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Abstract: Saturated heterocycles are found in numerous therapeutics as well as bioactive natural products
and are abundant in many medicinal and agrochemical compound libraries. In order to access new chemical
space and function, many methods for functionalization on the periphery of these structures have been
developed. Comparatively fewer methods are known for restructuring their core framework. Herein, we
describe a visible light-mediated ring contraction of a-acylated saturated heterocycles. This unconventional
transformation is orthogonal to traditional ring contractions, challenging the paradigm for diversification
of heterocycles including piperidine, morpholine, thiane, tetrahydropyran, and tetrahydroisoquinoline
derivatives. The success of this Norrish Type II variant rests on reactivity differences between photoreactive
ketone groups in unique chemical environments. This strategy was applied to late-stage remodeling of
pharmaceutical derivatives, peptides, and sugars.

One-Sentence Summary: A photo-mediated method that effects ring contraction of a-acylated
heterocyclic frameworks is reported.
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Saturated heterocycles, especially piperidines, are among the most frequently encountered
scaffolds in biologically active small molecules (/,2). The prevalence of the piperidine scaffold in
pharmaceutical and agrochemical compound libraries has resulted in increased interest in the development
of methods for its site-selective derivatization (Fig. 1A) in order to access new chemical space. Recent
advancements in C(sp’)-H functionalization have provided many powerful methods for peripheral
functionalization of the piperidine framework (3—12), shifting the paradigm in late-stage-functionalization.
In comparison, methods that modify the piperidine skeleton are less abundant, prompting a quest for
methods for this purpose. Such methods would be especially valuable for drug discovery, where
maximizing structural diversity, specifically at a late stage, is highly valued (/3). To this end, we sought to
develop a ring contraction of piperidines and related saturated heterocycles to carbocyclic frameworks to
achieve core, rather than peripheral, modification.

Relatively few methods for piperidine ring contraction exist as compared to those available for the
ring contraction of carbocycles bearing functional handles. For example, in cyclohexanone derivatives
alone, anionic, carbene, and cationic intermediates have all been exploited to achieve ring contraction. In
contrast, for saturated nitrogen-containing heterocycles (azacycles), commonly employed ring contraction
strategies predominantly leverage bicyclic, quaternary-ammonium intermediates, which undergo a formal
ring contraction upon attack from an exogenous nucleophile (Fig. 1B) (/4, 15). More recently, we reported
an approach to piperidine ring contraction via oxidative C(sp*)-N bond cleavage, wherein silver-mediated
deconstructive bromination of N-benzoyl piperidines followed by intramolecular C-N bond reformation in
the resulting acyclic bromoamine furnishes the corresponding N-benzoyl pyrrolidine scaffolds in two steps
(Fig. 1B) (16). Though useful, these tactics are limited to piperidine-to-pyrrolidine scaffold conversions,
require specific substitution patterns (/4, 15), and employ strongly oxidizing conditions that pose a
challenge for late-stage diversification (16, /7). The ring contractions of unsaturated azacyclic systems such
as pyridiniums and dihydropyridines have also been explored, for example using light (/8,79). However,
these transformations are limited to substrates with well-recognized photoreactivity profiles.
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Figure 1. Approaches to piperidine diversification. (A) Peripheral functionalization and skeletal remodeling. (B)
Selected examples of ring contractions on piperidine frameworks. (C) Seminal report of Seebach’s unusual THIQ ring
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contraction. (D) Contraction of carbohydrates reported by Suarez and coworkers. (E) Norrish Type II-approach to
piperidine skeletal framework modification (this work).

We sought to develop a complementary and mechanistically distinct approach to piperidine ring
contraction that could also be applied to a wide range of saturated heterocycles to provide access to
underexplored, skeletally diverse substrates. We drew inspiration from an unusual transformation reported
by Seebach and coworkers (Fig. 1C) wherein an a-carboxyl tetrahydroisoquinoline (THIQ) derivative (1a)
underwent contraction to the corresponding indane scaffold (2a) under strongly basic conditions. This
transformation features a curious endo-to-exocyclic nitrogen atom transposition, giving rise to a f-amino
acid structural motif (20). Despite its novelty, only two examples were reported, and the requisite strongly
basic conditions limit its potential application to skeletal modification of drug-like molecules bearing base-
reactive functional groups. A more functional-group-compatible, albeit similarly specific, variant of this
type of transformation was reported by Suarez for a-diketonyl sugars (e.g., 1b), which undergo light-
mediated ring contraction with a subsequent hemiketalization to give fused [5,5] ring systems (i.e., 2b)
(Fig. 1D) (21, 22). Notably, the a-diketone moiety required for the reaction is derivatized in the resulting
product. Our design of a complementary ring contraction sought broad functional group compatibility and
a widened scope beyond c-diketonyl-derived sugars. Herein, we report the visible-light mediated ring
contraction of a-acylated cyclic piperidines to furnish cis-1,2-disubstituted cyclopentane scaffolds (Fig. 1E)
and the extension of this method to other saturated heterocycles including tetrahydropyrans and thianes.
The success of these Norrish Type Il transformations hinged on predicted (and observed) photophysical
differences between the ketone groups in the starting substrates and products (vide infra). An asymmetric
variant of this transformation is also disclosed.

Development of Photo-Mediated Ring Contraction

We commenced our studies by focusing on piperidine ring contractions (Fig. 2A). We envisioned
that upon irradiation, a-acylated precursors such as I, where the aroyl group is disposed pseudo axially to
avoid pseudo A'*-like strain (23), would undergo excitation and intersystem crossing (ISC) to afford II in
the triplet state. A subsequent Norrish Type II 1,5-hydrogen atom abstraction (HAT) would yield the
corresponding 1,4-diradical (III), which would undergo homolytic C—N bond fragmentation, leading to
imine-enol IV. The desired cyclopentane product would then result from an intramolecular enol attack on
the tethered imine (Mannich reaction) to afford cyclopentane V. Under photo-irradiation, however, we also
recognized the potential for undesired reactivity (Fig. 2B), especially further reactivity of the reaction
product (V) to form additional excited species such as VI.

In principle, the success of the reaction would depend on subtle differences in reactivity between
the starting material (I) and the reaction product (V; an anticipated “photo-stationary” state), as both bear
a photoreactive phenyl ketone that could participate in Norrish-type processes (see VI). In their studies
(Fig. 1D), (21, 22) Suarez and coworkers had achieved success primarily because a photo-stationary state
was reached upon hemiketalization of the a-diketone in the product. We envisioned that even though
chemical transformation of the photoreactive moiety would not be realized upon product formation in our
case, differences in the n—>7n" photo-absorption profiles of I and V could arise by virtue of an intramolecular
hydrogen bond that is established in V. As is well known for spatially forbidden n—n* transitions, increased
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polarity in the local environment can lead to a hypsochromic (blue) shift for Amax (24), which we anticipated

would lead to differences in the photoreactivity of I and V. Additionally, we recognized that other

photochemical processes could outcompete our desired ring contraction reaction. For example, though more

prominent for dialkyl ketones, Norrish Type I carbon—carbon bond homolysis from the triplet excited state

5 (i.e., IT) could lead to formation of undesired alkyl-acyl radical pairs (see VII) (24). Another possible

complication could arise following 1,5-hydrogen atom abstraction, where radical recombination of

diradical III could occur to give the corresponding [3.1.1]-bicycle (VIID), i.e., a Norrish—Yang cyclization.

We imagined that a Norrish Type II C-N fragmentation of III (to ultimately afford V) would outcompete

a Norrish—Yang cyclization on the basis of an anticipated unfavorable conformational bias against ring

10 closure to azetidinol VIII and a slower rate for intersystem crossing to the requisite singlet diradical for
cyclobutanol C—C bond formation (25).
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Figure 2. Reaction development. (A) Proposed mechanism for piperidine ring contraction. (B) Potential undesired
side reactivity via Norrish Type I and Norrish—Yang cyclization processes. (C) Reaction optimization for light-
15 mediated ring contraction. Reactions were carried out on a 0.05 mmol scale. Relative stereochemistry is depicted.
"Yields were determined by "H NMR integration using PhsCH as an internal standard. 'Diastereomeric ratio was
determined by '"H NMR integration of resonances corresponding to diastereomers in the crude mixture. *Reaction was
carried out on a l-gram scale in flow, with isolated yield of major diastercomer reported. SHigh throughput
experimentation (HTE) conducted to identify 3-cyanoumbelliferone. Conversion was determined by LCMS analysis.

20
Despite the potential challenges associated with side- and over-reactions of our phenyl ketone
substrate, on the basis of the anticipated differences in absorptivity for I and V, we reasoned that tuning the
wavelength of light could selectively promote the desired reactivity while minimizing the photoreactivity
of the resulting products. Gratifyingly, photo-irradiation of 3a using a 400 nm blue LED lamp provided
25 1,2-disubstituted cyclopentane 4a in 73% yield at room temperature (Fig. 2C, entry 1). Empirically, the
photo-mediated ring contraction proceeded best with a 400 nm wavelength light source; longer wavelength
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irradiation (centered at 450 nm; lower energy) did not result in any conversion, whereas shorter wavelength
light sources (e.g., centered at 385 nm; higher energy), which more closely aligned with the calculated and
measured absorptivity curves of both product and starting material, led to competing non-specific
oligomerization. Sulfonyl groups on the piperidine nitrogen were uniquely effective in providing the desired
product in good to high yields, presumably enhancing the intramolecular H-bond in 4a that accounts for its
stability under the reaction conditions. Other electron-withdrawing groups on the piperidine nitrogen, such
as benzoyl, Boc, or pivaloyl (Fig. 2C, entries 2—4), resulted in lower yields of the ring contraction product.
The choice of solvent was also critical. Benzene, which can enhance hydrogen bonding in 4a, gave the
highest yields and diastereoselectivity (26). Other solvents such as methanol (Fig. 2C, entry 5), acetonitrile
(Fig. 2C, entry 6), toluene (Fig. 2C, entry 7), and trifluorotoluene (Fig. 2C, entry 8) led to diminished yields,
and lower diastereoselectivity. Given the toxicity concerns of using benzene, we have also identified p-
xylene as a serviceable solvent alternative (Fig. 2C, entry 9; see the Supplementary Materials for full solvent
screen, and select substrates using p-xylene as the solvent). Lowering the concentration of the substrate also
led to improvements in yield; a concentration of 0.05 M, which presumably slows the rate of competing
unproductive intermolecular side reactions, was determined to be optimal. From these observations, we
identified an optimized set of conditions for sulfonyl derivatives of the piperidine substrates, which afforded
4a in 84% isolated yield and high diastereoselectivity (Fig. 2C, entry 13). The reaction could be carried out
on gram-scale using flow chemistry (Fig. 2C, entry 14; see the Supplementary Materials for additional
details). For substrates bearing other protecting groups, such as amide and carbamate substrates, we
observed reduced conversion to the desired product. This observation was intriguing, as ostensibly the
photoreactive phenyl ketone group in the starting substrates was conserved; we posited that changing the
group on nitrogen (e.g., sulfonyl to acyl or carbamoyl) could lead to discrete differences in the triplet state
energy of the phenyl ketone We hypothesized that a photosensitizer or photocatalyst could improve the
efficacy of the reaction, and thus we initiated a screen of 46 known photosensitizers and photocatalysts
using amide substrate 3n. 3-Cyanoumbelliferone (IX, Fig. 2C, entry 16) emerged as an effective additive
that improved the efficiency of the reaction: piperidine 3m, 30, 3s, and 3t were converted to their
corresponding cyclopentylamines with improved yields (average of 11% increase, vide infra). The observed
effect appears to be subtle and substrate dependent. Efforts to further understand the role of
cyanoumberlliferone IX are ongoing.

Scope of the Photo-Mediated Ring Contraction

With optimized conditions in hand, the scope of the visible-light mediated ring contraction was
explored (Fig. 3A). The generality of the group on the nitrogen atom was investigated first. Arylsulfonyl-
derivatized piperidines featuring electron-withdrawing substituents, such as ketones (e.g., 3h), esters (e.g.,
3i), and halogens (3e-3g) led to good to modest yields of the respective ring-contracted products. Likewise,
arylsulfonyl-derivatized piperidines bearing electron-donating groups such as ethers (e.g., 3¢ and 3d) were
also competent in the ring contraction transformation. The presence of a p-nitro substituent (3j) resulted in
the complete recovery of starting material, likely resulting from photo-quenching (27-29). Although
arylsulfonyl substituents on the piperidine nitrogen led to the highest ring contraction product yields,
substrates bearing acyl (e.g., 3m-3p), carbamoyl (3q), and urea-type groups (e.g., 3r, 3s) on the nitrogen
also led to successful ring contraction in the presence of cyanoumbelliferone (IX) (Fig. 3A).
Phosphoramidite-containing substrates (3t, 3u) were also competent, providing the cyclopentane products
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Figure 3. Scope of substrates in piperidine ring contraction. Reaction conditions: Starting material (0.2 mmol),

benzene (0.05 M), 400 nm LED, 18-24 h. Isolated yields reported and relative stereochemistry shown. Diastereomeric
ratio was determined by 'H NMR integration of resonances corresponding to diastereomers in the crude. (A) Scope

of protecting groups in ring contraction. “Additive IX (30 mol%) was added to the reaction mixture. ¥0.2 mmol scale
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trials conducted in the absence of additive IX. (B) Scope of aryl ketone in ring contraction. ‘Ring opened product
following a subsequent Norrish Type Il process is also observed. *Norrish-Yang azetidinol product observed in 12%
(19% brsm). "Reaction irradiated with a medium-pressure mercury lamp for 24 hours. (C) Scope of heterocyclic core
in ring contraction. “Reaction conducted on a 0.14 mmol scale. “Reaction conducted on a 0.11 mmol scale. T'Selected
examples conducted on a 0.05 mmol scale using p-xylene (0.05 M) as a solvent. Yield was determined by 'H NMR
integration using Ph3CH as an internal standard (see Supplementary Materials for more details).

in yields comparable to those observed for substrates bearing a sulfonyl group. In these cases, the
phosphoramidyl group is easily removed under acidic conditions (30). The efficacy of the additive was also
found to vary depending on the substrate, with the conversion of 3q to 4q being minimally affected upon
adding IX. Here the persisting low yield likely involves reduced productive hydrogen atom transfer due to
a preference for an unproductive conformation of the starting material (see Supplementary Materials for
more details).

Next, we investigated the scope of the ring contraction with respect to the nature of the a-aroyl
group (Fig. 3B). Here, the reaction was shown to be sensitive to sterics, with p-methyl substitution (5a)
giving rise to higher yields and diastereoselectivity compared to the isomeric o-methyl substituted Sb. Aryl
ketones featuring electron-donating substituents, such as ethers (5¢) and thioethers (5d), led to good yields
and diastereoselectivity for the desired product. Halogen-containing a-aryl-ketone Se was also competent
in the ring contraction chemistry, affording an additional functional handle for post-ring contraction
modification. In comparison, electron-withdrawing groups such as p-CN and p-CF; (e.g., 5f, 5g) led to the
formation of the desired product in modest yield and lower diastereoselectivity. This is likely the result of
the increased acidity of the a-keto-proton in the product, which could undergo epimerization. On the basis
of our calculations, epimerization through a retro-Mannich-Mannich pathway is unlikely (vide infra).
Additionally, in the case of substrate 5g, we observed an ensuing ring opening of the product through
Norrish Type II cleavage, evidencing the potential over-reactivity of the cyclopentane products in some
cases (see the Supplementary Materials for more details). Other aromatic ketones were also examined. For
example, extended aromatic systems such as naphthalenyl ketones (Sh) performed comparably, as did
heteroaromatics such as thiophenyl ketones (see Sk). While the conditions identified were optimized for a-
aroyl groups, several substrates bearing non-aryl substituted ketones also participated successfully in the
ring contraction transformation. Specifically, the desired products were observed for an alkynyl C(sp)
bearing substrate (5I) and a vinyl C(sp®) bearing substrate (5m). In the case of 5l, the substantial decrease
in yield can be attributed to a competing Norrish—Yang cyclization process leading to an azetidinol side
product (see the Supplementary Materials for more details). Using more forcing, higher energy (mercury
lamp) irradiation, alkyl C(sp’) substituted ketone 5n was converted to 6n in 25% yield, highlighting, even
in this case, the differential reactivity of the ketone groups in the starting material and product.

Substituted piperidines and several other saturated heterocycles were then examined for their
propensity to undergo this type of ring contraction (Fig. 3C). Single substituents at the y-position were
tolerated (see 7a) imparting stereocontrol. Notably, benzannulated substrates such as
tetrahydroisoquinoline 7b successfully underwent the ring contraction transformation, providing the
corresponding amino indane scaffolds (i.e., 8b) in good yields and under mild conditions. Additionally,
upon irradiation of substrates containing a morpholine scaffold, the tetrahydrofuran heterocycle (8¢) was
formed. The ring contraction methodology was also extended beyond azacyclic frameworks to a-acylated
thiane and tetrahydropyran (THP) derivatives. These were also competent substrates, leading to the
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formation of cyclopentane thiol and alcohol products (see 8d—8h), respectively. In the case of 7d, formation
of the resulting thiol (8d) could be viewed as the unveiling of a covalent modifier upon photo-irradiation.

Finally, we turned our attention toward the application of the ring contraction methodology to
biologically active small molecules to demonstrate the potential for late-stage derivatization of drug
candidates. Upon irradiation, MDMC (9a, stimulant), Rimiterol (9b, bronchodilator), Cathinone (9¢, DAT
reuptake inhibitor) (3/) and Mefloquine (9d, antimalarial) derivatives underwent contraction to their
corresponding cyclopentane isomers (Fig. 4A). In the case of 9d, a ring-opened aldehyde side product was
also observed, potentially arising from hydrolysis of the imine intermediate prior to Mannich-type ring
closure. We speculate that these events are likely in this case because of the electron-deficient bis-
trifluoromethylquinoline group in 9d. The ring contraction transformation was also leveraged in peptide
diversification (Fig. 4B). Here, glycine containing peptide 11 was converted to the corresponding amino
cyclopentane (12), unveiling an H-bond donor. In this example, irradiation converts the a-peptide grouping
to the corresponding B-amino ketone, accomplishing a non-intuitive peptide modification. Prospective
applications include unveiling peptide-turn mimics upon irradiation.

Owing to the participation of cyclic ether derivatives in these light-mediated ring contractions, we
have also explored this rearrangement in sugar editing (Fig. 4C). When subjected to 400 nm irradiation
conditions, D-galactose-derived bis-acetonide 13 gave isomeric ring-opened product 14. Here, the enol
resulting from the Norrish Type II ring opening presumably tautomerizes to the aryl ketone and does not
engage the lactone carbonyl group, offering a powerful targeted “digestion” of sugar derivatives.
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Figure 4. Applications toward biologically relevant compounds. (A) Selected examples of bioactive drug molecule
contraction (B) Ring contraction mediated peptide editing (see Supplementary Materials for additional details). (C)
Sugar editing enabled by targeted “digestion.” Reaction conditions: Starting material (0.2 mmol), benzene (0.05 M),
400 nm LED, 24 h. Isolated yields reported and relative stereochemistry shown. Diastereomeric ratio was determined
by 'H NMR integration of resonances corresponding to diastereomers in the crude. “Reaction conducted on a 0.1 mmol
scale where yield was determined by 'H NMR integration using Ph3CH as an internal standard, and d.r. was determined
by '"H NMR integration of resonances corresponding to diastereomers in the crude. Ring opened product also
observed in 4.5% yield (see Supplementary Materials for more details).
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Computational Insight

To gain insight into the proposed mechanism and origin of stereoselectivity for these photo-
mediated ring contractions, we have undertaken a computational study for the reaction of N-tosyl piperidine
derivative 3b (Fig. 6A). All of the quantum chemical calculations in the transition state modeling presented
were performed using the Gaussian 16 program (32). Geometry optimizations and frequency calculations
were performed at the M06-2X/6-31+G** level of theory with the SMD model for implicit solvation by
benzene (see the Supplementary Materials for more details) (33—-35). We initially postulated that the
positional selectivity for 1,5-HAT could be attributed to the greater hydricity and lower bond dissociation
energy of the a-amino hydrogen atom (see *3b — A, Fig. 5A). Using DFT calculations, we found that the
more hydridic and polarity matched a-piperidinyl hydrogen atom had a HAT transition state 9.0 kcal/mol
lower in energy than the potentially competing C—H abstraction at the y-position (36, 37). The calculations
also revealed a conformational preference in the transition state for the N—S bond wherein maximal
separation is maintained between the carbonyl and sulfonyl oxygens (see the Supplementary Materials for
additional details).

We also reasoned that the diastereoselective formation of the cis-disposed amino cyclopentane
products (e.g., 4b) would potentially result from a series of non-covalent interactions — such as n-stacking
and hydrogen bonding — in the transition state for the Mannich-type ring closure. Computed transition state
structures support the Mannich-type cyclization/C—C bond formation proceeding in concert with proton
transfer from the enol moiety to the N-tosyl group, consistent with the proposal by Suarez and coworkers
for the aldol-type cyclization in hexopyranose carbohydrates (22). Three scenarios could be envisaged that
qualitatively support the experimentally observed diastereoselectivity (Fig. 5C, top right). In the first
scenario, only the (£/Z) imine—enol is productive. This geometry arises when fragmentation of diradical
intermediate *A occurs faster than acyl bond rotation (see *A orange bond). Alternatively, if interconversion
of the (Z) and (£) forms for both the enol (C=C) and the imine (C=N) bonds is facile, then all four possible
imine—enol double-bond geometries can be accessed in the Mannich cyclization. However, the requisite
triplet 1,4-diradical conformer that would afford the (Z2)-imine (Ts-axial) is high in energy and the
contributions from a (Z)-imine geometry to the stereochemical outcome are expected to be negligible (see
Supplementary Materials for complete discussion). We propose, therefore, that the most likely scenario is
one in which the diradical is long-lived enough to allow acyl bond rotation and subsequent sampling of
both enol diastereomers (38, 39). In this scenario, only the (£/Z) and (E/E) imine—enols are accessible and
the energy differences between TS-1-4 would determine the stereochemical outcome. The Boltzmann
average of these four transition states predicted a ratio of 14:1 in favor of the cis cyclopentane isomer, in
good agreement with the experimentally determined 12:1 ratio. The cis diastereoselectivity mainly
originates from the energy difference between TS-3 and TS-4, which could be rationalized by a shorter and
presumably stronger hydrogen bond as well as a more staggered arrangement of substituents about the
forming C—C bond in TS-3 ('B — '4b, Fig. 5C). Of note, the overall transformation of N-tosyl piperidine
3b to either cyclopentane product was calculated to be exergonic (—4.2 kcal mol™" for the 4b, compared to
—3.3 kcal mol for the trans-isomer of 4b).

Insight into the selective reactivity of the starting material compared to the product under the
reaction conditions was also supported by DFT calculated and empirically measured absorption profiles of
3b and 4b. Even though the calculated Amax values for the starting material and product (Fig. 5B, top) did
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Figure 5. Computational studies on ring contraction mechanism. (A) Reaction profile for the piperidine ring
contraction. (B) Experimentally and computationally (normalized) determined absorption profiles for the starting
material (3b) and product (4b). (C) Imine-enol geometries and transition states calculated for the diastereoselective

ring-closure.

not differ significantly, we observed secondary absorption peaks associated with the expected n—n*

occurring from 300-375 nm (Fig. 5B, bottom). Here, a hypsochromic shift was observed for amino
cyclopentane product 4b relative to starting piperidine 3b, likely accounting for the selective excitation of

the starting material. Also observed empirically was an overall decrease in absorptivity for the product (e.g.,

€340 = 48.0 Lecm™emol ™ for 3b vs. €300 = 19.2 Lecm™emol™ for 4b). While predictions and rationalizations

of photochemical processes tend to focus on Amax values, in our system, irradiation at Amax would have led

to indiscriminate reaction of both the starting materials and products. By focusing on the secondary, n—n*
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absorption region of 300-375 nm, we are able to modulate the reactivity of the ketone group that is
conserved in both the starting material and product by exploiting subtle differences in the absorbance
wavelengths and extinction coefficients (see the Supplementary Materials for more details) (40). Notably,
the emission spectrum of the 400 nm light source slightly overlaps with the wavelength of light absorbed
by the starting material but negligibly with the product. However, the empirically established optimal use
of'a commercially acquired 400 nm blue LED light source remains to be fully reconciled with the measured
absorption values.

Toward a General Asymmetric Variant

Our insights into the observed diastereoselectivity for these transformations, which arises from
highly organized transition states of an achiral imine-enol intermediate (as revealed from our calculations),
combined with the successes of other powerful enantioselective photo-mediated processes (41, 42), inspired
us to pursue enantioselective variants. We observed the formation of racemic product 4b when
enantioenriched 3b was subjected to the ring contraction conditions, confirming that in this formal radical
polar crossover process, the imine—enol intermediate is achiral. Therefore, we could circumvent the inherent
challenges associated with stereocontrol of radical intermediates by effecting enantioselective closure of
the achiral imine-enol intermediate under a two-electron reaction manifold (43). Given the ample literature
precedent and predictive models for chiral phosphoric acid-catalyzed reactions of imines, we postulated
that rate enhancement of the Mannich step would occur following imine protonation and attendant
deprotonation of the enol, leading to an organized transition state favoring attack on one enantioface (see
Fig. 6 and Supplementary Materials for more details). The combination of H-bonding and ion pairing that
would be realized in this case was anticipated to yield enantioenriched Mannich products (Fig. 6) (44—48).

Asymmetric Contraction Variant*
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Figure 6. Development of an asymmetric ring contraction variant. *Reaction conducted on a 0.05 mmol scale
where yields were determined by 'H NMR integration using PhsCH as an internal standard, and d.r. was determined
by '"H NMR integration of resonances corresponding to diastereomers in the crude. For the major diastereomer, e.r.
was determined by SFC analysis. T10 mol% (R)-TRIP (CPA1) used as chiral phosphoric acid. ¥10 mol% (R)-XYL-
SPA (CPA2) used as chiral phosphoric acid.
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Consistent with this hypothesis, ring contraction of 3b with 10 mol% of (R)-TRIP (CPA1) as an additive
provided (—)-4b in 92:8 e.r. (84% e.e.) with yields and diastereoselectivity consistent with those obtained
under the standard reaction conditions for the formation of the racemate; using the SPINOL-derived
phosphoric acid (R)-XYL-SPA (CPA2) gave (+)-4b in 95:5 e.r. (90% e.e.). Enantioselectivity, albeit
modest, was also observed for amide, urea, THIQ, morpholine, and THP derivatives, giving rise to
enantioenriched products 4m, 4s, 8b, 8c, 8e, and 8g, respectively.

Conclusion

Using a Norrish Type II reaction, we have established a versatile method for the scaffold
remodeling of piperidines as well as other saturated heterocycles. The overall transformation is robust and
the conditions tolerate a wide range of functional groups. Key to the success of these transformations is the
“photo-protection” of a pendant ketone group in the product through intramolecular H-bonding, an
observation supported by our experimental and computational findings. This reaction has been rendered
enantioselective using chiral phosphoric acids.
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