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ABSTRACT. We present a central limit theorem for stationary random fields
that are short-range dependent and asymptotically independent. As an appli-
cation, we present a central limit theorem for an infinite family of interacting
Ito-type diffusion processes.

1. INTRODUCTION

Let ¢ = {Cx}reze be a stationary random field, centered and normalized so that
E(¢p) = 0 and Var(¢p) < oo. The principal aim of this article is to: (1) Prove the
following central limit theorem for dependent random variables; and (2) Present an
application of this theorem to interacting diffusion processes.

Theorem 1.1. If the random field ( = {(i}reze is short-range dependent [see
@R1)], asymptotically independent [see Condition (Al)], and satisfies a minimal
integrability condition [see [2.8)], then the distribution of n=%? > kef1,...nyd Gk S
asymptotically normal as n — 0.

Short-range dependence and asymptotic independence will be recalled in due
time. For now, it suffices to say that these are both natural conditions and both
arise abundantly in the literature on time-series analysis (see for example Lahiri
[16] and its references).

Our main application of Theorem [L.1]is a result about infinite systems of inter-
acting diffusions. Before we describe that application, let us make two brief remarks
that explain how Theorem [[.1] might relate to parts of a vast body of central limit
theorems that already exist in the literature.

Remark 1.2. One can prove that if ¢ is strongly mixing in the sense of Rosenblatt
[20], then ¢ is asymptotically independent; see Corollary 1.12 of Bradley [3], Vol.
1] for example when d = 1. Tt follows from this that Theorem [L.1] implies a well-
known central limit theorem of Ibragimov [12] for strongly mixing sequences though;
usually, the latter is cast when d = 1. A noteworthy difference between the proof
of Theorem [L.1] and the proofs of CLTs for strongly mixing sequences is that the
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proof of Theorem [L.1]is non technical, and relies only on compactness arguments
together with Paul Lévy’s classical characterization of standard Brownian motion
as the unique mean-zero, continuous Lévy process with variance one at time one
(this is in fact an immediate consequence of the Lévy-Khintchine formula; see,
for example Bertoin [1]). The detailed bibliography of the three-volume book by
Bradley [3] contains a very large number of pointers to the vast literature on CLT
for stationary dependent sequences. See also the survey articles by Bradley [4] and
Merlevede, Peligrad, and Utev [17].

Remark 1.3. Tt is easy to see that if { is an associated sequence of random variables
in the sense of Esary, Proschan, and Walkup [10], then Theorem [I.1]reduces to the
central limit theorem of Newman and Wright [18] for associated random variables
(again, usually stated for d = 1).

The preceding remarks describe how Theorem [L1] reduces to well-known theo-
rems in specific settings. Next we describe a setting where we do not know whether
there is association or strong mixing.

Consider the following infinite system of interacting It6-type stochastic differen-

tial equations:
dug(z) = (Lug)(x) dt + P(us(x)) dBe(z) for all t > 0 and z € Z¢,
subject to up(x) =1 for all z € Z,

(1.1)

for a field B = {B(x)},eza of i.i.d. one-dimensional Brownian motions. Here, L
denotes the generator of a continuous-time random walk on Z?, and the diffusion
coefficient ® : R — R is assumed to be Lipschitz continuous. Shiga and Shimizu
[21] have shown that (1) has a unique adapted solution under these conditions.

Theorem 1.4. For every Lipschitz-continuous function g and all t > 0,

(1.2)
1= 3" (g(u(x)) - Elg(ue(0)) p(a/n); ¢ € € § < {04, W (); ¢ € C},
z€Z?
where 02, = 3, cza Covlg(uy(0)) , g(ur(x))] is finite, in fact absolutely convergent.

In the above theorem, and throughout the paper, «ldy ofers to the weak
convergence of all finite-dimensional distributions. Moreover & denotes the class of
all piecewise-continuous functions with compact support on R[]

Earlier, Deuschel [9] proved a version of Theorem [L.4]— where L is replaced by a
more general nonlinear operator and @ a less general function — using a martingale
central limit theorem in place of Theorem[1.1l The present formulation of Theorem
[L.4] includes the important special case of the “parabolic Anderson model.” That
is when ®(z) = const x z for all z € R; see Carmona and Molchanov [5].

Theorem [L.4] can also be generalized to cover many other noise models; see Ref.
[6H8] for analogous results in the continuous setting of SPDEs. Here, we will not
study such more general results to maintain brevity.

The remainder of this paper is devoted to the proof of Theorems [L.1] and [1.4]
which are proved in §2 and §3] respectively.

IPiecewise continuous means functions which are continuous except on a finite number of
hyperplanes.
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We close this section with a brief description of the notation of this paper.
Throughout we write || Z||, instead of (E[|Z|*])}/*. We denote by Lip; the Lipschitz
constant of every function f : R — C; that is,

b) —
Llpf = Sup M
—oo<a<b<oo |b a|

Rademacher’s theorem (see Federer [11, Theorem 3.1.6]) ensures that if Lip; < oo,
then the weak derivative of f exists and is bounded almost everywhere in modulus

by Lipy.

2. A CLT FOR DEPENDENT VARIABLES

In this section we first recall the undefined terminology of Theorem [L.1] and then
state and prove a more general theorem (Theorem [2.2) than Theorem [L.1] which
turns out to be easier to prove directly.

2.1. Two definitions. We start with a general definition.

Definition 2.1. A sequence of N-dimensional random vectors (Xi,,,...,Xnn),
N > 2, is asymptotically independent as n — oo if for all real numbers §;,1 < j < N,

n—oo

n N
j=1

j=1

Recall that a stationary random field { = {(i}reze is said to be short-range
dependent when

(2.1) 2= Z | Cov(Co, k)| < 0.

kezd

It will be helpful to first introduce some notation before we define the remain-
ing undefined term in Theorem [I.1I We endow the collection € of all piecewise-
continuous functions ¢ : R — R that have compact support with the L2(R9)
norm. Let Z C % denote the collection of all linear combinations of indicator
functions of upright boxes @ C R? of the form Q = (ay,b1] x -+ x (a4, ba), where
a1 < by,...,aq < bg are real numbers. We always let supp[p] denote the support
of the function ¢ € ¥. Moreover, the separation of two sets A and B is defined as

(2.2) sep(A,B) = inf{ max, |, —vyil :x € Ay € B} for A, B C RY.

1<i

For every ¢ € € we consider the sequence of random variables
(2.3) Su(p) i=n"Y2 3" Cop(k/n)  [neN].
kezd
Now we are ready to introduce the assumption of asymptotic independence.

(AI) For every § > 0 and all @1, ps € % such that sep(supp|e1], supp[ps]) > 6,
the random variables Sy, (¢1) and S, (¢2) are asymptotically independent as
n — oo; that is,
(2.4)

lim ‘E [emsn%)““n(w)] _E [emsn(m] E [eibsnr@@)} ’ =0 foralabeR.

n— oo
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We conclude this section with a CLT for dependent variables. Let W = {W(¢);
¢ € L2(R?)} denote the usual isonormal Gaussian process that is associated with
white noise on R?. That is, W is a mean-zero Gaussian process with

Cov[W (1) , W (p2)] = (p1,p2)r2may  for every p1, s € L*(R?).
Theorem 2.2. If { = {(x}reza s a stationary random field that satisfies 2.1 and
(Al), and if

2
(2.5) n— S,,Zl(].(o’l]d) = n_d< Z C;C) is uniformly integrable,
d

ke{l,...,n}
then {Sn(p); p € €} 1dd, {oW(p); ¢ € €} as n — oo, where
(2.6) 0% =Y Cov(o,Cr)-

kezd

Let ¢ = 1(g)« in order to deduce the following precise form of Theorem [L1]
from Theorem [2.21

Corollary 2.3. If ¢ = {Ck}reze is a stationary random field that satisfies [2.1),
(AI), and (2.5), then n—9/? > ke{1,...npa Sk 4 N(0,0%) as n — oo, where o2 is
defined in (2.4).

Lemma 2.4. Condition (2.5) implies that n — S2(1g) is uniformly integrable for
every Q € % .

Proof. A finite sum of uniformly integrable (denoted by UI) random variables is
UL Therefore, by stationarity, it suffices to prove that n — S2(1¢) is Ul for Q =
Hﬁzl(oka where 0 < r, < 1. We will prove this for Q = (0,7] x (0,1]?"! since
this is all we will need later on; the same arguments can be applied to prove the
uniform integrability for more general @ € 7. To simplify the notation, we assume
without loss of much generality that d = 2.

Choose and fix some r € (0, 1), and define Q(«) := (0, a] x (0, 1] for every o €
(0, 1]. One can check from first principals that if {S2(1g(a)) }nen is U for some a €
(0, 1], then {Sﬁ(léQ(a))}neN is UT also. Hence, it follows from condition (2.5) and
stationarity that n — {S2(1(0,1/2]4(0,1/22) }nen is UL And because Q(1/2) is the
disjoint union of (0,1/2]* and (0,1/2) + (0,1/2]?, it follows that n — S2(1g1/2))
is UIL. By induction, we may deduce that n +— Sﬁ(lQ(l/Qk)) is UI for any k£ € N.
Again, we use the fact that a finite sum of Ul random variables is Ul to see that
n — S2(1g(g) is U for every real number ¢ € (0,1) of finite dyadic expansion,
that is, ¢ of the form Y ;" x;/2" where z1,...,Z,, € {0,1}.

For every € > 0 there exists a number g € (0, 1), with a finite dyadic expansion,
such that [|1g(r—qp)llz2®?) < €. Thus, the following is valid for all K,L > 0 and
n €N

2
E[S2(1o():1n(Lom)| > L] =E [|Sn(Law)+Sa(lam —Law)| s 1Sa(tam)| > L]

<2E [S3(1g()); [Sn (Lo > L] +2E [S3 (1 (r—q))]
2

2K
<2 (S (Law): 1Sn (Low)| > K]+ ~p5 sup B[S (1) +2B [Si(Lo(r-ap)]

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



CLT FOR DEPENDENT RANDOM VARIABLES 5371

thanks to Chebyshev’s inequality. We borrow in advance from Lemma 2.5 — see

@22) — to see that?
lim limsupE [SZ(IQ(T)) i [Sh(Lgy)| > L]

—0 n—ooo

< 2limsupE [5'721(1@(,1)) i 1Sn(1ge) > K| + 2022
n—roo

Let K — oo, using the fact that n — S2(1¢(,)) is UL to conclude the uniform
integrability of n +— Sﬁ(lQ(T)) from the fact that € is arbitrary. O

2.2. Tightness and weak convergence. Before we prove Theorem [2.2] we make
some comments, by way of three lemmas, about tightness and weak convergence.
The proof of Theorem [2.2] will be carried out in the next subsection.

Lemma 2.5. For every ¢ € € and alln € N,
(2.7)
E(ISu(@)]*) <a*n™" Y le(k/n)l> and  lim E(|Su(¢)]*) = 0®[l¢]|72 ays

n—roo
kezd
where o and & are defined respectively in ([2.6]) and (2.1)).

Proof. A change of variables shows that
E(ISa(@)F) =n" Y~ Covl(Co,G) D e(k/n)e((f + k)/n).
jeZd kezd

This implies the first assertion of (2.1), since the Cauchy—Schwarz inequality for
the counting measure implies that

n= Y lelk/n)e((G+ k) /) <n Y felk/n)l
kezd kezd
Moreover, since ¢ is piecewise continuous with compact support,
(2.8)
. _d . _ 2 : d
nh%n;on Z p(k/n)o((+k)/n) = llelli2ga boundedly, for every j € Z.
kezd

Therefore, the remaining assertion of (2.7)) follows from the dominated convergence
theorem. ]

Lemma 2.6. Let 7 be a dense subset of € in L*(R?), and suppose S, (v) 4,

oW (W), asn — oo, for everyp € 7. Then, {S,(p); p € €} L {oW (p); v € €}
asn — 0o.

Proof. Choose and fix an arbitrary function ¢ € ¥. We aim to prove that .S, (¢) 4,
W(p) as n — oo. The convergence of finite-dimensional distributions follows from
this and the linearity of ¢ — S, (¢) and ¢ — W(p). For every € > 0 there exists

¥ € 2 such that || — w||2LQ(Rd) < e. Since S, () 4, oW () as n — oo, we can

2Lemma [2.5] and its proof do not refer to the present lemma. So this application of Lemma
[2.5]is logically sound.
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write, for all £ € R,

lim sup [Eei€5+(#) _ BeiéoW (#) ‘2
n—oo

< 3limsup ‘Eeiﬁsn(w) _ Fei€Sn () ‘2 43 ‘EeiEUW(«P) _ Rei€oW ()

’2
n— o0

< 3¢ limsup E (|S(0) — Sn(¥)?) + 36%0°E ([W(0) = W(¥)[?)

n— o0

since |e?* — e| < |z — y| for all z,y € R. Property (2.7) now ensures that, for all
£eR,

, , 2
lim sup |Ee5n(#) — EeZE"W(‘P)’ < 6€%0% for every £ € R.
n—oo

This completes the proof since the left-hand side does not depend on ¢. O

Lemma 2.7. Let 6 > 0, and suppose that (S, (¢1),Sn(¥2)) are asymptotically
independent as n — oo for all 1,19 € % such that sep(supp|yn], supp[va]) > §

[see 2.2)]. Then, (Sn(p1),...,Sn(¢oN)) are asymptotically independent as n — oo
[see Definition R.I] for all v1,...,on € % that satisfy

sep(supple;)] , supp|p;]) > 0 for 1 <iz# 35 <N and integers N > 2.

Proof. Set ®,,, := 1+ -+ forallm=1,...,N. Forevery n € N, let Dy, :=0
and define

Dy = 'E { ﬁ eiSnW] - ﬁ EeiSn (%))
Jj=1 j=1

for m = 2,...,N. The linearity of S,, and the triangle inequality together imply
that for every n e Nand m =2,... N,

)

Eeisn(¢m) _ H Eeisn(‘Pj)
j=1

D,, ., = ‘Eeisn@m) — EeiSn(®m—1)EeiSn(#m)

+

EeiSn(q’mq)EeiSn(cpm) _ H EeiSn(soj)
7j=1

< ‘Cov [eis"(‘l’m*l) , efiS"(“"m)] ’ 4+ D1

Subtract D,,_1 , from both sides and sum over m to find that

N
Dy < Z ‘Cov [eis"(’bm*l) , eis"(*‘Pm)} ‘ .
m=2

The separation condition on the ¢;’s implies that sep(supp[®.,—1] , supp[—¢m]) > 0
forall m = 2,..., N, and hence lim,_,o, Dy, = 0 by asymptotic independence [see
(2.4)]. Now relabel ¢; as &;¢;, where &1, ..., &N are arbitrary nonzero constants, in
order to deduce that S,,(¢1),...,Sn(pnN) are asymptotically independent as n —
oo. [This requires only the fact that &p; has the same support as ¢; for i =
1,...,N.] O

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



CLT FOR DEPENDENT RANDOM VARIABLES 5373

2.3. Proof of Theorem [2.2] In this section, we assume that the conditions of
Theorem [2.2] are met.
We first prove weak convergence in a special case, where the limit can be identi-

fied with a Brownian motion. Choose and fix real numbers a1 and as < bo,...,aq <
bq, and define
Q(r) = (a1,a1 + 7] x (az,ba] X -+ x (ag,b4) for every r € (0, 1].

Observe that Q(r) € % for every r € (0,1]. For every n € N, we define one-
parameter processes Y, and Y as follows:

Yo(r) = Sn(1lgey) and Y(r):=oW(lg(,) for every r € (0,1].

It is immediate that Y is a one-dimensional Brownian motion with variance
021—[?:2(171- —a;). Our main objective is to prove the following specialized form
of Theorem [2.2

Proposition 2.8. Y, M4y s n — oo

Let us first deduce Theorem [2.2] from its specialized form Proposition 2.8 The
proposition will be verified subsequently.

Proof of Theorem 2.2l Let 2 := Us~0%s, where for every 6 > 0, 95 denotes the
collection of all functions ¥ € % that have the form

(29) d) = 1/)1 —+ -4 1/)m, Where ’l,[}z = ai]_Q,”
where m € N, ay,...,a, € R\ {0}, and Q1,...,Q,, € Z are upright boxes of the
form Q; = (bi, ci] x -+ x (b}, ¢4] for real numbers b} < ct,.... b5 <ci,i=1,...,m,

and satisfy
sep (Q;,Qj) > whenever 1 <i#j <m;

see ([22). Because Z is dense in L?(R?), and hence also dense in ¢, Lemma [2.6]
will imply Theorem [2.2] once we prove that Sy, (¢) L oW (), as n — oo, for every
¥ € 2. With this aim in mind, let us choose and fix some 6 > 0 and ¥ € %5, and
assume that ¢ has the representation (2.9). By linearity, S, (¢) = > 1", Sn () =:
Zf;l Xin a.s., where X; , 1= S, (¢;). The asymptotic independence condition in
Theorem [2.2] and Lemma 2.7 ensure that {X;,}7, describes an asymptotically
independent sequence as n — oo; and Proposition [2.8/implies that X; ,, 4, oW (1)
as n — oo, for every ¢ = 1,...,m. The asserted asymptotic independence then
implies that S, (¢) 4, Yy +---+Y,, as n — oo, where Y7,...,Y,, are independent,
and the distribution of Y; is the same as that of oW (1);) for every ¢ = 1,...,m.
Because the supports of the ;’s are disjoint, W (1), ..., W(1,,) are uncorrelated,
hence independent, Gaussian random variables. In particular, S, (¢) 4, oW (¢1)+
coo oW () = oW () as n — oo; see ([2.9) for the last identity. This concludes
the proof of Theorem [2.21 a

Proof of Proposition 2.8l We will prove this proposition in five steps.

Step 1. The laws of {Y,,(7)}n>1 are L2-bounded uniformly in r € (0,1] and n € N,
and hence also tight uniformly over all » € (0, 1].
In order to see why, apply (2.1) in order to see that

(2.10) E (Y, (r)?) <®n~ 4 1o (k/n) <5*n~ 4" 1o (k/n)

kezd kezd
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for every r € (0,1] and n € N. The final quantity in (2.10) is bounded uniformly
in n € N by 2 times the upper Riemann sum of 14(1), and the latter is finite.
This yields the desired L?-boundedness, and tightness follows from Chebyshev’s
inequality.

Step 2. For every unbounded sequence 0 < ni; <ng < --- there exists a subsequence

n' = {n},}?°, and random variables Y = {Y(r)},cqn(o,1 such that Yo 4, ¥ as
k — oo.
This follows from uniform tightness in Step [Il and Cantor’s diagonalization.

Step 3. Y can be extended to a continuous process ={Y(r)}reo-
Let n tend to infinity along the subsequence n/, and appeal to Step 2] Fatou’s
lemma, and ([2.7) in order to see that for every R > r>0withr, Re QN (0,1],

d
E(|Y(R) - V(1)) <liminfE <|Yn;c (R) — Y (r)|2) = R — | [ (b: — a:)-
i=2
The continuity of Y follows from this and Kolmogorov continuity theorem [14]
Theorem 2.8].

Step 4. We can realize Y = {Y(r)},¢j01] as an infinitely divisible process with
stationary increments such that Y (0) = 0 and E[Y(r)] = 0 for all » € [0,1].
Therefore, the process Y = {Y(r)},¢[0,1) is a centered Brownian motion indexed
and normalized such that Var[Y (1)] = o2.

We first prove that ¥ = {Y(r)},¢[o,1] is infinitely divisible. Let us choose and
fix an integer M > 1 and M + 1 real numbers 0 =: rg < 11 < --- < 7. For every
sufficiently small 6 > 0, there exist rational points rfé, . ,rjj\[/[’ s € Q such that
OZT‘Q:TS_)(;<7“£5<’I“1<'FI5<---<T;5<TJ‘<7“;:5<---<T17475<TM,8,H(1
6 < T;f(;—r;(; <2forallj=1,...,M—1and rM—rXLJ < 4. We choose and fix such
a ¢ in order to deduce from the asymptotic independence condition (AI) and Lemma
2.7 that {Y;,(r;5) — Ya (7"j+ 1 5)}5\41 are asymptotically independent as n — oo.

Hence, the random variables Y(r| 5), Y(r£5) - }7(7{5), . .,}7(7“;475) - }7(7“;{/[7176)
are independent. Moreover, we may appeal to the continuity of ¥ = {Y(T)}re[o,u
(see Step B) in order to conclude that for all aq,...,ayn € R,

E {eizyzl aj(Y(rj)—Y(rj,l))}

— lim E [eiszzl aj(}_’(rjis)ff’(r;.ll,s))}

§—0
= lim E|: io Y(TJ 5~ Y(r i| H |: Lo Y(T]) Y(rj-1)
<S—>0j=1 e}

It follows that the random variables Y (r1),Y (ro) — Y (r1),..., Y (rar) — Y (rar—1)
are independent, whence Y = {Y (r)},¢[o,1] is infinitely divisible.

Since ¢ = {Cx}reze is stationary, the law of Y;,(s) — Y, (r) is the same as the
distribution of Y;,(s — r) whenever 0 < r < s. Thus, we see that the distribution of
Y (s) — Y (r) is the same as that of Y (s — r) whenever 0 < r < s are rational. The
continuity of Y now ensures that the preceding holds in fact whenever 0 < r < s.
This proves that the process Y = {}7(7“)},06@0[0,1} has stationary increments.
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Because of Step [I] and since E[Y,,(r)] =0 for all r € (0, 1] and n € N, it follows

that E[Y (r)] = 0 for all » € QN (0, 1]. A second appeal to Step [Il and continuity
(Step B) shows that E[Y (r)] = 0 for every r € [0,1]. B
Finally, Lévy’s characteristic theorem of Brownian motion ensures that Y =

{Y(T)}TE[OJ] is a Brownian motion; see Bertoin [1]. Therefore, it remains to check
that Var[Y (1)] = aznfzz(bi —a;). Indeed, Step [2] ensures that Y,/ (1) 4, Y (1) as
k — oo. Therefore, the uniformly integrability condition ([2.5) and Lemmal[2.4limply
that Var[Y (1)] = limy_ 0o E[Yni(l)} = 0[], (b; — a;), where the last equality is
due to Lemma 2.5

Step 5. We are ready to complete the proof of Proposition 2.8

So far, we have proved that for every unbounded increasing sequence {ns}g>
there exists a further unbounded increasing subsequence {n }7°, such that the
finite-dimensional distributions of {Y,; (r)},eqn(o,1) converge to those of a Brow-
nian motion Y as k — oo, and the speed of that Brownian motion is always
021_[?:2(191» — a;). In particular, the law of Y is the same as the law of Y regardless
of the choice of the original subsequence {nj}7> ;. This proves that the finite-
dimensional distributions of {Y;,(r)},cqn(0,1) converge to those of {Y'(r)},con(o 1]

In order to conclude Proposition 2.8] we need to show that for all integer

M > 1 and for all 0 < r; < --- < rpy < 1, the characteristic function of
(Yo(r1), ..., Yu(rar)) converges to the characteristic function of (Y (r1),...,Y (ra))
as n — oo. For any € > 0, we can choose Ry, ..., Ry € Q such that

(211) rp < Rp <rp+e and ||[Y(rg) —Y(Ri)ll2<e foralk=1,..., M.
Define &, (o, 3) := E[e! it axYa(B)] and &(ar,B8) := Elet Zrma @Y (B0)] for all
a € RM and B € [0,1]M. Our goal is to prove that lim, . &,(a,r) = &(a,7)
for all o € RM. With this aim in mind, we can write
[En(c,r) = E(a,7)| < |&n(a,m) — n(a, R)|
+ |6 (a,R)—&(a,R)|+ |8 (x,R) — &(ax,7)]
M M

<D lanllYa(ri) = Yo (Bi)ll2 +1 60 (e, R) =& (e, R) |+ Y ] [[Y (Ri) =Y (1) |2
k=1 k=1

M M
<Dl 1Yalr) = Ya(Bi)llz + |6l R) = (e, R)| +2 ) Jal,
k=1 k=1

where the last inequality follows from [II). Since {Y,(7)}reqn(o,] 1dd,

{Y(r)}reon(o,1], the middle term in (2.12) vanishes as n — oo. Therefore, [2.7)
implies that

d M M
limsup &, (a,7) — &(a,r)| < aH(bi — a;)'/? Z | (R — )2 + EZ ||
=2 k=1 k=1

n—o0

d M
< (oVE[J(bi —a)? +2) ) laxl.
=2 k=1

This concludes the proof of Proposition 2.8 since € > 0 is arbitrary. (Il
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3. CLT FOR INFINITELY-MANY INTERACTING DIFFUSIONS

The central limit theorem in Theorem R2.2] can be applied to infinitely-many
interacting diffusion processes, as indicated in the title of this paper.

3.1. Malliavin calculus. We introduce some elements of Malliavin calculus in
order to establish the central limit theorem for infinitely-many interacting diffusion
processes. Let H = L%(R; x Z%), and recall that the Gaussian family {n(h)}nren
formed by the Wiener integrals H > h — n(h fo seza M(s,x) dBs(x) defines
an isonormal Gaussian process. In this framework we can develop the Malliavin
calculus as has been done, for instance, by Nualart [19].

We denote by D the derivative operator, and D*? the Gaussian Sobolev space
generated by all F' € L%(Q) with derivative DF € L?(2;H). In accord with the
Poincaré inequality,

(3.1)  |Cov(F,G) |</ S IDs2Fl, |Ds2Glly ds  for all F,G € D2,
z€7Z4
We will use this inequality extensively in the sequel.

3.2. Comments on the solution wu;(x). The general theory of stochastic PDEs
indexed by LCA groups (see Khoshnevisan and Kim [15]) implies that we may write
the solution to ([L.I) in the following mild form (variation of parameters): Almost
surely for all t > 0 and = € Z¢,

(3.2) —1+/ S Py — 2)P(us(y) dB.(y),

yeZd

where, for every 7 > 0 and w € Z% pi(w) = P{X; = w} for a continuous-time
random walk X = {X,;};>0 starting form the origin on 74 whose generator is L. Tt
also follows from general theory [15] that for every real number k > 2 there exists
a positive real number L = L(k, ®) such that

(3.3)
sup E (|ut(x)\k) < Le™ and sup sup E (Ju,(t, x)|k) < Le™ for all £ > 0,
z€eZd n=0xezd

where u,, denotes the nth stage of the Picard iteration approximation of w; see

(3.5).

Finally, let us record the following elementary fact.
Proposition 3.1. The random field {u;(x) : x € Z¢} is stationary for every t > 0.

We omit the proof as it follows along the same lines as in the proof of [6, Lemma
7.1], using the fact that the law of space-time white noise on R x Z< is translation
invariant.

3.3. The Malliavin derivative of u;(z). The following is the main result of this
section.

Proposition 3.2. u;(z) € Nk>2DY* for all (t,x) € Ry x Z. Furthermore, for all
real numbers T > 0 and k > 2 there ezists a number C' = Cy 1,0 > 0 such that

(3.4) | Ds yue(z), < Cpi—s(z —y) forall0<s<t<T andz,y € Z°.

The proof of Proposition B.2] rests on the following sub-semigroup property of
the squares of the transition functions of the underlying random walk.
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Lemma 3.3. 3 z4[pi(z — y)ps(y — 2)]? < [pias(z — 2)]? for all t,s > 0 and
x,z € 7%,

Proof. We may change variables in order to reduce the problem to the case that
z = 0. Now suppose z = 0, and let X and X’ denote two independent copies of the
random walk whose generator is L. We may observe that

> iz — y)pa(y))?

yeZa
=Y P{Xpp.—Xo=2-y X, X, =2-y,X, =y, X, =y}
y€ezZ
:P{Xt+s:$aXt/+s:x7Xs:X;}-

Drop the event {X, = X!} from the above to increase the latter probability to
[pi+s()]?; this yields the lemma. O

Proof of Proposition 321 We will provide the details for the case that &k = 2 and
merely point out the key part that needs a small revision to extend the proof to
k> 2.

The proof is carried out in a few relatively direct steps, similar to the proof of
[8) Lemma 4.2]; see also [6, Theorem 6.4].

Step 1. Let u,, denote the nth stage of the Picard iteration approximation of w.
That is, up(t,z) := 1 and
(3.5)

t
Unpa(t, ) == 1+/ > pros(@—y)®(un(s,y))dBs(y) [ € Zy,t>0,2 € Z).
0
yeZa

We claim that for alln € N, t > 0, s € (0,t), and x,y € Z4,

E (|Ds,yun+1(tv$)|2)

s)"

n—1
t—s)¥ t—
< o P{wer S oty Co P iy e,

v=0

where K is a positive real that depends only on ®. Furthermore,
(3.6) E (IDsyui(t,2)?) = [pe—s(a — )| 2(1) %,
for every t > 0, s € (0,t), z,y € Z%.

Proof of Step [1l. We apply the properties of the divergence operator (see [19, Prop.
1.3.8]) in order to find from (B.5) that: (1) D, ui(t,z) = pr—s(x — y)P(1), which
proves (B.6]); and (2)

(3.7) DS,yun+1(t ,7) = Pr—s(x — ) P(un(s,y))

[ 3 P = 2D Bl ) B ),

2€7Z%
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for every n € N, (t,2) € (0,00) x Z¢, and (s,y) € (0,t) x Z%. Because |®(2)| <
|®(0)| + Lipg | 2| for all z € R, the preceding yields the following bounds:

(3.8) ||D5’yun+1(t7x)||2
< pi—s(@ —y) (|2(0)] + Lipg [lun(s,y)|2)

i </5t D [Pl = 2)P Dy y @ (un(r, 2))I3 d?“) :

2€Z4
< pi—s(z —y) (|2(0)] + Lipg [lun (s, y)l2)

+ Lipg (/t > pr—r(z - Z)]Qlle,yun(hZ)|§d7“)1/27

S zezd

thanks to the chain rule of Malliavin calculus for Lipschitz-continuous functions (see
Nualart [19, Proposition 1.2.4]). In order to adapt the preceding the asserted bound
for ||Ds yui(z)|lx when k& > 2, we apply the Burkholder-Davis-Gundy inequality
instead, and obtain

[1Ds yue ()], < pr—s(z —y) (|2(0)] + Lipg [[un(s,y)l2)

ca( [ Tiperte z)F|Ds,yun<r,z>||idr)1/27

z€Z4

where A = A(k,Lipg). We continue with the case k = 2 from now on, but point
out that we obtain the general form of the proposition by keeping track of the effect
of using the above modification.

Recall [3.3) and let K := (|]®(0)| + VL Lipg)? in order to find that

(89) [ Duytnsa(t,2)[2 < 2Ke"[py_y(z — y)]?

t
L oLipd / S [P q(@ — 22| Daytin(a, 2)|13 da,

S zezd

where we have used the elementary inequality (a + b)? < 2a? + 2b2, valid for every
a,b € R. In particular, we may freeze the variables s and y in order to see that the
following functions g1, ga, . .., defined via

(3.10) gn(r, ) = ||Ds yun(s + 1,2 +y)|3 [neN,r>0,z¢cz,
satisfy

(3.11) g1(r,z) < [@(1)p,(2)]%,

and

a(r2) < 2K @ + 21003 [ dg Y [pr-(e— 2)Ponla ),
0 2€7Z2
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for every n € N, r > 0, and = € Z?. We may iterate this recursive inequality once
in order to see that if n > 2 is an integer, r > 0, and x € Z?, then

gn+1(r,x)

< 2Ke"*[p,(z)]? + 4Ke™* Lip3 /r dg > [Pr—qg(a = 2)*[pg(2)]

z€Z4

T q1
+ 4Lip$/ dg1 Y [prg, (z — Z1)]2/ dg2 Y [Pg1—qo (21— 22)*gn—1(g2 , 22)
0

z1€Z4 0 zo €Z4
< 2Ke"[p,(z)]? + 4Ke™* Lip3 r[p,(z))?

T q1
4 4Liph / dgy / dgs 3" Pran (& = )P 1(a22),
0 0

2€74
owing to sub-semigroup property of p? [Lemma [3.3]. We may repeat once again to
see that if n > 3 is an integer, 7 > 0, and z € Z%, then

Int1(r,x) < 2KeL5[pr(x)]2 +4Kel® Lip% 7| r(x)]z

T q1
8Kl Lip} / dgs / dgz Y [Prgu(@ — 2)2[pya ()2
z€Z4

r q1 q2
+16Lip5 [ dar [ 4023 [proanlo = P [ dan Y [Punin (o= na(a )
0 0 z€Z4 0 z'ezd
and so on. Continue this iteration process and deduce from (8.10) the asserted
inequality for E(|Ds yu,11(t,x)|?) after a change of variables [s + ¢ > s +r and
& +y <> z, using the simple fact that >, _ya[p-(w)]? < 1 for all 7 > 0 in order
to obtain the last term in the curly brackets. This and (B.11) together prove the
validity of Step [l O

Step 2. sup,cz, B(|Dun(t,z)[3,) < oo for all t > 0 and = € 7%, where H =
L?(Ry x Z%) was defined in §3.11

Proof of Step 2l In accord with [19, Corollary 1.2.1], D, yu,(t,2) =0 when s > ¢.
Therefore, Step [ implies that E(||Du,(t,z)3,) < fg cn(s,t)||ps||52(zd) ds for all
(t,r) € Ry x Z% and n € N, where ¢; = |®(1)|? and

n—1 S)n

s v s 2v (t — s)y n s2n (t_
(312) ensals, 1) = Keb*3_ 2 Lipy! S P + 27 Lip P

v=0

().

Step[2is a consequence of the above and the elementary fact that sup,,cy ¢, (s,t) <
0. |

Finally, we complete the proof of Proposition [3.2]in a third, and final, step.

Step 3. uy(x) € DYF for every k > 2 and (t,z) € Ry x Z4, and (3.4) holds for the
parameter dependencies of Proposition [3.21

Proof of Step Bl Again we consider only the case k = 2; the general case is proved
similarly. Since ug = 1, Step [l has content only when ¢ > 0. With this comment
in mind, let us choose and fix ¢t > 0 and = € Z?. General theory [15] ensures that
lim, o0 un(t, ) = w(z) in L?(Q) for every t > 0 and z € Z%. Therefore, the
closeability properties of the Malliavin derivative (see Nualart [19] Lemma 1.2.3])
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and Step [2 together imply that Du,(t,x) — Du(t,z), as n — oo, in the weak
topology of L?(Q2; L?(R, x Z%)); and moreover, that u;(x) € D“2. Now, we ap-
ply Cantor’s diagonalization in order to see that there exists an unbounded se-
quence {n(¢)}2°, of positive integers such that for every y € Z4, De g o) (t, ) =
Dq yu(t,z), as £ — oo, in the weak topology of L?(2;L?(Ry)). We next use
a bounded and smooth approximation {i.}c~o to the identity in R, and apply
Fatou’s lemma and the self-duality of L? spaces in order to find that

‘/S Ds’,yut(x)dje(s - SI) dS/
0

[ Ds yue(z)2 < lira%nf
(3.13) )
= liminf sup

b)
0G|z <1

/0 "B (GDuyun()] ve(s — ) ds’

for all y € Z¢ and almost every s € (0,t). Choose and fix a random variable
G € L*(Q) such that E(|G|?) < 1. For all y € Z%, Dq yupn(t,x) = Do yuy(z), as
¢ — oo, in the weak topology of L2(Q; L?(R,)). Thus, we find that for all y € Z?
and almost all s € (0,¢),

/ E[GDy yut(z)] Ye(s — ') ds'| = elim / E [GDy yune)(t, )] ve(s — s') ds’
0 - lJo
s
< lim Sup/ | Dy ytine) (t, ) ||, ¥e(s — s') ds’
{— 00 0

< limy /e (s, t)/ pi_s (T —y)-(s — s')ds,
0

T 4=

owing to Step [l where ¢,, was defined in ([B.12]). Letting & — 0 to deduce the result
from (B.13), as well as the boundedness and the continuity of s — p;_s(x — y) for
every t > 0 and z,y € Z%. 0

3.4. Proof of Theorem[1.4l Let us make a small observation before we begin the
proof of Theorem [[.4t Thanks to the Poincaré inequality (8.1) and the chain rule
of Malliavin calculus [19, Proposition 1.2.4],

| Covlg(ui(0)) , g(us(2))]] < Lipﬁ/o Y I1Dszu(0)[2l| Dy zua () |2 ds.

2€Z2
Therefore, Proposition [3.2] yields

B:14) 3 [Covlg(u(0) gl <A [ 30 pros(-2pisle = 2)ds < .
r€Za 0 z,2€7%

for a real number A = A(K,Lip,,t,Lipg,L). We now proceed to the proof of
Theorem [1.4]

Proof of Theorem [L4l Choose and fix some ¢t > 0 throughout, and define

G 1= g(un(k) — Elg(u(0))]  for every k € 72
By Proposition B.1l and (B.3), {Cx}reze is stationary, E[(o] = 0, and Var(p) < cc.
Furthermore, (8.14) assures us that

ooy = Z Cov (o, Ck) = Z Cov(g(u(0)) , g(ue(k)))

keZa kezZe

is an absolutely convergent sum. We verify uniform integrability (2.5]) next.
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For every ¢ € € define, following (2.3)),
(3.15)  Su(p) =n"Y* D" {g(ui(k)) — Elg(us(0))]} ¢ (k/n)

kezd
(3.16) =n 2 (k)] | FsldBs(y) Je(k/n),
kg‘i (y%Z:d/ >S0

where F, := the o-algebra generated by {B,(y); y € Z%,r € [0,s]}, and we have
used the Clark—Ocone formula in the last line. We apply Minkowski’s inequality
and the Burkholder-Davis-Gundy inequality in order to see from the above that for
all p > 2 there exists ¢, > 0 such that for every n € N,

llSn ()13

<SS et/ ] B 1D o ()] | FJE (Dl W) 2] d

yEde}HGZd
<z Z D lelk/n)p(k /n) \/ 1D,y g (ur (D], [| Ds.y[g(ur (K)]]], ds,
yEde}HGZd
the last line valid thanks to the Cauchy-Schwarz inequality and Jensen’s inequality
for conditional expectations. Thus, the chain rule of Malliavin derivative (see [19]
Proposition 1.2. 4]) yields

1S (2)7 < pg Yo D lelk/n)p(K /n) \/ [1Ds e (k) ||, | Ds iz (K], ds.

yeZd k,k'€Ze

Proposition [3.2] can now be used to deduce that, uniformly for all n € N,

1593 < 55 /et [ gtk - a8 ) s

n
yEZA k k' €24
const ! i

= S loth/miplh ) | pae-ay(s k) dssemigzonp propesty

k,k/€zZd 0
t

< cons Z lo(k/n) |2/ Z Po(i—s) ( /) ds|Cauchy-Schwarz inequality].

kezd Jjezd

Since pyi—s)(j) sums up to 1, the integral is equal to ¢, whence sup,,c [|Sn(¢)|lp, <
oo for every ¢ € €. Because p > 2, the uniform integrability condition (2.3]) follows.

In light of (8.14) and Theorem [2.2] it remains to prove that {S,(¢); ¢ € €}
satisfies the asymptotic independence condition (AI). First, note that for all z € Z2
and almost every s € (0,1),

Ds,zSn(Lp)
=12y Daglu(k)p(k/n) =n""2 Y o (un(k) Dy sun(k)ip(k/n) - as.
kezd kezs

Therefore, we once again envoke the chain rule of Malliavin derivative (see Nualart
[19) Proposition 1.2.4]) in order to see that for all p > 2, n € N, and z € Z%, and
for almost every s € (0,1),

(3.17) D525 (0 Hp_ iz 5 D Pis(k = 2)lp(k/n),

kezd

for a number A, ; > 0, where the last inequality follows from Proposition [3.2]
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Choose and fix a,b € R, § > 0, and ¢1, @2 € % such that

(3.18) sep(supplp1] , supp[pz]) > 6.

Our remaining goal is to prove that
Cn . ’E |:eiaSn(<p1)+ibSn(<,02)] —E |:eiaSn(<p1)] E [eibsn(ﬁﬂ)] ’ —0 asn— oo.

Since C,, = | Cov(e!®%n(¥1) e=®Sn(¢2))| ([B.I) and (B.17) together imply that

Cn

IN

t
ab 3 ]C 1De.2 S0 (1) l12]l Dz Sni02) 2 ds

z€Z4
const

Z|mmmmw4meMHMa

k,m,z€Z

nd

uniformly in n € N. Observe that ). ;. ps(k—2)ps(m—2) = P{X, - X{ = k—m}
where X and X’ are i.i.d. copies of a random walk with generator L. Thus, we can

re-index the sums to find that
¢

1 m+ ¢ m
3.19) C, < const - P{X, — X] = (}ds — =) e (2]
319) € <comste 3 [P - xi=as 1 3 o (M) e (™

LeZa mezd

The Cauchy-Schwarz inequality and (2.8)) [with j = 0] together imply that the final
quantity n=?>" i lo1((m + £)/n)pz(m/n)| in B19) is bounded uniformly over
all n € N and m € Z¢. Therefore, an appeal to the dominated convergence theorem

assures us that
(m + f) m
Pl ———— | ¥2 (-)
n n

t
. ! i
nlgr;OZ/o P{X, - X{=(}ds — >

Lezd mezd

= f/Rd le1(y)p2(y)| dy = 0,

owing to (2.8)) and ([B.18]). This and (8.19) together imply that lim,, . C, = 0, and
complete the proof of the theorem. |

Remark 3.4. An anonymous referee informs us a functional version of our Theorem
[L.4l Consider ¢ = 1) (see the definition of 15,y in §2.3). Then, as a process in
r € [0, 1], the left-hand side of (I.2]) converges in distribution to Brownian motion
in the space C[0,1]. This is guaranteed by [2, Theorem 19.2] since the moment
estimate and asymptotic independence established in the proof of Theorem [1.4]
verify the conditions of [2, Theorem 19.2]. Meanwhile, the same anonymous referee
also informs us that when d = 1, our Theorem [2.2] can be deduced from Theorem
4.5 of Jakubowski [13].
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