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Abstract Methane (CH,) is a potent greenhouse gas with a warming potential 84 times that of carbon
dioxide (CO,) over a 20-year period. Atmospheric CH, concentrations have been rising since the nineteenth
century but the cause of large increases post-2007 is disputed. Tropical wetlands are thought to account

for ~20% of global CH, emissions, but African tropical wetlands are understudied and their contribution

is uncertain. In this work, we use the first airborne measurements of CH, sampled over three wetland areas
in Zambia to derive emission fluxes. Three independent approaches to flux quantification from airborne
measurements were used: Airborne mass balance, airborne eddy-covariance, and an atmospheric inversion.
Measured emissions (ranging from 5 to 28 mg m~2 hr~!) were found to be an order of magnitude greater
than those simulated by land surface models (ranging from 0.6 to 3.9 mg m~2 hr™!), suggesting much greater
emissions from tropical wetlands than currently accounted for. The prevalence of such underestimated CH,
sources may necessitate additional reductions in anthropogenic greenhouse gas emissions to keep global
warming below a threshold of 2°C above preindustrial levels.

Plain Language Summary Methane (CH,) is a powerful greenhouse gas. The more CH, in the
atmosphere, the greater the amount of warming. CH, is emitted naturally by many sources, such as wetlands,
but is also emitted by many human activities, such as fossil fuel use, waste treatment, and farming. Tropical
wetlands are thought to account for roughly one-fifth of the global CH, emissions, but studies on tropical
wetlands in Africa are extremely rare. We measured CH, emissions from three separate wetlands in Zambia
(southern Africa) and found that models were estimating much lower CH, emissions. If more CH, is being
emitted by the many other African wetlands than currently thought, then we may have overestimated the
amount of CH, that humans can yet emit before reaching 2°C of global warming, and failing the promises set
out in the Paris Agreement.
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1. Introduction

Following a period of stabilization between 1999 and 2006, atmospheric methane (CH,) concentrations have
exhibited largely unexplained and accelerating growth (Dlugokencky, 2020). This growth was accompanied by
a switch in the long-term trend in the carbon isotopic ratio of CH, (expressed as 6'*Ccy,) (Lan et al., 2021;
Nisbet et al., 2016, 2019): prior to 2006, the bulk global isotopic signature had been shifting toward more posi-
tive values of 8'*C. However, the trend since 2007 has become increasingly negative, as a result of isotopically
lighter global atmospheric CH, (Nisbet et al., 2019). Such a shift in the isotopic trend implies a significant
rebalancing of CH, sources and sinks. Possible explanations for these observations include increasing fossil
fuel emissions (Howarth, 2019; Milkov et al., 2020; Schwieztke et al., 2016), increasing biogenic emissions
(Lunt et al., 2019; Schaefer et al., 2016; Wilson et al., 2021), or declining CH, removal by atmospheric oxidants
(McNorton et al., 2018; Rigby et al., 2017). Taken individually, such explanations cannot fully reconcile both
the increase in CH, and the isotopic shift, suggesting that the true explanation is more likely a combination of all
these factors (Jackson et al., 2020; Nisbet et al., 2019).

According to recent bottom-up and top-down inventories, emissions of CH, from tropical wetlands account for
approximately 20% of the total global source (Saunois et al., 2020), and are thought to dominate the interannual
variability in global CH, growth (Parker et al., 2018). Despite this, emissions of CH, from tropical wetlands are
extremely poorly quantified, both in terms of their magnitude and their isotopic signature (Ganesan et al., 2019).
This is especially true for tropical wetlands in Africa, representing a substantial geographical gap in our knowl-
edge of the global CH, budget (Ganesan et al., 2019; Kim et al., 2016). Seasonal CH, fluxes of between 5 and
25 mg m-2 hr-1 have recently been reported for a permanent wetland in the Okavanga Delta, Botswana (Helfter
et al., 2021, 2022) but these remain some of the only CH, flux measurements available for wetlands in tropi-
cal Africa. Although statistically consistent within their estimated uncertainty ranges, there is a ~30 Tg yr~!
mismatch between mean bottom-up and top-down estimates of global wetland CH, emissions, with top-down
estimates generally reported to be larger than bottom-up estimates implying a possible underestimation by land
surface models (Saunois et al., 2020).

Where measurements of CH, emissions from tropical wetlands do exist, they have typically relied on surface
emission samples collected using flux chambers, and analyzed offline using gas chromatography (e.g., Marani &
Alvala, 2007; Nahlik & Mitsch, 2011). Such surface chamber measurements potentially miss important vectors
for emission, in which vegetation may function as a conduit (Barba et al., 2018; Pangala et al., 2017). African
vegetated marshland ecosystems are typically dominated by tall papyrus and phragmites, which may vent CH,
directly to the atmosphere above the vertical capture range of most surface flux measurement chambers (Barba
et al., 2018; Pangala et al., 2017). Long-term research stations with instrumented towers can be used to measure
fluxes above the vegetation canopy (e.g., Dalmagro et al., 2019; Helfter et al., 2021), but their prevalence in trop-
ical wetland environments is limited, particularly in Africa.

Land surface models simulate wetland CH, fluxes via a series of production, oxidation, and transportation
processes, computed as the product of an emission flux density and the surface spatiotemporal wetland extent
(Melton et al., 2013; Saunois et al., 2020). These models are typically used in global budgets to provide bottom-up
estimates of wetland emissions. However, many land surface models do not explicitly model vegetation type or
density, and have been reported to inaccurately diagnose vegetated marshland areal extent (Blyth et al., 2021;
Melton et al., 2013). The lack of observational CH, emission data means that many land surface models are poorly
parameterized and poorly constrained for tropical wetlands (Parker, Wilson, et al., 2020). Models are therefore
unable to simulate emissions accurately across heterogeneous land types and timescales (Lan et al., 2021; Wilson
et al., 2021; Xu et al., 2016). There is also growing evidence that climatic feedback may lead to increased CH,
emission from natural sources (including tropical wetlands) driven by increasing rainfall and rising temperatures
(Dean et al., 2018; Lunt et al., 2021; Nisbet et al., 2019). Highly uncertain and positive climate feedback from
natural systems may necessitate further reduction measures on anthropogenic greenhouse gas emissions than
those currently modeled and planned for, to keep global warming below a threshold of 2°C above preindustrial
levels (Comyn-Platt et al., 2018).

Recently, satellites have observed high CH, concentrations over tropical East Africa, corresponding to high-
er-than-expected emissions from wetlands, which were estimated to be up to an order of magnitude greater than
emissions simulated by land surface models (Lunt et al., 2019, 2021; Pandey et al., 2021). However, satellite
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measurements of CH, are typically limited to cloud-free conditions (Palmer et al., 2021). While satellites can
observe the influence of substantial emissions at large distances downwind of a source (particularly important
when there is widespread cloud cover over the source region of interest), aircraft-based measurement platforms
offer focused sampling in all conditions, at a higher spatial resolution, and in closer proximity to the source.

A variety of approaches can be used to estimate surface emission fluxes from airborne measurements, each of
which involves some model of atmospheric transport and dispersion. Airborne mass balance box modeling tech-
niques have been extensively used to quantify fluxes from disperse regional sources such as wetlands, cities, and
industrial areas (e.g., Fiehn et al., 2020; O’Shea et al., 2014; Pitt et al., 2019). Advective mass balance models
assume horizontal transport with the mean wind vector, and limited exchange between the planetary boundary
layer (PBL) and the free troposphere (Pitt et al., 2019). Advective mass balance models typically require captur-
ing the full extent of an emission plume downwind of a source by flying transects at multiple altitudes, but results
can be severely impacted by significant boundary layer development (Cambaliza et al., 2014). Boundary layer
budgeting mass balance models are based on the rate of change of a gas within a well-mixed volume, and can
account for rapid boundary layer development but with limited horizontal transport (Denmead et al., 1999). The
airborne eddy-covariance approach is an emerging technique which provides spatially resolved flux measure-
ments that are especially useful for heterogeneous sources. However, eddy-covariance measurements require
expensive, high time-resolution instrumentation with parallel sampling of three-dimensional winds, and is highly
dependent on meteorology (e.g., Hannun et al., 2020; Metzger et al., 2013; Vaughan et al., 2016, 2021). Finally,
atmospheric inversion modeling is driven by numerical weather prediction models and thus can account for
spatial and temporal variability in meteorological conditions (Ganesan et al., 2014, 2017; Rigby et al., 2019).
Inversion modeling usually utilizes long-term, ground-based measurements to estimate surface fluxes on regional
or global scales, but has been successfully applied to relatively short time-scale aircraft measurements (Brioude
et al., 2013; Lopez-Coto et al., 2020; Pisso et al., 2019). Inversion approaches can be computationally expensive
to run and can also be constrained by the magnitude and spatial distribution of prior flux estimates, which may
be of limited accuracy in tropical Africa. Consequently, there is no single best practice approach to aircraft-
based flux quantification that works in all circumstances, and methods must often be adapted to specific survey
conditions.

Here, we have measured emissions of CH, from previously unstudied tropical wetlands in the Congo and
Zambezi drainage basins of the Central African Plateau (Daly et al., 2020). Using airborne measurements over
three wetland regions in Zambia, and the three flux techniques described above, we have calculated CH, emission
fluxes that are an order of magnitude larger than those simulated by land surface models. This may imply that
CH, production and emission processes for the types of vegetation typical of African wetlands are not accurately
represented in models. Direct measurements of CH, emissions from tropical wetlands are urgently required to
improve the predictive capacity of land surface models, and to help balance bottom-up and top-down estimates
of the global budget. We discuss this in the following sections through comparisons of our measured fluxes with
both satellite and land surface model data sets.

2. Materials and Methods

Airborne measurements of CH, were recorded over Zambia in February 2019 as part of the Methane Observa-
tions and Yearly Assessments (MOYA; Barker et al., 2020; Wu et al., 2021) ZWAMPS field campaign. Three
wetland areas were targeted across three separate flights; the Bangweulu wetland region in north-eastern Zambia
(11°36° S, 30°05° E), the Kafue wetland in southern Zambia (15°43° S, 27°17° E), and the Lukanga wetland in
central Zambia (14°29° S, 27°47° E) (Figure 1). These three wetlands are among the largest wetland regions in
Zambia, but were also those within easy access of Lusaka Airport. Together, the three wetlands are representative
of the types of wetland environments in Zambia and central Africa. The UK Facility for Airborne Atmospheric
Measurements (FAAM; https://www.faam.ac.uk/) BAe-146 atmospheric research aircraft performed the flight
surveys reported here.

2.1. Sampling Regions and Local Meteorology

The Bangweulu wetland region is an extensive wetland ecosystem in the Upper Congo drainage basin (Daly
et al., 2020) comprising Lake Bangweulu, marshlands, floodplains, and multiple small bodies of shallow water
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Figure 1. Methane (CH,) mole fraction measurements over the three wetlands. Flight tracks for the flights surveying the
Bangweulu (top right; 1 February 2019, 11:30:00-13:30:00 LT), Kafue (bottom left; 2 February 2019, 09:00:00-12:30:00
LT), and Lukanga (bottom right; 3 February 2019, 10:00:00-13:00:00 LT) wetlands, and their respective locations within
Zambia (top left). Flight tracks are colored by CH, mole fraction (see scale bars). Ecosystem maps were constructed on

the basis of mapping by The Ecological Survey of Zambia (Smith, 2001), and Debenham (1952), combined with field
observations and Landsat satellite image interpretations. The ecosystems are defined as open water, permanent and
transitional papyrus marshland, seasonally flooding grasslands, and high-ground Combretum woodland that surrounds and
defines the wetland areas. The greatest CH, enhancements were measured over, and downwind of, vegetated marshland. See
Figure S2 in Supporting Information S1 for alternative maps overlaid over satellite images. Time series of these data are also
shown in Figure 4.

(Hughes & Hughes, 1992). The combined area of the lake and wetlands can reach approximately 11,000 km?,
with the permanent open water surface of Lake Bangweulu accounting for approximately 3,000 km? of this
(Information Sheet on Ramsar Wetlands, 2007b; Travaglia & Macintosh, 1997). The Bangweulu wetland region
was surveyed during the wet season, on the morning of 1 February 2019 (11:30:00-13:00:00 LT). The flight
surveyed a large area over the wetland but at only a single altitude (~1600 masl) owing to the size of the survey
area, the distance from the airport of origin, and limited flight duration (see Supplementary Information Table S1
in Supporting Information S1).

The Kafue wetland is an expansive, seasonally inundated floodplain around the Kafue River (Information Sheet
on Ramsar Wetlands, 2007a; Hughes & Hughes, 1992). The wetlands are approximately 250 km long, and may
be up to 60 km wide during floods, establishing a wetland area of approximately 6,600 km?. Dams at either
end of the Kafue River regulate the flow of water. The area was surveyed on the morning of 2 February 2019
(09:00:00-12:30:00 LT) with the intention of measuring CH, emission fluxes from different parts of the Kafue
wetland by crossing over the river system at various points.

The Lukanga wetland occupies a shallow depression in the center of Zambia within the Zambezi drainage basin
(Hughes & Hughes, 1992; Information Sheet on Ramsar Wetlands, 2005). The permanent marshland is roughly
circular, with an area of approximately 1,850 km?. There are an additional 750 km? of wetted regions around
the surrounding river systems. The Lukanga wetland was surveyed during the morning of 3 February 2019
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(10:00:00-13:00:00 LT). The smaller extent of Lukanga meant that multiple stacked transects at different alti-
tudes were flown during both the upwind and downwind legs.

Zambian meteorology between December and March is modulated by the northward progression of the Intertrop-
ical Convergence Zone. The weather in northern Zambia during February is characterized by heavy rain and daily
thunderstorms, thus requiring a localized treatment of the mixing and dilution processes necessary for emission
flux quantification.

2.2. Instrumentation

A range of instrumentation for the observation of chemical and meteorological parameters was deployed on the
FAAM BAe-146 aircraft. Here we describe only those measurements pertinent to this study.

The FAAM aircraft core instrument suite measured meteorological and thermodynamic parameters: air temper-
ature was recorded by a Rosemount 102 Total Air Temperature probe (estimated uncertainty +0.1 K); static
pressure was measured by a series of pitot tubes mounted across the aircraft skin (uncertainty +0.5 hPa); and
three-dimensional wind components were measured by a nose-mounted five-port turbulence probe (uncertainty
+0.5ms™).

A Fast Greenhouse Gas Analyzer (FGGA; Los Gatos Research Inc.; O’Shea et al., 2013) measured CH, mole
fraction. The FGGA was calibrated in-flight using calibration gases traceable to the World Meteorological Organ-
ization (WMO) greenhouse gas scale (WMO-CH4-X2004A). The total derived uncertainty (15), which accounts
for uncertainties in calibration and in water vapor correction, was +2.93 ppb for the 10 Hz calibrated dry CH,
mole fraction data (see O’Shea et al., 2013 for more details). The instrument precision was 2.11 ppb at 10 Hz,
and 0.63 ppb at 1 Hz. While data were acquired at 10 Hz, the true time resolution of the instrument was closer to
6 Hz due to restricted cell flushing rates. 6 Hz measurements were achieved using an additional pump (Edward’s
nXDs 20i) and by adjusting the cavity pressure to 140 Torr, relative to the 1 Hz instrument setup described by
O’Shea et al. (2013).

5B Ccn, was measured from whole air samples collected using a manually triggered system onboard the FAAM
aircraft (Fisher et al., 2017). Samples of both background and enhanced CH, were collected to capture a range
in mole fractions. Mole fractions were measured in the RHUL laboratory using a Picarro 1301 cavity ring-
down spectrometer (precision = +0.3 ppb) calibrated using gases traceable to the WMO greenhouse gas scale
(WMO-CH4-X2004A). Isotopic analysis was carried out using continuous-flow gas chromatography coupled to
isotope-ratio mass spectrometry (precision = +0.05%o; Fisher et al., 2006).

2.3. Flux Quantification

2.3.1. Airborne Mass Balance

Mass budget, or mass balance, approaches have been used to derive regional-scale fluxes of trace gases from
airborne measurements (e.g., Cambaliza et al., 2014; Denmead et al., 1996, 1999; Fiehn et al., 2020; O’Shea
et al., 2014; Pitt et al., 2019). There are different approaches to mass balance flux quantification, based on differ-
ing assumptions regarding boundary layer meteorology (Denmead et al., 1999). One approach is to consider
the net mass flux into a column of air advected horizontally by the mean wind field (in the Lagrangian frame),
bounded by the surface at the bottom, and by the PBL height at the top. The surface flux can be calculated by
considering the change in concentration within the column and the net flux through the upper bound of the
column (Denmead et al., 1996), as in Equation 1:

F(;H4 =h

dCH, N ( dh +>
—(CHy —CHy)|—-W 1
T (CH,4 4) o (D
Here, Fcp, is the scalar flux density of CH, at the surface, 4 is the height of the PBL above the ground, CH, is

the CH, concentration within the PBL, CH,™ is the CH, concentration just above the PBL, and W* is the vertical
wind speed just above the PBL.
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Figure 2. Wind field measurements over the three wetlands. Flight tracks for the flights sampling the Lukanga (top left),
Bangweulu (top right), and Kafue (bottom) wetlands, colored by wind speed (m s~!). The black arrows indicate the mean
wind direction measured at 180 s intervals (Lukanga and Kafue), or 90 s intervals (Bangweulu). The wind direction was
highly variable over the Bangweulu wetland but generally northeasterly over the Kafue and Lukanga wetlands. Mean wind
speeds were 2.7 (+1.5), 4.2 (+1.6), and 5.6 (+1.7) m s~! during the Bangweulu, Kafue, and Lukanga survey, respectively.
Time series of these data are also shown in Figure 4.

Alternatively, surface flux can be measured by integrating an emission plume across a vertical plane measured
downwind of a source, as in Equation 2 (e.g., Cambaliza et al., 2014; Fiehn et al., 2020; O’Shea et al., 2014; Pitt
et al., 2019). The background CH, concentration can be taken from either the free troposphere or the upwind
measurements (the difference between the free tropospheric concentration and upwind boundary layer concentra-
tions was observed to be small in this study).

Ecu, = de/(CH4 — CHy urdx @

Here, CH, enhancement (CH, — CH,") and the wind speed perpendicular to the vertical plane (1) are inte-
grated between two points, a and b, which lie outside the lateral boundaries of the wetland emission plume. The
subscript on &, is shown to indicate that PBL height was measured during the downwind transect.

We used Equation 2 to derive a bulk CH, flux (in kg s~!) for the Lukanga wetland, as the assumption of a
constant wind speed and wind direction was appropriate. For the Bangweulu wetland flight, the wind speed
was exceptionally low over the wetland (<2 m s~!') and the wind direction highly variable (see Figure 2), so
the per-unit area emission flux (in mg m~2 hr~!) from the wetland was calculated directly from Equation 1. The
two mass balance equations are fundamentally similar under certain assumptions (see Text S2 in Supporting
Information S1). While the nature of the two mass balance equations necessarily yields emission estimates with
different units, conversion between the two outputs is simple, requiring only an approximation of wetland surface
area. However, assessment of wetland extent is not trivial, not least because wetlands are seasonally dynamic by
nature, but also due to inconsistencies in land surface classification within land cover climatologies. We used the
Ramsar estimates (Information Sheet on Ramsar Wetlands, 2005, 2007a, 2007b) for each of the three wetlands
but a variety of other estimates of wetland area also exist (described in Text S3 in Supporting Information S1).

Three aircraft transects were flown downwind of the Lukanga wetland, roughly perpendicular to the mean wind
direction. The largest CH, enhancements were observed during the lowest altitude transect, and decreased with
both altitude and with time (the higher altitude transects were flown at later points in the morning), owing to the
development of the local convective boundary layer over time. The observed decrease in CH, enhancement with
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increasing altitude was assumed to be a consequence of the expanding boundary layer, and thereby dilution of the
PBL with entrained air from the free troposphere (where CH, is lower in concentration), rather than as a result of
poor vertical mixing within the PBL.

2.3.2. Airborne Eddy-Covariance

Airborne eddy-covariance (AEC) gives direct quantification of vertical eddy-fluxes from aircraft (Hannun
et al., 2020; Metzger et al., 2013; Vaughan et al., 2016, 2021). A vertical eddy-flux is defined as the product of
the fluctuating vertical wind speed and the fluctuating concentration (of CH,), averaged over a defined period.
Measuring emission fluxes using airborne eddy covariance is highly complex, and usually requires a reasonably
strong and homogeneous horizontal wind, as well as a developed PBL which allows for airborne sampling well
within the entrainment zone (Metzger et al., 2012).

Flux averages at 500 m intervals for each flight transect were calculated using the eddy4R algorithm code-base.
Fast (>10 Hz) meteorology, position (except for altitude at 1 Hz), and CH, dry mole fraction (6 Hz) data were
combined, and aircraft roll angles (turns) greater than 20° filtered out. Transect lengths were kept long (>30 km),
with altitude variations limited to within 10% from the mean, to ensure large-scale eddy contributions to meas-
ured fluxes were captured. Only transects below 600 magl were considered to ensure measurements were well
within the PBL.

Dry CH, mole fractions were lag-time corrected against vertical wind speed using cross-correlations. Fluxes
were calculated along each flight track using mean-detrending and a wavelet-based approach. In addition,
meteorological statistics (Foken & Wichura, 1996; Vickers & Mabhrt, 1997), signal-to-noise statistics (Foken &
Wichura, 1996; Vickers & Mahrt, 1997), limits of detection (Billesbach, 2011), and flux uncertainties (Lenschow
etal., 1994; Mann & Lenschow, 1994) were calculated. Fluxes were corrected for vertical flux divergence follow-
ing a prescribed method (Deardorff, 1974; Sorbjan, 2006).

Equation 3 gives the global flux covariance (COV, ) between instantaneous vertical wind (x) and instantaneous
concentration (y) (Metzger et al., 2013).

_8jot Y N wx(a;, bo)wy(a;, by)*
COVar = 55 Doy Do a )

J

where C; defines the wavelet-specific reconstruction factor (Morlet wavelet = 0.776), g; defines the exponentially
spaced frequency domain scales and b, the linearly spaced time-domain scales. 5t defines the unit of increment
in the time-domain and §j in the frequency domain. We used a §j value of 0.125, and a frequency scale range of
0.33 s (Nyquist frequency) to 512 s.

Fluxes with a low signal-to-noise ratio (Foken & Wichura, 1996; Vickers & Mahrt, 1997) or with the inte-
gral turbulence characteristics below 100% were omitted. Random (117.9%) and systematic (21.2%) errors were
calculated for each 500 m flux measurement, accounting for short averaging periods and undersampling of the
largest atmospheric scales (Lenschow et al., 1994; Mann & Lenschow, 1994). As each flux measurement is
temporally limited, aggregating and averaging emission fluxes across multiple transects reduces overall uncer-
tainty. All measured fluxes were below the boundary layer (Z,), with an average boundary layer depth (Z, /Z)
of 0.42. Atmospheric stratification was found to be mostly unstable, with an average Monin-Obukhov stability
parameter (Z,/L) of —6.42.

The eddy4R algorithm was applied to each of the three wetland surveys. Unfortunately, the Bangweulu flight was
unsuitable for this approach due to low wind speeds and high buildup of CH,. This resulted in the failure of the
eddy4R algorithm to find cross-correlations between instantaneous vertical wind speed and instantaneous CH,
(or temperature), and hence a result for this wetland was not obtained (Metzger et al., 2017).

2.3.3. Atmospheric Inverse Modeling

A Lagrangian particle dispersion model, NAME (Numerical Atmospheric dispersion Modeling Environment;
Jones et al., 2007), was used to simulate the relationship between surface emissions and measured CH, mole frac-
tion at the aircraft sampling time and location. The relationship was quantified by releasing 10,000 inert model
particles from the location of the aircraft (each minute) and tracking their movement backwards in time (for up
to 30 days). Particle movement was governed by advection and random turbulence, driven by Unified Model
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meteorological fields at 0.14° x 0.09° spatial, and three hourly temporal, resolution. The particles' interaction
with the surface (0—40 magl) was recorded to create an atmospheric footprint for each minute of sampling. The
simulation domain extended from —50° to 87° E, and from —64° to 4° N; the sensitivity to these boundary condi-
tions was evaluated by recording the time and location at which particles left the simulation domain.

NAME has been widely used in regional inverse modeling studies (Ganesan et al., 2014, 2017; Rigby et al., 2019;
Tunnicliffe et al., 2020). A hierarchical Bayesian inversion method was used to combine airborne measure-
ments, prior emissions estimates, and the NAME atmospheric footprints (Ganesan et al., 2014). The hierarchical
approach allows for model parameters (such as model transport error) to be included as hyper-parameters, as
they are typically not well known a priori. 100 emission elements, four boundary condition elements, and the
model error estimate were solved in the inversion. The 100 emission elements were formed by aggregating
model grid cells into larger regions using a quadtree algorithm, resulting in higher resolution estimates near the
aircraft sampling locations. The 100 emission elements were assumed to be independent (i.e., uncorrelated). The
four boundary condition elements scaled prior boundary conditions on each horizontal edge of the simulation
domain. Emissions and boundary condition parameters were governed by truncated normal probability distri-
bution functions (PDFs). The mean PDFs were centered on prior values, with a standard deviation 15 times the
mean emissions value, and 2% (approximately 30 ppb) for boundary conditions. Total observational uncertainty
was calculated as the quadratic sum of measurement and model error. Measurement error was the variability in
1-min averaged data. Model errors were sampled from a uniform distribution of 0-30 ppb. The inversion was
solved using Markov Chain Monte Carlo simulations with a No-U-Turn sampler for emissions and boundary
conditions, and a slice sampler for the model error hyperparameter (Say et al., 2020).

Prior CH, emissions were formed from wetland, anthropogenic, and biomass burning sources. Wetland fraction
was the mean monthly 2010-2016 values from the Surface WAter Microwave Product Series (SWAMPS; Saunois
et al., 2020; Schroeder et al., 2015) at 0.5° X 0.5° resolution, updated to include wetlands under dense canopies
and inland waters (Tunnicliffe et al., 2020). The wetland fraction distribution was scaled uniformly to give a total
emission of 20 Tg CH, yr~! for southern Africa, consistent with bottom-up emissions estimates from this region
(Saunois et al., 2020). Anthropogenic emissions were taken from the 2012 emissions in the Emission Database
for Global Atmospheric Research (EDGAR; Janssens-Maenhout et al., 2019) v4.3.2 at 0.1° X 0.1° resolution.
Biomass burning emissions were the February 2019 values from the Global Fire Emissions Database (GFED;
van der Werf et al., 2017) v4.1 at 0.25° x 0.25° resolution. Prior boundary conditions were the two-dimen-
sional vertical ‘curtains’ on the edges of the NAME domain, taken from the 2010-2018 average mole fraction
fields from the CAMS CH, flux inversion product v18r1 (https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/
cams-global-greenhouse-gas-inversion?tab=overview). All fields were re-gridded to the model resolution used
here (0.14° x 0.09°).

2.4. Land Surface Models

CH, flux estimates were compared with emissions estimates from two land surface model ensembles; the Global
Carbon Project (GCP; Saunois et al., 2020) and WetCHARTS (Bloom et al., 2017).

The GCP data set comprises 13 land surface models run under a common protocol (Saunois et al., 2020). Wetland
spatial extent was prescribed using either a remote-sensing based diagnostic wetland map (consistent between
models; Zhang et al., 2021) or a prognostic wetland map (where models used their own internal approach for
simulating wetland area).

WetCHARTS: is a global wetland CH, emission model ensemble which estimates CH, emissions at 0.5° X 0.5°
resolution (Bloom et al., 2017). Two spatial and two temporal approaches are used to determine seasonal wetland
extent: spatial extent uses either the GlobCover wetlands (Bontemps et al., 2011) or the GLWD wetland extent
map (Lehner & Doll, 2004); while temporal variation is simulated using either the SWAMPS satellite product
(Schroeder et al., 2015) or the European Center for Medium-Range Forecasts (ECMWF) monthly ERA-Interim
reanalysis data (Dee et al., 2011). There are two ensembles included within WetCHARTS version 1.0: a full
ensemble comprising 324 emissions estimates, at monthly intervals for 2009-2010, and an extended ensemble
containing 18 emissions estimates at monthly intervals for 2001-2015.

SHAW ET AL.

8 of 21


https://ads.atmosphere.copernicus.eu/cdsapp
https://ads.atmosphere.copernicus.eu/cdsapp

Global Biogeochemical Cycles 10.1029/2021GB007261

2.5. Regional Modeling for Satellite Comparison

Model simulations to compare different wetland emission schemes with satellite observations of CH, (from
2019) were carried out using a nested configuration of the GEOS-Chem (v12.6) chemistry transport model (Lunt
et al., 2019; Turner et al., 2015). The model was configured using meteorological fields from the NASA Global
Modeling Assimilation GEOS-FP at 0.25° x 0.3125° in a domain between —20° and 52.5° E, and —36° and 20°
N, with 47 vertical levels. Lateral boundary conditions for the regional domain were generated from a 2-year
global 2° X 2.5° GEOS-Chem simulation, run with prior emissions for the three main sources (anthropogenic,
EDGAR v4.3.2; biomass burning, GFAS (Kaiser et al., 2012); and wetlands, WetCHARTS (Bloom et al., 2017))
and a primary sink due to CH, oxidation by the hydroxyl radical (giving a CH, lifetime of 9.9 years; Wecht
et al.,, 2014). The GEOS-Chem global boundary condition fields were fitted to the zonal mean TROPOMI/
GOSAT total column CH, (XCH,)) distribution, to provide pseudo-columns consistent with satellite data.

CH, emissions from wetlands were simulated using GEOS-Chem and the aircraft-derived emission rates from a
wetland area distribution and land class adapted from the CIFOR wetlands data set (Gumbricht et al., 2017a; see
Text S3 in Supporting Information S1).

2.6. Satellite Retrievals

Satellite observations (2019 only) of total column-averaged dry-air CH, mole fraction (XCH,) were taken from
two independent platforms: the TROPOMI instrument onboard the Sentinel 5-P satellite (Lorente et al., 2021)
and the Greenhouse gases Observing SATellite (GOSAT; Butz et al., 2011; Kuze et al., 2009). TROPOMI has a
swath width of 2600 km, a ground pixel of 7 X 7 km?, and is in a sun-synchronous orbit with an overpass time
of 13:30 local solar time. The bias-corrected scientific data product generated from the RemoTeC retrieval algo-
rithm was used for this work (Butz et al., 2011; Hu et al., 2016; Lorente et al., 2021). Data were filtered for cloud
coverage, surface albedo and roughness, and aerosol optical thickness. GOSAT has a ground pixel footprint of
10.5 km spaced by a 260 km across-track and 280 km along-track, and is in a sun-synchronous orbit with a local
overpass time of 13:00. Quality-filtered level-2 data were taken from the University of Leicester GOSAT proxy
CH, data set (v9.0) (Parker, Webb, et al., 2020). For comparison with the GEOS-Chem model, the TROPOMI
and GOSAT data were averaged from their native resolution to a 0.25° x 0.3125° grid, consistent with the reso-
lution of the GEOS-Chem model.

TROPOMI/GOSAT wetland enhancements were calculated using outputs from the GEOS-Chem nested model
simulation. The model was sampled at the time and location of the TROPOMI/GOSAT measurements, and
convolved with TROPOMI/GOSAT XCH, averaging kernels. The contribution of the lateral boundary conditions
and the sum of all model emissions sources (except wetlands) were subtracted from the TROPOMI/GOSAT data
to generate the TROPOMI/GOSAT enhancements due to exclusively wetland emissions. Emissions from anthro-
pogenic sources (EDGAR v4.3.2; Janssens-Maenhout et al., 2019), biomass burning (GFAS; Kaiser et al., 2012),
termites, and soil absorption terms were included. Livestock emissions were multiplied by a factor of 1.5 to
reflect the underestimation of this emissions source in Africa in EDGAR v4.3.2 (Lunt et al., 2021).

To isolate the wetland CH, enhancements (from Bangweulu) from other sources, the satellite data were analyzed
over a region encompassing retrievals downwind of the wetland (see Text S5 in Supporting Information S1). To
do this, modeled enhancements were compared at times and locations when the GEOS-Chem wetland component
from Bangweulu was greater than 5 ppb (assuming an emission rate of 21 mg m~2 hr~!; see Results). During
the 3-month period (February-April 2019), there were 115 TROPOMI and 11 GOSAT data points that met this
downwind criterion. A similar analysis for the Kafue and Lukanga wetlands was not possible, as their smaller
areal extent lowered the reliability of isolating wetland-dominated signals in the satellite data.

The monthly mean column enhancement over Bangweulu was also calculated for each month in 2019. To mini-
mize the impact of other CH, sources, this analysis was performed over the wetland area itself (see Text S5 in
Supporting Information S1). The monthly mean enhancements were used to generate a normalized seasonal cycle
and multiplied by the aircraft-derived emission rate from February 2019, and the wetland extent, to generate a
range of annual emissions estimates for Bangweulu.
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3. Results and Discussion

Here we present measured CH, fluxes for three important wetland regions in Zambia (the Bangweulu, Kafue,
and Lukanga wetlands). Where meteorological conditions were suitable, flux results are presented for each of the
three approaches and their relative merits discussed, as advice for others attempting airborne flux calculations
in varying meteorological regimes. Each method has intrinsic assumptions and limitations associated with the
modeling of atmospheric transport and dispersion. Consequently, comparison of the quantified fluxes demon-
strates a possible range of fluxes that can be calculated, and provides guidance on the types of conditions suitable
for each method. The sampling strategy for each of the surveys was tailored to the conditions encountered, which
included meteorological development over time (e.g., boundary layer development), the size of the survey region,
limitations from aircraft range and flight duration, and even the presence of large flocks of birds, which may
present a high flight risk.

Figure 1 shows the flight survey sampling paths over each of the three wetlands, colored by measured CH, mole
fraction. Figure 2 shows the measured wind fields (wind direction and wind speed). Figure 3 shows the estimates
of planetary boundary layer (PBL) height development over the duration of each of the three flight surveys. PBL
height was inferred (by eye) from vertical profiles of potential temperature and ozone mole fraction (used as
tracers of mixing and convective development) measured as the aircraft ascended or descended in altitude. Any
expansion of the PBL with time, typical of tropical convection, is accounted for here in emission flux quantifica-
tion using either measured or modeled (Unified Model) PBL heights. Figure 4 shows the time series of the prior
and posterior estimated CH, mole fractions (from the atmospheric inversion approach), as a comparison with
those measured during each of the flights.

In the sections below, CH, emission fluxes from each wetland are presented as a bulk net flux (the total emission
from the entirety of the wetland area, in kg s™') and as an area-normalized flux (in mg m~2 hr!), where the bulk
flux is normalized to the size of the wetland. Converting between these two quantities requires knowledge of the
wetland area extent (see Text S3 in Supporting Information S1). Table 1 presents the CH, fluxes quantified for all
three wetlands using the three approaches.

3.1. Methane Emission Fluxes

Figure 1 shows the measured CH, data superimposed over ecosystem maps of each of the three targeted
wetlands. The ecosystem maps were constructed from mapping conducted by The Ecological Survey of Zambia
(Smith, 2001), Debenham (1952), interpretations of Landsat satellite imagery, and in-field observations. Alter-
native maps, showing the CH, data superimposed over satellite imagery, are available in Figure S2 in Supporting
Information S1. Figure 1 shows a consistent spatial association between the higher CH, mole fractions and areas
of vegetated marshland. This was most compelling for the Bangweulu wetland but was also observed for the
Lukanga wetland, with enhancements observed downwind and to the south-west of the central marshland. The
association between CH, and vegetated marshland was least clear for the Kafue wetland, but the highest enhance-
ments were developed downwind of the river system and associated marshland.

3.1.1. Bangweulu Wetland

Enhancements in CH,, of up to 600 parts per billion (ppb) over the surrounding background, were measured
directly above vegetated marshland in the center of the Bangweulu wetland during the flight (Figure 1). In
contrast, no such enhancements were observed directly over, or nearby, large bodies of open water, such as Lake
Bangweulu in the north-west of the wetland. Figure 3 shows that the PBL over Bangweulu increased in height by
approximately 600 m over the 3-hr flight duration. The wind field encountered during the flight over the Bang-
weulu wetland was particularly variable (Figure 2), and the wind speed was generally very low over the wetland
itself (<2 m s~!). The lack of a clear prevailing wind direction and slow wind speed meant that enhancements
were unlikely to be transported away from the emission source. These conditions were suitable for flux quantifi-
cation using the boundary layer budgeting mass balance approach (Denmead et al., 1999) but were not suitable for
the advective mass balance approach. Neither were the conditions suitable for analysis using the eddy-covariance
technique as cross-correlations between measured vertical wind speed, temperature, and CH, were unable to be
quantified. Hence, an emission flux for the Bangweulu wetland was quantified here using the boundary layer
budgeting mass balance and the atmospheric inversion approaches.
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Figure 3. Estimates of planetary boundary layer (PBL) height over the three wetlands. Potential temperature (6) and O, mole
fraction (ppb) vertical profiles for the flights surveying the Bangweulu (top row), Kafue (center row), and Lukanga (bottom
row) wetlands. Only data where the aircraft was ascending or descending in altitude is shown. The colors correspond to
different time periods (UTC; LT-2) during each of the flights, with the highlighted areas indicating the uncertainty in the PBL
height estimated at that time (these uncertainties were propagated through into the final emission flux uncertainty estimates).
Estimates of PBL height were based on rapid or sudden changes in 0 or O, mole fraction with altitude, or where there were
substantial changes in gradient with altitude (identified by eye). The surface elevation below each of the atmospheric profiles
was largely flat, with only minor elevation changes between profiles. Planetary boundary layer height increased over the
course of the flights over each of the wetlands, as expected.

The boundary layer budgeting box model was used to derive an area-normalized emission flux of 21.1 (+6.1) mg
CH, m~2 hr~!, representing a ‘snapshot’ of emission fluxes for the conditions at the time of survey (Table 1). The
uncertainty quoted here represents one standard deviation (1 s.d.) and was calculated through the propagation of
uncertainties associated with measured wind variability (Figure 2), boundary layer mixing processes (Figure 3),
and instrumental uncertainty. Accounting for the expansive extent of the Bangweulu wetland (Information Sheet
on Ramsar Wetlands, 2007b), this area-normalized flux is equivalent to a bulk net emission flux of 46.9 (+13.6)
kg CH, s~". In the atmospheric inversion approach, prior CH, emissions were optimized to best match measure-
ments, yielding posterior emission fluxes from the Bangweulu wetland of 9.0 (+3.4) mg CH, m~> hr~! (Table 1).
Extrapolating this result to the entire Bangweulu wetland results in a calculated bulk flux of 20.0 (+7.6) kg
CH,s™.
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Figure 4. Time series (UTC) of measured data and simulated data used in the atmospheric inversion. Measured (red)

and simulated (NAME; black) one-minute average CH, mole fraction, wind speed and wind direction, and empirical (see
Figure 3) and simulated planetary boundary layer (PBL) heights (PLBH), for the Bangweulu (left column), Kafue (central
column), and Lukanga (right column) wetland surveys. There was reasonable agreement between measured and simulated
wind direction, wind speed, and PBLH, throughout all three flight surveys. Simulations performed for the NAME inversion
were driven by meteorology from the Unified Model (UM), a numerical weather prediction model. The aircraft altitude
(meters above sea level) during flights is also shown for additional context (see also Figure S3 in Supporting Information S1).

The CH, fluxes quantified for the Bangweulu wetland using the mass balance and atmospheric inversion
approaches did not agree within their respective uncertainties. However, pseudo-column simulated enhancements
derived using the mass balance flux were more consistent with satellite retrievals than those derived using the
atmospheric inversion flux (see Section 3.3). This consistency between the mass balance method and satellite
data suggests that the mass balance flux may be more accurate than that quantified using the atmospheric inver-
sion approach. The atmospheric inversion flux may be expected to be smaller as a result of a lower PBL height
used to drive the NAME transport model (using meteorology from the Unified Model) as the modeled PBL
height (~1100 magl) disagreed with measurements (~1700 magl) by a factor of ~1.5 (Figure 4). We therefore

SHAW ET AL.

12 of 21



Global Biogeochemical Cycles 10.1029/2021GB007261

Table 1
Summary of Measured and Modeled (Month of February) Per-Unit-Area and Bulk Emission Fluxes From Each of the
Bangweulu, Kafue, and Lukanga Wetlands (See Section 3.1)

Area-normalized flux/mg m=2 hr~! Bulk flux/kg s~!
CH, emission type Bangweulu Kafue Lukanga Bangweulu Kafue Lukanga
Mass balance 21.1+£6.1 = 155 45 2.7 469 + 13.6 = 11.2 +2.0
Eddy-covariance - 23.0 +31.6 279 + 143 - 422 +580 202103
NAME inversion 9.0+34 5.0+0.7 14.6 + 2.5 20.0+7.6 92+ 1.3 105+ 1.8
GCP? 1.7+£2.0 12+1.6 39+5.0 39+43 23+3.0 2.8+3.6
WetCHARTS 2of] 42 2oll 0.6 +0.6 1.6+2.3 6.0 +4.7 12+1.1 1L.1+17

Note. Values in italics represent emission fluxes calculated by conversion with the Ramsar wetland area estimates (Information
Sheet on Ramsar Wetlands, 2005, 2007a, 2007b; see Text S3 in Supporting Information S1).

2Mean of results from 13 land surface models for the month of February, 2000-2017. "Mean of results from 9 land surface
models in 324 different ensemble members for the month of February, 2009-2010.

provide a flux range (estimated from both approaches) for the Bangweulu wetland of 20.0-46.9 kg CH, s~!
(Table 1) using the data available for this study. Additional surveys would help to reduce this range.

3.1.2. Kafue Wetland

Widespread CH, enhancements of up to 300 ppb above the surrounding local background were observed over the
Kafue wetland, with smaller, isolated areas of local enhancements of 600 ppb above background (Figure 1). The
wind direction was generally northeasterly throughout the survey, with wind speeds of ~4 m s~! (Figure 2) and
the PBL demonstrated rapid growth of more than 400 m over the 4-hr flight duration (Figure 3).

A CH, emission flux from the Kafue wetland was quantified using the airborne eddy-covariance approach. The
eddy-covariance CH, fluxes presented here were the first of their kind measured using this research aircraft
(the FAAM BAe-146) as well as the first in tropical Africa. As such, this represents a novel advancement for
CH, flux quantification from remote regions inaccessible to smaller aircraft with smaller flight ranges. The
largest eddy-covariance fluxes (up to 150 mg CH, m~2 hr~!) were measured directly over vegetated marshland
(Figure 5), with a mean emission flux of 23.0 (+31.6) mg CH, m~2 hr~! over the wetland area (Table 1). If the
mean emission flux measured here is assumed to be representative of the average emission from the whole of the
Kafue wetland, the bulk flux can be estimated to be 42.2 (+58.0) kg CH, s~!. However, this extrapolation relies
on the calculated fluxes being representative of emissions from the wider geographical region, which is difficult
to determine without further study. The area-normalized flux estimate inferred from the atmospheric inversion
was 5.0 (+0.7) mg CH, m~2 hr~!, equivalent to a bulk flux of 9.2 (+1.3) kg CH, s~' (Table 1). The mass balance
approach was not used for the Kafue wetland despite a more consistent wind direction than that observed during
the Bangweulu survey. This was due to the large and heterogeneous shape of the Kafue floodplain, and a lack of

mg CH,
m?2h

¥ mg CH,
“m2h!
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Figure 5. Airborne eddy-covariance Methane (CH,) emission fluxes. Fluxes (mg CH, m~2 hr~!) were calculated at 3 km
intervals for the Kafue (left) and Lukanga (right) wetlands (see scale bar). The transparent white highlighted areas indicate
the calculated emission footprints (90%). Green areas in the satellite imagery indicate wetlands. Satellite imagery © GLAD
Landsat MOSAIC 2021.
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representative upwind and downwind flight sampling (see Figure 1 and Figure S3 in Supporting Information S1).
Mass balance methods are more suited to discrete areas with assumed homogeneous sources.

The CH, fluxes quantified for the Kafue wetland using the eddy-covariance and atmospheric inversion approaches
agreed within their respective uncertainties, albeit with a wide range of uncertainty. The large uncertainty
reported for the eddy-covariance flux was a result of high spatial variability (indicative of the heterogeneity of
the sources) where significant hotspots were observed with emissions of up to 150 mg CH, m~ hr~! (Figure 5).
This makes the extrapolation of a bulk net flux from a mean eddy-covariance flux problematic for highly hetero-
geneous environments. The meteorology used to drive the atmospheric inversion model showed good agreement
with measurements of wind speed, wind direction, and PBL height for the Kafue survey (Figure 4). We therefore
provide a flux range (estimated from the eddy-covariance and inversion approaches) for the Kafue wetland of
9.2-42.2 kg CH, s~! (Table 1).

3.1.3. Lukanga Wetland

CH, enhancements of roughly 200 ppb over background (Figure 1) were observed to the south west of the
Lukanga wetland due to a relatively strong (~6 m s~!) and consistent north-easterly wind (Figure 2). Data
sampled at three altitudes downwind of the Lukanga wetland permitted the use of the advective mass balance
model which was used to estimate a bulk emission flux of 11.2 (+2.0) kg CH, s~!. Using the Ramsar estimate for
wetland extent (Information Sheet on Ramsar Wetlands, 2005), the area-normalized emission flux was estimated
to be 15.5 (+2.7) mg CH, m~2 hr~!. Eddy-covariance was used to quantify a mean emission flux of 27.9 (+14.3)
mg CH, m~2 hr~! (Figure 5) from the Lukanga wetland. The largest fluxes, of up to 50 mg CH, m~2 hr~!, were
observed over vegetated wetland regions (visible as dark green areas in the satellite imagery in Figure 5) outside
of which CH, emissions decreased sharply (to generally <5 mg CH, m~2 hr~!). The calculated emission footprint
(equivalent to ~682 km?, or ~1/4 of total wetland area) extrapolates to a bulk flux of 20.2 (+10.3) kg CH, s~..
Finally, atmospheric inversion modeling yielded an area-normalized emission flux of 14.6 (+2.5) mg CH, m~2
hr=! and a bulk flux of 10.5 (+1.8) kg CH, s~! (Table 1).

CH, fluxes quantified for the Lukanga wetland using the three methods were in good agreement within their
respective uncertainties. The Lukanga wetland survey presented an optimal case study for flux quantification,
both in terms of the meteorological conditions during the flight and the more homogeneous nature of the emis-
sion source (Figure 5). This allowed for the application and comparison of all three flux approaches, which was
not possible for Bangweulu and Kafue for the reasons described above. We provide a flux range (estimated from
all three approaches) for the Lukanga wetland of 10.5-20.2 kg CH, s~! (Table 1).

3.1.4. Comparison of Flux Quantification Approaches

This is the first study to evaluate and compare the use of mass balance, eddy-covariance, and atmospheric inver-
sion flux quantification approaches using airborne survey data. By comparing these approaches we can offer
important guidance on their applicability to future airborne surveys and survey design. Table 1 summarizes the
calculated bulk and area-normalized emission fluxes for each of the approaches (where it was possible to apply
them) for each wetland.

We conclude that airborne eddy-covariance analysis can be useful for examining the spatial variability of heter-
ogeneous sources, but provides poor representation of a bulk net flux in the absence of more complete sampling
than that available in this study. Strong, clear, and positive cross-correlations between vertical wind and CH,
or temperature were used here as criteria for further analysis. Poor quality cross-correlations usually indicate
unsuitable meteorological conditions, such as weak vertical transport or the highly heterogeneous wind field
encountered when surveying Bangweulu.

Atmospheric inversion approaches can be useful for capturing large-scale sources that vary on spatial scales
greater than the model resolution (0.14° X 0.09°), but not for sources that are highly heterogeneous in space
and/or time. Atmospheric inversions attempt to account for spatial and temporal variations in meteorological
conditions, such as changing PBL height or wind direction (as shown in Figure 4) that can be difficult to capture
with limited field sampling. However, the inversion method relies on accuracy of those meteorological fields and
thus strongly benefits from the availability of measurements to understand transport error (as shown with our
Bangweulu inversion estimates). Further, atmospheric inversions may be influenced by prior emission estimates,
which may be of particularly limited accuracy in tropical Africa where prior measurements are lacking.
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0 T T T T T T T The advective mass balance approach is most suited to the evaluation of a
L ZAM wetlands average | bulk flux, but requires upwind and downwind sampling of well-mixed air
r source input = -59.8%o + 1.0[ 7 masses and low variability in wind speed and direction (compared to the
g_ -5 L ] mean wind vector). The boundary layer budgeting mass balance method is
b i ] also suited to the evaluation of a bulk flux, but only in slow (non-advective)
'g - . wind conditions.
Q B -
f -10 0 7] In conclusion, and by way of guidance for future aircraft flux surveys, all
E’ r 1 three approaches have utility for flux quantification, but the applied method
% L ] must be carefully selected based on the survey conditions, as demonstrated
g-15- T by the three contrasting case studies presented in this work. In addition,
MLB) i ] repeated surveys and more complete sampling can reduce flux uncertainty.
<= r 4
<1 201 R —
L \ ] 3.2. 8" Ccp, Isotopic Signature
3 | | | \‘\\\\- Whole air samples were collected for offline analysis of the isotopic signature
'2300 ' 0.10 0.20 ' 030 ' 0.40 of the CH, (6"*Ccn,) to identify the likely emission source. Figure 6 shows
A ([CH,)) (ppm) a Miller-Tans plot (Miller & Tans, 2003) of sampled CH,, demonstrating a
source signature of —59.8%o (+1.0%0). The measured isotopic signature is
Figure 6. Methane (CH,) isotopic signature (6"*Ccy,) determination. Miller- consistent with that reported for other tropical wetland CH, emissions (typi-
Tans plot (Miller & Tans, 2003) of CH, sampled during flights over the three cally —60%o), is more enriched in '*C than source signatures for temperate

wetlands and analyzed for CH, carbon-isotopic signature (6§'*Ccy,). Values are
plotted as differences from measured background values (i.e., A[CH,] = [CH,]
= [CH,Jpyexgromna)- Thus, the Miller-Tans method accounts for non-constant

boreal and Arctic wetlands, and differs considerably from signatures associ-
ated with fossil fuel use (typically —45%o0) (Ganesan et al., 2018; Schwieztke

background values of both [CH,] and 6'*Ccy,. The source signature is et al., 2016). The measured source signature may reflect the dominance of
determined by the gradient of the linear regression, and is equal to —59.8%o C4 plants, such as papyrus, in African wetlands. The measured global bulk
(£0.1.0%0.) This value is consistent with the isotopic source signatures of signature is —47%o; thus, substantial emissions from wetlands with a source

other tropical wetlands (Nisbet et al., 2019).

signature of —60%o would act to drive the global CH, burden to more isotop-
ically negative values. This is consistent with the observed trend in the global
bulk signature post-2007 (Lan et al., 2021; Nisbet et al., 2019).

3.3. Comparisons to Satellite Observations

In this section, we compare satellite-retrieved CH, columns over the Bangweulu wetland with pseudo-columns
simulated using the aircraft-derived CH, emission fluxes reported in Section 3.1, to test the validity of the calcu-
lated fluxes. Analogous satellite analyses were not performed for the Kafue and Lukanga wetlands due to a lack
of satellite retrievals of column CH, over their smaller wetland areas, as well as their proximity to other conflating
CH, sources.

Figure 7a shows the mean satellite-retrieved column CH, enhancements over, and downwind of, Bangweulu
between February and April 2019 for both GOSAT (22 + 11 ppb) and TROPOMI (19 + 10 ppb), as well as
GEOS-Chem simulated pseudo-columns. The two satellites have different CH, enhancement magnitudes due to
differences in the spatial resolution of their retrievals, their sampling locations, and the vertical sensitivities of
their instruments. The enhancements simulated using the mass balance emission rate for Bangweulu (21.1 mg
CH, m~2 hr~!; Table 1) were consistent with satellite observations for both GOSAT (15 + 7 ppb) and TROPOMI
(23 + 10 ppb), which supports the magnitude of fluxes calculated using the mass balance method. However, using
the lower emission rate calculated using the atmospheric inversion (9.0 mg CH, m~2 hr~!; Table 1) resulted in less
than half the observed enhancements for both satellites, suggesting that the inversion method underestimated true
emissions in this case. The error bars (Figure 7a) reflect the uncertainty in mean column enhancements down-
wind of Bangweulu due to spatial variability in emissions and variations in atmospheric transport, and are similar
in magnitude for retrieved and pseudo-columns. The retrievals used for this comparison were recorded after 16
February 2019, indicating the persistence of large CH, emissions consistent with the emission rates calculated
from the aircraft data.
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3.4. Comparisons With Land Surface Models

mm Mass balance flux Mean bulk and area-normalized CH, emission fluxes from the two land

surface model ensembles are presented in Table 1. The models underesti-
mated emissions by a factor of 10 on average when compared with fluxes
derived from the airborne measurements (Figure 8). Examination of the 19
different wetland models used as part of the two model ensembles indicates
a large inter-model variability in the magnitude and spatial distribution of
CH, emissions (see Text S6 in Supporting Information S1). Simulated emis-
sions were greater for the GCP models that used a diagnostic wetland area
map (WAD2M (Zhang et al., 2021)), as opposed to a prognostic (internally

GOSAT calculated) map (Figure 8). Additionally, many of the land surface models

simulated substantial emissions from model grid cells containing mostly

% 40 b TROPOMI XCH, —e= GOSAT XCH, open water, despite no clear evidence in the aircraft data for large CH, emis-
E 35 sions from these areas (Figure 1): the lack of significant CH, enhancement
= over open water implied limited emissions, compared with the much stronger

8 30 . :
g signals measured over surrounding vegetated wetland. Of the 19 land surface
Jqé) 25 models analyzed in this study, 13 incorrectly simulated substantial emissions
E 20 from model grid cells containing mostly open water, and therefore do not
% 15 capture the observed dominance of vegetated wetland areas for CH, emis-
. sions. This could indicate that land surface models currently lack the ability
5 10 to accurately predict emissions from vegetated tropical wetlands in Africa.
5 2019-01 201907 201009 2010-11 The que}s may not be adequatel}.f repres.enting iml?ortant CH, production
and emission processes for vegetation typical of African wetlands. Alterna-
Figure 7. Total-column Methane (CH,) (XCH,) observations by TROPOMI tively, the presence of vegetation may indicate regions of shallower water,
and GOSAT. (a) Comparison of satellite-retrieved and pseudo-satellite XCH, and associated reduced oxidation of CH, between lake bed and lake surface.

enhancements. Satellite-retrievals (dark blue) were from TROPOMI (left) and
GOSAT (right) between February and April 2019. There were no successful
TROPOMI retrievals prior to 16 February 2019 due to cloud cover. Pseudo-
column XCH, enhancements were simulated using GEOS-Chem and the two

Regardless, improved parameterization of the main processes involved in the
production of CH, substrate (through anaerobic muds and root exudates),
and the potential vegetation-mediated transfer of CH, to atmosphere (where

aircraft-based wetland emission fluxes calculated for Bangweulu (see Table 1). ~ vegetation acts as a conduit) must be a priority for current and future global
Pseudo-column enhancements using the flux calculated from the mass balance CH 4 budgeting, and thereby climate prediction.

approach were in good agreement with satellite-retrievals. The error bars

reflect the uncertainty in mean column enhancement downwind of Bangweulu

due to spatial variability in emissions and variations in atmospheric transport. -

(b) TROPOMI and GOSAT retrieved monthly XHC, enhancements above 3.5. Scalability

Bangweulu for 2019. This shows the seasonality in XCH,, with the largest
enhancements occurring between December and April, and lowest between
May and November.

We now discuss the potential scalability of the aircraft-derived fluxes. The
three surveys represent a time-limited data set, or “snapshot” of emission
fluxes, particularly when viewed from an annual, or even seasonal, context.
Therefore, the scalability of the calculated aircraft fluxes for periods longer
than the 3 days of measurements has limited and uncertain value. Extended
aircraft campaigns are expensive and labor intensive, and hence unsuitable for routine long-term monitoring.
Satellites, while providing lower spatiotemporal resolution observations in cloud-free conditions, allow for
continued monitoring year-round. Figure 7b shows monthly averaged XCH, enhancements over Bangweulu in
2019, retrieved by TROPOMI and GOSAT. An annual emission can be estimated (with important limitations) by
scaling the aircraft-measured fluxes for February 2019 using the satellite column enhancements as a linear proxy
for seasonality. This is a crude extrapolation as column enhancements may not necessarily correlate linearly with
emissions due to seasonal variability in transport and mixing. We include the rough estimate of annual flux here
to demonstrate the potential importance of Zambian wetlands in the CH, budget. For Bangweulu, the total annual
emission was estimated to be 1.2-3.0 Tg CH, yr~!, where the range encompasses uncertainties in the assumed
wetland area (which also varies seasonally). This annual emission accounts for 4%—10% of the most recent
bottom-up estimate for total African wetland emissions (30 Tg CH, yr~!; Saunois et al., 2020), despite Bang-
weulu accounting for less than 1% of total sub-Saharan African wetland area (Gumbricht et al., 2017a, 2017b).
However, it should be noted that interannual variations in total emissions cannot be accounted for here.
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Figure 8. Comparison of measured and land-surface-model simulated bulk
Methane (CH,) fluxes from the three wetlands. Measured emission fluxes for
the Bangweulu (top), Kafue (middle), and Lukanga (bottom) wetlands using
each of the three flux quantification methods are shown in green. Simulated
CH, emission fluxes are shown in light red and light blue, for the Global
Carbon Project (GCP) and WetCHARTS model suites, respectively, with the
means of each of the model ensembles shown in darker shades of the same
colors. Error bars show 1 s.d. uncertainty in the case of measurements and

1 s.d. in the distribution of CH, emissions across relevant model grid cells in
the case of simulations. All models underestimate CH, emission fluxes when
compared with the measurements. See Supplementary Information Table S5 in
Supporting Information S1 for detail.
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4. Conclusions

We report the first measurements of CH, mole fraction over three large
wetland regions in Zambia. Three independent approaches to flux quantifica-
tion were used to calculate CH, emission fluxes. While the quantified emis-
sions were in broad agreement within uncertainties, the use of three different
methods demonstrated the advantages and limitations of each of the methods,
and their applicability to different sampling regimes and in varying environ-
mental circumstances. The isotopic signature of the wetland CH, emissions
was measured to be —59.8%o (£1.0%0). This source signature is lighter than
the bulk global background (—47%o) and is consistent with CH, emitted from
other tropical wetlands (Nisbet et al., 2019). Substantial emissions of such
a source would act to drive the global background isotope fraction lighter,
consistent with recent trends in the isotopic composition of the global CH,
budget observed since 2007. The isotopic signature reported here will be
useful to better constrain tropical African wetland sources in global CH,
budget models that use '*Ccy, as a co-constraint (Lan et al., 2021). Our results
show that the Bangweulu wetland, in the Upper Congo basin, may contribute
over 1 Tg CH, per year alone, roughly equivalent to half the anthropogenic
CH, emitted annually by the UK (~50 Tg CO, equivalents in 2019; Brown
et al., 2021).

While there were differences in the emissions estimated using each of the
three flux quantification approaches, it is important to note that all three
approaches estimated greater CH, emissions than all land surface models.
Hence, we provide evidence for the underestimation of wetland CH, emis-
sions in the tropics by land surface models (bottom-up) compared with
aircraft data (top-down). This finding is consistent with recent global budget
assessments (Saunois et al., 2020) which derived bottom-up emission esti-
mates from wetlands of 145 (100-183) Tg CH, yr~! but top-down emis-
sion estimates of 194 (155-217) Tg CH, yr~! for the year 2017. Improve-
ments to land surface models, especially regarding the parameterization of
CH, emission and the modeling of vegetation typical of tropical wetlands,
may be important to better reconcile bottom-up and top-down budgeting
approaches.

There is an open question as to how CH, emissions from natural wetlands
will respond to global climate change (such as increasing surface temper-
ature and tropical rainfall). Such questions cannot be answered within the
scope of this study. Further work is urgently needed in tropical Africa,
and other regions with vegetated wetlands, to better understand the
processes controlling the spatial and temporal distribution of this CH,
source, and to determine how this source might respond to current and
future climate change. If the warming is indeed feeding the warming,
this would necessitate imposing additional reduction measures on top of
those currently planned for anthropogenic greenhouse gas emissions in
order to keep global warming below a threshold of 2°C above preindus-
trial levels.
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