) are asymptotically independent as n →
∞. [This requires only the fact that ξiϕi has the same support as ϕi for i =
1, . . . , N .] !
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2.3. Proof of Theorem 2.2. In this section, we assume that the conditions of
Theorem 2.2 are met.

We first prove weak convergence in a special case, where the limit can be identi-
fied with a Brownian motion. Choose and fix real numbers a1 and a2 < b2, . . . , ad <
bd, and define

Q(r) = (a1 , a1 + r] × (a2 , b2] × · · · × (ad , bd] for every r ∈ (0 , 1].

Observe that Q(r) ∈ U for every r ∈ (0 , 1]. For every n ∈ N, we define one-
parameter processes Yn and Y as follows:

Yn(r) := Sn(1Q(r)) and Y (r) := σW (1Q(r)) for every r ∈ (0 , 1].

It is immediate that Y is a one-dimensional Brownian motion with variance
σ2

∏d
i=2(bi − ai). Our main objective is to prove the following specialized form

of Theorem 2.2.

Proposition 2.8. Yn
fdd−−→ Y as n → ∞.

Let us first deduce Theorem 2.2 from its specialized form Proposition 2.8. The
proposition will be verified subsequently.

Proof of Theorem 2.2. Let D := ∪δ>0Dδ, where for every δ > 0, Dδ denotes the
collection of all functions ψ ∈ U that have the form

(2.9) ψ = ψ1 + · · · + ψm, where ψi = ai1Qi ,

where m ∈ N, a1, . . . , am ∈ R \ {0}, and Q1, . . . , Qm ∈ U are upright boxes of the
form Qi = (bi

1, c
i
1]× · · ·× (bi

d, c
i
d] for real numbers bi

1 < ci
1, . . . , b

i
d < ci

d, i = 1, . . . , m,
and satisfy

sep (Qi , Qj) ≥ δ whenever 1 ≤ i -= j ≤ m;

see (2.2). Because D is dense in L2(Rd), and hence also dense in C , Lemma 2.6

will imply Theorem 2.2 once we prove that Sn(ψ)
d−→ σW (ψ), as n → ∞, for every

ψ ∈ D . With this aim in mind, let us choose and fix some δ > 0 and ψ ∈ Dδ, and
assume that ψ has the representation (2.9). By linearity, Sn(ψ) =

∑m
i=1 Sn(ψi) =:∑m

i=1 Xi,n a.s., where Xi,n := Sn(ψi). The asymptotic independence condition in
Theorem 2.2 and Lemma 2.7 ensure that {Xi,n}m

i=1 describes an asymptotically

independent sequence as n → ∞; and Proposition 2.8 implies that Xi,n
d−→ σW (ψi)

as n → ∞, for every i = 1, . . . , m. The asserted asymptotic independence then

implies that Sn(ψ)
d−→ Y1 + · · · + Ym as n → ∞, where Y1, . . . , Ym are independent,

and the distribution of Yi is the same as that of σW (ψi) for every i = 1, . . . , m.
Because the supports of the ψi’s are disjoint, W (ψ1), . . . , W (ψm) are uncorrelated,

hence independent, Gaussian random variables. In particular, Sn(ψ)
d−→ σW (ψ1)+

· · · + σW (ψm) = σW (ψ) as n → ∞; see (2.9) for the last identity. This concludes
the proof of Theorem 2.2. !
Proof of Proposition 2.8. We will prove this proposition in five steps.

Step 1. The laws of {Yn(r)}n≥1 are L2-bounded uniformly in r ∈ (0 , 1] and n ∈ N,
and hence also tight uniformly over all r ∈ (0 , 1].

In order to see why, apply (2.7) in order to see that

(2.10) E
(
|Yn(r)|2

)
≤ σ̄2n−d

∑

k∈Zd

1Q(r)(k/n) ≤ σ̄2n−d
∑

k∈Zd

1Q(1)(k/n)
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for every r ∈ (0 , 1] and n ∈ N. The final quantity in (2.10) is bounded uniformly
in n ∈ N by σ̄2 times the upper Riemann sum of 1Q(1), and the latter is finite.
This yields the desired L2-boundedness, and tightness follows from Chebyshev’s
inequality.

Step 2. For every unbounded sequence 0 < n1 < n2 < · · · there exists a subsequence

n′ = {n′
k}∞k=1 and random variables Ȳ = {Ȳ (r)}r∈Q∩(0,1] such that Yn′

k

fdd−−→ Ȳ as
k → ∞.

This follows from uniform tightness in Step 1 and Cantor’s diagonalization.

Step 3. Ȳ can be extended to a continuous process Ȳ = {Ȳ (r)}r∈[0,1].
Let n tend to infinity along the subsequence n′, and appeal to Step 2, Fatou’s

lemma, and (2.7) in order to see that for every R > r > 0 with r, R ∈ Q ∩ (0 , 1],

E
(
|Ȳ (R) − Ȳ (r)|2

)
≤ lim inf

k→∞
E
(
|Yn′

k
(R) − Yn′

k
(r)|2

)
= σ2|R − r|

d∏

i=2

(bi − ai).

The continuity of Y follows from this and Kolmogorov continuity theorem [14,
Theorem 2.8].

Step 4. We can realize Ȳ = {Ȳ (r)}r∈[0,1] as an infinitely divisible process with
stationary increments such that Ȳ (0) = 0 and E[Ȳ (r)] = 0 for all r ∈ [0 , 1].
Therefore, the process Ȳ = {Ȳ (r)}r∈[0,1] is a centered Brownian motion indexed
and normalized such that Var[Ȳ (1)] = σ2.

We first prove that Ȳ = {Ȳ (r)}r∈[0,1] is infinitely divisible. Let us choose and
fix an integer M ≥ 1 and M + 1 real numbers 0 =: r0 < r1 < · · · < rM . For every
sufficiently small δ > 0, there exist rational points r±

1,δ, . . . , r
±
M,δ ∈ Q such that

0 = r0 = r+
0,δ < r−1,δ < r1 < r+

1,δ < · · · < r−j,δ < rj < r+
j,δ < · · · < r−M,δ < rM , and

δ ≤ r+
j,δ−r−j,δ ≤ 2δ for all j = 1, . . . , M−1 and rM−r−M,δ ≤ δ. We choose and fix such

a δ in order to deduce from the asymptotic independence condition (AI) and Lemma
2.7 that {Yn(r−j,δ) − Yn(r+

j−1,δ)}M
j=1 are asymptotically independent as n → ∞.

Hence, the random variables Ȳ (r−1,δ), Ȳ (r−2,δ) − Ȳ (r+
1,δ), . . . , Ȳ (r−M,δ) − Ȳ (r+

M−1,δ)

are independent. Moreover, we may appeal to the continuity of Ȳ = {Ȳ (r)}r∈[0,1]

(see Step 3) in order to conclude that for all α1, . . . ,αM ∈ R,

E
[
ei

∑M
j=1 αj(Ȳ (rj)−Ȳ (rj−1))

]

= lim
δ→0

E
[
ei

∑M
j=1 αj(Ȳ (r−

j,δ)−Ȳ (r+
j−1,δ))

]

= lim
δ→0

M∏

j=1

E
[
eiαj(Ȳ (r−

j,δ)−Ȳ (r+
j−1,δ))

]
=

M∏

j=1

E
[
eiαj(Ȳ (rj)−Ȳ (rj−1))

]
.

It follows that the random variables Ȳ (r1), Ȳ (r2) − Ȳ (r1), . . . , Ȳ (rM ) − Ȳ (rM−1)
are independent, whence Ȳ = {Ȳ (r)}r∈[0,1] is infinitely divisible.

Since ζ = {ζk}k∈Zd is stationary, the law of Yn(s) − Yn(r) is the same as the
distribution of Yn(s− r) whenever 0 < r < s. Thus, we see that the distribution of
Ȳ (s) − Ȳ (r) is the same as that of Ȳ (s − r) whenever 0 < r < s are rational. The
continuity of Ȳ now ensures that the preceding holds in fact whenever 0 < r < s.
This proves that the process Ȳ = {Ȳ (r)}r∈Q∩[0,1] has stationary increments.
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Because of Step 1, and since E[Yn(r)] = 0 for all r ∈ (0 , 1] and n ∈ N, it follows
that E[Ȳ (r)] = 0 for all r ∈ Q ∩ (0 , 1]. A second appeal to Step 1 and continuity
(Step 3) shows that E[Ȳ (r)] = 0 for every r ∈ [0 , 1].

Finally, Lévy’s characteristic theorem of Brownian motion ensures that Ȳ =
{Ȳ (r)}r∈[0,1] is a Brownian motion; see Bertoin [1]. Therefore, it remains to check

that Var[Ȳ (1)] = σ2
∏d

i=2(bi − ai). Indeed, Step 2 ensures that Yn′
k
(1)

d−→ Ȳ (1) as
k → ∞. Therefore, the uniformly integrability condition (2.5) and Lemma 2.4 imply

that Var[Ȳ (1)] = limk→∞ E[Y 2
n′

k
(1)] = σ2

∏d
i=2(bi − ai), where the last equality is

due to Lemma 2.5.

Step 5. We are ready to complete the proof of Proposition 2.8.
So far, we have proved that for every unbounded increasing sequence {nk}∞k=1

there exists a further unbounded increasing subsequence {n′
k}∞k=1 such that the

finite-dimensional distributions of {Yn′
k
(r)}r∈Q∩(0,1] converge to those of a Brow-

nian motion Ȳ as k → ∞, and the speed of that Brownian motion is always
σ2

∏d
i=2(bi − ai). In particular, the law of Ȳ is the same as the law of Y regardless

of the choice of the original subsequence {nk}∞k=1. This proves that the finite-
dimensional distributions of {Yn(r)}r∈Q∩(0 ,1] converge to those of {Y (r)}r∈Q∩(0 ,1].

In order to conclude Proposition 2.8, we need to show that for all integer
M ≥ 1 and for all 0 < r1 < · · · < rM ≤ 1, the characteristic function of
(Yn(r1) , . . . , Yn(rM )) converges to the characteristic function of (Y (r1) , . . . , Y (rM ))
as n → ∞. For any ε > 0, we can choose R1, . . . , RM ∈ Q such that

(2.11) rk < Rk < rk + ε and ‖Y (rk) − Y (Rk)‖2 < ε for all k = 1, . . . , M.

Define En(α ,β) := E[ei
∑M

k=1 αkYn(βk)] and E (α ,β) := E[ei
∑M

k=1 αkY (βk)] for all
α ∈ RM and β ∈ [0 , 1]M . Our goal is to prove that limn→∞ En(α , r) = E (α , r)
for all α ∈ RM . With this aim in mind, we can write

|En(α , r) − E (α , r)| ≤ |En(α , r) − En(α , R)|
+ |En(α , R) − E (α , R)| + |E (α , R) − E (α , r)|

≤
M∑

k=1

|αk|‖Yn(rk)−Yn(Rk)‖2+|En(α, R)−E (α, R)|+
M∑

k=1

|αk|‖Y (Rk)−Y (rk)‖2

≤
M∑

k=1

|αk| ‖Yn(rk) − Yn(Rk)‖2 + |En(α , R) − E (α , R)| + ε
M∑

k=1

|αk|,

(2.12)

where the last inequality follows from (2.11). Since {Yn(r)}r∈Q∩(0,1]
fdd−−→

{Y (r)}r∈Q∩(0,1], the middle term in (2.12) vanishes as n → ∞. Therefore, (2.7)
implies that

lim sup
n→∞

|En(α , r) − E (α , r)| ≤ σ
d∏

i=2

(bi − ai)
1/2

M∑

k=1

|αk|(Rk − rk)1/2 + ε
M∑

k=1

|αk|

≤ (σ
√
ε

d∏

i=2

(bi − ai)
1/2 + ε)

M∑

k=1

|ak|.

This concludes the proof of Proposition 2.8 since ε > 0 is arbitrary. !
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3. CLT for infinitely-many interacting diffusions

The central limit theorem in Theorem 2.2 can be applied to infinitely-many
interacting diffusion processes, as indicated in the title of this paper.

3.1. Malliavin calculus. We introduce some elements of Malliavin calculus in
order to establish the central limit theorem for infinitely-many interacting diffusion
processes. Let H = L2(R+ × Zd), and recall that the Gaussian family {η(h)}h∈H
formed by the Wiener integrals H 1 h $→ η(h) =

´∞
0

∑
x∈Zd h(s , x) dBs(x) defines

an isonormal Gaussian process. In this framework, we can develop the Malliavin
calculus as has been done, for instance, by Nualart [19].

We denote by D the derivative operator, and D1,2 the Gaussian Sobolev space
generated by all F ∈ L2(Ω) with derivative DF ∈ L2(Ω ; H). In accord with the
Poincaré inequality,

(3.1) | Cov(F , G)| ≤
ˆ ∞

0

∑

z∈Zd

‖Ds,zF‖2 ‖Ds,zG‖2 ds for all F, G ∈ D1,2.

We will use this inequality extensively in the sequel.

3.2. Comments on the solution ut(x). The general theory of stochastic PDEs
indexed by LCA groups (see Khoshnevisan and Kim [15]) implies that we may write
the solution to (1.1) in the following mild form (variation of parameters): Almost
surely for all t > 0 and x ∈ Zd,

ut(x) = 1 +

ˆ t

0

∑

y∈Zd

pt−s(y − x)Φ(us(y)) dBs(y),(3.2)

where, for every r ≥ 0 and w ∈ Zd, pt(w) = P{Xt = w} for a continuous-time
random walk X = {Xt}t≥0 starting form the origin on Zd whose generator is L. It
also follows from general theory [15] that for every real number k ≥ 2 there exists
a positive real number L = L(k ,Φ) such that
(3.3)

sup
x∈Zd

E
(
|ut(x)|k

)
≤ LeLt and sup

n≥0
sup
x∈Zd

E
(
|un(t , x)|k

)
≤ LeLt for all t ≥ 0,

where un denotes the nth stage of the Picard iteration approximation of u; see
(3.5).

Finally, let us record the following elementary fact.

Proposition 3.1. The random field {ut(x) : x ∈ Zd} is stationary for every t ≥ 0.

We omit the proof as it follows along the same lines as in the proof of [6, Lemma
7.1], using the fact that the law of space-time white noise on R+ ×Zd is translation
invariant.

3.3. The Malliavin derivative of ut(x). The following is the main result of this
section.

Proposition 3.2. ut(x) ∈ ∩k≥2D1,k for all (t , x) ∈ R+ ×Zd. Furthermore, for all
real numbers T > 0 and k ≥ 2 there exists a number C = Ck,T,Φ > 0 such that

‖Ds,yut(x)‖k ≤ Cpt−s(x − y) for all 0 < s < t < T and x, y ∈ Zd.(3.4)

The proof of Proposition 3.2 rests on the following sub-semigroup property of
the squares of the transition functions of the underlying random walk.
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Lemma 3.3.
∑

y∈Zd [pt(x − y)ps(y − z)]2 ≤ [pt+s(x − z)]2 for all t, s ≥ 0 and

x, z ∈ Zd.

Proof. We may change variables in order to reduce the problem to the case that
z = 0. Now suppose z = 0, and let X and X ′ denote two independent copies of the
random walk whose generator is L. We may observe that

∑

y∈Zd

[pt(x − y)ps(y)]2

=
∑

y∈Zd

P
{
Xt+s − Xs = x − y , X ′

t+s − X ′
s = x − y , Xs = y , X ′

s = y
}

= P
{
Xt+s = x , X ′

t+s = x , Xs = X ′
s

}
.

Drop the event {Xs = X ′
s} from the above to increase the latter probability to

[pt+s(x)]2; this yields the lemma. !

Proof of Proposition 3.2. We will provide the details for the case that k = 2 and
merely point out the key part that needs a small revision to extend the proof to
k > 2.

The proof is carried out in a few relatively direct steps, similar to the proof of
[8, Lemma 4.2]; see also [6, Theorem 6.4].

Step 1. Let un denote the nth stage of the Picard iteration approximation of u.
That is, u0(t , x) := 1 and
(3.5)

un+1(t , x) := 1+

ˆ t

0

∑

y∈Zd

pt−s(x−y)Φ(un(s , y)) dBs(y) [n ∈ Z+, t > 0, x ∈ Zd].

We claim that for all n ∈ N, t > 0, s ∈ (0 , t), and x, y ∈ Zd,

E
(
|Ds,yun+1(t , x)|2

)

≤ [pt−s(x − y)]2
{

KeLs
n−1∑

ν=0

2ν+1 Lip2ν
Φ

(t − s)ν

ν!
+2n+1 Lip2n

Φ
(t − s)n

n!
|Φ(1)|2

}
,

where K is a positive real that depends only on Φ. Furthermore,

(3.6) E
(
|Ds,yu1(t , x)|2

)
= [pt−s(x − y)]2|Φ(1)|2,

for every t > 0, s ∈ (0 , t), x, y ∈ Zd.

Proof of Step 1. We apply the properties of the divergence operator (see [19, Prop.
1.3.8]) in order to find from (3.5) that: (1) Ds,yu1(t , x) = pt−s(x − y)Φ(1), which
proves (3.6); and (2)

Ds,yun+1(t , x) = pt−s(x − y)Φ(un(s , y))(3.7)

+

ˆ t

s

∑

z∈Zd

pt−r(x − z)Ds,yΦ(un(r , z)) dBr(z),
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for every n ∈ N, (t , x) ∈ (0 ,∞) × Zd, and (s , y) ∈ (0 , t) × Zd. Because |Φ(z)| ≤
|Φ(0)| + LipΦ |z| for all z ∈ R, the preceding yields the following bounds:

‖Ds,yun+1(t , x)‖2(3.8)

≤ pt−s(x − y) (|Φ(0)| + LipΦ ‖un(s , y)‖2)

+

( ˆ t

s

∑

z∈Zd

[pt−r(x − z)]2‖Ds,yΦ(un(r , z))‖2
2 dr

)1/2

≤ pt−s(x − y) (|Φ(0)| + LipΦ ‖un(s , y)‖2)

+ LipΦ

( ˆ t

s

∑

z∈Zd

[pt−r(x − z)]2‖Ds,yun(r , z)‖2
2 dr

)1/2

,

thanks to the chain rule of Malliavin calculus for Lipschitz-continuous functions (see
Nualart [19, Proposition 1.2.4]). In order to adapt the preceding the asserted bound
for ‖Ds,yut(x)‖k when k > 2, we apply the Burkholder-Davis-Gundy inequality
instead, and obtain

‖Ds,yut(x)‖k ≤ pt−s(x − y) (|Φ(0)| + LipΦ ‖un(s , y)‖2)

+ A

(ˆ t

s

∑

z∈Zd

[pt−r(x − z)]2‖Ds,yun(r , z)‖2
k dr

)1/2

,

where A = A(k , LipΦ). We continue with the case k = 2 from now on, but point
out that we obtain the general form of the proposition by keeping track of the effect
of using the above modification.

Recall (3.3) and let K := (|Φ(0)| +
√

L LipΦ)2 in order to find that

‖Ds,yun+1(t , x)‖2
2 ≤ 2KeLs[pt−s(x − y)]2(3.9)

+ 2 Lip2
Φ

ˆ t

s

∑

z∈Zd

[pt−q(x − z)]2‖Ds,yun(q , z)‖2
2 dq,

where we have used the elementary inequality (a + b)2 ≤ 2a2 + 2b2, valid for every
a, b ∈ R. In particular, we may freeze the variables s and y in order to see that the
following functions g1, g2, . . . , defined via

(3.10) gn(r , x) := ‖Ds,yun(s + r , x + y)‖2
2 [n ∈ N, r > 0, x ∈ Zd],

satisfy

(3.11) g1(r , x) ≤ [Φ(1)pr(x)]2,

and

gn+1(r , x) ≤ 2KeLs[pr(x)]2 + 2 Lip2
Φ

ˆ r

0
dq

∑

z∈Zd

[pr−q(x − z)]2gn(q , z),
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for every n ∈ N, r > 0, and x ∈ Zd. We may iterate this recursive inequality once
in order to see that if n ≥ 2 is an integer, r > 0, and x ∈ Zd, then

gn+1(r , x)

≤ 2KeLs[pr(x)]2 + 4KeLs Lip2
Φ

ˆ r

0
dq

∑

z∈Zd

[pr−q(x − z)]2[pq(z)]2

+ 4 Lip4
Φ

ˆ r

0
dq1

∑

z1∈Zd

[pr−q1(x − z1)]
2̂

q1

0
dq2

∑

z2∈Zd

[pq1−q2(z1−z2)]
2gn−1(q2 , z2)

≤ 2KeLs[pr(x)]2 + 4KeLs Lip2
Φ r[pr(x)]2

+ 4 Lip4
Φ

ˆ r

0
dq1

ˆ q1

0
dq2

∑

z∈Zd

[pr−q2(x − z)]2gn−1(q2 , z),

owing to sub-semigroup property of p2 [Lemma 3.3]. We may repeat once again to
see that if n ≥ 3 is an integer, r > 0, and x ∈ Zd, then

gn+1(r , x) ≤ 2KeLs[pr(x)]2 + 4KeLs Lip2
Φ r[pr(x)]2

+ 8KeLs Lip4
Φ

ˆ r

0
dq1

ˆ q1

0
dq2

∑

z∈Zd

[pr−q2(x − z)]2[pq2(z)]2

+ 16 Lip6
Φ

ˆ r

0
dq1

ˆ q1

0
dq2

∑

z∈Zd

[pr−q2(x − z)]2̂
q2

0
dq3

∑

z′∈Zd

[pq2−q3(z−z′)]2gn−2(q3, z
′),

and so on. Continue this iteration process and deduce from (3.10) the asserted
inequality for E(|Ds,yun+1(t , x)|2) after a change of variables [s + t ↔ s + r and
x + y ↔ x], using the simple fact that

∑
w∈Zd [pτ (w)]2 ≤ 1 for all τ ≥ 0 in order

to obtain the last term in the curly brackets. This and (3.11) together prove the
validity of Step 1. !
Step 2. supn∈Z+

E(‖Dun(t , x)‖2
H) < ∞ for all t ≥ 0 and x ∈ Zd, where H =

L2(R+ × Zd) was defined in §3.1.

Proof of Step 2. In accord with [19, Corollary 1.2.1], Ds,yun(t , x) = 0 when s ≥ t.

Therefore, Step 1 implies that E(‖Dun(t , x)‖2
H) ≤

´ t
0 cn(s , t)‖ps‖2

*2(Zd) ds for all

(t , x) ∈ R+ × Zd and n ∈ N, where c1 ≡ |Φ(1)|2 and

(3.12) cn+1(s , t) = KeLs
n−1∑

ν=0

2ν+1 Lip2ν
Φ

(t − s)ν

ν!
+ 2n+1 Lip2n

Φ
(t − s)n

n!
|Φ(1)|2.

Step 2 is a consequence of the above and the elementary fact that supn∈N cn(s , t) <
∞. !

Finally, we complete the proof of Proposition 3.2 in a third, and final, step.

Step 3. ut(x) ∈ D1,k for every k ≥ 2 and (t , x) ∈ R+ × Zd, and (3.4) holds for the
parameter dependencies of Proposition 3.2.

Proof of Step 3. Again we consider only the case k = 2; the general case is proved
similarly. Since u0 ≡ 1, Step 3 has content only when t > 0. With this comment
in mind, let us choose and fix t > 0 and x ∈ Zd. General theory [15] ensures that
limn→∞ un(t , x) = ut(x) in L2(Ω) for every t ≥ 0 and x ∈ Zd. Therefore, the
closeability properties of the Malliavin derivative (see Nualart [19, Lemma 1.2.3])
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and Step 2 together imply that Dun(t , x) → Du(t , x), as n → ∞, in the weak
topology of L2(Ω ; L2(R+ × Zd)); and moreover, that ut(x) ∈ D1,2. Now, we ap-
ply Cantor’s diagonalization in order to see that there exists an unbounded se-
quence {n(,)}∞*=1 of positive integers such that for every y ∈ Zd, D•,yun(*)(t , x) →
D•,yu(t , x), as , → ∞, in the weak topology of L2(Ω ; L2(R+)). We next use
a bounded and smooth approximation {ψε}ε>0 to the identity in R+, and apply
Fatou’s lemma and the self-duality of L2 spaces in order to find that

‖Ds,yut(x)‖2 ≤ lim inf
ε↓0

∥∥∥∥
ˆ s

0
Ds′,yut(x)ψε(s − s′) ds′

∥∥∥∥
2

= lim inf
ε↓0

sup
‖G‖2≤1

∣∣∣∣
ˆ s

0
E [GDs′,yut(x)]ψε(s − s′) ds′

∣∣∣∣ ,
(3.13)

for all y ∈ Zd and almost every s ∈ (0 , t). Choose and fix a random variable
G ∈ L2(Ω) such that E(|G|2) ≤ 1. For all y ∈ Zd, D•,yun(*)(t , x) → D•,yut(x), as
, → ∞, in the weak topology of L2(Ω ; L2(R+)). Thus, we find that for all y ∈ Zd

and almost all s ∈ (0 , t),
∣∣∣∣

ˆ s

0
E [GDs′,yut(x)]ψε(s − s′) ds′

∣∣∣∣ = lim
*→∞

∣∣∣∣

ˆ s

0
E
[
GDs′,yun(*)(t , x)

]
ψε(s − s′) ds′

∣∣∣∣

≤ lim sup
*→∞

ˆ s

0

∥∥Ds′,yun(*)(t , x)
∥∥

2
ψε(s − s′) ds′

≤ lim
*→∞

√
cn(*)(s , t)

ˆ s

0
pt−s′(x − y)ψε(s − s′) ds′,

owing to Step 1, where cn was defined in (3.12). Letting ε → 0 to deduce the result
from (3.13), as well as the boundedness and the continuity of s $→ pt−s(x − y) for
every t > 0 and x, y ∈ Zd. !

3.4. Proof of Theorem 1.4. Let us make a small observation before we begin the
proof of Theorem 1.4: Thanks to the Poincaré inequality (3.1) and the chain rule
of Malliavin calculus [19, Proposition 1.2.4],

| Cov[g(ut(0)) , g(ut(x))]| ≤ Lip2
g

ˆ t

0

∑

z∈Zd

‖Ds,zut(0)‖2‖Ds,zut(x)‖2 ds.

Therefore, Proposition 3.2 yields

(3.14)
∑

x∈Zd

|Cov [g(ut(0)) , g(ut(x))]| ≤ A

ˆ t

0

∑

x,z∈Zd

pt−s(−z)pt−s(x − z) ds < ∞,

for a real number A = A(K , Lipg , t , LipΦ , L). We now proceed to the proof of
Theorem 1.4.

Proof of Theorem 1.4. Choose and fix some t > 0 throughout, and define

ζk := g(ut(k)) − E[g(ut(0))] for every k ∈ Zd.

By Proposition 3.1 and (3.3), {ζk}k∈Zd is stationary, E[ζ0] = 0, and Var(ζ0) < ∞.
Furthermore, (3.14) assures us that

σ2
g,t =

∑

k∈Zd

Cov(ζ0 , ζk) =
∑

k∈Zd

Cov(g(ut(0)) , g(ut(k)))

is an absolutely convergent sum. We verify uniform integrability (2.5) next.
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For every ϕ ∈ C define, following (2.3),

Sn(ϕ) = n−d/2
∑

k∈Zd

{g(ut(k)) − E[g(ut(0))]}ϕ(k/n)(3.15)

= n−d/2
∑

k∈Zd

( ∑

y∈Zd

ˆ t

0
E [Ds,y[g(ut(k))] | Fs] dBs(y)

)
ϕ(k/n),(3.16)

where Fs := the σ-algebra generated by {Br(y); y ∈ Zd, r ∈ [0 , s]}, and we have
used the Clark–Ocone formula in the last line. We apply Minkowski’s inequality
and the Burkholder-Davis-Gundy inequality in order to see from the above that for
all p ≥ 2 there exists cp > 0 such that for every n ∈ N,

‖Sn(ϕ)‖2
p

≤
cp

nd

∑

y∈Zd

∑

k,k′∈Zd

|ϕ(k/n)ϕ(k′/n)|
ˆ t

0

∥∥E [Ds,y [g(ut(k))] | Fs] E
[
Ds,y [g(ut(k

′))] | Fs
]∥∥

p/2
ds

≤
cp

nd

∑

y∈Zd

∑

k,k′∈Zd

|ϕ(k/n)ϕ(k′/n)|
ˆ t

0
‖Ds,y [g(ut(k))]‖p

∥∥Ds,y [g(ut(k
′))]

∥∥
p

ds,

the last line valid thanks to the Cauchy-Schwarz inequality and Jensen’s inequality
for conditional expectations. Thus, the chain rule of Malliavin derivative (see [19,
Proposition 1.2.4]) yields

‖Sn(ϕ)‖2
p ≤

cp Lip2
g

nd

∑

y∈Zd

∑

k,k′∈Zd

|ϕ(k/n)ϕ(k′/n)|
ˆ t

0
‖Ds,yut(k)‖p ‖Ds,yut(k

′)‖p ds.

Proposition 3.2 can now be used to deduce that, uniformly for all n ∈ N,

‖Sn(ϕ)‖2
p ≤ const

nd
·
∑

y∈Zd

∑

k,k′∈Zd

|ϕ(k/n)ϕ(k′/n)|
ˆ t

0
pt−s(k − y)pt−s(k

′ − y) ds

=
const

nd
·
∑

k,k′∈Zd

|ϕ(k/n)ϕ(k′/n)|
ˆ t

0
p2(t−s)(k − k′) ds[semigroup property]

≤ const

nd
·
∑

k∈Zd

|ϕ(k/n)|2
ˆ t

0

∑

j∈Zd

p2(t−s)(j) ds[Cauchy-Schwarz inequality].

Since p2(t−s)(j) sums up to 1, the integral is equal to t, whence supn∈N ‖Sn(ϕ)‖p <
∞ for every ϕ ∈ C . Because p > 2, the uniform integrability condition (2.5) follows.

In light of (3.14) and Theorem 2.2 it remains to prove that {Sn(ϕ); ϕ ∈ C }
satisfies the asymptotic independence condition (AI). First, note that for all z ∈ Zd

and almost every s ∈ (0 , t),

Ds,zSn(ϕ)

= n−d/2
∑

k∈Zd

Ds,zg(ut(k))ϕ(k/n)=n−d/2
∑

k∈Zd

g′(ut(k))Ds,zut(k)ϕ(k/n) a.s.

Therefore, we once again envoke the chain rule of Malliavin derivative (see Nualart
[19, Proposition 1.2.4]) in order to see that for all p ≥ 2, n ∈ N, and z ∈ Zd, and
for almost every s ∈ (0 , t),

(3.17) ‖Ds,zSn(ϕ)‖p ≤ Ap,t

nd/2

∑

k∈Zd

pt−s(k − z)|ϕ(k/n)|,

for a number Ap,t > 0, where the last inequality follows from Proposition 3.2.
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Choose and fix a, b ∈ R, δ > 0, and ϕ1,ϕ2 ∈ U such that

(3.18) sep(supp[ϕ1] , supp[ϕ2]) ≥ δ.

Our remaining goal is to prove that

Cn :=
∣∣∣E

[
eiaSn(ϕ1)+ibSn(ϕ2)

]
− E

[
eiaSn(ϕ1)

]
E
[
eibSn(ϕ2)

]∣∣∣ → 0 as n → ∞.

Since Cn = | Cov(eiaSn(ϕ1) , e−ibSn(ϕ2))|, (3.1) and (3.17) together imply that

Cn ≤ |ab|
∑

z∈Zd

ˆ t

0
‖Ds,zSn(ϕ1)‖2‖Ds,zSn(ϕ2)‖2 ds

≤ const

nd

∑

k,m,z∈Zd

|ϕ1(k/n)ϕ2(m/n)|
ˆ t

0
ps(k − z)ps(m − z)ds,

uniformly in n ∈ N. Observe that
∑

z∈Zd ps(k−z)ps(m−z) = P{Xs−X ′
s = k−m}

where X and X ′ are i.i.d. copies of a random walk with generator L. Thus, we can
re-index the sums to find that

(3.19) Cn ≤ const ·
∑

*∈Zd

ˆ t

0
P{Xs − X ′

s = ,} ds
1

nd

∑

m∈Zd

∣∣∣∣ϕ1

(
m + ,

n

)
ϕ2

(m

n

)∣∣∣∣ .

The Cauchy-Schwarz inequality and (2.8) [with j = 0] together imply that the final
quantity n−d

∑
m∈Zd |ϕ1((m + ,)/n)ϕ2(m/n)| in (3.19) is bounded uniformly over

all n ∈ N and m ∈ Zd. Therefore, an appeal to the dominated convergence theorem
assures us that

lim
n→∞

∑

*∈Zd

ˆ t

0
P{Xs − X ′

s = ,} ds · 1

nd

∑

m∈Zd

∣∣∣∣ϕ1

(
m + ,

n

)
ϕ2

(m

n

)∣∣∣∣

= t

ˆ
Rd

|ϕ1(y)ϕ2(y)| dy = 0,

owing to (2.8) and (3.18). This and (3.19) together imply that limn→∞ Cn = 0, and
complete the proof of the theorem. !

Remark 3.4. An anonymous referee informs us a functional version of our Theorem
1.4. Consider ϕ = 1Q(r) (see the definition of 1Q(r) in §2.3). Then, as a process in
r ∈ [0, 1], the left-hand side of (1.2) converges in distribution to Brownian motion
in the space C[0, 1]. This is guaranteed by [2, Theorem 19.2] since the moment
estimate and asymptotic independence established in the proof of Theorem 1.4
verify the conditions of [2, Theorem 19.2]. Meanwhile, the same anonymous referee
also informs us that when d = 1, our Theorem 2.2 can be deduced from Theorem
4.5 of Jakubowski [13].
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